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ABSTRACT

Multiscale asymptotic methods are used to derive wave activity equations for planetary- and synoptic-scale

eddies and their interactions with a zonal mean flow. The eddies are assumed to be of small amplitude, and the

synoptic-scale zonal and meridional length scales are taken to be equal. Under these assumptions, the zonal-

mean and planetary-scale dynamics are planetary geostrophic (i.e., dominated by vortex stretching), and the

interaction between planetary- and synoptic-scale eddies occurs only through the zonal mean flow or through

diabatic processes. Planetary-scale heat fluxes are shown to enter the angular momentum budget through

meridional mass redistribution. After averaging over synoptic length and time scales, momentum fluxes

disappear from the synoptic-scale wave activity equation while synoptic-scale heat fluxes disappear from the

baroclinicity equation, leaving planetary-scale heat fluxes as the only adiabatic term coupling the baroclinic

and barotropic components of the zonal mean flow. In the special case of weak planetary waves, the

decoupling between the baroclinic and barotropic parts of the flow is complete with momentum fluxes driving

the barotropic zonal mean flow, heat fluxes driving the wave activity, and diabatic processes driving baroclinicity.

These results help explain the apparent decoupling between the baroclinic and barotropic components of flow

variability recently identified in observations and may provide a means of better understanding the link between

thermodynamic and dynamic aspects of climate variability and change.

1. Introduction

The interaction between jet variability and eddies is a

long-studied topic, but the interaction is not yet un-

derstood well enough to identify causal mechanisms for

variability or sources of systematic errors in models. There

are well-developed theoretical frameworks for the zonally

homogeneous case (e.g., annular-mode variability); how-

ever, zonally asymmetric analyses including planetary-

scale interactions are more complicated, and only partial

theories for this case exist (Hoskins et al. 1983; Plumb1985,

1986). Yet longitudinal variations and synoptic–planetary-

scale interactions are important for the location and

strength of the storm tracks and blocking episodes

(Hoskins et al. 1983; Luo 2005; Simpson et al. 2014). These

phenomena strongly affect the regional climate and its

climate change. As the dynamical aspects of climate are

not yet well understood, there is low confidence in circu-

lation patterns simulated by global and regional models

and their response to climate change (Shepherd 2014).

An important aspect of wave–mean flow interaction

concerns barotropic and baroclinic processes and their links

through eddy momentum and heat fluxes. It has recently

been shown from observations for the southern and north-

ern annular modes in Thompson and Woodworth (2014)

and Thompson and Li (2015) that the zonal mean flow is

affected only by momentum fluxes and not by heat fluxes,

while the opposite is true for a so-called baroclinic annular

mode (BAM) that is based on eddy kinetic energy (EKE).

This decoupling goes against the usual transformed Euler-

ian mean (TEM) perspective, first introduced by Andrews

and McIntyre (1976), within which both heat and momen-

tum fluxes affect the zonal-mean-flow tendency through the

Eliassen–Palm (EP) flux divergence. The decoupling was

further investigated in Thompson and Barnes (2014), who

foundanoscillating relationshipbetweenEKEandheat flux

with time periods of 20–30 days. A similar relationship was

found between wave activity and heat flux in Wang and

Nakamura (2015, 2016).

To derive a theoretical framework for understanding

planetary–synoptic-scale interactions and the apparent de-

coupling of the baroclinic and barotropic parts of the flow,

we use multiscale asymptotic methods as introduced in

Dolaptchiev and Klein (2009, 2013, hereafter DK09 and

DK13, respectively). This approach is taken as suchmethods

provide a self-consistent (albeit idealized) framework forCorresponding author: Lina Boljka, l.boljka@pgr.reading.ac.uk

JUNE 2018 BOL JKA AND SHEPHERD 1833

DOI: 10.1175/JAS-D-17-0307.1

� 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

mailto:l.boljka@pgr.reading.ac.uk
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


studying interactions between processes on different

length and time scales, starting from a minimal set of

assumptions. While the derived theory using these

methods may not be quantitatively accurate for the at-

mosphere, it can still provide qualitative value, espe-

cially when trying to determine the causal relationships

that are so elusive in standard budget calculations. This

is analogous to the use of the quasigeostrophic approx-

imation, which provides a clear qualitative picture of the

large-scale flow and both planetary- and synoptic-scale

eddies; however, for accurate representation of the flow

(e.g., in weather prediction), the primitive equations are

used. Therefore, the aim of this work is to find a theo-

retical framework by which to better understand the

emergent properties of observations and model behav-

ior rather than developing a predictive theory.

DK13 used a separation of length scales in the me-

ridional and zonal directions, with an isotropic scaling

for the synoptic scales, as well as a temporal scale sep-

aration between the synoptic and planetary waves. Iso-

tropic scaling for the synoptic scales is standard in

quasigeostrophic (QG) theory (Pedlosky 1987), and a

meridional scale separation has been argued to be a

useful and physically realizable idealization of baro-

clinic instability (Haidvogel and Held 1980). These as-

sumptions allowed DK13 to study planetary- and

synoptic-scale interactions. However, they did not

derive a wave activity equation or develop explicit

equations for the interaction with a zonal mean flow.

These aspects are the focus of this paper. For simplicity,

we derive the asymptotic equations for the case of small-

amplitude eddies evolving in the presence of a zonal

mean flow, which is an important special case of the

DK13 framework. As well as giving a theoretical de-

scription for the interaction of a zonal mean flow with

planetary- and synoptic-scale waves, this setting also

allows a study of the link between baroclinic and baro-

tropic processes and the relative importance of plane-

tary- and synoptic-scale waves for these processes.

The outline of the paper is as follows. Section 2 gives

the equations and assumptions used to derive the po-

tential vorticity (section 3), wave activity and mean-

flow equations (section 4), and the angular momentum

budget for the zonal mean flow (section 5). The mo-

mentum, continuity, thermodynamic, and vorticity

equations at different asymptotic orders, which are

needed for the derivations, are given in appendix A.

Further details on the derivations of the mean-flow and

angular momentum equations and the nonacceleration

theorem are given in appendixes B–D. The zonally

homogeneous case with weak planetary-scale waves is

discussed in section 6, and conclusions are given in

section 7.

2. The multiscale asymptotic model

a. Nondimensional compressible flow equations

The asymptotic system of equations is derived starting

from the nondimensionalized compressible flow equa-

tions in spherical coordinates with a small parameter «1

(DK09). To obtain the nondimensional equations, the

DK09 and DK13 scaling parameters2 are used, based on

the assumption that the waves are not propagating

faster than the speed of sound. In this process, the

following nondimensional numbers appear (DK09):

Rossby3 (RoQG 5uref/2VLQG with LQG 5 «22hsc), Mach

(Ma5uref/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pref/rref

p
), Froude (Fr5 uref/

ffiffiffiffiffiffiffiffi
ghsc

p
), and the

ratio of density and potential temperature scale heightsffiffiffiffiffiffiffiffiffiffiffiffiffi
hsc/Hu

p
. These are related to the small parameter «

according to
ffiffiffiffiffiffiffi
Ma

p
’

ffiffiffiffiffi
Fr

p
’RoQG ’

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hsc/Hu

p
’ « (DK09).

This procedure yields the system (the full derivation is

given in DK09):

Du

Dt
2 «3

�
uy tanf

R
2
uw

R

�
1«(w cosf2 y sinf)

52
«21

Rr cosf

›p

›l
1 S

u
, (1a)

Dy

Dt
1 «3

�
u2 tanf

R
1

yw

R

�
1 «u sinf52

«21

Rr

›p

›f
1 S

y
,

(1b)

Dw

Dt
2 «3

�
u2

R
1

y2

R

�
2 «u cosf52

«24

r

›p

›z
2 «24 1 S

w
,

(1c)

Du

Dt
5 S

u
, (1d)

Dr

Dt
1

«3r

R cosf

�
›u

›l
1

›(y cosf)

›f

�
1 r

›w

›z
1

«32wr

R
5 0,

(1e)

ru5 p1/g , (1f)

where S denotes source–sink terms (Su,y,w are the frictional

terms, while Su represents diabatic effects), sinf5 f is the

nondimensional Coriolis parameter, p is nondimensional

pressure, u is nondimensional potential temperature, r

1 The variable « is defined as (a*V2g21)1/3 (global atmospheric

aspect ratio), where V is Earth’s rotation rate, a* is Earth’s radius,

and g is Earth’s gravitational acceleration; « is a constant in the

range from 1/8 to 1/6.
2We set pressure pref 5 105 Pa, air density rref 5 1:25 kgm23,

characteristic flow velocity uref 5 10m s21, scale height hsc 5

pref /grref ’ 10 km, gravitational acceleration g’ 10m s22, and time

scale tref 5hsc/uref ’ 20min.
3 Note that the Rossby number (Ro) used in DK09 and DK13 is

«22RoQG as they used the vertical instead of the horizontal length

scale to define it.
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is nondimensional density, (u, y, w) represent the non-

dimensional 3D velocity field, R5 «3r, r5 «23a1 z,

where z is altitude from the ground, a5 a*«3/hsc is non-

dimensional Earth’s radius, f is latitude, l is longitude, t is

time, all parameters are nondimensional, and

D

Dt
5

›

›t
1

«3u

R cosf

›

›l
1

«3y

R

›

›f
1w

›

›z
. (2)

Note that the shallow-atmosphere limit R/ a is used

here unless otherwise stated (this approximation is used

as it holds well to leading order). Expanding R, the

material derivative, (2), involves horizontal advection

terms 2a21«6z[u(a cosfp)
21
›/›l1 ya21›/›f] that be-

come relevant at fifth and higher orders.

b. Assumptions for multiscale asymptotic methods

To derive the multiscale asymptotic version of the

equations, some assumptions must be made. In partic-

ular, we assume small-amplitude eddies in the presence

of a zonal mean flow. This approximation is made in

order to gain qualitative insight into the behavior of the

system and to allow connection with previous theories of

wave–mean flow interaction. This can be considered a

special case of DK13, with the eddies (but not the zonal

mean flow) scaled down by one order of «. The as-

sumptions for the scale separation between the synoptic,

planetary, and mean flow in time, height, latitude, and

longitude are given in Table 1 (following DK13), where

the subscriptsm, p, and s represent mean, planetary, and

synoptic scales, respectively. Note that fs � fp (simi-

larly for other coordinates) since the same meridional

distance is a much larger number when measured on

synoptic scales compared to planetary or zonal-mean

scales. Here, lm is not considered as the zonal mean flow

is uniform in longitude, lp andfp represent variations of

the flow on planetary scales (those of order a*), ls and

fs represent variations on synoptic scales (of order

1000km), and the time scales are well separated be-

tween the mean flow and planetary- and synoptic-scale

eddies, where ts is of order 1 day, tp is of order 1 week,

and tm is a seasonal time scale. The time scales emerge

naturally from the equations; tm is «2 slower than tp be-

cause the eddy fluxes driving the zonal-mean-flow

changes are quadratic in eddy amplitude. (In the finite-

amplitude theory of DK13, there is no distinction

between the two time scales.) As this is the small-

amplitude limit of the system, we expect that, in prac-

tice, the zonal-mean-flow time scale would be shorter.

Note that from the above assumptions, we see that there

is a separation of scales in the meridional direction,

which has implications for the final results (see further

discussion in sections 3, 4, and 6).

Using these scales, we can write asymptotic series for all

variables; an example for potential temperature (which

provides stratification) is (following DK09 and DK13)

u(l,f, z, t)5 11 «2u(2)(f
p
, t

m
, z)1 «3u(3)(X

p
, z)

1 «4u(4)(X
p
,X

s
, z)1 . . . , (3)

where the number in parentheses in superscript repre-

sents the order of the variable, Xp 5 (lp, fp, tp), and

Xs 5 (ls, fs, ts). Here, the first-order term has been

omitted as hsc/Hu }Du/u0 ’ «2; to make this O («) would

lead to stronger wind variations (of order 70ms21;

DK09), which would require a different treatment. Note

that here the leading-order variation in potential tem-

perature u(2) depends onfp and z, not only on z, which is

the case for the static stability parameter in QG theory.

To have a well-defined asymptotic expansion, (3), the

sublinear growth condition (DK13) is required. This

means that variables at any order growmore slowly than

linearly in any of the synoptic coordinates, which ef-

fectively means that any averaging over the synoptic

scalesXs sets the derivatives over synoptic scales to zero

(for more details, see DK13).

The full set of equations at different asymptotic

orders using the assumptions from this section is

given in appendix A. This includes the momentum,

thermodynamic, and continuity equations, thermal

wind, hydrostatic balance, and the vorticity equation.

These equations are used in the following sections to

derive potential vorticity, wave activity, and mean-

flow equations.

3. Potential vorticity equation

To derive the potential vorticity (PV) equation, a

vorticity equation has to be derived first. To do so (see

appendix A for the full derivation), take =s 3O («3)

[momentum equation, (A6)] and use the O («4) conti-

nuity equation, (A15), which yields

›

›t
s

z(1)1u(0) �=
s
z(1) 2

f

r(0)
›

›z
(r(0)w(4))1by(1)5 S

z
, (4)

where =s 5 [(a cosfp)
21
›/›ls, a

21›/›fs], u(0) 5 u(0)el
is horizontal velocity of the mean flow, b5 a21›f /›fp,

TABLE 1. The assumptions for the scale separations between

planetary (p), synoptic (s), and zonal mean flow (m).

Lon Lat Height Time

Planetary lp 5l fp 5f zp 5 z tp 5 «3t

Synoptic ls 5 «21lp fs 5 «21fp zs 5 zp 5 z ts 5 «2t5 «21tp
Mean — fm 5fp zm 5 zp 5 z tm 5 «5t5 «2tp
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z(1) 5 er � =s 3 u(1) is relative vorticity, u(1) 5 (u(1), y(1)) is

horizontal velocity at first order, Sz 5 er � =s 3 S(3)u ,

and w(4) is known from the O («6) thermodynamic

equation, (A11):

w(4) 52
1

›u(2)/›z

 
›u(3)

›t
p

1
›u(4)

›t
s

1 u(0) � =
p
u(3) 1 u(0) � =

s
u(4) 1 u(1) � =

p
u(2) 2 S

(6)
u

!
, (5)

where =p 5 [(a cosfp)
21
›/›lp, a

21›/›fp]. Substituting (5) into (4) gives

f

r(0)
›

›z

"
r(0)

›u(2)/›z

 
›u(3)

›t
p

1
›u(4)

›t
s

1 u(0) � =
p
u(3) 1 u(0) � =

s
u(4) 1 u(1) � =

p
u(2) 2 S

(6)
u

!#

1
›

›t
s

z(1) 1 u(0) � =
s
z(1) 1by(1) 5 S

z
. (6)

The first term in brackets on the left-hand side of (6) can

be simplified. First, notice that r(0), u(2), and f do not

depend on ts; thus, ›/›ts can be brought outside the

brackets. The other terms in the first term can be sim-

plified using thermal wind balance, (A9a) and (A9b).

This leads to cancellation of terms with ›u(0)/›z, ›u(1)s /›z,

or ›u(1)p /›z (with u(1)p and u(1)s as the horizontal velocities

for planetary and synoptic scales, respectively), which

means that velocities can be taken out of the ›/›z de-

rivative. This yields the potential vorticity equation

 
›

›t
s

1 u(0)m

1

a cosf
p

›

›l
s

!
q(4)s 1

 
›

›t
p

1 u(0)m

1

a cosf
p

›

›l
p

!
q(3)p 1 (y(1)s 1 y(1)p )b̂5 SPV , (7)

where

q(4)s (X
p
,X

s
, z)5

1

f
=2
sp

(4) 1
f

r(0)
›

›z

�
r(0)u(4)

›u(2)/›z

�
, (8a)

q(3)p (X
p
, z)5

f

r(0)
›

›z

�
r(0)u(3)

›u(2)/›z

�
, (8b)

b̂(f
p
, t

m
, z)5b1

f

r(0)
›

›z

2
4(›/a›fp

)(r(0)u(2))

›u(2)/›z

3
5 , (8c)

SPV
p 5

f

r(0)
›

›z

0
@r(0)S

(6)
u

xs,ts ,ys

›u(2)/›z

1
A, (8d)

SPV
s 5 e

r
�=

s
3 S(3)u 1

f

r(0)
›

›z

r(0) S
(6)
u 2 S

(6)
u

xs ,ts,ys
� �

›u(2)/›z

2
664

3
775,

(8e)

SPV 5 SPV
s 1 SPV

p , u(0)m 5 u(0) is the zonal velocity of

the zonal mean flow; here, u(3) and u(4) correspond to

planetary- and synoptic-scale potential temperature, re-

spectively, u(2) is the leading-order potential temperature

of the mean flow, p(i) 5 p(i)/r(0), u(i52,3,4) 5 ›p(i52,3,4)/›z,

q(3)p is planetary-scale PV, q(4)s is synoptic-scale PV, b̂ is the

effective background PV gradient, z(1) 5 f21=2
sp

(4) is rel-

ative vorticity on the synoptic scale, and SPV, SPV
s , and SPV

p

represent the source–sink terms for the full PV, synoptic-

scale PV, and planetary-scale PV, respectively. A similar

equation to (7) can be obtained by linearizing (A5) in

DK13 though without the planetary-scale PV as it is then

absorbed in the backgroundPVgradient as the zonalmean

flow. Similarly, (9) below can be linked to (44) in DK13.

Equation (7) can then be split into planetary and

synoptic PV equations by averaging over synoptic

scales: only the planetary-scale terms remain, and

the residual represents the synoptic-scale equation

(DK13). This yields 
›

›t
s

1u(0)m

1

a cosf
p

›

›l
s

!
q(4)s 1 y(1)s b̂5 SPV

s (9)

for synoptic scales and 
›

›t
p

1u(0)m

1

a cosf
p

›

›l
p

!
q(3)p 1 y(1)p b̂5SPV

p (10)

for planetary scales. The synoptic-scale PV equation,

(9), closely resembles the QG PV equation, with the

main differences arising in the background PV gradient.
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The background PV gradient b̂ resembles the back-

ground PV gradient used in Charney’s baroclinic in-

stability model (e.g., Hoskins and James 2014). However,

inCharney’smodel (and also in theQGmodel), there is no

dependence of the static stabilityN2 (linked to background

potential temperature) on latitudefp as there is here since

u(2) 5 u(2)(fp, tm, z). The QG background PV gradient,

on the other hand, includes the mean-flow relative

vorticity gradient (2›2u(0)m /›f2
p), which is not present

here because of the planetary scaling. This means that

b̂ represents planetary geostrophy (e.g., Phillips 1963;

DK09), but it is more realistic than in QG because of the

dependence of background PV gradient on latitude.

The planetary-scale PV equation, (10), also resembles

the QG PV equation; however, the planetary-scale PV,

(8b), only includes the stretching term (again because of

the planetary scaling we chose). Note that the planetary-

and synoptic-scale PV equations are independent of each

other in this small-amplitude limit, which implies no direct

interaction between planetary and synoptic scales—their

interaction only occurs via source–sink terms, the mean

flow, or at higher order. This independence is not present

in DK13’s finite-amplitude theory where the synoptic- and

planetary-scale waves interact at leading order.

This analysis suggests that the QG approximation can

be used locally for both planetary- and synoptic-scale

PV. Note, however, that this is only true in this small-

amplitude case (in the finite-amplitude theory of DK13,

this approach is not applicable for the planetary scales).

The potential vorticity equation can be written in a

different form (the one used in DK13 for the planetary

scale), with a vertical advection term in the PV equation,

starting from (6). Following the derivations inDK09 and

DK13, we get

r(0)

›u(2)/›z

"�
u(1) � =

m
1w(4) ›

›z

�
q(2)m 1

�
›

›t
s

1 u(0)m � =
s

�
q
(4)
s,2 1

 
›

›t
p

1 u(0)m � =
p

!
q
(3)
p,2

#
5 SPV2 , (11)

where

q
(4)
s,2 5

z(1)

r(0)
›u(2)

›z
1

f

r(0)
›u(4)

›z
,

q
(3)
p,2 5

f

r(0)
›u(3)

›z
,

q(2)m 5
f

r(0)
›u(2)

›z
,

SPV2 5 S
z
1

f

›u(2)/›z

›S
(6)
u

›z
.

Here, q
(4)
s,2 , q

(3)
p,2, q(2)m , and SPV2 are the DK synoptic,

planetary, and mean-flow PVs and the corresponding

PV source term, respectively.

The PV equation in (11) is closely related to the Ertel

PV equation. However, it includes vertical advection,

which is problematic with respect to obtaining a QG

wave activity equation. As shown in (7), we can elimi-

nate the vertical advection term by including it in the

stretching term of the synoptic- or planetary-scale PV.

This is similar to the classical QG approximation of

Charney and Stern (1962), in which they point out that

theQGPV equation is the QG approximation to the PV

equation; however, the QG PV is not the QG approxi-

mation to the Ertel PV (because the QG PV equation

only includes horizontal advection). Notice that in (11),

there is also the mean-flow PV, whereas (7) only has

the background PV gradient that came from this

mean-flow PV (but not via the direct meridional de-

rivative of q(2)m , i.e., b̂ 6¼ ›q(2)m /›yp). This means that the

QG approximation of PV would not work for the zonal

mean flow, which is consistent with the arguments above

on the relation between the QG PV and the Ertel PV.

4. Wave activity equation and the equations for the
mean flow

a. Wave activity equation

Wave activity is a quantity that is quadratic in amplitude

and is conserved in the absence of forcing and dissipation

(e.g., Vallis 2006). To derive an equation for wave activity,

known as the EP relation, we multiply the PV equations,

(9) and (10), by q(4)s and q(3)p , respectively, and divide them

by b̂ [as done in, e.g., Plumb (1985)]. This yields

›A
s

›t
s

1=3D
s � F

s
5 Swa

s , (12)

›A
p

›t
p

1=3D
p � F

p
5 Swa

p , (13)

where

A
s
5

r(0)q(4)
2

s

2b̂
and

A
p
5

r(0)q(3)
2

p

2b̂
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are synoptic- and planetary-scale wave activities, re-

spectively, Swa
s 5 SPV

s r(0)q(4)s /b̂ and Swa
p 5SPV

p r(0)q(3)p /b̂

are wave activity source–sink terms,

F
s
5

"
u(0)m A

s
1

r(0)

2

 
y(1)

2

s 2u(1)
2

s 2
u(4)

2

›u(2)/›z

!
,

2r(0)y(1)s u(1)s , r(0)f
y(1)s u(4)

›u(2)/›z

#
,

F
p
5

 
u(0)m A

p
2

r(0)

2

u(3)
2

›u(2)/›z
, 0, r(0)f

y(1)p u(3)

›u(2)/›z

!

are synoptic and planetary EP fluxes, respectively,

and =3D� means that the divergence includes the ver-

tical derivative.

Note how the planetary-scale EP flux does not have a

meridional component (no momentum flux) and that the

synoptic-scale EP flux closely resembles Plumb (1985)’s

total fluxB(T), with themain difference, again, arising in b̂.

Also,u(1)s is actually composed ofu(1)s 5 [u](1)s 1 u*(1)s (with

the square brackets indicating a zonal mean and the as-

terisk indicating a perturbation from the zonal mean),

which is another difference to Plumb’s B(T) flux.

We can also relate these expressions to Hoskins et al.

(1983)’s E vector, where the difference is in the zonal com-

ponent of the E vector, which lacks the wave activity ad-

vection ð[u]AÞ and potential temperature (}2u*2) terms.

Nonetheless, the synoptic-scale EP flux is similar to the

QG form of EP flux (e.g., Edmon et al. 1980), especially if

zonally averaged. The planetary-scale wave activity im-

plies that the momentum fluxes and hence barotropic

processes at those scales are less important than heat

fluxes and baroclinic processes. Also, this emphasizes

the fact that planetary and synoptic scales do not in-

teract directly but rather through other processes

(source–sink terms or the mean flow) as the two wave

activity equations are at different orders and have no

‘‘cross’’ terms. The wave activity equations are at different

orders as the planetary and synoptic PV equations, (10)

and (9), are multiplied by q(3)p and q(4)s , respectively, which

are of different orders. This is because they have different

horizontal derivatives associated with them (qs has syn-

optic and qp has planetary).

Averaging over synoptic scales (ls, fs, ts; denoted by

the overline and s) in (12) and over planetary scales

(lp, tp; denoted by an overline and p) in (13) gives

›

›z

0
@r(0)f

y
(1)
s u(4)

s

›u(2)/›z

1
A5 Swa

s

s
’2r

s
A

s

s
, (14)

›

›z

0
@r(0)f

y
(1)
p u(3)

p

›u(2)/›z

1
A5 Swa

p

p
’2r

p
A

p

p
, (15)

where rs,p represents effective damping coefficients. Note

that the approximation Swa
s,p

s,p
’2rs,pAs,p

s,p
does not

follow from the equations themselves but is a heuristic

relation used as a device to help us better understand the

physical interpretation of the equations. These equa-

tions imply that under these averages both synoptic-

and planetary-scale wave activities change via heat

flux terms on time scales longer than ts or tp (as we

averaged over those)—for example, time scale «4t

(between tp and tm) or tm. Averaging only over the

zonal and time dimensions, the synoptic-scale wave

activity would still be influenced by the synoptic-scale

momentum fluxes.

b. Barotropic equation

As the wave activity equation represents the equ-

ation for the eddies, we need additional equations

for the mean flow to get the influence from the eddies

on the mean flow. The barotropic pressure equation

is derived (following DK13) from the O («5) mo-

mentum equation, (A8), using the relevant thermo-

dynamic, hydrostatic, thermal wind, momentum,

and continuity equations averaged not only over ts,

ls, fs, tp, and lp but also over z (denoted by the

overline and z). This yields the momentum equa-

tion in (B6) (see appendix B for more details),

which can be used to derive the barotropic pressure

equation, taking ›/›~yp of (B6), eliminating the term

›(y(4)r(0)
s,p,z

)/›~yp via (B5), multiplying it by f, and

recalling (A4):

›

›t
m

 
›

›~y
p

1

f

›

›y
p

p(2)
s,p,z

2
b

f 2
›

›y
p

p(2)
s,p,z

2 f p(2)
s,p,z

!

2
›

›~y
p

N
1
1

b

f
N

1
2 fN

2
52S

barotropic
, (16)

with

N
1
5

›

›~y
p

r(0) y
(1)
p u

(1)
p 1 r(0) y

(1)
s u

(1)
s

� �s,p,z

2
tanf

p

a

�
r(0) y

(1)
p u

(1)
p 1 r(0) y

(1)
s u

(1)
s

�s,p,z

,

N
2
5

›

›~y
p

r(0) y
(1)
p u(3)

s,p,z
� �

,
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S
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5 fr(0)S
(7)
u
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1 f
›
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p

"
(r(2) 1 r(0)u(2))

S(3)u
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›
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!266664r(0)S(5)u
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s,p,z

cosf
p

f›u(2)/›z

3
77775,

where the double-underlined terms represent eddy forcing

of the mean flow, ›/›~yp [ (a cosfp)
21
› cosfp/›fp, and

›/›yp [ a21›/›fp. This evolution equation for p(2) on the

tm scale, (16), is similar to DK13’s p(2) evolution on the tp
scale when no source terms are considered. Using geo-

strophic balance for u(0), (16) can be rewritten as

 
›

›~y
p

2
b

f

!
›r(0)u(0)

s,p,z

›t
m

1 f
›p(2)

s,p,z

›t
m

1

 
›

›~y
p

2
b

f

!
N

1
1 fN

2
5 S

barotropic
. (17)

This equation implies that although both the synoptic-

and planetary-scale momentum fluxes affect the baro-

tropic part of the mean flow, only the planetary-scale

heat fluxes N2 are relevant.

The zonal-mean-flow equations at different orders

can be further written in TEM form (Andrews and

McIntyre 1976; Edmon et al. 1980), from which a non-

acceleration theorem can be derived using the wave

activity equations. This is addressed in appendix D.

Note that an evolution equation for p(3) can also be

derived; however, under the lp, ls, ts, fs, z average,

it only evolves through diabatic and frictional pro-

cesses, (D9).

c. Baroclinic equation

The barotropic equation, (17), shows how barotropic

processes affect the zonal mean flow; however, we are

also interested in the baroclinic processes. Therefore, a

baroclinic equation for the zonal mean flow (i.e., equa-

tion for baroclinicity } ›u(0)/›z) is derived from the

O («7) thermodynamic equation, (A12), using the rele-

vant continuity and momentum equations averaged

over ts, ls, tp, and lp (denoted with an overline) and

taking ›/›yp of the resulting equation, (B7b). The rele-

vant equations (and their derivations) are given in ap-

pendix B; hence, using (B10)–(B14) yields

2
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where the terms with z/a come from corrections to the

shallow-atmosphere approximation of the thermodynamic

and continuity equations.Averaging (18) over the synoptic

meridional scale f
s
gives
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baroclinic , (19)

which implies that baroclinicity is not affected by the

synoptic-scale heat fluxes (r(0)y(1)s u(4)) but only by bar-

oclinic source terms Sbaroclinic and planetary-scale heat

fluxes (r(0)y(1)p u(3)). The absence of a synoptic-scale heat

flux contribution to the baroclinicity tendency is dis-

cussed in section 6.

5. Angular momentum conservation

Apart from the mean-flow equations (baroclinic

and barotropic) and the eddy equations (wave activ-

ity), angular momentum conservation provides addi-

tional information about the transfer of angular

momentum between Earth and the atmosphere, which

has implications for the surface easterlies in the tropics

and westerlies in the midlatitudes (e.g., Holton 2004).

Hence, it is important to show that such a budget can be

found also in the asymptotic model.

Generally, the angular momentum for the hydrostatic

primitive equations takes the form (e.g., Holton 2004)

M5 au cosf1 a2V cos2f , (20)

where a is the radius of Earth,V is Earth’s rotation rate,

f is meridional coordinate, u is zonal velocity, and M is

angular momentum per unit mass.

In the asymptotic regime, a nondimensional version of

angular momentum must be used. To derive the non-

dimensional version of (20), define nondimensional terms

(similarly as in section 2): u5 u*uref, a5 a*«23hsc,

V5 (1/2)V*(2Vref), and M5M*urefhsc«
23, where uref

and hsc were defined in section 2, Vref is Earth’s rotation

rate (previously denoted V),M} «23 as it needs to be of

the same order as other terms, and the asterisk denotes

nondimensional parameters. Now divide (20) by urefhsc to

get nondimensional angular momentum

«23M*5 a*«23u*
u
ref
h
sc

u
ref
h
sc

cosf

1 («23)2(a*)2
1

2
V*

h
sc

h
sc

h
sc
2V

ref

u
ref

cos2f . (21)

Cancelling out a few terms, setting V* to unity, recog-

nizing that4 hsc2Vref/uref 5Ro21 ’ «, and omitting

asterisks for simplicity yields the nondimensional an-

gular momentum

«23M5 «23au cosf1 «23«221

2
a2 cos2f . (22)

Taking the material derivative, (2), of M in (22) gives

the nondimensional angular momentum equation

«23DM

Dt
5 «23a cosf

Du

Dt
2uy sinf2 «22af y cosf , (23)

using ›/›t5 «5›/›tm and w(0) 5w(1) 5w(2) 5w(3) 5 0 (as

derived in appendix A), and all parameters are non-

dimensional. Notice that

› cos2f

›f
522 cosf sinf ,

which means that the factor 2 from this equation cancels

out the factor 1/2 in M, (22). Here,

y5 «23a
Df

Dt
5 «y(1) 1 «2y(2) 1⋯,

u5 u(0) 1 «u(1) 1 «2u(2) 1⋯ .

The angular momentum equation and its conserva-

tion for the zonal mean flow (u(0)) are derived in

appendix C. The second-order angular momentum

equation is

r
DM

Dt
m

5 a cosf
p
r(0)

Du(0)

Dt
m

2 (r(0)u(1)y(1)

1 r(0)u(0)y(2)) sinf
p
2 f (r(0)y(4)

1 r(2)y(2) 1 r(3)y(1))a cosf
p
, (24)

from which it is shown (appendix C) that M is con-

served [using the fifth-order momentum equation,

(A8)] in the absence of source–sink terms and orog-

raphy, yielding

ððð
Vp

›(rM)(2)
s,tp

›t
m

dV
p
5 0, (25)

where Vp is volume on planetary scales (lp, fp, z).

The barotropic pressure equation, (17), can now

be rewritten using the angular momentum equation

(appendix C) as

4Here, the Rossby number used is the same as the one defined in

DK09 and DK13: Ro21 ’RoQG ’ «.
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, (26)

where the overbar denotes an average over ts, tp, ls,

lp, fs, and z. This shows that the two quantities are

directly linked.

Note that the surface pressure tendency ›p(2)
s,p,z

/›tm
in (17) and (26) reflects the response of planetary angular

momentum to an imposed torque, via mass redistribution,

and is an essential component of the angular momentum

equation at planetary scales (Haynes and Shepherd 1989).

The present analysis has shown further that the planetary-

scale meridional heat flux contributes to this meridional

mass redistribution. That the synoptic-scale heat flux does

not so contribute can be anticipated from the scaling ar-

guments of Haynes and Shepherd (1989).

6. The zonally homogeneous case

If there are no forced planetary-scale waves in the

system, then there is no justification for separate lp and

tp scales. If the zonal and synoptic-scale (including fs)

average is taken in such a case, then the wave activity,

barotropic, and baroclinic equations become
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m

 
fr(0)

›u(0)
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5 S

baroclinic

s,p
. (27c)

These equations imply that under synoptic-scale averag-

ing, and to leading order, the wave activity is only affected

by the heat fluxes through a quasi-steady balance, the

barotropic part of the zonal-mean-flow tendency is only

affected by the momentum fluxes (in N1), and the baro-

clinicity tendency is only affected by source–sink terms.

The latter can, however, be related to the source–sink

terms in the wave activity and barotropic pressure equa-

tions. The most surprising of these relations are (27a) and

(27c), which depend crucially on the averaging over fs.

When the equations are not averaged over fs, then mo-

mentum fluxes appear in the wave activity equation and

heat fluxes appear in the baroclinicity tendency equation.

These findings may help explain the empirical results of

Thompson and Woodworth (2014), who found that the

barotropic and baroclinic parts of the SouthernHemisphere

(SH) flow variability were decoupled, with the barotropic

part of the flow [characterized by the southern annular

mode (SAM), based on zonal-mean zonal wind] being only

affected by the momentum fluxes and the baroclinic part of

the flow (characterized by the BAM, based on EKE) being

only affected by the heat fluxes. We assume here that the

wave activity is closely linked to EKE. Indeed, Wang and

Nakamura (2015, 2016) found that wave activity during the

SH summer is only affected by the heat fluxes under an

average over a few latitudinal bands (approximately 108),
giving an equation similar to (27a). Here, we put this view

into a self-consistent mathematical perspective.

In a separate study, Thompson and Barnes (2014)

found an oscillating relationship between the baro-

clinicity and the heat fluxes with a time scale of

20–30 days. In their model, baroclinicity is affected by

synoptic-scale heat fluxes through the assumption that

›2[y*T*]

›y2
52l2[y*T*],

where l is meridional wavenumber, T is temperature,

the square brackets represent the zonal mean, and the

asterisk represents perturbations therefrom. This re-

lation is not present here because of the chosen scaling

and the averaging over synoptic scales. Equation (18)

does in fact have the heat fluxes, acting on synoptic

scales, which because of the sublinear growth condition

(DK13) disappear in (27c), as mentioned above.

Pfeffer (1987, 1992) argued that heat fluxes (vertical

EP fluxes) grow in the part of the domain with low

stratification parameter S. Pfeffer’s S can be related to

« as S5 (LR/a*)
2 ’ «2, where LR ’ «a* is Rossby de-

formation radius (a typical synoptic scale) and a* is

Earth’s radius (a typical planetary scale). Since here we

consider the casewith « � 1, we are then in a regimewhere

S � 1, and hence, the heat fluxes act to drive the residual

meridional circulation rather than the zonal mean flow, and

the vertical derivative of the zonal mean flow (i.e., bar-

oclinicity) is not related to EP flux divergence to leading

order [see (6)–(9) in Pfeffer (1992)]. This suggests a baro-

tropic response of the zonal mean flow to eddy fluxes after

averaging over synoptic scales, which is consistent with

(27b) and (27c).

Zurita-Gotor (2017) showed further that there is a low-

frequency suppression of heat fluxes (at periods longer

than 20–30 days) and concluded that, at longer time scales

(considered here), the meridional circulation and diabatic

processes aremore important for the baroclinicity than the

synoptic-scale heat fluxes [consistent with (27c)].
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7. Conclusions

In this paper, we have provided a theoretical

framework for planetary–synoptic zonal-mean-flow

interactions in the small-amplitude limit with a scale

separation in the meridional direction, as well as in the

zonal direction, between planetary and synoptic scales.

Thus, the synoptic-scale eddies are assumed to be iso-

tropic (which is the case also in QG theory). These as-

sumptions allow us to derive strong results, for

example, a lack of direct interaction between the plan-

etary and synoptic waves and a lack of a direct link be-

tween the baroclinic and barotropic components of the

flow when only synoptic-scale fluxes are considered.

We derived planetary- and synoptic-scale PV

equations, (10) and (9), and equations for the eddies

[wave activity equations, (14) and (15)]; the baro-

tropic part of the zonal mean flow, (17); and the baro-

clinic part of the zonal mean flow, (19). A crucial step

in deriving these equations was finding a form of

the PV equation that eliminated the effect of vertical

advection. The synoptic-scale PV then resembled

QG PV, and the planetary PV resembled that of

planetary geostrophy, that is, with only stretching

vorticity representing PV on planetary scales (e.g.,

Phillips 1963). These equations provide an alternative

view to the conventional transformed Eulerian mean

(TEM) framework [first introduced in Andrews and

McIntyre (1976)], which combines all components into

two equations that are linked through the Eliassen–

Palm flux.

The background PV gradient, (8c), that emerged

from the equations lacks the relative vorticity term as

in planetary geostrophy (Phillips 1963), implying the

dominance of baroclinic processes for eddy generation.

Thus, this PV gradient resembles that of Charney’s

baroclinic instability model (e.g., Hoskins and James

2014) but is more general as it includes variations in

static stability in both the vertical and meridional di-

rections. The latter should be stressed, as this is the

main difference to QG dynamics in this model.

In terms of the baroclinic life cycle (Simmons and

Hoskins 1978), the barotropic pressure equation, (17),

would be relevant in the breaking region of the storm

track, and the baroclinic equation, (19), would be

more relevant in the source region. We also showed

that only the planetary-scale heat fluxes affect the

baroclinicity, (19); that both planetary and synoptic-

scale momentum fluxes, as well as planetary-scale heat

fluxes, affect the barotropic zonalmean flow, (17); and that

the planetarywaves and synoptic-scale eddies only interact

via the zonal mean flow or the source–sink terms or at

higher-order approximations. Since both the barotropic

[(17)] and baroclinic [(19)] parts of the zonalmean floware

affected by the planetary-scale heat fluxes, the latter could

provide a link between upstream and downstream devel-

opment of storm tracks. The barotropic equation, (17), was

also directly linked to the angular momentum equation,

(26), which has not been noted in previous work. This

linkage revealed the importance of planetary-scale heat

fluxes (via meridional mass transport) for the angular

momentum budget (Haynes and Shepherd 1989).

The importance of planetary-scale waves was also noted

in Kaspi and Schneider (2011, 2013), who found that the

termination of storm tracks downstream is related to sta-

tionary waves and the baroclinicity associated with them.

Stationary waves are especially important locally in con-

tributing to heat fluxes, which enhance temperature gra-

dients upstream and reduce them downstream.

When considering only the synoptic-scale eddies (when

planetary-scale eddies are weak, as, for example, in

aquaplanet simulations or in the Southern Hemisphere),

we find that under synoptic-scale averaging the barotropic

zonal mean flow, (27b), is only affected by the momentum

fluxes, the baroclinicity, (27c), is only affected by the

source–sink terms, and wave activity, (27a), is only related

to heat fluxes (as in Thompson and Woodworth 2014).

This suggests that the baroclinicity is primarily diabatically

driven. Understanding the decoupling of the baroclinic

and barotropic parts of the flow (in the case of weak

planetary-scale waves) is addressed in a companion study

(Boljka et al. 2018), where it is shown that at time scales

longer than synoptic the EKE is only affected by the

heat fluxes and not momentum fluxes, confirming

relation (27a).

Along with helping to understand a variety of previous

results in the literature, one potential use of the theory

presented here is to help understand the barotropic re-

sponse to climate change, which is fundamentally ther-

mally driven. In general, we need a better understanding

of the interaction between the baroclinic and barotropic

parts of the flow, where planetary-scale heat fluxes and

diabatic processes may play an important role.

This theoretical framework could be extended by

allowing finite-amplitude eddies (as in DK13) and by

relaxing the assumption of a separation of scales in lat-

itude (e.g., Dolaptchiev 2008).
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APPENDIX A

The Multiscale Asymptotic Version of the Primitive
Equations

Using the assumptions from section 2b, the momen-

tum, thermodynamic, continuity, hydrostatic, and ther-

mal wind balance equations at different orders ½O (i)�
can be derived following DK09 and DK13.

a. Hydrostatic balance

Up to fourth order,

r(i) 52
›p(i)

›z
, i5 0, . . . , 4 . (A1)

There is also a relationship between p and u as defined

in (47) in (DK09):

›p(i)

›z
5 u(i), i5 2, 3, 4 , (A2)

where p(i) 5 p(i)/r(0). This identity at the fourth order

only holds if ›/a›fs of u is taken (and this relationship

will only be used in this case).

Using (A2) and (A1), one gets a relationship between

r, p, and u:

r(i) 5 p(i) 2 r(0)u(i), i5 2, 3, (A3)

where an assumption is made that r(0) 5 exp(2z).

b. Momentum equations

Below is the list of all momentum equations up to fifth

order. Note that we derive the PV and wave activity

equations from the third-ordermomentum equation and

we obtain a barotropic equation for the mean flow from

the fifth-order momentum equation.

O («1): Geostrophic balance for zonal mean wind:

fe
r
3 u(0) 5 fe

r
3 u(0)m 52=

p
p(2) 52

›

›y
p

p(2) e
f
.

(A4)

The subscript m refers to the mean flow, and u(0) is

related to the zonal-mean zonal velocity. Note that

y(0) 5 0.

O («2): Geostrophic balance for first-order wind

(planetary- and synoptic-scale perturbations to the

zonal mean):

fe
r
3 u(1) 52(=

p
p(3) 1=

s
p(4)) . (A5)

Here, u(1) 5u(1)p 1 u(1)s (with subscripts p and s referring

to planetary and synoptic waves, respectively), such that

fer 3 u(1)p 52=pp
(3) and fer 3 u(1)s 52=sp

(4).

O («3): First nontrivial order, used to derive PV

equations:

›u(1)

›t
s

1 u(0) � =
s
u(1) 1 fe

r
3 u(2) 1 e

f

u(0)u(0) tanf
p

a

52=
p
p(4) 1

r(2)

r(0)
=
p
p(2) 2=

s
p(5) 1 S(3)u . (A6)

O («4): We require only the u-momentum equation:

›u(2)

›t
s

1
›u(1)

›t
p

1 u(1) � =
s
u(1) 1

›

›~x
s

(u(0)u(2))1
›

›~x
p

(u(0)u(1))1 y(1)
›

›y
p

u(0) 1w(4) ›

›z
u(0) 2 f y(3) 2

u(0)y(1) tanf
p

a
5

2
›

›x
p

p(5) 1
›

›x
p

�
r(2)

r(0)
p(3)

�
2

›

›x
s

p(6) 1
›

›x
s

�
r(2)

r(0)
p(4)

�
1 S(4)u . (A7)

O («5): Again we require only the u-momentum equation, used to derive the barotropic pressure equation (equation

for the zonal-mean zonal flow):

›u(0)

›t
m

1
›u(3)

›t
s

1
›u(2)

›t
p

1 u(1) � =
s
u(2) 1 u(2) � =

s
u(1) 1

›

›~x
s

(u(0)u(3))1
›

›~x
p

(u(0)u(2))1u(1) � =
p
u(1) 1 y(2)

›

›y
p

u(0)

1w(4) ›

›z
u(1) 1w(5) ›

›z
u(0) 2 f y(4) 2

u(0)y(2) tanf
p

a
2

u(1)y(1) tanf
p

a
1w(4) cosf

p
52

›

›x
p

p(6) 1
›

›x
p

�
r(2)

r(0)
p(4)

�

1
r(3)

r(0)
›

›x
p

p(3) 2
›

›x
s

p(7) 1
›

›x
s

�
r(2)

r(0)
p(5)

�
1

›

›x
s

�
r(3)

r(0)
p(4)

�
1 S(5)u . (A8)
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In all equations ›/›yp,s 5 (1/a)(›/›fp,s), ›/›~yp,s5
[1/(acosfp)](›cosfp/›fp,s), ›/›~xp,s5›/›xp,s5[1/(acosfp)]

(›/›lp,s), =p and =s are the horizontal gradients in a

spherical coordinate system (with the above x and y

coordinates, the tilde is used when = is used as curl or

divergence), and ef and er are the unit vectors in the

latitudinal and vertical directions, respectively.

c. Thermal wind balance

Using (A5) and (A2),

›

›z
u(0) 52

1

f

›u(2)

›y
p

, (A9a)

›

›z
u(1) 5

1

f
e
r
3 (=

p
u(3) 1=

s
u(4)) . (A9b)

d. Thermodynamic (u) equations

Below is the list of all needed thermodynamic equations.

Note that all orders below O («5) give nothing; thus, the

first order that appears below is O («5).

O («5):

w(3) 5
S
(5)
u

›u(2)/›z
5 0. (A10)

O («6):

›u(3)

›t
p

1
›u(4)

›t
s

1
›

›~x
p

(u(0)u(3))1
›

›~x
s

(u(0)u(4))

1 y(1)
›u(2)

›y
p

1w(4)›u
(2)

›z
5S

(6)
u . (A11)

O («7):

›u(4)

›t
p

1
›u(5)

›t
s

1
›u(2)

›t
m

1
›

›~x
p

(u(0)u(4))1 u(1) � =
p
u(3)

1 u(1) � =
s
u(4) 1

›

›~x
s

(u(0)u(5))1 y(2)
›u(2)

›y
p

1w(4)›u
(3)

›z
1w(5)›u

(2)

›z
5 S

(7)
u . (A12)

e. Continuity equations

This is the set of all continuity equations (also the

trivial ones as they give us information about vertical

velocities).

O («0), O («1), and O («2):

›w(i)

›z
5 0, i5 0, 1, 2. (A13)

O («3) [here, note that w(3) 5 0 from the thermody-

namic equation, (A10), and that =s � u(1) 5 0 by

definition]:

=
p
� u(0) 5 0. (A14)

O («4):

=
p
� (u(1)r(0))1=

s
� (u(2)r(0))1 ›

›z
(w(4)r(0))5 0.

(A15)

O («5):

=
p
� (u(2)r(0))1=

s
� (u(3)r(0))1 ›

›z
(w(5)r(0))5 0.

(A16)

O («6):

›r(3)

›t
p

1
›r(4)

›t
s

1=
p
� (u(3)r(0) 1 u(1)r(2) 1 u(0)r(3))

1=
s
�
�
u(4)r(0) 1 u(2)r(2) 1 u(0)r(4) 2 u(1)r(0)

z

a

�
1

›

›z
(w(4)r(2) 1w(6)r(0))5 0. (A17)

O («7) :

›r(2)

›t
m

1
›r(4)

›t
p

1
›r(5)

›t
s

1=
p
�
�
u(4)r(0) 1 u(2)r(2) 1 u(1)r(3) 1 u(0)r(4) 2 u(1)r(0)

z

a

�

1=
s
�
�
u(5)r(0) 1u(3)r(2) 1 u(2)r(3) 1u(1)r(4) 1 u(0)r(5) 2u(2)r(0)

z

a

�
1

›

›z
(w(4)r(3) 1w(5)r(2) 1w(7)r(0))5 0. (A18)
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The terms with z/a come from corrections to the

shallow-atmosphere approximation at higher orders.

Note that these terms vanish in the zonal mean and/or

synoptic-scale average.

f. Vorticity equation

To derive the vorticity equation, take =s 3O («3)

[momentum equation, (A6)], and note that terms with

=s 3=s and synoptic-scale derivatives of terms (p, r, u)

that do not depend on synoptic scales (up to third order)

are zero. This yields (following DK13)

›

›t
s

z(1) 1=
s
3 (u(0) � =

s
u(1))1=

s
3 ( fe

r
3 u(2))

52=
s
3=

p
p(4) 1=

s
3 S(3)u , (A19)

where =s5[(acosfp)
21
›/›ls, a

21›/›fs], =p5[(acosfp)
21

›/›lp,a
21›/›fp], the numbers set as superscripts denote

orders of variables, u5 (u, y) is horizontal velocity,

p5 p/r, z(1) 5=s 3u(1) is relative vorticity, and as=s and

u(1) have only horizontal components, z(1) 5 z(1)er. The

source term S(3)u represents frictional processes. Note that

=s 3=pp
(4) 5 [0, 0, =p � (fu(1)s )]. Taking er� of (A19) and

applying the vector identities as in DK09 andDK13, we get

›

›t
s

z(1) 1 u(0) � =
s
z(1) 1 f=

s
� u(2) 52=

p
� (fu(1)s )

1 e
r
� =

s
3 S(3)u , (A20)

where Sz 5 er � =s 3 S(3)u and =p � (fu(1))5 f=p � u(1) 1
y(1) cosfp/a with a21 cosfp 5 a21›f /›fp 5b. Since u(2) is

not known, we use theO («4) continuity equation, (A15),

to obtain the vorticity equation:

›

›t
s

z(1) 1 u(0) � =
s
z(1) 2

f

r(0)
›

›z
(r(0)w(4))

1by(1) 5 S
z
, (A21)

where w(4) is known from the O («6) thermodynamic

equation, (A11), which can be used to derive the potential

vorticity equation. This vorticity equation resembles the

QG vorticity equation (e.g., Holton 2004), but now there

are different scales represented in the equation.

APPENDIX B

Derivation of the Mean-Flow Equations

a. Barotropic equation

This section shows the steps in deriving the barotropic

pressure equation—combining the correct thermodynamic,

hydrostatic, thermal wind, momentum, and continuity

equations (see appendix A) with the O («5) momentum

equation, (A8), averaged over ts, ls, fs, tp, lp, and z (de-

noted with an overline). Note that the vertical mean as-

sumesw5 0 at the top and bottomboundaries. This section

modifies the momentum [(A8)] and thermodynamic

[(A12)] equations, which can then be used to derive the

barotropic equations in section 4b (following DK13).

First, average the flux forms of all equations mentioned.

For momentum equations at O («3), O («4), O («5),

y(2) 52
S
(3)
u

s,p,z

f
, (B1a)

y(3) 52
S
(4)
u

s,p,z

f
, (B1b)

›u(0)r(0)
s,p,z

›t
m

1
›

›~y
p

y(1)u(1)r(0)
s,p,z

1 y(2)u(0)r(0)
s,p,z� �

2
tanf

p

a
y(1)u(1)r(0)

s,p,z
1 y(2)u(0)r(0)

s,p,z� �
2 r(0)y(4)f

s,p,z

1 r(0)w(4)
s,p,z

cosf
p
5 r(3)

›p(3)

›x
p

s,p,z

1 r(0)S
(5)
u

s,p,z

.

(B1c)

For continuity equations atO («4), O («5), O («6), O («7),

›

›~y
p

y(1)r(0)
s,p,z� �

5 0, (B2a)

›

›~y
p

y(2)r(0)
s,p,z� �

5 0, (B2b)

›

›~y
p

y(3)r(0)
s,p,z� �

5 0, (B2c)

›r(2)
s,p,z

›t
m

1
›

›~y
p

y
(1)
p r(3)

s,p,z

1 y(2)r(2)
s,p,z

1 y(4)r(0)
s,p,z� �

5 0.

(B2d)

For thermodynamic equations at O («6), O («7),

w(4)
s,p,z

5
S
(6)
u

s,p,z

›u(2)/›z
, (B3a)

›r(0)u(2)
s,p,z

›t
m

1
›

›~y
p

y
(1)
p r(0)u(3)

s,p,z

1 y(2)r(0)u(2)
s,p,z

� �

5 S
(7)
u r(0)

s,p,z

. (B3b)

For hydrostatic balance at O («2),

r(2)
s,p,z

52r(0)u(2)
s,p,z

1 p(2)
s,p,z

. (B4)
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Equations (B1a) and (B1b) show that y(2)
s,p,z

and

y(3)
s,p,z

are related to source–sink terms; thus, in the

equations below they will be replaced by them. Note

that r(3)›p(3)/›xp 5 fr(3)y(1)p [via (A5)]. Using the

hydrostatic balance equation, (B4), to substitute r(2)

in the continuity equation, (B2d), and matching the

›r(0)u(2)
s,p,z

/›tm term in the thermodynamic equation,

(B3b), yields

›p(2)
s,p,z

›t
m

1
›

›~y
p

y
(1)
p r(0)u(3)

s,p,z

1 y
(1)
p r(3)

s,p,z

1 y(4)r(0)
s,p,z

� �
5 r(0)S

(7)
u

s,p,z

1
›

›~y
p

"
(r(2) 1 r(0)u(2))

S(3)u

f

s,p,z#
. (B5)

Rewriting the momentum equation then gives

1

f

›u(0)r(0)
s,p,z

›t
m

1
1

f

›

›~y
p

y(1)u(1)r(0)
s,p,z� �

2
1

f

tanf
p

a
y(1)u(1)r(0)

s,p,z� �
2 r(0)y(4)

s,p,z

2 r(3)y
(1)
p

s,p,z

5
1

f
r(0)S

(5)
u

s,p,z

1
1

f

›

›~y
p

 
S(3)u

f
u(0)r(0)

s,p,z!
2

1

f

tanf
p

a

 
S(3)u

f
u(0)r(0)

s,p,z!
2

r(0)S
(6)
u

s,p,z

cosf
p

f›u(2)/›z
. (B6)

The latter two equations are then used in section 4b

to derive the barotropic pressure equation in (16)

or (17).

b. Baroclinic equation

This section shows the steps in deriving the baroclinic

mean-flow equation, which is derived through the

O («7) thermodynamic equation, (A12), using the con-

tinuity and momentum equations averaged over ts, ls,

tp, and lp (denoted with an overbar). The averaged

equations are

Thermodynamic equations at O («6), O («7):

w(4)
ts,ls ,p

5
S
(6)
u

ts ,ls ,p

›u(2)/›z
, (B7a)

›r(0)u(2)
ts ,ls,p

›t
m

1
›

›~y
p

y
(1)
p r(0)u(3)

ts ,ls ,p

1 y(2)r(0)u(2)
ts ,ls ,p

� �
1

›

›~y
s

�
y
(1)
s r(0)u(4)

ts ,ls ,p

1 y(2)r(0)u(3)
ts ,ls ,p

2 y(2)
z

a

ts ,ls ,p
�

1
›

›z

�
w(4)r(0)u(3)

ts ,ls ,p

2w(4)
z

a

ts ,ls ,p
�
1 r(0)w(5)

ts ,ls ,p›u
(2)

›z
5 S

(7)
u r(0)

ts ,ls ,p

, (B7b)

where terms with z/a come from corrections to the

shallow-atmosphere approximation.

Continuity equations at O («4), O («5):

›

›~y
p

y(1)r(0)
ts ,ls ,p

� �
1

›

›~y
s

y(2)r(0)
ts ,ls ,p

� �

1
›

›z
w(4)r(0)

ts ,ls ,p
� �

5 0, (B8a)

›

›~y
p

y(2)r(0)
ts ,ls ,p

� �
1

›

›~y
s

y(3)r(0)
ts ,ls ,p

� �

1
›

›z
w(5)r(0)

ts ,ls ,p
� �

5 0. (B8b)

Momentum equations at O («3), O («4):

y(2)
ts ,ls ,p

52
S
(3)
u

ts ,ls ,p

f
, (B9a)

y(3)
ts ,ls ,p

52
S
(4)
u

ts ,ls ,p

f
1

›

›~y
s

 
u
(1)
s y

(1)
s

ts ,ls ,p

f

!

1
w(4)

ts ,ls ,p

f

›u(0)

›z
. (B9b)

Here, note that terms with y(1)p u(3) or w(4)u(3), y(1)p , and

w(4) cannot simply be averaged over lp and tp; we need

to average y(1)p u(3) orw(4)u(3) together as u(3) also depends
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on planetary scales. Thismeans that, in order to replace the

w(4) and y(1)p terms in (B7b), the O («6) thermodynamic

equation and O («3) momentum equation have to first be

multiplied by u(3) and then averaged over ls, ts, lp, tp. For

the O («3) momentum equation, this gives

u(3)y(2)
ts ,ls ,p

52
u(3)S

(3)
u

ts ,ls ,p

f
1

u(3)

f

›p(4)

›x
p

ts ,ls ,p

. (B10)

Multiplying (B10) by r(0) and taking ›/›~ys of it yields

›

›~y
s

r(0)u(3)y(2)
ts ,ls ,p

� �
52

›

›~y
s

 
r(0)u(3)S

(3)
u

ts ,ls ,p

f

!

1 r(0)u
(1)
s
›u(3)

›x
p

ts ,ls ,p

, (B11)

where u(1)s 52f21›p(4)/›ys was used. However, it is

more complicated for the thermodynamic equation.

Here is a short derivation. First, multiply (A11)

by u(3),

1

2

›u(3)
2

›t
p

1
›u(3)u(4)

›t
s

1
1

2

›

›~x
p

(u(0)u(3)
2

)1
›

›~x
s

(u(3)u(0)u(4))

1 u(3)y(1)
›u(2)

›y
p

1 u(3)w(4)›u
(2)

›z
5 u(3)S

(6)
u ,

(B12)

then average it over ls, ts, lp, tp,

u(3)w(4)
ts ,ls ,p

52u(3)y(1)
ts ,ls ,p›u

(2)/›y
p

›u(2)/›z

1
u(3)S

(6)
u

ts ,ls ,p

›u(2)/›z
. (B13)

We can derive an equation forw(5)r(0)
ts ,ls ,p

by integrating

(B8b) over z and using (B9a) and (B9b). This yields

w(5)r(0)
ts ,ls ,p

52

ðzmax

0

r(0)
›

›~y
s

"
›

›~y
s

 
y
(1)
s u

(1)
s

ts ,ls ,p

f

!#
dz

1 S
w5
, (B14)

with

S
w5

52

ðzmax

0

(
›

›~y
s

"
r(0)

 
S
(6)
u

ts ,ls ,p

f

›u(0)/›z

›u(2)/›z
2

S
(4)
u

ts ,ls ,p

f

!#

2
›

›~y
p

 
r(0)

S
(3)
u

ts ,ls ,p

f

!)
dz.

These equations are then used in section 4c to derive the

final baroclinic equation for the mean flow, (18) and (19).

APPENDIX C

Derivation of the Angular Momentum Equation

This appendix shows the derivation of angularmomentum

conservation for the zonal-mean-flow (u(0)) equation, fol-

lowing from theO («5) momentumequation, (A8).Note that

similar systems can be derived for higher-order velocities as

well and at all asymptotic orders but are omitted for brevity.

Deriving an angular momentum equation for the mean

flow means that something that corresponds to the fifth-

order momentum equation, (A8), must be used. This

means that, for example, Du/Dt has to be fifth order,

which overall makes the angular momentum equation,

(23), a second-order equation; thus, the rest of the terms

in the equation must follow that pattern.

Using these statements and noting that f5fp, the

angular momentum equation, (23), becomes

«23«5
DM

Dt
m

5 «23«5a cosf
p

Du(0)

Dt
m

2 (u(0) 1 «u(1) 1 «2u(2) 1⋯)(«y(1) 1 «2y(2) 1⋯) sinf
p
2 «22f (y(0)

1 «y(1) 1 «2y(2) 1⋯)a cosf
p
, (C1)

where y(0) 5 0 because the zonal mean flow is geo-

strophic to leading order, (A4). In this form, angular

momentum is not conserved. To get a conservative form

of this equation, multiply (C1) by r5 r(0) 1 «2r(2) 1⋯,

«2r
DM

Dt
m

5 «2a cosf
p
(r(0) 1 «2r(2) 1⋯)

Du(0)

Dt
m

2 (r(0) 1 «2r(2) 1⋯)(u(0) 1 «u(1) 1 «2u(2) 1⋯)

3(«y(1) 1 «2y(2) 1⋯) sinf
p
2 «22f (r(0) 1 «2r(2) 1⋯)(«y(1) 1 «2y(2) 1⋯)a cosf

p
, (C2)
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and taking the same orders together yields the second-

order angular momentum equation (omit « everywhere):

r
DM

Dt
m

5 a cosf
p
r(0)

Du(0)

Dt
m

2 (r(0)u(1)y(1) 1 r(0)u(0)y(2)) sinf
p

2 f (r(0)y(4) 1 r(2)y(2) 1 r(3)y(1))a cosf
p
. (C3)

Note that since an angular momentum equation for

the mean flow is derived, (C3) can be averaged over

synoptic scales (ts, ls, fs) and planetary time scale tp,

which simplifies it. To get the angular momentum con-

servation equation, the continuity equations, (A14)–

(A16), are needed, which can be written together as

=
p
� ðr(0)u(i)s,tpÞ1

› r(0)w(i13)ð Þs,tp
›z

5 0 (C4)

where the overline denotes an average over

ts, tp, ls, fs, and i5 0, 1, 2 (where for i5 0, w(3) 5 0).

This equation can then be written in a shorter

form as

=3D
p � ðr(0)u(i)3Ds,tp Þ5 0, (C5)

where

=3D
p � 5

 
1

a cosf
p

›

›l
p

,
1

a cosf
p

›cosf
p

›f
p

,
›

›z

!

now includes the vertical derivative and

u
(i)
3D 5 (u(i), y(i), w(i13)) is the three-dimensional velocity

field. Note that in general the continuity equation can be

used to simplify expression (C3), using

r
DB

Dt
5

DrB

Dt
2B

Dr

Dt
5

›(rB)

›t
1=3D � (Bru

3D
) , (C6)

whereB is an arbitrary scalar, and u3D is three-dimensional

velocity; noting that mass is conserved for every order, the

continuity equation for each order in general takes the form

Dr/Dt52r=3D � u3D, where ›r/›t is mainly zero as r(0)

only depends on the vertical coordinate.

Using (C6) for rDM/Dtm and (C5) for r(0)Du(0)/Dtm
gives

›(rM)
s,tp

›t
m

1=3D
p � (Mru

3D
)
s,tp

5 a cosf
p

›(r(0)u(0))
s,tp

›t
m

1 a cosf
p
=3D
p � u(2)r(0)u

(0)
3D

s,tp
1 u(1)r(0)u

(1)
3D

s,tp
1 u(0)r(0)u

(2)
3D

s,tp
� �

2 r(0)u(1)y(1)
s,tp
1 r(0)u(0)y(2)

s,tp
� �

sinf
p
2 f r(0)y(4)

s,tp
1 r(2)y(2)

s,tp
1 r(3)y(1)

s,tp
� �

a cosf
p
.

(C7)

Note that the orders of separate terms on the right-

hand side are not given as they do not play an im-

portant role in the further derivation (for simplicity);

however, note that overall rM
s,tp

and Mru3D
s,tp

are of

the second order.

From (A8) multiplied by r(0), it follows that

r(0)
Du(0)

Dt
m

s,tp

5 f y(4)r(0)
s,tp

1 y(1)r(3)
s,tp

1 y(2)r(2)
s,tp

� �

1
tanf

p

a
y(2)u(0)r(0)

s,tp
1 y(1)u(1)r(0)

s,tp
� �

1 r(0)S
(5)
u

s,tp
2

›

›x
p

p(6)r(0)
s,tp

� �

2
cosf

p

›u(2)/›z
S
(6)
u

s,tp

1 r(2)S
(3)
u

s,tp
1

›

›x
p

2
64 cosf

p

›u(2)/›z

0
B@u(0)u(3)r(0)

s,tp
1

r(0)p(3)

f

›u(2)

›y
p

s,tp

1
CA
3
75, (C8)
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where the last two terms come from the w(4) cosfp term

using the thermodynamic equation, (A11), averaged over

synoptic scales and tp, f y
(1)r(3) 5 r(3)›p(3)/›xp [via (A5)],

and f y(2)r(2)
s,tp

5p(4)r(2)
s,tp

1 r(2)S
(3)
u

s,tp
[via (A6)]. Notice

that the first two terms on the right-hand side of (C8) re-

semble the terms involving sinfp and fa cosfp in (C7) and

lead to a cancellation after combining (C7) and (C8). The

terms that remain in the equation can all be integrated

over a volumeVp(lp, fp, z). FollowingGauss’s theorem,C1

assuming no source–sink terms and assuming there is no

orography (for simplicity) yields angular momentum

conservation ððð
Vp

›(rM)
s,tp

›t
m

dV
p
5 0. (C9)

The angular momentum equation can be linked to the

barotropic pressure equation, (17), using (C7), dividing

it first by a cosfp, and then integrating it over a

longitude–height slice (over area Ap, which effectively

gives additional averaging over lp and z) and using

Gauss’s theorem again, which gives

1

a cosf
p

"
›(rM)

s,p,z

›t
m

1
›

›~y
p

(Mry)
s,p,z

#
5
›r(0)u(0)

s,p,z

›t
m

1
›

›~y
p

u(1)r(0)y(1)
s,p,z

1u(0)r(0)y(2)
s,p,z� �

2 r(0)u(1)y(1)
s,p,z

1 r(0)u(0)y(2)
s,p,z� � tanf

p

a

2 f r(0)y(4)
s,p,z

1 r(2)y(2)
s,p,z

1 r(3)y(1)
s,p,z� �

. (C10)

Here, the overbar denotes an average over ts, tp,

ls, lp, fs, z, and note that y(2) is proportional to a source

term under such an average, (B1a). Now divide (C10) by f,

take ›/›~yp of it, and finally multiply it by f. This yields

L

(
1

a cosf
p

"
›rM

s,p,z

›t
m

1
›

›~y
p

Mry
s,p,z� �#)

5L

 
›r(0)u(0)

s,p,z

›t
m

!
1L

"
›

›~y
p

u(1)r(0)y(1)
s,p,z� �

2 r(0)u(1)y(1)
s,p,z� � tanf

p

a

#

2 f
›

›~y
p

r(0)y(4)
s,p,z

1 r(2)y(2)s,p,z 1 r(3)y(1)
s,p,z� �

,

(C11)

where source terms were omitted for simplicity, the left-

hand side can be simplified to

L

 
r

a cosf
p

DM

Dt
m

s,p,z
!
,

with

L 5
›

›~y
p

2
b

f
,

and the last term in the equation can be simplified to

1f›r(2)/›tm via (B2d). Notice how all but the last term

on the right-hand side resemble terms in the barotropic

pressure equation, (17). This means that (17) can be re-

written using the angular momentum equation as

L

 
r

a cosf
p

DM

Dt
m

s,p,z!
2 f

›r(2)
s,p,z

›t
m

52f
›p(2)

s,p,z

›t
m

2 f
›

›~y
p

r(0)y
(1)
p u(3)

s,p,z
� �

, (C12)

where r(2) 5 p(2) 2 r(0)u(2) via (B4), which further sim-

plifies it. This now gives a clear link between the barotropic

equation for the mean flow and the angular momentum.

APPENDIX D

The Nonacceleration Theorem

This appendix shows the derivation of the non-

acceleration theorem for the given asymptotic set of

C1Gauss’s theorem generally states
ÐÐ Ð

V
= �GdV5

ÐÐ
›V
G � n dS,

where G is a three-dimensional vector, n is a normal vector on

surface S, and ›V is the surface around the volume V of interest.

Note that in the case of G5 rMu the
ÐÐ

›V
G � n dS5 0 as u � n5 0

at the lower boundary and r/ 0 at the upper boundary.
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equations. To derive this, a transformed Eulerian mean

(TEM) (Andrews and McIntyre 1976; Edmon et al.

1980) version of the zonal-mean (averaged over lp, ls,

denoted by the square brackets) momentum and thermo-

dynamic equations is necessary. From the zonal-mean

continuity
	
O («4, «5)



, thermodynamic

	
O («6, «7)



,

and momentum equations
	
O («3, «4, «5)



at different

asymptotic orders, we can identify the residual meridional

circulation (y(i)r and w(i)
r , with subscript r representing re-

sidual velocity and i representing its order):

[r(0)y(2)r ]5 [r(0)y(2)]2
›

›z

"
y(1)p u(3)r(0)

›u(2)/›z

#
, (D1)

[r(0)w(4)
r ]5 [r(0)w(4)]1

›

›~y
s

"
y(1)p u(3)r(0)

›u(2)/›z

#
5 [r(0)w(4)] ,

(D2)

[r(0)y(3)r ]5 [r(0)y(3)]2
›

›z

�
y(1)s u(4)r(0)

›u(2)/›z

�
, (D3)

[r(0)w(5)
r ]5 [r(0)w(5)]1

›

›~y
p

"
y(1)p u(3)r(0)

›u(2)/›z

#

1
›

›~y
s

�
y(1)s u(4)r(0)

›u(2)/›z

�
, (D4)

which satisfy the continuity equations at different

orders.

Using the residual velocities, (D1)–(D4), the zonal-

mean momentum equations at O («3, «4), (A6) and

(A7), become

›[r(0)u(1)]

›t
s

2 f [r(0)y(2)r ]5 [r(0)S(3)u ]1
›

›z

"
y(1)p u(3)r(0)

›u(2)/›z

#
,

(D5)

›[r(0)u(2)]

›t
s

1
›[r(0)u(1)]

›t
p

1 [r(0)w(4)
r ]

›u(0)

›z
2 f [r(0)y(3)r ]5 [r(0)S(4)u ]2

›

›~y
s

[r(0)u(1)s y(1)s ]1
›

›z

�
y(1)s u(4)r(0)

›u(2)/›z

�
, (D6)

both of which can be linked to the zonal-mean wave ac-

tivity equations on planetary [(13)] and synoptic [(12)]

scales, respectively, through their respective zonal-mean

EPflux divergences ([=3D
p � Fp], [=

3D
s � Fs]) that appear on

the right-hand side of (D5) and (D6). Thus, (D5) and

(D6) can be rewritten in terms of wave activities as

›[r(0)u(1)]

›t
s

1
›
h
A

p

i
›t

p

5 f [r(0)y(2)r ]1 [r(0)S(3)u ]1 [Swa
p ] ,

(D7)

›[r(0)u(2)]

›t
s

1
›[r(0)u(1)]

›t
p

1
›
�
A

s

�
›t

s

5 f [r(0)y(3)r ]2 [r(0)w(4)
r ]

›u(0)

›z
1 [r(0)S(4)u ]1 [Swa

s ] , (D8)

which, under synoptic-scale averaging (fs, ts), for steady

eddies (wave activity tendencies vanish), and in the ab-

sence of source–sink terms satisfy the nonacceleration

theorem (i.e., the tendencies of the zonal-mean veloci-

ties vanish). These equations also show that planetary

wave activity affects the zonal-mean-flow evolution on

synoptic time scales and that the synoptic wave activity

(linked to synoptic heat and momentum fluxes) affects

the zonal-mean-flow evolution on planetary time

scales. However, the latter relationship vanishes under

synoptic-scale averaging, leaving only the residual circu-

lation terms and source–sink terms affecting the evolu-

tion of u(1)p in (D8). Thismeans that an evolution equation

for p(3) (related to u(1)p ), which can be derived in a similar

manner as the barotropic equation (evolution equation

for p(2); appendix B and section 4b) using the O («4)

u-momentum equation, the O («6) thermodynamic

equation, the O («6) continuity equation, and the hy-

drostatic balance for p(3) averaged over synoptic scales

and vertically is only affected by the source–sink terms

 
›

›~y
p

1

f

›

›y
p

2
b

f 2
›

›y
p

2 f

!
›p(3)

lp ,s,z

›t
p

52fr(0)S
(6)
u

lp,s,z

2

 
›

›~y
p

2
b

f

!
r(0)S

(4)
u

lp ,s,z
� �

. (D9)
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This evolution equation suggests that a higher-order

momentum equation is needed to find the dynamic in-

fluences on the mean flow on planetary spatial scales

(averaged over synoptic scales) and longer time scales

tm—see the barotropic pressure equation, (16).

Note that (D7) and (D8) provide equations for zonal-

mean-flow variations on shorter time scales (synoptic

and planetary), which have dynamical importance for

higher-frequency atmospheric flow (e.g., baroclinic life

cycles or barotropic annular modes with time scales of

10 days or less). Upon averaging over these scales, the

slower variations in the mean flow tm emerge (as in the

barotropic equation for the mean flow).

The TEM version of the O («5) zonal momen-

tum equation can also be derived using the same re-

sidual velocities (with the same procedure); however,

here we only show an equation averaged over

ts, tp, ls, lp, fs, z as this was the averaging performed

to derive the barotropic equation for the mean flow,

(17). This yields

›r(0)u(0)
p,s,z

›t
m

1 r(0)y
(2)
r
›u(0)

›~y
p

p,s,z

1 r(0)w
(5)
r
›u(0)

›z

p,s,z

1 r(0)w
(4)
r

p,s,z

cosf
p
2 fr(0)y(4)

p,s,z
2 fr(3)y

(1)
p

p,s,z

5 r(0)S
(5)
u

p,s,z

1
›Fy

p,s,z

›~y
p

, (D10)

with

Fy 52r(0)u(1)y(1) cosf
p
1

›u(0)

›z

y(1)p u(3)r(0)

›u(2)/›z
, (D11)

where a21 tanfpr
(0)u(1)y(1)p,s,z was absorbed into Fy

through cosfp. As in section 4b, many terms in (D10)

can be related to source–sink terms, y(4) can be elimi-

nated via the continuity and thermodynamic equations,

and fr(3)y(1)p is related to meridional heat flux on plan-

etary scales. To link (D10) to the wave activity

tendency, a higher-order wave activity approximation

would be needed, and because of the planetary-scale

heat fluxes in (D10), a boundary wave activity may also

be needed, but they are not the subjects of this paper

(only the leading-order approximations are of interest).

Hence, a nonacceleration theorem for this order of the

momentum equation is yet to be determined but is ex-

pected to hold, as is the case at lower orders.

The O («7) thermodynamic equation within the TEM

framework (under a ts, tp, ls, lp, fs average) is

›r(0)u(2)
s,p

›t
m

1 r(0)y
(2)
r

s,p›u(2)

›y
p

1 r(0)w
(5)
r

s,p›u(2)

›z
5 r(0)S

(7)
u

s,p

2
›

›z

 
S
(6)
u u(3)r(0)

s,p

›u(2)/›z

!
, (D12)

which completes the TEM version of the equations.

Note that the O («6) thermodynamic equation remains

unchanged within the TEM framework and is hence not

repeated here.
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