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Interpretive summary 1 

The effect of alfalfa (Medicago sativa) silage chop length and inclusion rate within a total 2 

mixed ration on the ability of lactating dairy cows to cope with a feed withholding and 3 

refeeding challenge 4 

 5 

Thomson 6 

Cows fed diets containing a lower concentration of alfalfa silage (replacing corn silage) 7 

experienced greater reductions in rumen pH following a six hour feed witholding/refeeding 8 

challenge than those fed higher alfalfa concentration diets and also suffered greater short-term 9 

milk loss on the day of the challenge. Lower rumen pH in animals fed a long chop length 10 

compared to a shorter chop length raised questions over the effect of long forage particles in 11 

the diet during and following short-term feed deprivation. This research highlights the 12 

importance of maintaining feeding routines and ensuring adequate feed access throughout the 13 

day in dairy systems.  14 
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ABSTRACT 34 

The objectives of the study were (i) to test whether 6 h feed deprivation followed by refeeding 35 

induces an acidosis challenge in dairy cattle and (ii) to quantify the acidosis challenge 36 

mitigation potential of increased alfalfa silage concentration in the diet. Alfalfa silage 37 

constituted either 25 or 75% of forage dry matter (DM) replacing corn silage (low alfalfa or 38 

high alfalfa; LA or HA), and was chopped to either 14 or 19 mm theoretical length (short or 39 

long; S or L). Dietary treatments LAS, LAL, HAS or HAL were offered to four rumen-40 

cannulated Holstein dairy cattle (161 d in milk; 5th - 6th parity) in a 4 x 4 Latin square design 41 

study with 21 d periods. Starch concentration was 69 g/kg DM higher for LA diets than HA 42 

diets. Feed was withheld for 6 h followed by ad libitum refeeding on d 18 of each period. 43 

Measurements of DM intake, milk yield and composition, rumen pH, and eating and rumination 44 

behaviour were taken on one baseline day, the challenge day and two further recovery days. 45 

After refeeding, rumen pH was reduced in cows fed LA diets but not HA diets. Feeding LAL 46 

resulted in the greatest subclinical acidosis risk (pH < 5.8 for 355 minutes on the 1st recovery 47 

day). Animals fed LA produced 4.4 L less milk on the challenge day in comparison to baseline. 48 

It was concluded that short-term feed deprivation detrimentally affected rumen health and milk 49 

yield in dairy cattle normally fed ad libitum but had no effect on DM intake or milk 50 

composition. Feeding alfalfa silage in place of corn silage mitigated acidosis risk due to 51 

interrupted feed supply, likely due to a combination of lower starch concentration in HA diets, 52 

greater effective fiber concentration, and higher buffering capacity of alfalfa relative to corn 53 

silage. 54 

 55 

INTRODUCTION 56 



4 

 

Lactating dairy cow diets are often formulated to include a high concentration of rapidly 57 

fermented non-fiber carbohydrate (NFC) as a source of energy to support milk production 58 

(Lechartier and Peyraud, 2011). However, such diets can also decrease rumen pH through 59 

greater rate of production of VFA (Allen, 1997). In circumstances where pH remains below 5.8 60 

for 3 consecutive hours, a dairy cow is purported to suffer from Sub-Acute Rumen Acidosis 61 

(SARA), a condition that can reduce milk yield and milk fat concentration (Plazier et al., 2008). 62 

Dietary strategies to increase the resilience of dairy cattle to SARA include feeding forages 63 

with high buffering capacities (e.g. Alfalfa, Medicago sativa) or increasing the concentration 64 

of physically effective fiber (peNDF) in the diet by lengthening forage chop length (McBurney 65 

et al., 1983; Zebeli et al., 2006). Physically effective fiber is defined as the NDF contained 66 

within particles that are longer than the critical particle size for rumen escape (which recent 67 

research suggests is 4 mm although was historically defined as 1.18 mm [Oshita et al., 2004; 68 

Maulfair and Heinrichs, 2012]) and therefore can contribute to the rumen mat (Mertens, 2000). 69 

A lower rumen pH has also been linked with changes in cow feeding behaviour and the adoption 70 

of coping mechanisms, including showing preferences for long particles in the diet (Maulfair 71 

et al., 2013; DeVries et al., 2008) or for supplementary hay (Kmicikewycz and Heinrichs, 2015).  72 

 Experimentally, the stability of rumen pH can be tested by induction of a rumen 73 

fermentation challenge. This is typically achieved through the addition of a large quantity of a 74 

rapidly degradable carbohydrate to the diet such as cereal grains or alfalfa pellets (Krause and 75 

Oetzel, 2005; Colman et al., 2013). However, it is unclear whether such a method accurately 76 

replicates conditions that cause SARA, and furthermore, may not provide an appropriate model 77 

for evaluating dietary mitigation strategies. An alternative approach to instigate a rumen 78 

challenge is deprivation of feed for a period of several hours (Oetzel, 2007). A period of fasting 79 

is then followed by a period of overeating when access to feed is returned, termed ‘refeeding’ 80 

(Chilibroste et al., 2007). Periods of feed deprivation lasting up to 6 h may be relatively 81 
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common in a commercial setting, for instance, where there is insufficient feed or pasture 82 

allocation, feeding equipment failure, or removal of the animal’s access to feed for routine 83 

processes such as milking or health checks. However, relatively little is known about the 84 

severity of the effect of such events on rumen function and milk production. Studies in the 85 

literature have examined the effect of longer periods of fasting such as 12 to 48 h (Chelikani et 86 

al., 2004; Oetzel, 2007; Toerien and Cant, 2007) that generally result in high levels of temporary 87 

milk yield loss, however, we are not aware of any studies that have examined the effects of 88 

shorter fasting periods in dairy cattle that would be more representative of commercial practice. 89 

Therefore, the aims of the present study were (i) to test whether 6 h feed deprivation followed 90 

by refeeding induces an acidosis challenge and (ii) to examine the effect of varying inclusion 91 

rate (IR) and chop length (CL) of alfalfa silage, replacing corn silage in a TMR on resilience 92 

to a feed withholding and refeeding challenge.  93 

 94 

MATERIALS AND METHODS 95 

Forage Harvesting and Clamp Sampling 96 

The present study formed part of a larger research trial that utilised the same dietary treatments 97 

and observed their effects on milk yield, dry matter intake, diet digestibility, and rumen function 98 

under non-challenging conditions, in a larger cohort of cows and over a longer time period, as 99 

reported previously (Thomson et al., 2017a,b). In brief, alfalfa silage was harvested as a second 100 

cut crop at an estimated 10 % bloom in July 2014 and conserved in concrete-walled clamp. The 101 

crop was wilted for 48 h and ensiled, producing a high DM (576 g/kg fresh weight) silage. Two 102 

CLs (long; L and short; S) were created from material collected in alternate swaths by altering 103 

the knife arrangement of the precision chop forage harvester (Claas Jaguar, Claas Group, 104 

Harsewinkel, Germany) from a theoretical chop length of 14 mm (shortest setting) to 19 mm 105 

(longest setting) that were ensiled in two adjacent clamps. An additive was applied (Axcool 106 



6 

 

Gold containing L. Buchneri; 2 L/Tonne; Biotal, Cardiff, UK) to prevent heating in the clamp. 107 

Samples for chemical composition analysis (Sciantec Analytical Services, Cawood, UK) were 108 

obtained using a clamp corer. A detailed analysis of the particle length profile of the silages 109 

produced (mean 14.3 and 9.0 mm for L and S, respectively) has been published previously 110 

(Experiment 2; Thomson et al., 2017b). Corn (Zea mays) silage for the study was taken from a 111 

commercial crop of mixed varieties harvested in autumn 2014 which was chopped by the forage 112 

harvester (Model FR700, New Holland Ltd, Turin, Italy; theoretical chop length of 18 mm) and 113 

ensiled as described for the alfalfa clamps (geometric mean particle length of 10 mm determined 114 

using a Penn State Particle Separator; PSPS [Heinrichs, 2013]).  115 

 116 

Diets 117 

Diets comprised a TMR with 50:50 ratio of forage:concentrate on a DM basis (Thomson et al., 118 

2017a,b), in which the forage portion consisted of corn and alfalfa silage at IRs (DM basis) of 119 

either 25:75 (high alfalfa; HA) or 75:25 (low alfalfa; LA), respectively. These treatments were 120 

combined with the two alfalfa silage CLs in a 2 x 2 factorial arrangement to give four treatments 121 

(HAL, HAS, LAL, LAS) that were formulated to be isonitrogenous (170 g CP/kg DM) and 122 

contain similar levels of NDF (320 g/kg DM). The reduction in corn starch associated with the 123 

lower corn silage inclusion in HA diets was partially offset by increasing the concentration of 124 

corn meal (Table 1), however for the experimental diets fed, starch concentration was still lower 125 

in the HA diets (Table 2). 126 

 127 

Animals 128 

Four multiparous Holstein dairy cows, previously prepared with rumen fistulae (Bar Diamond 129 

rumen cannula; Parma, Idaho, USA), in mid-lactation (161 d in milk, SE ± 23.1) weighing 739 130 

kg (SE ± 13.9), and 7 - 9 years of age (5th - 6th parity), were randomly assigned to one of four 131 
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initial treatments according to a 4 x 4 Latin square design balanced for carryover effects with 132 

21 d periods. All procedures were licensed and monitored by the UK Government’s Home 133 

Office under the Animal (Scientific Procedures) Act 1986. The experimental design and 134 

replication employed was based on variance and expected treatment effects for key variables 135 

observed in previous studies (Reynolds et al., 2014). During adaptation weeks (weeks 1 and 2 136 

of each period) animals were housed in a cubicle yard and individually fed once daily for ad 137 

libitum intake (10% refusals) through Insentec RIC feeders (Insentec B.V., Marknesse, The 138 

Netherlands). Continuous access to water was provided. From d 12 of each period animals were 139 

housed and milked in individual tie stalls to facilitate sampling. Animals were allowed to 140 

acclimatise to the stalls for 3 d prior to sampling beginning on d 15. While in tie stalls, animals 141 

were offered their daily feed allocation in two halves at 1000 h and 1600 h. Refusals were taken 142 

daily at 0930 h. Between d 15 – 18 measurements of rumen function under non-challenging 143 

conditions were performed including rumen VFA and ammonia concentrations, rumen pH, 144 

rumen mat particle distribution and faecal particle distribution that have been reported 145 

previously (Thomson et al., 2017b). The feeding routine differed on d 18 of each period when 146 

a refeeding challenge was simulated (described below). While in tie stalls, each cow was also 147 

fitted with a rumination headcollar (ITIN+HOCH GmbH, Fütterungstechnik, Liestal, 148 

Switzerland) to measure eating and rumination behaviour as described previously (Ruuska et 149 

al., 2016).  150 

 151 

Experimental Routine  152 

SARA induction protocol. Baseline measurements of all variables were taken on d 16 of each 153 

period (other than rumen pH, which was measured on d 15 because other measurements being 154 

performed on d 16 that have been reported separately). On d 18 of each period, refusals from 155 

the previous day were removed from the cows one hour early (0830 h) to begin a period of 156 
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fasting. Feed was withheld for 6 h until 1430 h when half the daily diet allocation was offered 157 

followed by the second half two hours later at 1630 h. On d 19 refusal and feeding routine was 158 

returned to that of d 17. To summarise, the timetable for the week 3 of each period was as 159 

follows: 160 

D15: Basal rumen pH recorded (coinciding with sampling of rumen liquor, reported separately) 161 

D16: Basal DMI, milk yield, and eating and rumination behaviour measurements  162 

D17: Rest day with refusals removed one hour early the following morning 163 

D18: Feed withheld until 1430h followed by refeeding 164 

D19: Recovery day 1, original feeding routine resumed 165 

D20: Recovery day 2 166 

D21: No measurements, rest allowed before diet change. 167 

 168 

Intake and diet analysis. The weight and dry matter concentration of feed offered and refused 169 

were measured during d 14 – 21 of each period for each cow. A daily grab sample of each TMR 170 

and the TMR constituents was bulked across the sampling week for each diet in each period 171 

(16 samples in total). Dry matter concentration of feed was determined by oven drying at 100 172 

ºC for 24 h. Samples of the TMR constituents for each diet in each period were stored frozen at 173 

-20 ºC until analysed for DM, nitrogen (N; using the macro kjeldahl method; AOAC 954.01 174 

[AOAC, 2000]), ash (by combustion at 500 ºC for 16 hours), NDF and ADF (expressed 175 

inclusive of residual ash; Mertens et al., 2002; Robertson and Van Soest, 1981), starch (Fuller, 176 

1967; Macrae and Armstrong, 1968), and water soluble carbohydrates (WSC) as described 177 

previously (Reynolds et al., 2014; Kliem et al., 2016). Concentrations (g/kg DM) of CP, NDF, 178 

ADF, ash, starch and WSC in each TMR were calculated based on constituent inclusion rates. 179 

A sample of each TMR from each period was analysed for particle size distribution using a 180 

Penn State Particle Separator (PSPS, sieve apertures measuring 19 mm, 8 mm and 4 mm in 181 
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diameter and a bottom pan). A dry matter correction for material retained on each sieve was 182 

obtained (Thomson et al. 2017a). Average particle size of the sample was calculated as 183 

described previously (Heinrichs, 2013) and peNDF was calculated as the proportion of particles 184 

(DM corrected) greater than the threshold length (4, 8, or 19 mm) multiplied by the NDF 185 

concentration of the diet (Mertens, 1997; Farmer et al., 2014). The chemical and physical 186 

composition of the diets is shown in Table 2 for reference but has been discussed in detail 187 

previously (Thomson et al., 2017b). 188 

 189 

Milk Yield and Composition. Cows were milked twice daily at 0630 h and 1630 h and milk 190 

samples, preserved using potassium dichromate, were analysed for fat, protein, casein, lactose, 191 

urea, and somatic cell count (SCC) by mid infra-red spectroscopy on a CombiFoss machine 192 

(National Milk Laboratories, Chippenham, Wiltshire, UK). The CombiFoss machine combines 193 

both the Fossomatic 5000 and Milkoscan 6000 (both Foss, Hilleroed, Denmark) and utilises the 194 

entire mid-infra red wavelength spectrum. Morning and afternoon milk samples were scanned 195 

separately. Only data from d 16 (baseline), 18 (challenge), 19 (recovery day 1) and 20 (recovery 196 

day 2) were statistically analysed.  197 

 198 

Rumen pH. An indwelling pH meter (Sentix 41-3 probe, WTW Trifthof, Weilheim, Upper 199 

Bavaria) attached to a weight (200 g) and connected to the rumen cannula using nylon cord (50 200 

cm) was placed within the rumen of each animal for 24 h beginning just prior to feeding (0930 201 

h) on d 15 of each period until refusals were removed at 0930 h on d 16 to establish baseline 202 

patterns of rumen pH, and inserted again at 0830 h on d 18 (challenge day), remaining within 203 

the rumen until 0930 h on d 21. The probe was calibrated before every insertion by immersion 204 

in solutions of pH 4 and 7. After use, the probe was re-immersed in the calibration solutions 205 

and any drift was calculated as the given value subtracted from the true pH of the solution. Drift 206 
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greater than 0.3 pH units was considered the upper threshold for inclusion however no readings 207 

greater than this value were found in the present study and therefore all data were included. The 208 

pH probe was attached to a datalogger (ph340i, WTW, Trifthof, Weilheim, Upper Bavaria) 209 

with readings recorded every 10 minutes. Time spent at < pH 6.2 and < pH 5.8 were calculated 210 

for each day for each cow in each period. Readings were then averaged over each hour for 211 

further analysis, beginning on the hour for Baseline, and Recovery days 1 and 2, and at the half 212 

hour mark for challenge day to coincide with feeding times. Any measurements within the first 213 

hour of insertion (0830 to 0930 h) were not included in statistical analysis due to differences in 214 

the start time of each cow. 215 

 216 

Statistical analysis 217 

Average daily data starting at morning feeding, 1000 h, were calculated for 4 phases (days) of 218 

week 3: Baseline (d 15/16), Challenge (d 18), Recovery 1 (d 19), and Recovery 2 (d 20). 219 

Averages for each cow, treatment, and day (D) combination were analysed to determine fixed 220 

effects of period, alfalfa IR, alfalfa CL, D (as a repeated measure) and their interactions (IR×CL, 221 

IR x D, CL x D and IR×CL x D), and random effects of cow using mixed models procedures 222 

of SAS (version 9.4, SAS Institute Inc., Cary, NC, USA). The ‘SLICE’ option was used to show 223 

treatment effects for each day. Least squares means (LSM) for each treatment, and effects of 224 

IR, CL and IR×CL interactions within each day, are presented separately. Within each 225 

treatment, means for challenge or recovery days were compared to the baseline value for that 226 

treatment using the PDIFF option within the LSMEANS statement of the Mixed procedure. For 227 

measurements of eating time and relative rumen pH within each D, the same model was used 228 

except day was replaced with hour (H, a repeated measure) and each day was analysed 229 

separately. The covariance structure giving the best fit (out of compound symmetry, compound 230 

symmetry heterogenous, unstructured or spatial power) was chosen for each variable using the 231 
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bayesian information criterion. Compound symmetry and spatial power were the most common 232 

structures of best fit.   233 

For rumen pH a baseline value for each hour of a 24 h period (starting at morning 234 

feeding, d15, 1000 h) was taken for each cow on each treatment that was then subtracted from 235 

the hourly mean at the same time point for each subsequent phase to analyse and present each 236 

hourly value relative to baseline. The data was transformed in this way to ensure the magnitude 237 

of any effects could be compared between animals with differing baseline rumen pH levels.  238 

For example, the nadir pH observed during baseline varied between cows from 5.76 – 6.22 239 

(mean of all treatments for each animal) and similarly basal daily mean rumen pH ranged from 240 

6.48 – 6.76 between animals. Therefore, presenting data as time below a certain threshold was 241 

judged to be of lesser importance than pH change relative to baseline. A mean of relative pH 242 

for each day was also analysed (with the challenge day subdivided into ‘fast’ and ‘refeeding’) 243 

to determine fixed effects of period, alfalfa IR, alfalfa CL, and IR×CL interaction, and random 244 

effects of cow using mixed models procedures with each day and sub-phase tested separately. 245 

For rumen pH parameters there were no effects of period and therefore it was judged that 246 

recovery time was sufficient in between challenges to prevent carryover effects. 247 

 Effects of treatment on diet chemical and physical composition were analysed 248 

separately using values for each bulked diet sample in each period (n = 16 bulked samples 249 

originating from d 15-21). Fixed effects of period, alfalfa IR, alfalfa CL, IR×CL interaction and 250 

random effect of cow was utilised also using mixed models procedure of SAS with period as a 251 

repeated measure.  252 

 253 

RESULTS 254 

Baseline treatment effects 255 
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The effect of treatment on diet chemical composition in the present study (Table 2) and particle 256 

size have been reported previously (Thomson et al., 2017a and 2017b).  Briefly, the 257 

concentration of starch was 69 g/kg DM greater in LA diets than in HA diets by design (P < 258 

0.04), whereas ADF concentration was 36 g/kg DM greater in HA diets (P < 0.01). Increasing 259 

CL from S to L increased the proportion of particles retained on both the 8 and 19 mm sieves 260 

of the PSPS by 36 and 43 g/kg DM respectively whilst reducing the proportion that was retained 261 

on the 4 mm sieve and in the bottom pan (all P < 0.02). Both greater IR and greater CL of alfalfa 262 

increased or tended to increase peNDF concentrations using 4, 8 and 19 mm threshold lengths 263 

(P < 0.06) relative to a low IR and a short CL.  264 

We found no effect of diet on daily mean rumen pH for which the average across all 265 

treatments was 6.36 (Table 3), or on daily time spent at less than pH 6.2 or pH 5.8, nor were 266 

there any time points during the baseline day in which there was an effect of treatment on rumen 267 

pH. Following feeding at baseline, rumen pH showed a downwards trend reaching a nadir 268 

between 9 and 13 h post morning feeding followed by a return to pre-feeding levels between 269 

15 and 22 h post feeding (Figure 1a). Baseline eating patterns, showed an increase in time spent 270 

eating (20 - 40 min/h) in the first hour after fresh feed was offered (at both 1000 and 1600 h), 271 

followed by a reduction in time spent eating in the second hour post feeding to roughly 10 272 

min/h, a rate that was sustained throughout the daytime hours (Figure 1b). Between 13 and 19 273 

h post feeding <5 min/h eating occurred that corresponded to the rise in rumen pH shown in 274 

Figure 1a. Dry matter intake, milk yield, milk composition and the yield of milk solids showed 275 

no effect of treatment during the baseline phase (Table 4). Both daily mean time spent eating 276 

(Table 5) and transient eating patterns were similar for all dietary treatments at baseline. Cows 277 

fed HAL diets had more daily mean rumination chews and spent more time ruminating per day 278 

than cows fed either LAL or HAS, while cows fed LAS had an intermediate number of 279 

ruminating chews (IR×CL; P < 0.04). Cows fed HAL diets also showed a tendency to spend 280 
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the greatest time ruminating per day compared to other dietary treatments (IR×CL; P < 0.07). 281 

Hourly patterns of rumination indicate a level profile of rumination for all treatments 282 

throughout the day with 10 - 30 minutes spent ruminating each hour (Figure 1c).  283 

 284 

Challenge effect on rumen pH and eating patterns 285 

Relative rumen pH increased steadily during the feed withholding period for all diets 286 

(figure 2a). There was no effect of treatment on the mean relative pH (Table 3) nor at any 287 

individual time-points over the fasting phase. At the peak of the fasting phase, mean rumen pH 288 

across the treatments ranged from 6.8 to 7.2. A steep fall in rumen pH on all treatments occurred 289 

with the refeeding event. Over the first hour post re-feeding, relative rumen pH in cows fed the 290 

LAL diet decreased to the baseline level in comparison to the other three diets (P < 0.03) where 291 

relative pH remained elevated above baseline levels until 2 h post refeeding, which coincided 292 

with the second offering of feed. At 8 - 12 h post refeeding, rumen pH of cows fed LA diets fell 293 

to lower levels than HA relative to their baseline values (IR effects P < 0.04), whilst HAS 294 

remained closer to baseline than HAL (IR×CL interaction; P < 0.04). Cows fed HAS diets 295 

maintained a rumen pH that was close to baseline pH throughout the refeeding period: 0.04 pH 296 

units higher than baseline over the entire refeeding phase. Cows fed LA diets had a rumen pH 297 

0.16 pH units lower on average over the refeeding phase then HA diets relative to their own 298 

baseline values (P < 0.008; Table 3) and spent on average 97 minutes at pH <5.8 compared 299 

with 30 minutes for cows fed HA diets. 300 

Cows spent a greater proportion of time eating in the 3 h following refeeding than during 301 

the same period after the initial feed was offered at baseline (57 % vs 29 % of each hour was 302 

spent eating in 0-3 h post feeding respectively; Figure 2b). At 4 h post refeeding eating intensity 303 

reduced for cows fed all diets, although at 6 h post refeeding cows fed the LAS diet again spent 304 

a high proportion of time eating in comparison to cows fed other diets (P < 0.01). Following 305 
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this, cows on all diets continued to eat at a fluctuating rate between 0-20 min/h (Figure 2b). 306 

Rumination pattern indicated a slightly larger reduction in rumination between 0 - 4 h post 307 

refeeding than at mealtimes on other days during the observation period for cows on all 308 

treatments. In the hour prior to refeeding cows fed LA diets ruminated very little (< 5 minutes) 309 

in comparison to cows fed HA that continued to ruminate for between 15 and 25 minutes during 310 

the hour (P < 0.04). 311 

 312 

Recovery from the rumen challenge 313 

On recovery day 1 the rumen pH of all cows recovered close to baseline levels prior to morning 314 

feeding. However, post feeding, the rumen pH of cows fed LA diets again decreased relative to 315 

their baseline values leading to multiple hours in which there were effects of IR. At 31 h post 316 

refeeding the rumen pH of cows fed LAS diets returned to basal values whereas cows fed LAL 317 

diets continued to show reduced relative rumen pH until 36 h post refeeding (IR×CL 318 

interactions P < 0.04). Cows fed HAS diets continued to show a rumen pH pattern close to 319 

baseline while cows fed HAL diets were marginally lower than baseline values (Figure 2a). 320 

Mean relative rumen pH for the recovery day 1 phase demonstrated that cows fed LA and L 321 

diets had reduced relative pH in comparison to HA and S diets (effect of IR P < 0.001; effect 322 

of CL P < 0.03) which was also reflected in cows fed LA spending longer at pH < 5.8 than 323 

cows fed HA.  324 

On recovery day 2 there were no significant differences in relative rumen pH between 325 

treatments or any hours in which treatment differences occurred although the relative rumen 326 

pH of cows fed LAL diets continued to be the lowest of the four treatments and on average 0.17 327 

pH units below baseline values for that diet (Table 3). Over both recovery days, eating and 328 

rumination patterns appeared similar to those observed at baseline. Some fluctuation led to 329 
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significant effects on time spent eating and ruminating during these days but overall, differences 330 

were slight and not sustained. 331 

 332 

Induction of SARA 333 

Taking the definition of SARA to be a period of 3 consecutive hours where rumen pH is less 334 

than 5.8, then we observed 6 bouts of SARA within the data set of which 2 bouts were in the 335 

same cow when fed the LAS diet and the remaining 4 were in 3 cows when fed the LAL diet 336 

(with 1 cow experiencing 2 separate bouts on this diet). Of these 6 bouts of SARA, 2 occurred 337 

on the day of the challenge (1 LAS and 1 LAL) and 4 occurred on recovery day 1 (1 LAS and 338 

3 LAL). No episodes of SARA were observed in cows fed HA diets. 339 

 340 

Challenge effect on intake and milk production 341 

On the day of the challenge, DMI was similar to that consumed on baseline day (Table 4) as 342 

was daily mean time spent eating and ruminating (Table 5) despite the pattern of eating during 343 

the day being altered as described earlier. A numerical decline in intake was observed between 344 

the Challenge Day and Recovery Day 2 for cows fed LAL and HAL diets, resulting in animals 345 

fed L eating 2.7kg/d less than animals fed S on Recovery Day 2 (P < 0.05).  346 

 Milk yield was reduced in cows fed LAS and LAL diets on challenge day relative to 347 

milk yield at baseline (P < 0.05), by 4.5 kg and 4.3 kg respectively, although yield was not 348 

significantly lower than that of cows fed the HA diets on the challenge day. The reduction in 349 

milk yield on LA diets on this day, also led to significant reductions in milk protein yield 350 

compared to baseline for these treatments.  On recovery day 1 and 2 milk yield for all treatments 351 

was not statistically different (P > 0.05) from baseline levels. Concentrations of milk protein 352 

were unaffected by treatment and day. The milk fat yield of cows fed LAS and HAL diets on 353 
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recovery day 2 was higher than baseline (P < 0.05), and furthermore the milk fat yield for HAL 354 

cows on that day was greater than that of any other dietary treatment (IR×CL; P < 0.04).  355 

 356 

DISCUSSION 357 

The effect of a refeeding challenge on eating patterns and rumen pH 358 

During the fasting phase, prior to re-feeding, we observed increased rumen pH for all animals, 359 

likely because of rumen VFA being absorbed and not replaced due to a lack of substrate for 360 

fermentation, and perhaps as an effect of salivation while the animals were waiting for feed to 361 

be offered. In support of this, cows were shown to continue ruminating during the fasting 362 

period. Following refeeding, animals exhibited a three-hour period in which a high proportion 363 

of time was spent eating across all treatments in comparison to the baseline day (57 % vs 29 % 364 

of each hour was spent eating in 0-3 h post feeding respectively; Figure 2b). An increase in 365 

eating intensity following feed deprivation is consistent with the findings of other studies 366 

(Oetzel, 2007; Patterson et al., 2008) and has been linked with low rumen fill prior to refeeding 367 

(Gregorini et al., 2007). This over-eating episode resulted in a rapid decrease in rumen pH such 368 

that 3 h after refeeding animals had reached the same rumen pH as was observed 7 h after 369 

feeding on the baseline day. We attribute this accelerated decline in rumen pH to acid load from 370 

the ingested feed and from VFAs produced from fermentation of the same. Furthermore, high 371 

feed intake in a short time-period would have increased the supply of rapidly degraded starch 372 

and sugars to the microbial population, especially within the LA diet that contained a greater 373 

concentration of starch from corn silage. Total VFA concentration in the rumen is dependent 374 

on the rate at which VFA are produced in comparison to the rate at which VFA can be absorbed 375 

through the ruminal epithelium, be neutralised by saliva, or are removed from the rumen by 376 

passage. There are various absorption mechanisms that facilitate VFA removal from the rumen 377 

however the most predominant are bicarbonate-dependant transport (Aschenbach et al., 2011) 378 
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and passive diffusion (Chibisa et al., 2016). For the latter, a low VFA concentration in the 379 

rumen, such as that created by short-term feed deprivation, would reduce VFA removal rate 380 

initially until a sufficient diffusion gradient was established. Simultaneously, recent research 381 

suggests that such conditions are likely to also favour increased production rate of VFA by 382 

microbes that benefit from a diffusion gradient that swiftly removes VFA from their boundary 383 

layer (Russell et al., 2009; Mason and Stuckey, 2016). Therefore the swift decline in rumen pH 384 

observed is likely to be a combined effect of increased microbial productivity combined with 385 

reduced ability to remove VFA from the rumen through absorption. Another longer term study 386 

also noted a reduction in epithelial absorption rate during and after feed restriction that was 387 

attributed to reduced blood flow due to feed deprivation (e.g. 5 d feed restriction followed by 388 

refeeding; Zhang et al., 2013); however this is unlikely to be the case in our study where feed 389 

was only withheld for 6 h. There are few previous studies in which withholding and refeeding 390 

TMR have been examined. Studies have examined effects in grazing animals (Chilibroste et 391 

al., 2007), but there is still a lack of data on rumen kinetics to explain the mechanisms 392 

underpinning responses to such a challenge and further work is required to fully understand 393 

responses in TMR-fed animals. 394 

Despite the reduced window of time when animals were allowed access to feed on the 395 

challenge day (18.5 h), there was no difference in the quantity of feed consumed or total minutes 396 

spent eating in comparison to baseline days, again highlighting that eating rate post-refeeding 397 

was increased in comparison to basal eating rate. Milk yield was reduced on the day of the 398 

challenge for all diets, and significantly so for LA diets, which might indicate there was a 399 

carryover effect of the fasting period for these diets, or that the increased rate of feed 400 

consumption after refeeding reduced the efficiency of energy capture from the diet. 401 

Concentrations of fat and protein within the milk were largely unaffected, other than an 402 

unexpected rise in milk fat concentration seen on recovery day 2 in both LAS and HAL diets, 403 
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however this is likely to be due to slightly reduced milk yield on these treatments since total fat 404 

yield was unaffected. It should also be borne in mind that that using a single day as a baseline 405 

value may not have fully accounted for day to day variation in our study. 406 

 407 

The acidosis mitigation potential of the dietary treatments 408 

In the present study, cows fed diets comprising a high IR of alfalfa silage were less affected by 409 

the rumen challenge than those with a low IR, despite there being no difference in rumen pH 410 

profile between the diets at baseline. Alfalfa silage provided more effective fiber (Table 2) to 411 

the diet than the corn silage and has also been reported previously to have a higher cation 412 

exchange capacity than corn (McBurney et al., 1983) and therefore a combination of these two 413 

factors could explain the increased ability of the cows to buffer against low rumen pH. 414 

Furthermore, alfalfa often contains a higher proportion of indigestible, lignified, stem in 415 

comparison to other forages that may reduce rumen passage rate and maintain rumen fill for 416 

longer providing a better environment for continued microbial activity and facilitating a slow 417 

rate of VFA production in the rumen during the period of feed deprivation (Dewhurst et al., 418 

2003). In support of this, the present study showed that cows fed HA diets spent more time 419 

ruminating during the fast period than those fed LA. This may have enhanced the rate of 420 

microbial adaptation to refeeding, reduced any disruption of epithelial function, and therefore 421 

reduced negative effects on milk yield. The LA diets also contained a higher concentration of 422 

starch that would have contributed to reduced rumen pH at refeeding. The difference in starch 423 

concentration between the two diets may also have altered utilisation of dietary nutrients, 424 

particularly nitrogen. We observed no incidence of SARA in cows fed HA diets confirming 425 

that feeding alfalfa at the higher IR of 375 g/kg diet DM, and consequently feeding less corn 426 

silage and starch, was successful at mitigating acidosis risk in comparison to the lower inclusion 427 

rate. Milk loss in cows fed LA diets on the day of the challenge (4.4 kg/d) was a decrease of 428 
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14.3 % compared to baseline yield, which represents a cost to the farmer if animals were 429 

regularly fasted for similar periods (6 h continuous). Furthermore the work of Dohme et al. 430 

(2008) suggests the severity of acidosis can increase where challenges are repeated in quick 431 

succession, although this was not evident in our study as there was no significant or numerical 432 

(P > 0.2) effect of period on time spent at pH < 6.2. This is likely due methodological 433 

differences as Dohme et al. (2008) induced challenges 14 d apart, as opposed to 21 d in the 434 

present study, and the effect of the challenges imposed by Dohme et al. (2008) were greater 435 

(using 4 kg of barley grain consumed within 1 h to induce acidosis) with nadir pH in the range 436 

of 5.13 – 5.53 versus 5.41 – 6.22 observed on recovery day 1 in our study. Furthermore, Dohme 437 

et al. (2008) also noted increased severity of subsequent acidosis challenges when cows were 438 

in early lactation as opposed to mid-lactation. 439 

 Evidence from jaw movement monitors in the present study confirmed that the long 440 

chop length increased rumination activity as would be expected, however, animals fed diets 441 

containing L chop alfalfa silage had lower ruminal pH on average on recovery day 1 than 442 

animals fed S, with those fed LAL diets having the greatest and most prolonged reduction in 443 

ruminal pH in comparison to the other diets. In this regard, our findings contrast with previously 444 

published work suggesting a positive correlation between rumen pH and peNDF concentration 445 

(Zebeli et al., 2006) that has been attributed to increased rumination supplying more saliva to 446 

the rumen, although these relationships were generated from studies where no feed withholding 447 

and refeeding challenge was applied. Lengthening chop length can negatively affect diet 448 

uniformity and allow increased sorting against longer particles, which would contain the most 449 

peNDF (Leonardi and Armentano, 2003), however, this is unlikely to explain the lower rumen 450 

pH of cows on L diets on recovery day 1, as animals have previously been shown to increase 451 

selection of longer particles in response to a rumen challenge (DeVries et al., 2008). The 452 

beneficial effect of peNDF is thought to be the result of increased stimulation of rumination 453 
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producing saliva to buffer the rumen, and, in line with this, HAL diets did increase rumination 454 

however we did not observe the same effect in the other diets, including LAL, where the 455 

concentration of peNDF was lower. Longer particles would have required rumination to aid 456 

digestion after ingestion, however in  our study rumination was reduced during the refeeding 457 

event while eating was prioritised, an effect which has also been observed in previous refeeding 458 

work (Chilibroste et al., 2007), meanwhile smaller forage particles and concentrates can be 459 

broken down without the need for further rumination chewing. This delay in rumination due to 460 

overeating may have reduced the ability of animals fed LAL to digest the forage portion of the 461 

diet. It is also possible that fiber digestion was impaired as a result of the low pH conditions 462 

affecting microbial populations (Grant and Mertens, 1992). Reductions in DMI in animals fed 463 

the long CL diets on both recovery day 1 and 2 relative to those fed short CL diets (a difference 464 

that was not observed at baseline) also supports this explanation as reducing fiber digestibility 465 

of dietary alfalfa has previously been linked to reduced appetite (Getachew et al., 2011; Fustini 466 

et al., 2017) likely due to increased feeling of satiety. However, if fiber digestion was reduced, 467 

the lack of an effect on milk composition suggests the effect was short-lived. Based on the 468 

negative effect of increasing peNDF provision through increased chop length, it is likely the 469 

mitigation effect of high alfalfa IR was attributable to the buffering capacity of alfalfa, increased 470 

rumen fill during the feed withholding phase and reduced diet starch concentration, rather than 471 

any effect of peNDF per se. 472 

In the LAL diet, effects of the challenge continued throughout recovery day 1 despite a 473 

return to baseline feeding patterns, with DMI also reduced for this diet on recovery day 2. The 474 

timeline is similar to that observed previously in the literature (Oetzel, 2007) where a cow faced 475 

with a 12 hour fast followed by a refeeding challenge took 60 h for rumen pH to return to pre-476 

fast levels. The extended number of days over which significant effects were seen despite no 477 
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further challenges being applied highlights the need for rumen pH to be observed over several 478 

days when investigating induced SARA experimentally.  479 

 480 

CONCLUSIONS 481 

We conclude that a relatively short fast (6 h) followed by a refeeding event, in which a day’s 482 

allocation of feed equal to the pre-fast level was offered ad libitum, was sufficient to induce 483 

SARA in 4 out of 8 observations where low alfalfa diets were fed. However, a high rate of 484 

alfalfa inclusion within the diet combined with a lower dietary starch concentration mitigated 485 

the acidosis risk, and was particularly effective when the alfalfa silage was chopped to a shorter 486 

length. We attribute this mitigation effect to (i) buffering capacity provided by the alfalfa, (ii) 487 

less degradable alfalfa fractions providing rumen substrate during the fast, and (iii) reduced 488 

dietary starch concentration, rather than increased effective fiber provision, as a longer particle 489 

length led to greater reductions in rumen pH after refeeding.  Milk lost from cows fed diets with 490 

lower inclusion rates of alfalfa would represent a significant financial loss if such a refeeding 491 

challenge were to occur regularly, highlighting the need to ensure uniformity of feeding routines 492 

in ad libitum TMR feeding systems for dairy cows on a day to day basis. 493 
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Table 1 Ingredients used in diet formulation  648 

 Diet 

Item LA HA 

Ingredients, g/kg DM   

Alfalfa silage1 125 375 

Corn silage2 375 125 

Concentrate blend3   

Cracked Wheat 80 80 

Corn Meal 54 97 

Unmolassed Sugar Beet Feed 40 40 

Soy Hulls 82 108 

Soybean Meal 100 65 

Rapeseed Meal 100 65 

Molasses 10 10 

Dicalcium phosphate 5 5 

Salt 5 5 

Dairy Mineral4 10 10 

Megalac5 15 15 

LA, low alfalfa diet; HA, high alfalfa diet;  649 
1 long chop alfalfa silage composition: 593 g/kg DM; 164 g/kg DM CP; 397 g/kg DM NDF; 348g/kg DM ADF;  650 

108 g/kg DM Ash; and 10 g/kg DM water soluble carbohydrate. Short chop alfalfa silage composition: 566 g/kg 651 

DM; 167 g/kg DM CP; 385 g/kg DM NDF; 326 g/kg DM ADF; 108 g/kg DM Ash; and 17 g/kg DM water 652 

soluble carbohydrate.       653 
2 Corn silage composition: 383 g/kg DM; 63 g/kg DM CP; 387 g/kg DM NDF; 223g/kg DM ADF; 37 g/kg DM 654 

Ash; 357 g/kg DM starch; and 25 g/kg DM water soluble carbohydrate.   655 
3 HA concentrate composition: 911 g/kg DM; 199 g/kg DM CP; 278 g/kg DM NDF; 172 g/kg DM ADF; 67 g/kg 656 

DM Ash; 247 g/kg DM Starch and 57 g/kg DM water soluble carbohydrate. LA concentrate composition: 884 657 

g/kg DM; 241 g/kg DM CP; 272 g/kg DM NDF; 171 g/kg DM ADF; 71 g/kg DM Ash; 195 g/kg DM Starch and 658 

67 g/kg DM water soluble carbohydrate.  659 
4 Contained vitamin A (400,00 IU/kg), vitamin D (80,000 IU/kg) and vitamin E (2,000 IU/kg), manganese (2.2 660 

g/kg), calcium (230 g/kg), zinc (5.2 g/kg), phosphorous (20 g/kg), magnesium (40 g/kg), sodium (95 g/kg), 661 

copper (1.2 g/kg), and selenium (30 mg/kg).      662 
5 Megalac rumen protected fat supplement (Volac International ltd., Royston, UK) 663 

  664 
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Table 2 The chemical and physical composition of four total mixed rations containing a high 665 
(HA) or low (LA) concentration of alfalfa silage at a long (L) or short (S) chop length 666 
(Thomson et al. 2017b). 667 

 Diet  P value1 

Item LAS LAL HAS HAL SEM IR CL IR×CL 

Chemical composition, g/kg 

DM  
    

    

Oven DM, g/kg 555 571 610 632 5.0 0.022 0.065 0.364 

Ash 62 63 78 77 0.6 0.001 0.471 0.070 

CP 164 163 168 167 3.5 0.200 0.710 0.945 

NDF 311 322 335 340 4.8 0.115 0.221 0.510 

ADF 202 208 237 245 1.5 0.004 0.007 0.322 

Starch 234 235 164 168 7.0 0.039 0.680 0.780 

WSC2 37 35 35 32 0.7 0.006 0.020 0.371 

Particle size distribution3         

Material retained, g/kg DM         

19mm 32a 50a 53a 121b 7.5 0.001 0.001 0.007 

8mm 364a 419b 374ac 391c 5.0 0.129 0.012 0.026 

4mm 165a 135b 187c 126b 2.4 0.033 0.001 0.004 

Bottom pan 438 398 379 363 5.0 0.001 0.010 0.094 

Mean particle size4, cm 0.50 0.56 0.54 0.65 0.014 0.001 0.001 0.099 

peNDF5, g/kg DM         

peNDF>19mm 10.3a 16.4a 17.4a 40.4b 2.68 0.001 0.001 0.009 

peNDF>8mm 123 148 138 182 2.7 0.056 0.030 0.137 

peNDF>4mm 172 199 205 213 3.8 0.003 0.004 0.051 
a,b Where there is a significant interaction, values within a row with different superscripts differ significantly at 668 
P<0.05. 669 
1IR, Inclusion rate; CL, chop length; IR×CL, interaction between IR and CL. 670 
2 WSC, water soluble carbohydrate. 671 
3 Particle size distribution measured using a Penn State Particle Separator with three sieves: 19, 8 and 4 mm 672 
diameter.  673 
4 Mean particle size was determined using the recommended equation of Penn State University (Heinrichs, 674 
2013). 675 
5 Physically effective neutral detergent fiber (peNDF) determined as the proportion of particles in the total mixed 676 
ration (TMR) greater than the threshold length (specified in subscript) multiplied by the NDF concentration of 677 
the TMR (Mertens, 1997). 678 
  679 
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Table 3 Mean relative rumen pH of lactating dairy cows fed a total mixed ration containing a 680 
high (HA) or low (LA) concentration of alfalfa silage at a long (L) or short (S) chop length 681 
prior to, during, and following a rumen challenge that involved a 6 hour fast followed by a 682 
refeeding challenge. 683 

 Diet  P value1 

Phase2 LAS LAL HAS HAL SEM IR CL IR×CL 

Baseline daily rumen 

pH 6.30 6.38 6.31 6.43 0.130 0.785 0.396 0.828 

Relative rumen pH3         

Challenge day         

Fast +0.43 +0.42 +0.46 +0.38 0.098 0.905 0.517 0.592 

Refeeding -0.15 -0.21 +0.04 -0.08  0.007 0.115 0.643 

Recovery day 1 -0.20 -0.41 -0.01 -0.11  0.001 0.023 0.443 

Recovery day 2 -0.01 -0.17 0.02 0.01  0.241 0.365 0.428 

Minutes below pH 6.24         

Baseline 531 390 428 348 209.3 0.700 0.561 0.921 

Challenge day         

Fast - - - -  - - - 

Refeeding 761 463 353 328  0.168 0.398 0.426 

Recovery day 1 1008* 880* 438 408  0.017 0.677 0.097 

Recovery day 2 551 612 435 357  0.343 0.965 0.769 

Minutes below pH 5.85         

Baseline 25 33 23 3 11.9    

Challenge day         

Fast 0 0 0 0     

Refeeding 93 100 45 15     

Recovery day 1 135 355 15 18     

Recovery day 2 35 113 20 57     

* Where a value differs significantly (P < 0.05) from a baseline value for that treatment (not applicable to 684 
relative rumen pH). 685 
1IR, Inclusion rate; CL, chop length; IR×CL, interaction between IR and CL;  686 
2 The fast period combines measurements from 0930 h until 1430 h on the day of the challenge during which 687 
time animals were not allowed to access feed (note, the start of the feed withdrawal was 0830 h however the time 688 
taken to insert rumen pH probes meant that data for this hour was incomplete so was not included in the 689 
analysis).The refeeding period combines measurements from 1430 h on the day of the challenge until 0930 h the 690 
following morning. After which the subsequent two 24 h periods are termed recovery day 1 and recovery day 2 691 
that both begin at 1000 h. 692 
3 Relative rumen pH calculated hourly as rumen pH measurement minus the corresponding baseline 693 
measurement (Thomson et al. 2017b) at the same hour of the day for each cow on each treatment in each phase. 694 
4 All cows spent either low or no time below pH 6.2 during the fast sub-phase and therefore this sub-phase was 695 
removed from statutical anlaysis to prevent non-normaility of the remaining dataset. 696 
5  For minutes below pH 5.8 a large number of values were 0 and therefore the data did not display a normal 697 
distribution, nor could a meaningful transofrmation be acheived, therefore data are presented as arithmetic 698 
means.   699 
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Table 4 Daily mean intake, milk production and milk composition of lactating dairy cows fed 700 
a total mixed ration containing a high (HA) or low (LA) concentration of alfalfa silage at a 701 
long (L) or short (S) chop length prior to, during, and following a 6 hour fast followed by a 702 
refeeding challenge. 703 

 Diet  P value1 

Item2 LAS LAL HAS HAL SEM IR CL IR×CL 

Dry Matter Intake, kg/d         

Baseline day 25.5 21.3 22.5 24.4 1.44 0.998 0.359 0.133 

Challenge day 25.2 23.7 24.5 23.6  0.764 0.352 0.810 

Recovery day 1 25.3 21.5 23.1 22.2  0.548 0.085 0.251 

Recovery day 2 23.1 19.6 23.7 21.8  0.289 0.049 0.130 

Milk Yield, kg/d         

Baseline day 31.7 30.1 27.8 29.2 5.89 0.654 0.992 0.938 

Challenge day 27.2* 25.8* 25.9 27.3  0.985 0.994 0.994 

Recovery day 1 31.9 29.5 29.0 30.8  0.879 0.954 0.978 

Recovery day 2 30.9 28.2 29.0 27.0  0.775 0.664 0.962 

Milk fat, g/kg         

Baseline day 32.6 35.2 35.3 33.2 3.04 0.766 0.832 0.305 

Challenge day 38.7 38.4 34.0 34.8  0.218 0.948 0.638 

Recovery day 1 34.7 35.3 35.8 35.8  0.588 0.817 0.939 

Recovery day 2 37.0*a 36.5a 35.3a 40.3*b  0.292 0.046 0.033 

Milk fat yield, kg/d         

Baseline day 1.07 1.04 0.94 1.03 0.208 0.701 0.897 0.963 

Challenge day 1.06 1.00 0.84 0.95  0.485 0.886 0.864 

Recovery day 1 1.11 1.05 1.04 1.09  0.946 0.996 0.991 

Recovery day 2 1.12 1.01 1.01 1.07  0.892 0.898 0.968 

Milk protein, g/kg         

Baseline day 31.3 31.5 30.9 30.9 1.16 0.602 0.923 0.952 

Challenge day 31.4 31.0 30.2 29.5  0.209 0.583 0.585 

Recovery day 1 30.3 30.8 30.2 29.1  0.364 0.764 0.637 

Recovery day 2 30.6 30.4 30.5 29.1  0.546 0.490 0.755 

Milk protein yield, kg/d         

Baseline day 0.99 0.95 0.84 0.87 0.173 0.440 0.996 0.869 

Challenge day 0.85* 0.80* 0.77 0.80  0.808 0.954 0.990 

Recovery day 1 0.96 0.91 0.87 0.89  0.740 0.920 0.982 

Recovery day 2 0.94 0.87 0.88 0.75  0.571 0.549 0.857 
a,b

 Where there is a significant interaction, values within a row with different superscripts differ significantly at 704 
P < 0.05. 705 
* Where a value differs significantly (P < 0.05) from a baseline value for that treatment. 706 
1 IR, Inclusion rate; CL, chop length; IR×CL, interaction between IR and CL. 707 
2 Baseline data was collected on d 16 and the challenge day was d 18 (starting at 1000 h) of each period, during 708 
which animals spent 4.5 h of the day fasting (post a 1.5 h period during which refusals were removed early to 709 
make a total fast of 6 h) and a 17.5 h period in which feed was offered ad libitum. Recovery days 1 and 2 were 710 
the subsequent 24 h periods (d 19 and d 20 respectively both beginning 1000 h). 711 
  712 
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Table 5 Eating and rumination behaviour of lactating dairy cows fed a total mixed ration 713 
containing a high (HA) or low (LA) concentration of alfalfa silage at a long (L) or short (S) 714 
chop length prior to, during, and following a 6 hour fast followed by a refeeding challenge. 715 

 Diet  P value 

Item1 LAS LAL HAS HAL SEM IR CL IR×CL 

Eating chews ‘000/d         

Baseline day 17.8 12.1 12.8 14.0 2.56 0.509 0.351 0.392 

Challenge day 16.2 12.0 15.4 14.5  0.707 0.283 0.626 

Recovery day 1 15.4 9.8 13.5 11.4  0.950 0.120 0.410 

Recovery day 2 14.4 11.1 11.9 15.0  0.791 0.961 0.605 

Eating time, min/d         

Baseline day 268 225 339 239 35.0 0.795 0.490 0.817 

Challenge day 250 217 267 227  0.681 0.271 0.665 

Recovery day 1 241 177 249 189*  0.768 0.073 0.305 

Recovery day 2 229 184 217 222  0.703 0.551 0.808 

Ruminating chews 

‘000/d 
        

Baseline day 27.6ab 27.5a 24.2a 35.4b 3.01 0.414 0.052 0.038 

Challenge day 28.7 26.2 26.1 34.2  0.336 0.319 0.124 

Recovery day 1 31.0 29.0 27.8 32.0  0.958 0.691 0.673 

Recovery day 2 30.1 26.1 28.1 32.7  0.459 0.934 0.479 

Ruminating time, min/d         

Baseline day 442 460 421 574 47.1 0.281 0.056 0.065 

Challenge day 464 432 439 548  0.303 0.389 0.198 

Recovery day 1 499 484 469 520  0.944 0.686 0.835 

Recovery day 2 494 438 478 533  0.414 0.991 0.591 
a,b

 Where there is a significant interaction, values within a row with different superscripts differ significantly at 716 
P < 0.05 717 
* Where a value differs significantly (P < 0.05) from a baseline value for that treatment. 718 
1 IR, Inclusion rate; CL, chop length; IR×CL, interaction between IR and CL. 719 
2 Baseline data was collected on d 16 and the challenge day was d 18 (starting at 1000 h) of each period, during 720 
which animals spent 4.5 h of the day fasting (post a 1.5 h period during which refusals were removed early to 721 
make a total fast of 6 h) and a 17.5 h period in which feed was offered ad libitum. Recovery days 1 and 2 were 722 
the subsequent 24 h periods (d 19 and d 20 respectively both beginning 1000 h). 723 
 724 

725 
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Thomson Figure 1 726 
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Thomson Figure 2 728 
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Figure captions 730 

 731 

Figure 1 Hourly mean (a) rumen pH (Thomson et al., 2017b), (b) time spent eating , and (c) 732 

time spent ruminating of lactating dairy cows, fed a total mixed ration containing a high (HA) 733 

or low (LA) concentration of alfalfa silage at a long (L) or short (S) chop length, over a 24 h 734 

baseline period beginning at 1000 h (hour 1). Baseline values were measured over a single 24 735 

h period two (for eating pattern) or three (for rumen pH) days prior to a feed 736 

deprivation/refeeding challenge being administered. Black triangles indicate time points at 737 

which half a daily allocation of feed was offered. Hours at which there was a significant effect 738 

of alfalfa inclusion rate (IR), alfalfa chop length (CL) or their interaction, analysed using Mixed 739 

Models procedure of SAS, are marked. 740 

 741 

Figure 2 Hourly mean (a) relative rumen pH, (b) time spent eating, and (c) time spent 742 

ruminating of lactating dairy cows, fed a total mixed ration containing a high (HA) or low 743 

(LA) concentration of alfalfa silage at a long (L) or short (S) chop length, over a 72 h period 744 

beginning at 0830 h on day 18 of the period, when feed was withheld for 6 h followed by a 745 

refeeding challenge at 1430 h. The hour beginning 1430 is represented by 0 on the x axis. 746 

Black triangles indicate time points at which half a daily allowance of feed was offered. 747 

Hours at which there was a significant effect of alfalfa inclusion rate (IR), alfalfa chop length 748 

(CL) or their interaction, analysed using Mixed Models procedure of SAS, are marked. 749 


