

Pentaplacodinium saltonense gen. et sp. nov. (Dinophyceae) and its relationship to the cyst-defined genus Operculodinium and yessotoxin-producing Protoceratium reticulatum

Article

Accepted Version

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Mertens, K. N., Carbonell-Moore, M. C., Pospelova, V., Head, M. J., Highfield, A., Schroeder, D., Gu, H., Andree, K. B., Fernandez, M., Yamaguchi, A., Takano, Y., Matsuoka, K., Nézan, E., Bilien, G., Okolodkov, Y., Koike, K., Hoppenrath, M., Pfaff, M., Pitcher, G., Al-Muftah, A., Rochon, A., Lim, P. T., Leaw, C. P., Lim, Z. F. and Ellegaard, M. (2018) Pentaplacodinium saltonense gen. et sp. nov. (Dinophyceae) and its relationship to the cyst-defined genus Operculodinium and yessotoxin-producing Protoceratium reticulatum. Harmful algae, 71. pp. 57-77. ISSN 1878-1470 doi: https://doi.org/10.1016/j.hal.2017.12.003 Available at https://centaur.reading.ac.uk/75005/

It is advisable to refer to the publisher's version if you intend to cite from the work. See <u>Guidance on citing</u>.

To link to this article DOI: http://dx.doi.org/10.1016/j.hal.2017.12.003

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the <u>End User Agreement</u>.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

1	The potentially toxic Pentaplacodinium saltonense gen. et sp. nov. (Dinophyceae), and its
2	relationship to the cyst-defined genus Operculodinium psilatum and the yessotoxin-producing
3	Protoceratium reticulatum
4	
5	Kenneth Neil Mertens [∗]
6	Research Unit for Palaeontology, Ghent University, Krijgslaan 281 s8, 9000 Ghent, Belgium
7	Now at: Ifremer, LER BO, Station de Biologie Marine, Place de la Croix, BP40537, F-29185
8	Concarneau Cedex, France, Tel: (0033)2 98 10 42 82
9	
10	M. Consuelo Carbonell-Moore [*]
11	Oregon State University, Department of Botany and Plant Pathology, College of Agricultural
12	Sciences, 2082 Cordley Hall, Corvallis, OR 97331-2902, U.S.A.
13	
14	Vera Pospelova
15	School of Earth and Ocean Sciences, University of Victoria, OEASB A405,
16	P.O. Box 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada
17	
18	Martin J. Head
19	Department of Earth Sciences, Brock University, <u>1812 Sir Isaac Brock Way</u> 500 Glenridge
20	Avenue, St. Catharines, Ontario, L2S 3A1, Canada
21	
22	Andrea Highfield
23	The Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth PL1 2PB,
24	United Kingdom
25	

26	Declan Schroeder
27	The Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth PL1 2PB,
28	United Kingdom
29	School of Biological Sciences, University of Reading, Reading RG6 6AJ, United Kingdom
30	
31	Haifeng Gu
32	Third Institute of Oceanography, SOA, Xiamen 361005, China
33	
34	Karl B. Andree
35	Margarita Fernandez
36	IRTA, Crta. Poble Nou, Km 5.5, 43540-Sant Carles de la Rápita, Spain
37	
38	Aika Yamaguchi
39	Kobe University Research Center for Inland Seas, Kobe 657-8501, Japan
40	
41	Yoshihito Takano
42	Kazumi Matsuoka
43	Institute for East China Sea Research (ECSER), Nagasaki University, 1551-7, Taira-machi,
44	Nagasaki, 851-2213, Japan
45	
46	Elisabeth Nézan
47	Ifremer, LER BO, Station de Biologie Marine, Place de la Croix, BP40537, F-29185
48	Concarneau Cedex, France
49	
50	Gwenael Bilien

51	Ifremer, LER BO, Station de Biologie Marine, Place de la Croix, BP40537, F-29185
52	Concarneau Cedex, France
53	
54	Yuri Okolodkov
55	Universidad Veracruzana, Instituto de Ciencias Marinas y Pesquerías, Calle Hidalgo núm.
56	617, Colonia Río Jamapa, Boca del Río, 94290 Veracruz, México
57	
58	Kazuhiko Koike
59	Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-
60	Hiroshima, Hiroshima 739-8528, Japan
61	
62	Mona Hoppenrath
63	Senckenberg am Meer, Deutsches Zentrum für Marine Biodiversitätsforschung (DZMB),
64	Südstrand 44, D-26382 Wilhelmshaven, Germany
65	
66	Maya Pfaff
67	Marine Biology Research Center, Ma-RE Institute, Zoology Department, University of Cape
68	Town, Rondebosch 7701, South Africa
69	
70	Grant Pitcher
71	Marine and Coastal Management, Private Bag X2, Rogge Bay 8012, Cape Town, South
72	Africa
73	
74	Ab <mark>d</mark> ulrahman Al-Muftah
75	Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar

76	
77	Rochon, Andrée
78	Institut des sciences de la mer de Rimouski (ISMER), Université du Québec à Rimouski,
79	310 allée des Ursulines, Rimouski, QC, Canada G5L 3A1
80	
81	Po Teen Lim, Chui Pin Leaw, Zhen Fei Lim
82	Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan,
83	Malaysia
84	
85	Marianne Ellegaard
86	Department of Plant and Environmental Sciences, University of Copenhagen,
87	Thorvaldsensvej 40, DK-1871, Frederiksberg, Denmark
88	
89	(*both authors contributed equally)
90	
91	

- 92 Abstract
- 93

94	Strains of a dinoflagellate from the Salton Sea, previously identified as Protoceratium
95	reticulatum and yessotoxin producing, have been reexamined morphologically and genetically
96	and Pentaplacodinium saltonense n. gen. et sp. wasis erected to accommodate this species.
97	Pentaplacodinium saltonense differs from Protoceratium reticulatum (Claparède et
98	Lachmann 1859) Bütschli 1885 in the number of precingular plates (5five vs. six6), cingular
99	displacement (2two widths vs. 1one), and distinct cyst morphology. Incubation experiments
100	(excystment and encystment) show that the resting cyst of Pentaplacodinium saltonense is
101	morphologically most identical similar to the cyst-defined species Operculodinium
102	israelianum (Rossignol 1962) Wall 1967 and <i>Operculodinium</i> . psilatum Wall 1967.
103	Comparative cCollections of comparative material from around the globe (including
104	Protoceratium reticulatum - and the genus Ceratocorys) and single cell PCR wasere used to
105	clarify molecular phylogenies. Variable regions in the LSU (3three new sequences), SSU (12
106	new sequences) and intergenic ITS 1-2 (14 new sequences) were sequencobtaineded These
107	show that Pentaplacodinium saltonense and Protoceratium reticulatum form two distinct
108	clades. Pentaplacodinium saltonense formeds a monophyletic clade with several unidentified
109	strains from Malaysia. LSU and SSU rDNA sequences of three species of Ceratocorys (C.
110	armata, C. gourreti, C. horrida) from the Mediterranean and several other unidentified strains
111	from Malaysia form a well-supported sister clade. The unique phylogenetic position of an
112	unidentified strain from Hawaii is also documented that and requires further examination. In
113	addition, based on the V9 SSU topology (bootstrap values >80%), specimens from Elands
114	Bay (South Africa), originally described as Gonyaulax grindleyi by Reinecke (1967), cluster
115	with Protoceratium reticulatum. So far, tThe known range of Pentaplacodinium saltonense is
116	tropical to subtropical waters, and its cyst is recorded as a fossil in lateupper Cenozoic

117	sediments. Protoceratium reticulatum and Pentaplacodinium saltonense seem to inhabit
118	different niches: motile stages of these species dinoflagellates have not been found in the
119	same plankton sample.
120	
121	Keywords
122	yessotoxins, <u>Protoceratium, Pentaplacodinium, Protoceratium,</u> precingular plates, Salton Sea,
123	Ceratocorys, Operculodinium, Cribroperidinioideae
124	
125	
126	
127	

129

The dinoflagellate genus Protoceratium was erected by Bergh (1881, p. 242) with 130 *Protoceratium aceros* as the type species (fig. 36), which was recovered from Strib, Denmark. 131 Bütschli (1885, p. 1007, plate 52, fig. 2) considered Peridinium reticulatum as described 132 earlier by Claparède and Lachmann (1858) from Bergen Fjord, Norway, as a senior synonym, 133 134 and he proposed the combination *Protoceratium reticulatum*. He also considered *Clathrocysta* reticulata as described by Stein (1883) a junior synonym. The plate formula for P. 135 reticulatum, 4', 0a, 6", 6", 1p, 1"", was first provided by Wołoszyńska (1929) through the 136 137 study of Baltic Sea specimens. Reinecke (1967) erected the name Gonyaulax grindleyi for specimens from Elands Bay in Cape Town, South Africa, with the tabulation 3', 1a, 6", 6", 138 1p, 1"". Based on a detailed study of the theca of *Protoceratium reticulatum* from the North 139 140 Sea, Stosch (1969) considered G. grindleyi to be a junior synonym of P. reticulatum, although he considered it assignable to the genus Gonyaulax. Dodge (1989) agreed with the tabulation 141 of Reinecke (19679), but retained the genus Protoceratium because he considered it different 142 143 from his emendation of the genus Gonyaulax, by having only one intercalary plate. Hansen et al. (1997) restudied specimens close to the type locality of P. aceros, and based on the plate 144 145 analysis concluded that P. reticulatum, P. aceros and G. grindleyi were conspecific, and agreed with the tabulation of Wołoszyńska (1929). Paez-Reyes and Head (2013) reviewed 146 the morphological variability reported for *P. reticulatum* and concurred with Dodge (1989) in 147 maintaining *Protoceratium* as a distinct genus from *Gonvaulax*. 148 Since the early 1900's, sSeven other *Protoceratium* species have been described since 149 the early 1900s, and the latest review of these taxa was having been performed by Schiller 150 (1937 p. 322-326). Kofoid (1907) described P. areolatum from the tropical Pacific and 151

emended the genus for the first time. Meunier (1910) described a very similar species from

153	the Kara Sea that he named Protoceratium splendens, which is possibly a junior synonym, as
154	suggested by Gómez (2012). Later, Kofoid in Kofoid and Michener (1911) emended
155	Protoceratium once more to include several new species from the eastern tropical Pacific that
156	were described without illustration (P. cancellorum, P. globosum, P. pellucidum, P. pepo, P.
157	promissum), and he suggested a tabulation formula for the genus: 2', 0a, 6" (?c), 6", 0p, 3"".
158	Schiller (1937) transferred Clathrocysta aculeata as described by Stein (1883) to
159	Protoceratium aculeatum, presumably based on the fact that Bütschli (1885) had considered
160	the genus Clathrocysta described by Stein 1883 as a junior synonym of Protoceratium.
161	Schiller (1937) transferred Peridinium spinulosum as described by Murray and Whitting
162	(1899) to the genus Protoceratium. Later, Balech (1988) rediscovered this species in the
163	South-Wwest Atlantic and suggested yet another another variation on the tabulation for
164	Protoceratium, 3', 0a, 6", 6", 2"", based on his observations of Protoceratium spinulosum.
165	Protoceratium reticulatum (Claparède et Lachmann) Bütschli 1885 is a very common
166	dinoflagellate found in cold and warm waters, as well as in oceanic and neritic environments
167	(e.g., as <i>Operculodinium centrocarpum</i> in Zonneveld et al., 2013) <u>Its resting cyst distribution</u>
168	today reveals a strong link with the North Atlantic Current, an association traceable through
169	the upper Cenozoic fossil record (Hennissen et al., 2017 and references therein).
170	Protoceratium reticulatum is considered potentially toxic because of its production of
171	yessotoxins (e.g. Paz et al., 2008; Sala-Pérez et al., 2016). It has been successfully isolated
172	and cultured from many parts of the world, and grown into cultures. Cysts of <i>P. reticulatum</i>
173	were first observed in cultures established from motile cells from the inner Oslofjord-(,
174	Norway) by Braarud (1945). This cyst was related by Wall and Dale (1966, 1967, 1968) to the
175	cyst-defined species described from the Miocene of Australia, Operculodinium centrocarpum
176	(Deflandre et Cookson 1955) Wall 1967. That assignation was challenged by Head and
177	Wrenn (1992) and Head (1996a) on the grounds that Operculodinium centrocarpum was

larger and more robust than the cysts recorded by Wall and Dale (1966) from modern 178 179 sediments. However, aA restudy of the holotype of Operculodinium centrocarpum refuted this assignation confirmed this, and the name "cyst of Protoceratium reticulatum" was 180 recommended (Matsuoka et al., 1997). Wall and Dale (1968) proposed that P. reticulatum 181 was also related to the cyst-defined Operculodinium psilatum Wall 1967 and furthermore 182 possibly to Operculodinium israelianum (Rossignol 1962) Wall 1967. The cyst-defined 183 Pyxidinopsis psilata (Wall et Dale in Wall et al., 1973) Head 1994 was subsequently also 184 linked to Protoceratium reticulatum (Dale, 1996, as Tectatodinium psilatum) although this 185 connection was later questioned later (Mertens et al., 2011). Because of uncertainty regarding 186 187 the links between the cysts produced by *P. reticulatum* (see Head, 2006), and cysts-cystdefined species named based on from the fossil records, Head (1996a, 1996b) and subsequent 188 authors used the the term "Operculodinium centrocarpum sensu Wall and Dale, 1966" was 189 190 used to describe the cysts that had first been observed by Braarud (1945) and Wall and Dale (1966). With the removal of *Pyxidinopsis psilata* as a potential cyst of *Protoceratium* 191 192 reticulatum, Paez-Reyes and Head (2013) argued on the basis of non-overlapping geographic 193 distribution that the "cyst of Protoceratium reticulatum" was now unambiguous and should replace the term "Operculodinium centrocarpum sensu Wall and Dale, 1966". That approach 194 195 is followed here. Recent studies of variation in the process length of cysts of *Protoceratium* reticulatum have been related to variations in sea surface salinity and other parameters (e.g., 196 Mertens et al. 2011; Jansson et al., 2014), and the cyst wall appears to be composed of 197 cellulose glucan (Bogus et al. 2014). Resting cyst production through sexual reproduction has 198 recently been demonstrated by Salgado et al. (2017). 199 Protoceratium reticulatum was assigned questionably to the subfamily 200 Cribroperidinioideae by Fensome et al. (1993b) based on the presence of six precingular 201

202 plates, L-type ventral organization and possible dextral torsion, which at the time had not

been documented. This assignation was confirmed by Paez-Reyes and Head (2013). However, 203 The description of the very-similar cyst-defined *Operculodinium bahamense*, with neutral 204 torsion and modified L-type ventral organization, which would be placed allowing placement 205 in the subfamily Leptodinioideae, either challenges challenges such the present subfamilial 206 classification of the Gonyaulacaceae, or implies that *Operculodinium* is polyphyletic, with 207 both outcomes being possible -(Paez-Reves and Head, 2013). Furthermore, molecular 208 209 phylogenetics show that *Protoceratium reticulatum* is closely related to the family 210 Ceratocoryaceae but not to the other extant cribroperidinean, Lingulodinium polyedra (Saldarriaga et al., 2004). It should also be noted that morphological variation and sequencing 211 212 of cysts has suggested pseudocryptic speciation in *P. reticulatum* (Mertens et al., 2012a). Howard et al. (2009) investigated the phylogenetic relationships of yessotoxin-producing 213 dinoflagellates, including several strains of P. reticulatum from different localities. Using 214 215 Large Sub Unit (LSU) and Internal Transcribed Spacer (ITS) ribosomal DNA (rDNA) sequencing, they showed that the *P. reticulatum* strains formed a monophyletic clade in both 216 phylogenies. However, oOne particular strain (CCMP404) isolated from the Salton Sea 217 218 (California) in 1966 showed significant genetic differences from the other strains in both phylogenies. Despite these genetic differences, Howard et al. (2009) considered all the strains 219 220 to belong to the species *P. reticulatum*. The Salton Sea is the largest saline lake in California with a surface area of 980 km^2 221

(Reifel et al., 2002). It has a mean depth of 8 m and a maximum depth of 15 m (Ferrari and Weghorst, 1997). Although originally composed of relatively freshwater, it has become saline due to a lack of outflow and high evaporation rates. During 1997–1999, the salinity was between 41 and 45 g l⁻¹ (Watts et al., 2001), while the temperature varied between about 12 and 40°C seasonally (Watts et al., 2001; Holdren and Montaño, 2002). Oxygen at times was supersaturated due to phytoplankton photosynthesis, but was also often severely depleted,

occasionally even in surface waters (Watts et al., 2001; Holdren and Montaño, 2002). Reifel 228 229 et al. (2002) reported P. reticulatum from the Salton Sea without illustration or description. In the present study, through reevaluation of the CCMP404 strain originated from the 230 Salton Sea and observations of recently collected plankton samples from the Salton Sea, it 231 iswe demonstrated that specimens living in the Salton Sea that have had been previously been 232 identified as *P. reticulatum*, have a dissimilar different tabulation to that of *P. reticulatum*. To 233 234 resolve this issue and accommodate these organisms, we have erected a new genus and new species, Pentaplacodinium saltonense n. gen. et sp. is erected. From the Salton Sea plankton 235 samples, we describe the morphology of the thecate stage is described, showing significant 236 237 differences with *P. reticulatum*. Similarly, through incubation of cysts from Salton Sea surface sediments, we describe the corresponding cyst is described. Phylogenetic relationships 238 are explored, including those with several unpublished sequences of *P. reticulatum*, 239 240 Ceratocorys armata (Schütt 1895) Kofoid 1910, Ceratocorys gourretii Paulsen 1931, Ceratocorys horrida Stein 1883, and several unidentified strains. In addition, both the 241 242 autecology and fossil record of *Pentaplacodinium saltonense* are examined. 243 2. Material and Methods 244 245 The cyst—theca relationship of *P. saltonense* was established through a germination 246

experiment of a sample from the Salton Sea (CA, USA). To identify differences and
similarities between *P. reticulatum* and *P. saltonense*, we compared the morphology of
thecate stages of strains present in culture collections and other cells used for sequencing.
arewere compared (Table 1, Suppl. Table 1). In addition, we studied the phylogenies arewere
constructed of using LSU, ITS and SSU rDNA based sequences of *P. saltonense* and *P. reticulatum* from several of the same cells or cultured strains, as well as three *Ceratocorys*

species isolated from the Mediterranean, and several unidentified strains from Hawaii andMalaysia (Table 1, Suppl. Table 1).

255

256 2.1. Morphological study imaging of cells in from plankton samples and strains present in
257 culture collections with microscopy

258

Plankton samples were obtained from the Salton Sea (California, U.S.A.; 33.50 °N, 115.91 °W) on 24 Oct. 2013 using a plankton net with a 20 μ m mesh size. These samples were fixed with ethanol (50% final concentration) and stored cold. Several strains from previously sequenced strains from culture collections established from several other locations were also studied using transmitted light or scanning electron microscopy (Figure 1, Table 1).

For scanning electron microscopy (SEM) of thecate stages by M.C.C.-.M., samples 264 265 were prepared either by filtering a plankton sample or culture, or isolating a single cell under a LeicaTM Inverted inverted Light light Microscope (Germany). When the 266 sSamples were was filtered, by placing an aliquot of ~300 µL aliquot was placed on a 267 Millipore[™] 0.25 mm diameter—5 –µm pore--polycarbonate filter at the bottom of a 268 Millipore[™] column. Approximately 7 mL of distilled water were added to remove the 269 270 fixative (ethanol, lugol or formaldehyde) and seawater. A gentle manual vacuum with a 60 cc syringe was used to speed filtration. Individually isolated ceCells were removed using a glass 271 micropipette under a Leica Inverted inverted lLight mMicroscope (Germany) with 272 magnification 10x5x. Individual cells were washed six times with distilled water in double 273 depression microscope slides). After the cells were clean, they were placed on the same kind 274 of filter as for the filtered samples. All filters were air-dried, then adhered affixed to 25 mm 275 diameter aluminium stubs with adhesive tabs (7/16" diameter). The mounted filters were then 276 coated with a mixture of gold-palladium in a Cressington Sputter Coater (U.S.A.) for 60 s. 277

Observations were performed with a FEI Quanta 3D Dual Beam SEM (Clackamas, Oregon,
U.S.A.), at 5 kV. Tilts up to 52° were applied. Digital images were saved in Tiff format (2048
x 1768 pixels). Adobe-_Photoshop[™] software was used to remove the background while
maintaining the integrity of the original image.

For scanning electron microscopy (SEM)_of culture CCMP 3243 by K.N.M., the culture was filtered and washed with distilled water and dehydrated in a graded ethanol series (30 to 100% in six steps). The filters were encased in metallic baskets, critical-point dried with CO₂ (CPD Bal-Tec 030), glued onto stubs, sputter coated with platinum/palladium for 90 s (JEOL JFC-2300 HR) and examined in a JEOL 6330F scanning electron microscope (JEOL, Tokyo, Japan) at the University of Copenhagen.

Measurements of thecate-thecae stages of the newly described species were done conducted by M.C.C₋-M. under SEM. For each motile cell, the length was measured along the center of the-longitudinal axis, the width was measured along the middle of the cingulum, perpendicular to the longitudinal axis from one lateral margin to the other. All motile cell measurements in the species descriptions cite the minimum, average (in parentheses) and maximum values (in μ m), in that order. The standard deviation (SD) is also provided where appropriate.

Labelling of tabulation follows a modified Kofoid system that recognizes homologs
(e.g., Fensome et al. 1993b). The sulcal plate labelling is according to swith Balech (1980).

298 2.2. Germination experiment of cysts of P. saltonense

299

Sediment samples were collected from the Salton Sea-(CA, U.S.A.) aton the same timeday
 ofas_plankton sample collectionon, during the same field campaign_-on 24 October- 2013,
 using a Petite Ponar Grab at shallow water depths (<0.5 m). All samples were stored in plastic

303 bags in a refrigerator at 4°C. *In_-situ* sea surface salinities and sea surface temperatures were
304 measured during sampling (Table 1).

305	About 0.5–1.0 cm^3 of wet sediment was immersed in filtered seawater and, after one
306	minute of ultrasonication using an ultrasonic bath, the sediment was rinsed through a 20 μm
307	nylonmesh sieve using filtered seawater. From this residue, the cyst fraction was separated
308	using the heavy-liquid sodium polytungstate (SPT) at a density of 1.3 g cm ⁻¹ (Bolch, 1997).
309	Single cysts were then transferred to Orange <u>S</u> cientific 0.5 mL microwells subjected to an
310	irradiance of 100 μmol photons $m^{\text{-2}} \text{s}^{\text{-1}}$ and 24-hour light, and filled with f/2 medium at room
311	temperature and a salinity of 35 psu. Cysts were regularly checked for germination, and
312	observations were performed under a Leitz DM IL inverted light microscope. Encysted and
313	excysted cysts, as well as motile cells, were photographed and measured using a Leica
314	DM5000B light microscope with 100x oil immersion objectives.
315	
316	2.3. Morphological study of cysts extracted from surface sediments with using light
317	microscopy and SEM
318	
319	Surface sediment samples were collected from several sites in the Salton Sea sites were
320	
	obtained forto study of cysts of Pentaplacodinium saltonense (Table 1). Palynological
321	obtained forto study of cysts of <i>Pentaplacodinium saltonense</i> (Table 1). Palynological techniques were used for processing (e.g., Pospelova et al., 2010; Mertens et al., 2012b).
321 322	
	techniques were used for processing (e.g., Pospelova et al., 2010; Mertens et al., 2012b).
322	techniques were used for processing (e.g., Pospelova et al., 2010; Mertens et al., 2012b). Material was rinsed twice with distilled water to remove salts. The samples were oven-dried
322 323	techniques were used for processing (e.g., Pospelova et al., 2010; Mertens et al., 2012b). Material was rinsed twice with distilled water to remove salts. The samples were oven-dried at 40°C and then treated with room-temperature- 10% hydrochloric acid (HCl) <u>at room</u>

327 remove fluorosilicates. The residue was rinsed twice with distilled water, ultrasonicated for

~30 sec and finally collected on a 15 μm mesh. Aliquots of residue were mounted on
microscope slides using glycerine jelly.

All measurements and light photomicrographs were obtained by K.N.M., and V.P., respectively using an Olympus BX51 with a Nikon digital sight DS-1L 1 module, and a Nikon Eclipse 80i transmitting light microscope with a DS-L2 module, all with 100x oil immersion objectives.

334 For each cyst, the lengths of the three longest visible processes with the corresponding widths at their base were measured within the focal plane. Process length was measured from 335 336 the middle of the process base to the process tip. The average distance between processes was determined by measuring the distance between a process near the center of the cyst on the 337 upper surface of the cyst near the centreer and the five processes nearest to it, as measured 338 between the middle of the process bases as seen from the surface of the cyst. The central body 339 wall thickness was measured at two to three positions around the cross section of each cyst. 340 341 The central body maximum and minimum diameters were also measured unless specimens were overly compressed or broken. Fragments representing less than half of a cyst, and cysts 342 with mostly broken processes, were not measured. All cyst measurements in the species 343 344 descriptions cite the minimum, average (in parentheses) and maximum values (in µm), in that order. The standard deviation (SD) is also provided where appropriate. 345

For SEM observation of cysts at Geotop (the Université du Québec à Montréal,
Canada), single specimens were picked under an inverted microscope with a micropipette,
sputter coated with platinum/palladium for 60 s and observed using a scanning electron
microscope (Hitachi S-3400N SEM).

350

351 2.4. Single-cell polymerase chain reaction (PCR) amplification and sequencing of culture of
352 Salton Sea <u>culture</u>

354	Isolated cells were washed three times in serial drops of 0.22 μ m filtered and sterilized
355	seawater by micropipette. Each cell was transferred to a 200 μ m PCR tube containing 10 μ L
356	of Quick Extract FFPE DNA Extraction Solution (Epicentre, Madison, WI, USA) and
357	incubated for 1h at 56°C, then for 2 min at 90°C. The resulting extract was used as a DNA
358	template for the initial PCR amplification. Sequences of SSU and partial LSU rDNA were
359	determined from single cells of <i>P. saltonense</i> . The PCR was performed with EconoTaq 2X
360	Master Mix (Lucigen, Middleton, WI, USA) following the manufacture's protocols. The
361	external primers (SR1 and LSU R2) were used for the initial PCR. The first PCR product was
362	used as a DNA template for the second PCR. The following combinations of primer pairs
363	were used separately for the second PCR: SR1 and SR12, 25F1 and LSU R2. Using the
364	second PCR products as the template DNA, the third PCR were was performed by the
365	following combinations of primer pairs: SR1b and SR3, SR1b and SR5TAK, SR4 and
366	SR7TAK, SR6 and SR9p, SR8p and SR12, 25F1 and 25R1, D3A and LSU R2. The dDetails
367	of the primers are described in Takano and Horiguchi (2004) and Yamaguchi et al. (2016).
368	The PCR protocols and sequencing are described in Yamaguchi et al. (2016).
369	
370	2.5. Sequencing of single cells of Protoceratium reticulatum from Elands Bay (South Africa),
371	originally described as Gonyaulax grindleyi by Reinecke (1967)
372	
373	Isolated cells were washed three times in serial drops of 0.22 μ m filtered and sterilized
374	distilled water and then transferred to a 0.2 mL PCR tube. Cells were subjected to three
375	rounds of heating to 95°C for 5 minutes and cooling on ice for 5 minutes to induce cellular
376	lysis. $5 \mu L$ of the cell lysate was then used as a template for PCR using primers to amplify a
377	168 bp region of the SSU, encompassing the V9 region, V9 For (5'-

378	GTACACCGCCCGTC-3') V9 Rev (5'- TGATCCTTCTGCAGGTTCACCTAC-3')
379	(Lane-et-al., 1991; Medlin et al., 1988). PCR reactions were carried out in 25 μ L volumes
380	containing 5 μ L DNA template, 10 pmol each primer, 1 x buffer, 1 mM MgCl ₂ , 0.0025 mM
381	dNTPs, 0.5 Unit Gotaq polymerase (Promega). PCR reactions proceeded with an initial
382	denaturation at 95°C for 5 minutes, followed by 35 cycles of denaturation at 95°C for 30
383	s econds , annealing at 54°C for 20 s econds and extension at 72°C for 20 s econds and a final
384	extension step of 72°C for 5 minutes. PCR products were sequenced directly in both
385	directions using the respective primers (Source Bioscience).
386	
387	2.6. Sequencing of unidentified cultured strains
388	
389	For strains from Hawaii and Malaysia, single cells were isolated from plankton samples
390	(Suppl. Table 1) and washed three times with sterilized bi-distillate water and were used as
391	the template to amplify about 1,430 bp of the LSU rRNA gene (D1-D6 domains), using the
392	primers D1R (forward, 5' -ACCCGCTGAATTTAAGCATA-3') (Scholin et al., 1994), 28-
393	1483R (reverse, 5' -GCTACTACCACCAAGATCTGC-3') (Daugbjerg et al., 2000), 1740
394	bp of the SSU rRNA gene, using the primers SR1(forward, 5' -
395	TACCTGGTTGATCCTGCCAG-3') and SR12b (reverse, 5' -
396	CGGAAACCTTGTTACGACTTCTCC-3') (Takano & Horiguchi, 2006), and 600 bp of the
397	total ITS1–5.8S–ITS2, using the primers ITSA (forward, 5' -CCTCGTAAC
398	AAGGHTCCGTAGGT-3'), ITSB (reverse, 5' -CAGATGCTTAARTTCAGCRGG)
399	(Adachi et al., 1996). A 50 μ L PCR cocktail containing 0.2 μ M forward and reverse primer,
400	PCR buffer, 50 µM dNTP, 1U of Taq DNA polymerase (Takara, Dalian, China) was
401	subjected to 35 cycles using a Mastercycler PCR (Eppendorf, Hamburg, Germany). The PCR

402	reaction procedure was 4 min at 94 °C, followed by 25 cycles of 1 min at 94 °C, 2 min at 45
403	°C, 3 min at 72 °C, and final extension of 7 min at 72 °C. PCR products were sequenced
404	directly in both directions using the ABI Big-Dye dye-terminator technique (Applied
405	Biosystems, Foster City, CA, USA), according to the manufacturer's recommendations.
406	DNA extracts from strains collected in Spain (processed at IRTA) were prepared
407	according to the protocol described in Andree et al. (2011). The extracted DNA was used in
408	the amplification of ITS-1, 5.8S, ITS-2 sequences utilizing primers described in Andree et al.
409	(2011), and <u>a partial LSU sequence was amplified utilizing the primers described previously</u>
410	in Hansen et al. (2000). The amplification reactions were carried out in $25\mu L$ volume
411	containing: 10 mM Tris-HC1 pH 8.3 (at 25 °C), 50 mM KCl, 2 mM MgC1 ₂ , 0.001 % w/v
412	gelatin, 400 pM dNTP's, 1 μ M of each primer, and 1 U Taq polymerase. Amplifications were
413	performed using the following parameters: 94 °C for 5 min followed by 35 cycles of 95 °C for
414	30 s, 50 °C for 45 s, 72 °C for 1 min, and a final extension of 72 °C for 5 min. The PCR
415	products were purified using Qiagen spin columns (Qiagen PCR Purification Kit) and sent for
416	bi-directional sequencing by a commercial company (Sistemas Genomicos, Valencia, Spain)
417	utilizing the same primers as those used in the original amplification. The resulting nucleic
418	acid sequence data was manually proofed using BioEdit (Hall et al., 1999) to confirm the
419	consensus sequence.
420	The strain 091223-38_M16 from Helgoland (North Sea) was sequenced by M.H The
421	Epicentre MasterPure complete DNA & RNA Purification Kit was used for the DNA
422	extraction. We use puReTaq ready-to-go PCR beats arewere used; annealing temperature was
423	50°C; 33 cycles; primers: ITS1 (forward) 5' GGTGAACCTGAGGAAGGAT 3'; ITS4
424	(reverse) 5' TCCTCCGCTTATTGATATGC 3'. The PCR product of the right-correct size

425 was gel isolated (QIAquick Gel Extraction Kit). Sequencing was done by Macrogen with the

426 ITS1 primer.

- 427 Strains and single cells from Japan, sequenced by Yoshihito Takano and Kazuhiko428 Koike, were sequenced using methods mentioned in Mertens et al. (2012a).
- DNA was extracted from cultures (strain references K1474, 1476, 1477, 1478, 1479 429 and 0976) acquired from the NCMA (National Centre for Marine Algae) using the DNeasy 430 DNA extraction kit (Qiagen) according to manufacturers' instructions. The 760 bp region of 431 the LSU rRNA gene was amplified using 2 µL DNA in PCR reactions spanning the D1-D2 432 variable region D1R (forward, 5'-ACCCGCTGAATTTAAGCATA-3'), D2C (reverse, 5'-433 GCTTGGTCCGTGTTTCAAGA-3') (Scholin et al., 1994) a 168 bp region of the SSU rRNA 434 gene (V9) V9 For (5'-GTACACACCGCCCGTC-3') V9 Rev (5'-435 TGATCCTTCTGCAGGTTCACCTAC-3') (Lane-et al., 1991; Medlin et al., 1988) and a 710 436 bp intergenic region ITS1, 5.8S, ITS2, EITS2 For (5'-GTAGGTGAACCTGCVGAAGA-3') 437 EITS2 Rev (5'-TGGGGATCCTGTTTAGTTTC-3') (Guillou et al. 2002). PCR for V9 is 438 439 detailed in section 2.5. For LSU and ITS, PCR reactions were carried out in 50 µL volumes
 - 440 containing 2 μL DNA, 20 pmol each primer, 1 x buffer, 1.5 mM MgCl₂, 0.0025 mM dNTPs,
 - 1 Unit Gotaq polymerase (Promega). PCR reactions proceeded with an initial denaturation at
 - 442 95°C for 5 minutes, followed by 35 cycles of denaturation at 95°C for 30 seconds, annealing
 - 443 at 60°C for 45 seconds and extension at 72°C for 1 min and a final extension step of 72°C for
 - 444 5 minutes. PCR products were sequenced directly in both directions using the respective
 - 445 primers (Source Bioscience) and sequences were manually verified using Chromas
 - 446 (Technelysium Pty Ltd) prior to phylogenetic analysis.
 - 447

7 Novel sequences were deposited in Genbank under accession numbers

448 XXXXXMG646283-MG646333.

449

450 2.7. Sequence alignments and phylogenetic analyses

452	Multiple sequence alignments were constructed for sequences generated for the variable
453	regions V9 (SSU), D1-D2 (LSU) and partial ITS1, 5.8S, ITS2 (intergenic region),
454	respectively, in BioEdit 7.0 (Hall 1999) using ClustalW along with other available sequences
455	from Genbank. Alignments were trimmed accordingly based on the lengths of the sequences
456	acquired and to allow for a sufficient number of sequences to be included in the phylogeny.
457	Phylogenetic analysis based on neighbour-joining and maximum likelihood was undertaken
458	using MEGA 6 (Tamura et al., 2013) using the default parameters. Bootstrap values were
459	retrieved from 1000 replicates and are indicated on the nodes of the trees.
460	
461	3. Results
462	
463	3.1. Study of plankton samples, culture strains, germination experiments, and surface
464	sediments
465	
466	Investigation of plankton samples from the Salton Sea revealed the presence of a species that
467	is superficially similar to P. reticulatum and is here assigned to Pentaplacodinium saltonense
468	gen. et sp. nov.n. sp. Three process-bearing cysts (Plate 1) were isolated from surface
469	sediments of the Salton Sea, California, USA (Table 1) and identical morphologies emerged
470	from these cysts (Plate 2). These cells started dividing after germination, and one strain was
471	maintained. The cells were identical in morphology to specimens observed in plankton
472	samples from the Salton Sea (Plate 3), as well as to specimens from several culture strains
473	(Plate 4, Suppl. Table 1), as described below.
474	
475	3.2. Systematics

- 477 Division DINOFLAGELLATA (Bütschli 1885) Fensome et al. 1993b
- 478 Class DINOPHYCEAE Pascher 1914
- 479 Subclass PERIDINIPHYCIDAE Fensome et al. 1993b
- 480 Order GONYAULACALES Taylor 1980
- 481 Suborder Gonyaulacineae autonym
- 482 Family uncertain
- 483 Genus *Pentaplacodinium* Mertens, Carbonell-Moore, Pospelova et Head gen. n. (Plate 3)
- 484 *Type*: <u>Plate 3A</u>, the holotype of *Pentaplacodinium saltonense* gen. et sp. nov.
- 485 *Diagnosis:* A gonyaulacoid gonyaulacinean genus with roundish to slightly-polyhedral thecae
- 486 with bearing heavily reticulated plates without appendices appendages. The tabulation is Po,
- 487 Pt, 4' or 2'+*2', 5'', $6C_{6c}$, $6S_{6s}$, *65''', 1p, 1'''', cover plate is oval.
- 488 *Etymology:* The name is derived from the Greek words *penta* meaning five, *plax* plate, and
- *dino* whirling; with reference to the five precingular plates that characterize this dinoflagellate
- 490 genus.
- 491 *Pentaplacodinium saltonense* Mertens, Carbonell-Moore, Pospelova et Head gen. et sp. n.
- 492 (Plates 3, 4, Figs 2A, 3, 4A)
- 493 *Synonymy:*
- 494 1970 Protoceratium reticulatum (Claparède et Lachmann); Steidinger and Williams, p. 62,
- 495 plate 38, fig. 140a–c.
- 496 1991 Protoceratium reticulatum (Claparède et Lachmann); Al-Muftah, pp. 180–181, figs.
- 497 246–247.
- 498 ? 2002 Protoceratium reticulatum (Claparède et Lachmann); Reifel et al., p. 275.
- 499 2005 Gonyaulax grindleyi Reinecke; Faust et al., p. 110, figs. 2–4.
- 500 ? 2007 Gonyaulax grindleyi Reinecke; Tiffany et al., p. 582.

501 ? 2009 <u>"Protoceratium globosum</u>" Kofoid <u>etand</u> Michener; Morquecho et al., p. 18, 20, figs.
502 13–17.

Diagnosis: Theca roundish to somewhat polyhedral with tabulation Po, Pt, 2'+*2', 35''+*2'', 503 $\frac{6C_{6C}}{6S_{6S}}, \frac{*65}{2}''', 1p, 1'''', with 3'' interpreted as <math>\frac{*(3''+4'')}{10}$. The theca has an L-type ventral 504 organization and dextral torsion. The plates are heavily reticulated with one pore inside each 505 reticulation, although two or more pores might be found in reticulations next to a suture. The 506 ends of the descending cingulum are displaced by ~2.0 widths. The cysts have an 507 508 approximately -roundish-spherical central body with a thin pedium and thicker spongy-fibrous luxuria. Processes Process distribution apparently have a nointrantabular distribution, are 509 Processes fibrous and distally tapering, and have acuminate to minutely expanded distal ends. 510 The archeopyle corresponds to the third $\frac{(3''+4'')}{(3''+4'')}$ precingular plate and has a smooth margin 511 with rounded angles. The operculum is free. 512 513 *Etymology:* The specific epithet refers to the type locality for this species. Type locality: The Salton Sea, California, U.S.A. (station 1 at 33°30.192" N, 115°54.869" W). 514 Gene sequence: The 28S and 18S gene sequence of the cell isolated from culture 2E3, 515 516 established from a cyst extracted from surface sediment from station 2 in the Salton Sea (Table 1). —GenBank Accession No. XXXXXX-MG646301 (18S) and XXXXXX 517 MG646323 (28S). Several other strains are considered to belong to the same species (Suppl. 518 Table 1). 519 Holotype: Hustrated on Plate 3A. The specimen illustrated is on an SEM stub (designated 520 CEDiT2017H62) will be deposited curated at the Senckenberg Research Institute and Natural 521

- 522 History Museum, Centre of Excellence for Dinophyte Taxonomy, Germany.
- 523 Description: Motile cells observed in the Salton Sea plankton samples (Plate 3, except D).
- 524 The cell-shape varies from Thecae have a roundish to somewhat polyhedral shape (Plate 3A,
- 525 C). The thecae have and a typical sexiform gonyaulacoid tabulation (sensu Fensome et al.,

1993b, tText-Fig. 64B) with an L-type ventral organization (sensu Fensome et al., 1993b, 526 Text-Figs. 82A, C) and dextral torsion (sensu Fensome et al., 1993b, Text-Fig. 83C). The 527 epitheca was is often somewhat shorter in length than the hypotheca. The plates are 528 529 reticulated with one pore inside each reticulation, although two or more pores could may occurbe found in reticulations next to a suture. All pores each contain ~3 minute pores (small 530 arrowhead in Plate 3B). The reticulations are faintly expressed on the sulcus and cingulum 531 532 (Plate 3C). The cell content is brownish-red owing to the presence of chloroplasts (Plate 2A). Several red bodies are present (Plate 2A–C). 533

The apical pore complex consists of a cover plate surrounded by a pore plate (Plate 7F, 534 535 H). The oval cover plate, which is often absent (Plate 3B), is relatively broad and is surrounded by the pore plate. The pore plate is perforated by 5–7 large pores. A low apical 536 collar may encompass the pore plate and is formed by the raised edges of the first and second 537 538 apical plates, and the fourth apical homolog as well (Plate 3F, H). The first and second apical plates (1' and 2') and the fourth apical homolog (*4') are elongated. The first apical plate (1') 539 is rectangular, while whereas the second apical plate (2') and the fourth apical homolog (*4') 540 are six-sided and irregularly shaped (Plate 3B). The third apical homolog (*3') is small and 541 contacts 2' and *4', but in the specimens that were observed it never contacted the apical pore 542 plates (Plate 3B). There is a large ventral pore located posteriorly between 1' and *4' (Plates 543 3A, B, 4A–C). The precingular series consists of five large plates, where 2" is the largest, 544 (3''+4'') forms the keystone plate, and 6'' is the smallest. Plates 1'', (3''+4''), and 5'' are 545 five-sided, 2" is four-sided, while *6" is six-sided (the suture with the anterior right sulcal is 546 very small (Fig. 3) (Plates 3B, 4A-C). External views of the theca can could suggest that 547 there would be no contact between the anterior sulcal plate and 1' (e.g., Plate 3A, B). 548 However, pProperly oriented external views and internal views, however, show however a 549 narrow contact between both plates (Plate 3D). This contact between the anterior sulcal plate 550

and 1', in combination with the contact between *6" and 1' therefore results in an insert
configuration (sensu Fensome et al. 1993b, Text-Fig. 62A). The cingulum is left-handed
(descending), lined with narrow lists, and comprises six cingular plates. The ends of the
cingulum do not overhang, and are displaced by ~2.0 widths (Plates 3A, 4B).

The sulcus is narrow anteriorly and slightly widens posteriorly. It consists of six plates 555 (Plate 3D, Fig. 3) — the first postcingular plate 1^{'''} is treated as a sulcal and labeled the 556 anterior left sulcal plate (Ssa). The anterior sulcal plate (Sa) is relatively large and anteriorly 557 intruded between plates 1" and *6" and barely contacts 1' (Plate 3D). The anterior left sulcal 558 plate (Ssa) is similar in size to the anterior right sulcal plate (Sda). Immediately below these 559 560 two plates, lay the small posterior right sulcal (Sdp) and a much larger plate, the left posterior sulcal. Finally, there occurs the large posterior sulcal (Sp) is found, which presents lines of 561 pores around its sutures with the adjacent non-sulcal plates (Plate 3D, Fig. 3). 562

563 The hypotheca is asymmetrical as a consequence of dextral torsion (Plates 3A). There are five homolog postcingular plates. Plate *2''' is irregularly shaped and the smallest in the 564 series. All other postcingular plates are large, though *6''' is relatively smaller; in addition, 565 they are trapezoidal and four-sided (Plates 3E, 4E). The posterior intercalary plate (1p) bears a 566 conspicuous flange on its right margin (Plates 3A, 4C). The plate overlap is typical for 567 gonyaulacoids, with 3" (in our case (3'+4'')) forming the keystone plate (the plate that 568 overlaps all adjacent plates) oin the epitheca, and *4" forming the keystone plate oin the 569 hypotheca (Fig. 4, Plate 3E). 570

571

Cysts from the Salton Sea surface sediments (Plates 1, 5). The central body is <u>approximately</u>
<u>sphericalroundish</u>. The wall is thick, consisting of a thin, solid pedium that has a smooth inner
surface, and a thicker spongy-fibrous luxuria that appears loosely granular in surface view.
Processes are numerous and are solid and fibrous along their entire length, often loosely

576	fibrous at the base. Process bases are expanded, and larger processes may be concave in
577	lateral profile for at least half of their length. Some closely adjacent processes are joined at the
578	base. Most processes usually have a minute distal expansion, observed under SEM as a
579	concave platform ~1.0 μ m or less in diameter with strongly irregular margins that may be
580	approximately perpendicular to the shaft. Alongside these, some processes on most specimens
581	taper to distal points, and such processes occasionally predominate on cyst
582	specimensindividual specimens. Processes are mostly of even height, but shorter and thinner
583	processes may be interspersed. The process length/central body ratio is about 0.06. Processes
584	are not evenly spaced, and their parallel alignment and bands devoid of processes observed in
585	many specimens suggest intratabular distribution. However, tThere is however no clear
586	evidence of tabulation except for the archeopyle and often parallel alignment along the
587	cingulumcingular margins. The archeopyle is formed from the loss of plate $(3''+4'')$, is
588	reduced, and has slightly rounded angles and straight margins. The-usual archeopyle-that is
589	moderately wide and reflects the precingular thecal plate $*(3''+4'')$, whereas the operculum is
590	released as a single piece, and has well defined to moderately rounded angles and straight
591	margins, as illustrated on Plate 1G-HA reentrant angle along the anterior margin of the
592	archeopyle, signaling the fusion of plates 3" and 4", was not seen in the thecal or cyst
593	tabulation of P. saltonense although this might not-in fact be expected (see Below, 1987, p.
594	36, fig. 18a; translated in Fensome et al., 1993a, p. 844). An unusually wide archeopyle that
595	seems to reflect two adjacent precingular thecal plates, $*(3''+4'')$ and 2'', where the operculum
596	is again released as a single piece, is illustrated on Plate 1C-E. If this interpretation is correct,
597	then the component representing 2" in the archeopyle/operculum is reduced in size, because
598	on the theca the second precingular plate is actually similar or larger in size than the $(3''+4'')$
599	plate.

601 Dimensions: The holotype cell illustrated in Plate 3A, the holotype figure, is 44 μ m in length, 602 41 μ m in width and 38 μ m in depth. Germinated motile cells: length, 48.1 (53.7) 63.4 μ m 603 (SD=6.0, n=5); width, 38.5 (42.4) 47.5 μ m (SD= 3.2, n=5). Cells observed in plankton from 604 St. 2 in the Salton Sea: length, 37.8 (46.1) 59.8 μ m (SD = 5.5, n=28); width, 31.0 (39.5) 48.5

605 μm (SD=4.2, n=28).

Two single cysts germinated to give the identifiable thecae: maximum central body diameter,

607 52.3 (53.5) 54.7 μ m (SD=1.7, n=2); minimum central body diameter, 51.1 (52.2) 53.3 μ m

(SD=1.6, n=2); average length of three randomly chosen processes per cyst, 2.4 (3.0) 3.6 μ m

609 (SD=0.4, n=6); process width at base 1.4 (2.2) 2.7 (SD=0.6, n=6) and wall thickness 1.3 (1.7)

610 2.1 (SD=0.3, n=6). Palynologically treated cysts from surface sediments of the Salton Sea:

611 maximum central body diameter, $48.6 (56.3) 70.9 \mu m (SD=5.3, n=23)$; minimum central body

diameter, 45.7 (52.1) 61.4 μ m (SD=3.8, n=22); average length of three processes per cyst, 1.0

613 (3.1) 5.7 μ m (SD=1.2, n=66); process width at base 1.0 (2.2) 3.9 (SD=0.6, n=66) and wall

614 thickness 0.9 (1.6) 2.4 (SD=0.4, n=66).

Comments: Pentaplacodinium saltonense n. gen et sp. is defined primarily from the characters 615 616 of the motile stage, these distinguishing it from species of the genus Protoceratium. The morphology of several thecae observed from off Yucatan (Gulf of Mexico), the Indian River 617 Lagoon (Florida, USA), and off Qatar (Persian Gulf) (Table 1; Plate 2) and from cultures 618 established from cells from Biscayne Bay (Florida, USA) (CCMP1720, CCPM1721), the 619 Indian River Lagoon (Florida, USA) (CCMP3241, CCMP3243) and the Salton Sea 620 (California, USA) (CCMP404) (Suppl. Table 13, Plate 1) agree with the description of P. 621 saltonense given above. Cysts formed from cultures established from a strain from the Indian 622 River Lagoon (Florida, USA) (CCMP3243) have the same morphologies (Plate 6). The 623 observed cysts correspond most closely to the fossil based taxon-species Operculodinium 624

625 *israelianum* (Rossignol 1962) Wall 1967 described from the Pleistocene of Israel, and

626	Operculodinium psilatum Wall 1967 described from the postglacial (Holocene) of the
627	Caribbean, p. 111–112, Plate 6, figs. 6–8. However, Operculodinium israelianum has longer
628	processes (6–10 µm; Rossignol, 1964), and O. psilatum has a psilate surface interrupted by
629	minute and sparsely distributed processes, and a pronounced cingulum (Wall, 1967). Both
630	have archeopyles that are less wide than for the cyst of P. saltonense.
631	
632	3.3. Phylogenetic position of P. saltonense and other studied strains
633	
634	The SSU rDNA sequences for all <i>P. reticulatum</i> strains analysed were identical, forming a
635	distinct clade separated from the P. saltonense sequences which were identical to the
636	unidentified Malaysian sequences (Fig. 5). P. reticulatum and P. saltonense sequences shared
637	92% nucleotide identity for the V9 region analysed.
638	For the LSU rDNA V4 analysis (Figure 6), P. reticulatum sequences were identical
639	apart from a couple of sporadic nucleotide substitutions which were called identified as
640	ambiguous bases by the sequencing software. The unidentified strain from Hawaii had 12
641	nucleotide substitutions across the 570_bp multiple sequence alignment compared to P.
642	reticulatum. P. saltonense sequences shared more similarity with the unidentified GgSm
643	strains from Malaysia (96%) compared to that of P. reticulatum (94%).
644	The ITS (intergenic region between ITS1 and 2) was the only marker to resolve
645	intraspecific diversity within the <i>P. reticulatum</i> species, with strain E12 (Baffin Bay, Arctic)
646	sharing 98% nucleotide similarity with strain VG0757 isolated from Spain. The phylogeny
647	separates P. reticulatum into two large subclades: subclade 1A that regroups several strains
648	from warmer waters, and subclade 1B that regroups several strains from colder waters (Fig 7).
649	The three phylogenies (Figures $5-7$) show that strains identified as <i>Protoceratium</i>
650	reticulatum form a monophyletic group (Clade 1), as well as strains identified as P.

651	saltonense that form a clade with the unidentified GgSm strains from Malaysia (Clade 2), as
652	well as the Ceratocorys species that form a clade with PrTT strains from Malaysia (Clade 3)
653	supported by high bootstrap values (>70). The unidentified strain from Hawaii does not group
654	with the Protoceratium reticulatum or Pentaplacodinium saltonense clades. The topology of
655	the trees are-is not consistent between the three phylogenies (i.e. the relatedness between
656	clades), however but the three clades identified are consistently formed. The trees furthermore
657	highlight the unexplored diversity within this group of dinoflagellates, and further incubation
658	and plankton studies from these locations should reveal whether the unidentified strains are
659	new species or not.
660	In addition, the phylogenies show that V9 SSU sequences from cells from Elands Bay
661	(South Africa); (bootstrap values >80%); that have been previously identified as G. grindleyi
662	by Reinecke (1967), clusters with Protoceratium reticulatum (Fig-ure_5).
663	The three studied species of Ceratocorys (C. armata, C. gourreti, C. horrida) share
664	high nucleotide similarity for the SSU (100%) and LSU sequences (>99% identity) (Figure 6).
665	
666	4. Discussion
667	
668	4.1. Comparison of <u>the cell-theca of</u> P. saltonense
669	
670	Pentaplacodinium saltonense differs from Protoceratium reticulatum because it bears five
671	precingular plates, whereas <i>P. reticulatum</i> has six-precingular plates. Furthermore, <i>P.</i>
672	saltonense has a larger cingulum cingular displacement (2 widths vs. 1 width respectively)
673	and an oval cover plate, as opposed to a sigmoidal cover plate in <i>P. reticulatum</i> . In addition,
674	the theca of <i>P. saltonense</i> is mostly roundish, whereas in <i>P. reticulatum</i> it is always
675	polyhedral. Both species have an insert configuration, but in P. saltonense the contact

between Sa and 1' is very narrow whilst whereas in *P. reticulatum* this contact is wide —___this
causes an evident conspicuous separation between 1" and 6" in *P. reticulatum*, when in *P. saltonense* there is an apparentalmost a small point of contact between those two plates (Plate *iD3D*). *Gonyaulax grindleyi* Reinecke 1967 is here considered shown to be a synonym of *P. reticulatum*, as it has been already suggested by von Stosch (1969) and Hansen et al. (1997),
and is-now confirmed by the LSU rDNA phylogeny in this study (see below).

682 Several other *Protoceratium* species have been described (e.g. Schiller, 1937, p. 322– 326). Protoceratium splendens Meunier 1910 from the Kara Sea has six precingular plates; it 683 is possibly a junior synonym of *Protoceratium reticulatum*, as suggested by Gómez (2012). 684 685 Protoceratium aculeatum (Stein 1883) Schiller 1937 bears antapical spines and an apical horn. Protoceratium areolatum Kofoid 1907 and Protoceratium spinulosum (Murray and 686 Whitting 1899) Schiller 1937 have fewer reticulations in both the epitheca and hypotheca than 687 688 *P. saltonense*. Of the five species described by Kofoid and Michener (1911). *Protoceratium* cancellorum, Protoceratium pellucidissimum, Protoceratium pepo, Protoceratium globosum 689 and Protoceratium promissum, none have has illustrations and it is therefore it is impossible 690 to compare them to *P. saltonense*. 691

Pentaplacodinium saltonense differs from *Ceratocorys anacantha* Carbonell-Moore
1996 because it is not as polyhedral. In addition, in contrast to the insert epithecal
configuration of *P. saltonense*, *C. anacantha* has an episert type I epithecal configuration,
meaning that 1' does not contact the anterior sulcal plate and that 1" and 6" are in contact
(Paez-Reves and Head, 2013).

697

698 *4.2. Comparison of <u>the</u> cyst of* P. saltonense

700	The cyst of <i>Pentaplacodinium saltonense</i> corresponds to ompares with Operculodinium
701	psilatum because its cysts display an alignment of processes along the cingulum, it bears short
702	processes (1.0–5.7 µm-vs. 2 µm (Wall, 1967) or 0.0–2.9 µm (Head, 1996)), its body diameter
703	is of similar size (45.7–70.9 μm vs. 50–60 μm-(<u>.</u> Wall, 1967)- <u>;</u> or 62–79 μm-(<u>.</u> Head, 1996 <u>b</u>)
704	and <u>its</u> wall thickness (0.9–2.4 vs. 1.4–2.2 µm-(; Head, 1996 <u>b</u>) is similar. <i>Operculodinium</i>
705	psilatum differs, however, in having processes that in general are shorter (2 µm, Wall, 1967;
706	0.0–2.9 µm, Head, 1996b) and sparsely distributed. The cingulum and sulcus are also more
707	conspicuously expressed in Operculodinium psilatum (Wall, 1967; Head et al., 1996b), and O.
708	psilatum lacks the wide archeopyle of P. saltonense.
709	The cyst of P. saltonense is also similar to Operculodinium israelianum (Rossignol
710	1962) Wall 1967 as described by Rossignol (1964, as Baltisphaeridium israelianum);
711	however, although the processes of the latter species are longer (6–10 μ m) than of the
712	specimens from Salton Seafor P. saltonense (1.0-5.7 µm). At this time, we do notilt is not
713	presently known whether variation in process length is related to variations in ecology, similar
714	toas demonstrated for the cysts of Lingulodinium polyedra (=Lingulodinium
715	machaerophorum) (Mertens et al., 2009), cysts of Protoceratium reticulatum (Mertens et al.,
716	2011) and cysts of <i>Pyrodinium bahamense</i> (= <i>Polysphaeridium zoharyi</i>) (Mertens et al., 2015).
717	In addition, t <u>T</u> he process distribution <u>appears to be is intrata</u> bular <u>for the cysts of P.</u>
718	saltonenseand often shows parallel alignments, which is not readily visible and this is likely to
719	be the case also for-on_O. israelianum (e.g., O. cf. israelianum of Head, 1997, fig. 17.2),
720	although the study of topotype material will be needed for confirmation. The rounded angles
721	of the archeopyle in O. israelianum, O. psilatum and the cysts of Pentaplacodinium
722	saltonense, and the shared presence of a spongy-fibrous to fibroreticulate luxuria, accentuate
723	the overall similarities between these cysts, although the relatively wider archeopyle in P.
724	saltonense cysts distinguishes them from these other species.

725	We t <u>Therefore, it is not considered</u> it not to be a morphological variant of
726	Operculodinium israelianum. There is reasonable doubt that Operculodinium israelianum is
727	related to another species: Wall and Dale (1968) (and subsequently Dale, 1983) have
728	suggested that O. israelianum can be related to Protoceratium reticulatum. Operculodinium
729	israelianum is very similar toresembles the Miocene Operculodinium centrocarpum
730	(Deflandre et Cookson 1955) Wall 1967, which is also has a spongy-fibrous luxuria, although
731	it is somewhat larger (54–80_µm) (; Deflandre and Cookson, 1955) and has longer processes.
732	Head (1996b) noted an intergradation in size and process length between O. israelianum and
733	O. centrocarpum in Pleistocene assemblages of eastern England. It is of interest to remark
734	that specimens from the Ludham borehole intergrade between O. israelianum and O.
735	<i>centrocarpum</i> Deflandre et Cookson 1955 (Head, 1996). A restudy of both holotypestopotype
736	material -as well as the is needed to confirm the range of variability within each species would
737	be needed to resolve this issue.
738	The cysts of P. saltonense differs from the cystthose of P. reticulatum, due to the in
739	having a thick spongy-fibrous luxuria wall (vs. thin, fibrous luxuria), less developed distal
740	ends of the processes, larger central its body size diameter (48.6–70.9 μm vs. 33–48 μm;
741	Rochon et al., 1999), and generally shorter process length (1.0–5.7 μ m vs. typically 7–14 μ m;
742	<u>Rochon et al., 1999)</u> (48.6 (56.3) 70.9 μm (SD=5.3, n=23)) for <i>P. saltonense</i> , as opposed to
743	33–48 μm for <i>P. reticulatum</i> (Rochon et al., 1999) and its process length (1.0 (3.1) 5.7 μm
744	(SD=1.2, n=66)) for P. saltonense, as opposed to typical 7-14 µm for P. reticulatum (Rochon
745	et al., 1999); although the cysts of P. reticulatum shows very wide variation vary widely-sizes,
746	with formation of some being completely bald eysts (e.g., Mertens et al., 2012a; Jansson et al.,
747	2014).

748	Several Numerous other Operculodinium species have been described and a detailed
749	comparison is given by we refer to Marret and Kim (2009) for their detailed comparison, as;
750	none of these closely resembles the cysts of <i>P. saltonense</i> .
751	
752	4.3. Phylogenetics, evolution and position and relationships of Protoceratium,
753	Pentaplacodinium, and Ceratocorys
754	
755	There are sSeveral morphological characteristics of the theca that are important to in
756	understanding the evolution of <i>Protoceratium, Pentaplacodinium</i> , and <i>Ceratocorys</i> the three
757	genera in question (Plate 7). The shape of the cover plate of <i>Ceratocorys</i> is more similar to
758	that of the cover plate of <i>Pentaplacodinium</i> , but less similar to the sigmoidal cover plate of
759	Protoceratium.
760	Pentaplacodinium and Ceratocorys can be considered closer to Gonyaulax than
761	<i>Protoceratium</i> , because the anterior intercalary is always wellseparated from the apical pore
762	plates, whilst whereas in Protoceratium reticulatum it is closer and has even been suggested
763	to contact the apical pore plates (Hansen et al. 1997). However, It should however be noted,
764	however, that Protoceratium reticulatum and Gonyaulax have six precingular plates, whereas
765	whilst-Ceratocorys and Pentaplacodinium have five-precingulars. So it is not surprising that
766	in the molecular phylogenies, <i>Pentaplacodinium</i> has an intermediate position between
767	Ceratocorys and Protoceratium (Figs. 5–7); the relation to other gonyaulacoids at this time is
768	unclear and further molecular studies of related genera are required, particularly to understand
769	how to resolve the position of <i>Protoceratium</i> at family level. Another issue regards a conflict
770	in the dual nomenclature: the cyst of P. reticulatum and P. saltonense both are considered to
771	belong to the cyst-defined genus Operculodinium, whereas whilst the thecate stages belong to
	I

772	two different genera; further cyst-theca experiments within this group of related species
773	should help to understand how the genus generic concepts can be made conform rationalized.
774	In addition, the ITS marker was able to separate two large subclades within <i>P</i> .
775	reticulatum: strains that are predominantly associated with warmer waters (Sub-clade 1A),
776	and other strains largely associated with colder waters (Sub-clade 1B) (Fig. 7). Do these
777	subclades reflect pseudocryptic speciation in Protoceratium reticulatum as previously
778	suggested by Mertens et al. (2012a)?
779	Other morphological characteristics of the theca are conserved in Protoceratium,
780	Pentaplacodinium, and Ceratocorys and other gonyaulacoids. For instance, there is no
781	difference in overlap pattern between Protoceratium, Pentaplacodinium, Ceratocorys,
782	Gonyaulax and Lingulodinium (Fig. 4).
783	
784	4.4. Biogeography and ecology of P. saltonense
785	
786	According to the plankton observations, P. saltonense can be found in tropical to subtropical
787	regions. We have not observed P. saltonense and P. reticulatum have not been observed in the
788	same samples, which suggests that both these species possibly inhabit different niches, where
789	P. saltonense has a preference for higher temperatures and salinities, and P. reticulatum has a
790	preference for somewhat lower temperatures and salinities. This difference would need to be
791	established-quantified through culture experiments.
792	
793	4.5. Toxicity
794	
795	Strains identified as Pentaplacodinium saltonense (CCMP404, CCMP1720 and CCMP1721),
796	have been identified as yessotoxin producers using fluorescence HPLC (Paz et al., 2004). A

797	later toxin analysis by LC-MS of the same strains was negative (Paz et al., 2007), and the
798	authors considered that these strains had lost their toxicity after a number of years in culture.
799	The-produced toxins produced by these strains of <i>Pentaplacodinium saltonense</i> are similar to
800	toxins produced by strains we identified as Protoceratium reticulatum, all of which are
801	yessotoxin producers, such as strains from Chile (Alvarez et al., 2011), Jervis Inlet, British
802	Columbia, Canada (Cassis, 2005), German Bight, the North Sea (Röder et al., 2011, 2012),
803	Okkirai Bay, Japan (Koike et al., 2006) and Spain (Paz et al., 2007, 2013). The presence of <i>P</i> .
804	saltonense in the Salton Sea has been considered a potential causative agent of mortality
805	events in the Salton Seaindicates that it is potentially toxic (Reifel et al., 2002, whom
806	identified it as <i>Protoceratium reticulatum</i>). However, t <u>THowever, t</u> here have <u>not however not</u>
807	been no reports of toxic events knowingly involving P. saltonense.
808	Several other studies <u>have</u> investigated the toxicity of strains that they designate as
809	<i>Protoceratium reticulatum</i> , but for which we could not verify the identifications could not be
810	verified (e.g., Satake et al., 1999; Ciminiello et al., 2003; Samdal et al., 2004; Finch et al.,
811	2005; Eiki et al., 2005; Mitrovic et al., 2005; Guerrini et al., 2007; Suzuki et al., 2007).
812	
813	5. Conclusions
814	
815	Pentaplacodinium saltonense gen. et sp. nov. is described from the Salton Sea (CA, USA).
816	The distinct cover plate (similar to Ceratocorys, but sigmoidal in Protoceratium), five
817	precingular plates (also fiveas in Ceratocorys, but six in Protoceratium), the very narrow
818	contact between 1' and Sa (wide contact in <i>Protoceratium</i> , no contact in <i>Ceratocorys</i>), a more
819	roundish-rounded cell-thecal shape, the displacement of the cingulum by two widths (vs. one
820	width in <i>Protoceratium</i>), as well as the clear separation and distances seen in the three
821	phylogenies, justifies the creation of a new genus. The chorate cysts of <i>P. saltonense_bear</i>

822	short processes often with parallel alignments. These cysts, correspond to the cyst-defined
823	species genus Operculodinium Wall 1967, and are most similar to O. israelianum and O.
824	psilatum-with short processes and often parallel alignments. The geographic distribution of
825	mMotile stages of Pentaplacodinium saltonense wasare confirmed infrom four widely
826	dispersed locations and its distribution is therefore is considered, suggesting a subtropical to
827	tropical distribution for this species., and does not overlap with that of Protoceratium
828	reticulatum and Pentaplacodinium saltonense are not known to inhabit the same
829	environments. Similar to As with the -yessotoxin-producing Protoceratium reticulatum,
830	Pentaplacodinium saltonense is potentially a yessotoxin producer, as shown by previous
831	studies.
832	
833	Note added: While this paper has been going through the process of final acceptance to
834	Harmful Algae, another study was accepted (Salgado et al., accepted) that addresses similar
835	scientific questions.
836	
837	Acknowledgements
838	
839	V.P. and M.J.H. each acknowledge support from a Discovery Grant of the Natural Sciences
840	and Engineering Research Council of Canada (NSERC). K.B.A. and M.F. acknowledge were
841	support <u>ed</u> from by the Instituto Nacional de Investigación y Tecnología Agraría y Alimentaria
842	of the Spanish Government (project RTA2005-00109-00-00). We thank CINVESTAV,
843	Merida <u>is thanked</u> for supplying information about the Yucatan samples. Beatriz Paz is
844	acknowledged for interesting discussions on toxicity. We would like to thank Anke Kremp,
844 845	
	acknowledged for interesting discussions on toxicity. We would like to thank Anke Kremp,

847	forgenerously sharing shared information on strains from Nova Scotia, Canada. We are
848	grateful Thanks to to-Captain Brown, crew of the MSV Strickland, Ms. Sarah Thornton, and
849	EOS313-2010 (University of Victoria) students are all thanked for their participation in
850	sediment sample collection. Paul Hargraves is acknowledged forkindly providing provided
851	SEM images of <i>P. saltonense</i> from cultures established from the Indian River Lagoon.
852	
853	References
854	
855	Adachi, M., Sako, Y., Ishida, Y., 1996. Analysis of Alexandrium (Dinophyceae) species using
856	sequences of the 5.8S ribosomal DNA and internal transcribed spacer regions. J. Phycol. 32,
857	424–432.
858	
859	Al-Muftah, A.R., 1991. Dinoflagellates of Qatari Waters waters (PhD thesis), vol. 2.
860	University College of North Wales, Bangor University, pp. 261.
861	
862	Alvarez, G., Uribe, E., Díaz, R., Braun, M., Mariño, C., Blanco, J., 2011. Bloom of the
863	Yessotoxin producing dinoflagellate Protoceratium reticulatum (Dinophyceae) in Northern
864	northern Chile. J. Sea Res. 64, 427–434.
865	
866	Andree, K.B., Quijano-Scheggia, S.; ., Fernández, M., Elandaloussi, L.M., Garcés, E., Camp,
867	J., Diogene, J(, 2011.) Quantitative PCR Coupled coupled with Melt-melt Curve curve
868	Analysis analysis for Detection detection of Selected selected Pseudonitzschia spp.
869	(Bacillariophyceae) from the Northwestern northwestern Mediterranean Sea. App. and Env.
870	Micro, 77(5) 1651–1659.
871	

873	circular and sulcal plates. Anales del Centro de Ciencias del Mar y Limnología, UNAM 7(1),
874	57–68.
875	
876	Balech, E., 1988. Los dinoflagellados del Atlantico sudoccidental. Publicaciones Especiales
877	Instituto Español de Oceanografia 1, 1–310.
878	
879	Below, R., 1987. Evolution und Systematik von Dinoflagellaten-Zysten aus der Ordnung
880	Peridiniales. I. Allgemeine Grundlagen und Subfamilie Rhaetogonyaulacoideae (Familie
881	Peridiniaceae). Palaeontographica, Abteilung B 205, 1–164.
882	
883	Bergh, R.S., 1881. Der Organismus der Cilioflagellaten. Eine phylogenetische Studie.
884	Morphologisches Jahrbuch 7(2), 177–288.
885	
886	Bogus, K. Mertens, K.N., Lauwaert, J., Harding, I.C., Vrielinck, H., Zonneveld, K.A.F.,
887	Versteegh, G.J.M., 2014. Differences in the chemical composition of organic-walled
888	dinoflagellate resting cysts from phototrophic and heterotrophic dinoflagellates. J. Phycol. 50,
889	254–266.
890	
891	Bolch, C.J.S., 1997. The use of polytungstate for the separation and concentration of living
892	dinoflagellate cysts from marine sediments. Phycologia 37, 472–478.
893	
894	Braarud, T., 1945. Morphological observations on marine dinoflagellate cultures (Porella
895	perforata, Goniaulax tamarensis, Protoceratium reticulatum). Avh. Utgit. Nor. Vidensk.
896	Akad. Oslo Mat.–Naturvidensk. Kl. 11, 1–18.

872 Balech, E., 1980. On thecal morphology of dinoflagellates with special emphases emphasis on

89	7

898	Bütschli, O. 1885. Erster Band. Protozoa. 3. Unterabtheilung (Ordnung) Dinoflagellata. In:
899	Dr. H.G. Bronn's Klassen und Ordnungen des Thier-Reichs, wissenschaftlich dargestellt in
900	Wort und Bild. C.F. Winter'sche Verlagshandlung, Leipzig und Heidelberg. p. 906–1029.
901	
902	Cassis, D., 2005. The effect of harmful algae on the summer mortality of juvenile Pacific
903	Oysters oysters (Crassostrea gigas). MSc. Thesis, University of British Columbia, 73 pp.
904	
905	Ciminiello, P., Dell' Aversano, C., Fattorusso, E., Forino, M., Magno, S., Guerrini, F.,
906	Pistocchi, R., Boni, L. 2003. Complex yessotoxins profile in Protoceratium reticulatum from
907	north-western Adriatic sea revealed by LC-MS analysis. Toxicon 42, 7–14.
908	
909	Claparède, E., Lachmann, J., 1858. Etudes sur les infusoires et les rhizopodes. Mem. Inst. Nat.
910	Genev. 6, 261–482.
510	
911	
	Dale, B., 1983. Dinoflagellate resting cysts: <u>"</u> benthic plankton <u>"</u> . In: Fryxell, G.A. (ed.),
911	
911 912	Dale, B., 1983. Dinoflagellate resting cysts: <u>"</u> benthic plankton <u>"</u> . In: Fryxell, G.A. (ed.),
911 912 913	Dale, B., 1983. Dinoflagellate resting cysts: <u>"</u> benthic plankton <u>"</u> . In: Fryxell, G.A. (ed.),
911 912 913 914	Dale, B., 1983. Dinoflagellate resting cysts: <u>"</u> benthic plankton <u>"</u> . In: Fryxell, G.A. (ed.), Survival Strategies of the Algae, Cambridge University Press, Cambridge, U.K., pp.69–136.
911 912 913 914 915	Dale, B., 1983. Dinoflagellate resting cysts: <u>"</u> benthic plankton <u>"</u> . In: Fryxell, G.A. (ed.), Survival Strategies of the Algae, Cambridge University Press, Cambridge, U.K., pp.69–136. Dale, B., 1996. Dinoflagellate cyst ecology: modelling and geological applications. In:
911 912 913 914 915 916	Dale, B., 1983. Dinoflagellate resting cysts: <u>"</u> benthic plankton <u>"</u> . In: Fryxell, G.A. (ed.), Survival Strategies of the Algae, Cambridge University Press, Cambridge, U.K., pp.69–136. Dale, B., 1996. Dinoflagellate cyst ecology: modelling and geological applications. In: Jansonius, J., McGregor, D.C. (eds.), Palynology: Principles and Applications. Volume 3.
911 912 913 914 915 916 917	Dale, B., 1983. Dinoflagellate resting cysts: <u>"</u> benthic plankton <u>"</u> . In: Fryxell, G.A. (ed.), Survival Strategies of the Algae, Cambridge University Press, Cambridge, U.K., pp.69–136. Dale, B., 1996. Dinoflagellate cyst ecology: modelling and geological applications. In: Jansonius, J., McGregor, D.C. (eds.), Palynology: Principles and Applications. Volume 3. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas, pp. 1249–
911 912 913 914 915 916 917 918	Dale, B., 1983. Dinoflagellate resting cysts: <u>"</u> benthic plankton <u>"</u> . In: Fryxell, G.A. (ed.), Survival Strategies of the Algae, Cambridge University Press, Cambridge, U.K., pp.69–136. Dale, B., 1996. Dinoflagellate cyst ecology: modelling and geological applications. In: Jansonius, J., McGregor, D.C. (eds.), Palynology: Principles and Applications. Volume 3. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas, pp. 1249–

922	including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39,
923	302–317.
924	
925	Deflandre, G., Cookson, I.C., 1955. Fossil microplankton from Australian Late Mesozoic and
926	Tertiary sediments. Australian Journal of Marine and Freshwater Research 6, 242–313.
927	
928	Dodge, J.D., 1989. Some revisions of the family Gonyaulaceae (Dinophyceae) based on a
929	scanning electron microscope study. Bot. Mar. 32, 275–298.
930	
931	Eiki, K., Satake, M., Koike, K., Ogata, T., Mitsuya, T., Oshima, Y., 2005. Confirmation of
932	yessotoxin production by the dinoflagellate Protoceratium reticulatum in Mutsu Bay. Fish.
933	Sci. 71, 633–638.
934	
935	Faust, M.A., Litaker, R.W., Vandersea, M.W., Kibler, S.R., Tester, P.A. 2005. Dinoflagellate
936	diversity and abundance in two Belizean coral-reef mangrove lagoons: a test of Margalef's
937	mandala. Atoll Research Bulletin 534, 105-132.
938	
939	Fensome, R.A., Gocht, H., Stover, L.E., Williams, G.L., 1993a. The Eisenack Catalog of
940	Fossil Dinoflagellates. New Series. Volume 2. p.829–1461; E. Schweizerbart'sche
941	Verlagsbuchhandlung, Stuttgart, Germany.
942	
943	Fensome, R., Taylor, F., Norris, G., Sarjeant, W., Wharton, D., Williams, G., 1993b. A
944	classification of fossil and living dinoflagellates. Micropaleontology Special Publication 7, 1–
945	245.
946	

Ferrari, R.L., Weghorst, P., 1997. Salton Sea 1995 hydrographic GPS survey. U.S. Bureau of
Reclamation, Water Resources Services. Denver, Colorado, 23 pp.

949

- 950 Finch, S.C., Wilkins, A.L., Hawkes, A.D., Jensen, D.J., MacKenzie, A.L., Beuzenberg, V.,
- 951 Quilliam, M.A., Olseng, C.D., Samdal, S.A., Aasen, J., Selwood, A.I., Cooney, J.M., Sandvik,
- M., Miles, C.O., 2005. Isolation and identification of (44-R,S)-44,55-dihydroxyyessotoxin
- 953 from *Protoceratium reticulatum*, and its occurrence in extracts of shellfish from New
- 254 Zealand, Norway and Canada. Toxicon 46, 160–170.
- 955
- 956 Gómez, F., 2012. A checklist and classification of living dinoflagellates (Dinoflagellata,

957 Alveolata). CICIMAR Océanides 27(1), 65–140.

958

- 959 Guerrini, F., Ciminiello, P., Dell'Aversano, C., Tartaglione, L., Fattorusso, E., Boni, L.,
- 960 Pistocchi, R., 2007. Influence of temperature, salinity and nutrient limitation on yessotoxin
- 961 production and release by the dinoflagellate *Protoceratium reticulatum* in batch-cultures.
- 962 Harmful Algae 6, 707–717.

963

Guillou, L., Nezan, E., Cueff-Gauchard, V., Barbier, G., 2002. Genetic diversity and
molecular detection of three toxic dinoflagellate genera (*Alexandrium, Dinophysis* and *Karenia*) from French coasts. Protist. 153, 223-238

- Hall, T.A.-... 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis
 program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41:, 95–98.
- 970

971	Hansen, G., Moestrup, Ø. and Roberts, K.R., 1997. Light and Electron electron Microscopical
972	microscopical Observations observations on Protoceratium reticulatum (Dinophyceae). Arch.
973	Protistenk. 147, 381–391.
974	
975	Hansen, G., Daugbjerg, N., Henriksen, P., 2000. Comparative study of Gymnodinium
976	mikimotoi and Gymnodinium aureolum, comb. nov. (= Gyrodinium aureolum) based on
977	morphology, pigment composition, and molecular data. J. Phycol., 36, 394-410.
978	
979	Head, M.J., Wrenn, J.H. (eds.), 1992. A forum on Neogene–Quaternary dinoflagellate cysts:
980	The edited transcript of a round table discussion held at the Second Workshop on Neogene
981	dinoflagellates. In: Head, M.J., Wrenn, J.H. (eds.), Neogene and Quaternary Dinoflagellate
982	Cysts and Acritarchs. American Association of Stratigraphic Palynologists Foundation,
983	Dallas, Texas, pp. 1–31.
984	
985	Head, M.J., 1996a. Modern dinoflagellate cysts and their biological affinities. In: Jansonius,
986	J., McGregor, D.C. (eds.), Palynology: principles and applications. American Association of
987	Stratigraphic Palynologists Foundation, Dallas, Texas, vol. 3, pp. 1197–1248.
988	
989	Head, M.J., 1996b. Late Cenozoic dinoflagellates from the Royal Society borehole at
990	Ludham, Norfolk, eastern England. J. Paleontol. 70, 543–570.
991	
992	Head, M.J., <u>1997. Thermophilic dinoflagellate assemblages from the mid Pliocene of eastern</u>
993	England. J. Paleontol. 71, 165–193.
994	
I	

995	Hennissen, J.A.I., Head, M.J., De Schepper, S., Groeneveld, J., 2017. Dinoflagellate cyst
996	paleoecology during the Pliocene-Pleistocene climatic transition in the North Atlantic.
997	Palaeogeogr., Palaeoclimatol., Palaeoecol. 470, 81–108.
998	
999	Holdren, G.C., Montaño, A., 2002. Chemical and physical characteristics of the Salton Sea,
1000	California. Hydrobiol. 473, 1–21.
1001	
1002	Howard, M.D.A., Smith, G.J., Kudela, R.M., 2009. Phylogenetic relationship of yessotoxin-
1003	producing dinoflagellates based on the Large Subunit and Internal Transcribed Spacer
1004	Ribosomal DNA Domainsdomains. Appl. Environ. Microbiol. 75, 54-63.
1005	
1006	Jansson, IM., Mertens, K.N., Head, M.J. with contributions from de Vernal, A., Londeix, L.,
1007	Marret, F., Matthiessen, J., Sangiorgi, F., 2014. Statistically assessing the correlation between
1008	salinity and morphology in cysts produced by the dinoflagellate Protoceratium reticulatum
1009	from surface sediments of the North Atlantic Ocean, Mediterranean-Marmara-Black Sea
1010	region, and Baltic-Kattegat-Skagerrak estuarine system. Palaeogeogr. Palaeoclimatol.
1011	Palaeoecol. 399, 202–213.
1012	
1013	Kofoid, C.A., 1907. Reports on the scientific results of the expedition to the eastern tropical
1014	Pacific, in charge of Alexander Agassiz, by the U.S. Fish Commission steamer
1015	<u>",</u> from October, 1904, to March, 1905, Lieut Commander L.M. Garrett, U.S.N.,
1016	commanding. IX. New species of dinoflagellates. Bull. Mus. Comp. Zool. 50(6), 163-207.
1017	
1018	Kofoid, C.A., Michener, J.R., 1911. Reports on the Scientific Results of the Expedition to the
1019	Eastern Tropical Pacific, in Charge of Alexander Agassiz, by the U.S. Fish Commission

- 1020 Steamer <u>", Albatross ALBATROSS</u>", from October 1904, to March, 1906, Lieut. L.M.
- 1021 Garrett, U.S.N., Commanding. XXII. New genera and species of

1022DinoflagellatesBull. Mus. Comp. Zool. 54(7), 267–302.

- 1024 Koike, K., Horie, Y., Suzuki, T., Kobiyama, A., Kurihara, K., Takagi, K., Kaga, S.N.,
- 1025 Oshima, Y., 2006. *Protoceratium reticulatum* in northern Japan: environmental factors
- associated with seasonal occurrence and related contamination of yessotoxin in scallops. J.
- 1027 Plankton Res. 28, 103–112.
- 1028
- Lane, D. J., 1991. 16S/23S sequencing. *In:* Nucleic Acid Technologies in Bacterial
 Systematic. Stackebrandt E, Goodfellow M (Eds) *pp.* 115–175, *Wiley, NY*.
- 1031
- Marret, F., Kim, S.-Y., 2009. *Operculodinium aguinawense* sp. nov., a dinoflagellate cyst
 from the late Pleistocene and recent sediments of the east Equatorial Atlantic ocean.
- 1034 Palynology 33, 125–139.
- 1035
- Matsuoka, K., McMinn, A., Wrenn, J.H., 1997. Restudy of the Holotype of *Operculodinium centrocarpum* (Deflandre & Cookson) Wall (Dinophyceae) from the Miocene of Australia,
 and the Taxonomy taxonomy of Related related Species species. Palynology 21, 19–33.
- Medlin, L. K, Elwood, H. J., Stickel, S., Sogin, M. L., 1988. The characterization of
 enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene. 71, 491–499.
- 1043 Mertens, K.N., Ribeiro, S., Bouimetarhan, I., Caner, H., Combourieu Nebout, N., Dale, B., de
- 1044 Vernal, A., Ellegaard, M., Filipova, M., Godhe, A., Goubert, E., Grøsfjeld, K., Holzwarth, U.,

- 1045 Kotthoff, U., Leroy, S.A.G., Londeix, L., Marret, F., Matsuoka, K., Mudie, P.J., Naudts, L.,
- 1046 Peña-Manjarrez, J.L., Persson, A., Popescu, S.-M., Pospelova, V., Sangiorgi, F., van der
- 1047 Meer, M., Vink, A., Zonneveld, K.A.F., Vercauteren, D., Vlassenbroeck, J., Louwye, S.,
- 1048 2009. Process length variation in cysts of a dinoflagellate, *Lingulodinium machaerophorum*,
- in surface sediments: Investigating its potential as salinity proxy. Mar. Micropaleontol. 70,
- 1050 54–69.
- 1051
- 1052 Mertens, K.N., Dale, B., Ellegaard, M., Jansson, I.-M., Godhe, A., Kremp, A., Louwye, S.,
- 1053 2011. Process length variation in cysts of the dinoflagellate *Protoceratium reticulatum*, from
- 1054 surface sediments of the Baltic-Kattegat-Skagerrak estuarine system: a regional salinity
- 1055 proxy. Boreas 40, 242–255.
- 1056
- 1057 Mertens, K.N., Bringué, M., Van Nieuwenhove, N., Takano, Y., Pospelova, V., Rochon, A.,
- 1058 de Vernal, A., Radi, T., Dale, B., Patterson, R.T., Weckström, K., Andrén, E., Louwye, S.,
- 1059 Matsuoka, K., 2012a. Process length variation of the cyst of the dinoflagellate *Protoceratium*
- 1060 reticulatum in the North Pacific and Baltic-Skagerrak region: calibration as an annual density
- proxy and first evidence of pseudo-cryptic speciation. J. Quaternary Sci. 27, 734–744.
- 1062
- 1063 Mertens, K.N., Price, A., Pospelova, V., 2012b. Determining the absolute abundance of
- 1064 dinoflagellate cysts in recent marine sediments II: further tests of the Lycopodium marker-
- 1065 grain method. Rev. Palaeobot. Palynol. 184, 74–81.
- 1066
- 1067 Mertens, K.N., Wolny, J., Carbonell-Moore, C., Bogus, K., Ellegaard, M., Limoges, A., de
- 1068 Vernal, A., Gurdebeke, P., Omura, T., Mohd. A Al-Muftah, A., Matsuoka, K., 2015.
- 1069 Taxonomic re-examination of the toxic armoured dinoflagellate Pyrodinium bahamense Plate

1070	1906: can morphology or LSU sequencing separate <i>P. bahamense</i> var. <i>compressum</i> from var.
1071	bahamense? Harmful Algae 41, 1–24.
1072	
1073	Meunier A., 1910. Microplancton des mers de Barents & de Kara. In: Duc d'-Orléans
1074	Campagne Arctique de 1907. Bulens, Bruxelles, 355 pp.
1075	
1076	Mitrovic, S.M., Hamilton, B., McKenzie, L., Furey, A., James, K.J., 2005. Persistence of
1077	yessotoxin under light and dark conditions. Mar. Environ. Res. 60, 397-401.
1078	
1079	Morquecho, L., Góngora-González, D.T. & Okolodkov, Y.B. 2009. Cyst-theca relationships
1080	of Gonyaulacales and Peridiniales (Dinophyceae) from Bahía Concepción, Gulf of California.
1081	Acta Botanica Mexicana 88, 9–29.
1082	
1083	Murray, G., Whitting, F.G., 1899. New Peridiniaceae from the Atlantic. Trans. Linn. Soc.
1084	Lond., Bot. 5, 321–342.
1085	
1086	Paez-Reyes, M., Head, M.J., 2013. The Cenozoic Gonyaulacacean-gonyaulacacean
1087	Dinoflagellate dinoflagellate Genera genera Operculodinium Wall, 1967 and Protoceratium
1088	Bergh, 1881 and Their their Phylogenetic phylogenetic Relationshipsrelationships. J. Paleo.
1089	87(5), 786–803.
1090	
1091	Paz, B., Riobó, P., Fernández, M.L., Fraga, S., Franco, J.M., 2004. Production and release of
1092	yessotoxins by the dinoflagellates Protoceratium reticulatum and Lingulodinium polyedrum
1093	in culture. Toxicon 44, 251–258.
1094	

1095	Paz, B., Riobó, P., Ramilo, I., Franco, J.M., 2007. Yessotoxins profile in strains of
1096	Protoceratium reticulatum from Spain and USA. Toxicon 50, 1–17.
1097	
1098	Paz, B., Daranas, A.H., Norte, M., Riobó, P., Franco, J.M., Fernández, J.J., 2008.
1099	Yessotoxins, a Group group of Marine marine Polyether polyether Toxinstoxins: an
1100	Overviewoverview. Mar. Drugs 6, 73–102.
1101	
1102	Paz, B., Blanco, J., Franco, J.M., 2013. Yessotoxins production during the culture of
1103	Protoceratium reticulatum strains isolated from Galician Rias Baixas (NW Spain). Harmful
1104	algae 21–22, 13–19.
1105	
1106	Pospelova, V., Esenkulova S., Johannessen S.C., O'Brien O'Brien M. C. & Macdonald
1107	R.W., 2010. Organic-walled dinoflagellate cyst production, composition and flux from 1996
1108	to 1998 in the central Strait of Georgia (BC, Canada): a sediment trap study. Mar.
1109	Micropaleontol. 75:, 17–37.
1110	
1111	Reifel, K.M., McCoy, M.P., Rocke, T.E., Tiffany, M.A., Hurlbert, S.H., Faulkner, D.J., 2002.
1112	Possible importance of algal toxins in the Salton Sea, California. Hydrobiologia 473, 275-
1113	292.
1114	
1115	Reinecke, P., 1967. Gonyaulax grindleyi sp. nov.: a dinoflagellate causing a red tide at Elands
1116	Bay, Cape Province in December 1966. S. Afr. J. Bot. 33, 157–160.
1117	
1118	Rochon, A., de Vernal, A., Turon, JL., Matthiessen, J., Head, M.J., 1999. Distribution of
1119	Recent-recent dinoflagellate cysts in surface sediments from the North Atlantic Ocean and

1120	adjacent areas in relation to sea-surface parameters. American Association of Stratigraphic
1121	Palynologists, Contributions Series, no. 35, 146 p.

1123 Röder, K., Fritz, N., Gerdts, G., Luckas, B., 2011. Accumulation and Depuration depuration
1124 of <u>Yessotoxin yessotoxin in Two-two Bivalvesbivalves</u>. J. Shellfish Res. 30, 167–175.

1125

- 1126 Röder, K., Hantzsche, F.M., Gebühr, C., Miene, C., Helbig, T., Krock, B., Hoppenrath, M.,
- 1127 Luckas, B., Gerdts, G., 2012. Effects of salinity, temperature and nutrients on growth, cellular
- 1128 characteristics and yessotoxin production of *Protoceratium reticulatum*. Harmful Algae 15,

1129 59–70.

1130

1131 Rossignol, M., 1964. Hystrichosphères du Quaternaire en Méditerranée orientale, dans les

- sédiments Pléistocènes et les boues marines actuelles. Revue de micropaléontologie 7, 83–99.
- 1134 Sala-Pérez, M., Alpermann, T.J., Krock, B., Tillmann, U., 2016. Growth and bioactive
- secondary metabolites of arctic *Protoceratium reticulatum* (Dinophyceae). Harmful Algae 55,
 85–96.

1137

- 1138 Saldarriaga, J.F., Taylor, F.J.R., Cavalier-Smith, T., Menden-Deuer, S., Keeling, P.J., 2004.
- 1139 Molecular data and the evolutionary history of dinoflagellates. Eur. J. Protistol. 40, 85–111.

- Salgado, P., Figueroa, R.I., Ramilo, I., Bravo, I., 2017. The life history of the toxic marine
 dinoflagellate *Protoceratium reticulatum* (Gonyaulacales) in culture. Harmful Algae 68, 67–
 81.
- 1144

1145	Salgado, P., Fraga, S., Rodríguez, F., Riobó, P., accepted. Ceratocorys mariaovidiorum sp.
1146	nov. (Gonyaulacales), a new dinoflagellate species previously reported as Protoceratium
1147	reticulatum. Journal of Phycology, accepted.
1148	
1149	Samdal, I.A., Naustvoll, L.J., Olseng, C.D., Briggs, L.R., Miles, C.O., 2004. Use of ELISA to
1150	identify Protoceratium reticulatum as a source of yessotoxin in Norway. Toxicon 44, 75-82.
1151	
1152	Satake, M., Ichimura, T., Sekiguchi, K., Yoshimatsu, S., Oshima, Y. 1999. Confirmation of
1153	Yessotoxin and 45,46,47-Trinoyessotoxin production by Protoceratium reticulatum collected
1154	in Japan. Natural toxins 7, 147–150.
1155	
1156	Schiller, J., 1937. Dinoflagellatae (Peridineae) in monographischer Behandlung. In: Dr. L.
1157	Rabenhorst's Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. Bd. 10(3).
1158	Teil 2(3), pp. 321–480.
1159	
1160	Scholin, C.A., Herzog, M., Sogin, M., Anderson, D.M. 1994. Identification of group- and
1161	strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae). II.
1162	Sequence analysis of a fragment of the LSU rRNA gene. J. Phycol. 30, 999–1011.
1163	
1164	Steidinger K.A. & J. Williams (1970) Dinoflagellates. Memoirs of the Hourglass Cruises 2,
1165	1-251. Published by Marine Research Laboratory, Florida Department of Natural Resources,
1166	St. Petersburg, Florida.
1167	

- 1168 Stein, F. von, 1883. Der Organismus der Infusionsthiere. 3. Abt. Der Organismus der
- 1169 Arthrodelen Flagellaten nach eigenen Forschungen in systematischer Reihenfolge bearbeitet.
- 1170 2. Hälfte. Einleitung und Erklärung der Abbildungen, W. Engelmann, Leipzig, pp. 1–30.

- 1172 Stosch, H.A. von, 1969. Dinoflagellaten aus der Nordsee I. Über *Cachonina niei* Loeblich
- 1173 (1968), Gonyaulax grindleyi Reinecke (1967) und eine Methode zur Darstellung von
- 1174 Peridineenpanzern. Helgoländ. Wiss. Meer. 19, 558–568.

1175

- 1176 Suzuki, T., Horie, Y., Koike, K., Satake, M., Oshima, Y., Iwataki, M., Yoshimatsu, S., 2007.
- 1177 Yessotoxin analogues in several strains of *Protoceratium reticulatum* in Japan determined by
- 1178 liquid chromatography-hybrid triple quadrupole/linear ion trap mass spectrometry. Journal of

1179 Chromatography A 1142, 172–177.

1180

Takano, Y., Horiguchi, T., 2004. Surface ultrastructure and molecular phylogenetics of four
unarmoured heterotrophic dinoflagellates, including the type species of the genus *Gyrodinium*(Dinophyceae). Phycol. Res. 52, 107–116.

1184

- 1185 Takano, Y., Horiguchi, T. 2006. Acquiring scanning electron microscopical, light
- microscopical and multiple gene sequence data from a single dinoflagellate cell. J. Phycol. 42,
- 1187 251–256.

1188

1189 Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S. 2013 MEGA6: Molecular
1190 Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol. 30: 2725–2729

1192	Tiffany, M.A., González, M.R., Swan, B.K., Reifel, K.M., Watts, J.M., Hurlbert, S.H. 2007.
1193	Phytoplankton dynamics in the Salton Sea, California, 1997-1999. Lake and Reservoir
1194	Management 23, 582–605.
1195	
1196	Wall, D., 1967. Fossil microplankton in deep-sea cores from the Caribbean Sea.
1197	Palaeontology 10, 95–123.
1198	
1199	Wall, D., Dale, B., 1966. "Living fossils" in western Atlantic plankton. Nature 211 (5053),
1200	1025–1026.
1201	
1202	Wall, D., Dale, B., 1968. Modern dinoflagellate cysts and evolution of the Peridiniales.
1203	Micropaleontology 14, 265–304.
1204	
1205	Watts, J.M., Swan, B.K., Tiffany, M.A., Hurlbert, S.H., 2001. Thermal, mixing and oxygen
1206	regimes of the Salton Sea, California, 1997–1999. Hydrobiol. 162, 159–176.
1207	
1208	Wołoszyńska, J., 1929. Dinoflagellatae Polskiego Baltyku i blot nad Piasnica. Archivum
1209	Hydrobiologji i Rybactwa 3, 153–278 [In Polish].
1210	
1211	Yamaguchi, A., Yoshimatsu, S., Hoppenrath, M., Wakeman, K.C., Kawai, H. 2016.
1212	Molecular phylogeny of the benthic dinoflagellate genus Amphidiniopsis and its relationships
1213	with the family Protoperidiniaceae. Protist. 167, 568-583.
1214	
1215	Zonneveld, K.A.F., Marret, F., Versteegh, G.J.M., Bogus, K., Bonnet, S., Bouimetarhan, I.,
1216	Crouch, E., de Vernal, A., Elshanawany, R., Edwards, L., Esper, O., Forke, S., Grøsfjeld, K.,

- 1217 Henry, M., Holzwarth, U., Kielt, J.-F., Kim, S.-Y., Ladouceur, S., Ledu, D., Chen, L.,
- 1218 Limoges, A., Londeix, L., Lu, S.-H., Mahmoud, M.S., Marino, G., Matsouka [sic], K.,
- 1219 Matthiessen, J., Mildenhal [sic], D.C., Mudie, P., Neil, H.L., Pospelova, V., Qi, Y., Radi, T.,
- 1220 Richerol, T., Rochon, A., Sangiorgi, F., Solignac, S., Turon, J.L., Verleye, T., Wang, Y.,
- 1221 Wang, Z., Young, M., 2013. Atlas of modern dinoflagellate cyst distribution based on 2405
- 1222 datapoints. Rev. Palaeobot. Palynol. 191, 1–197.
- 1223

1224	Figure	captions
------	--------	----------

Figure 1. Sites of studied plankton samples and cultured strains containing thecate stages of *Pentaplacodinium saltonense* (in red) and *Protoceratium reticulatum* (in blue). The locations
are listed in Table 1.

1229

1230 Figure 2. Line drawings of extant members of the subfamily *Cribroperidinioideae* in dorsal

1231 view to show the dextral torsion typical of these gonyaulacoids. A. Pentaplacodinium

1232 saltonense. B. Protoceratium reticulatum. C. Lingulodinium polyedra. Labeling of tabulation

1233 follows a modified Kofoid system that recognizes homologs.

1234

1235 Figure 3. Line drawing of sulcal area of *Pentaplacodinium saltonense*. FP: flagellar pore; Sa:

1236 anterior sulcal plate; Sda: right anterior sulcal plate; Sdp: right posterior sulcal plate; Ssa:

1237 anterior left sulcal plate; Ssp: posterior left sulcal plate; Sp: posterior sulcal plate; c: cingular1238 plates.

1239

1240 Figure 4. Line drawings of epithecal overlapping plate patterns of gonyaulacoids discussed in

1241 this paper. Arrows indicate direction of overlap. A. Pentaplacodinium saltonense. B.

1242 Protoceratium reticulatum. C. Lingulodinium polyedra. D. Ceratocorys horrida. E.

1243 Gonyaulax spinifera.

1244

Figure 5. Neighbour-joining tree of *P. reticulatum*, *P. saltonense* and related strains
sequenced in this study and sequences from Genbank based on an 80 bp alignment of the V9
region of the SSU gene. Bootstrap values were retrieved from 1000 replicates and those
>70% are indicated at the nodes for neighbour-joining and maximum likelihood respectively.

1249 Strain names are indicated followed by their geographic origin and accession number1250 (Genbank).

1252	Figure 6. Neighbour-joining tree of P. reticulatum, P. saltonense and related strains
1253	sequenced in this study and sequences from Genbank based on a 571 bp alignment of the V4
1254	region of the LSU gene. Bootstrap values were retrieved from 1000 replicates and those
1255	>70% are indicated at the nodes for neighbour-joining and maximum likelihood respectively.
1256	Strain names are indicated followed by their geographic origin and accession number
1257	(Genbank).
1258	
1259	Figure 7. Neighbour-joining tree of P. reticulatum, P. saltonense and related strains
1260	sequenced in this study and sequences from Genbank based on a 356 bp alignment of the ITS
1261	1–2 region. Bootstrap values were retrieved from 1000 replicates and those >70% are
1262	indicated at the nodes for neighbour-joining and maximum likelihood respectively. Strain
1263	names are indicated followed by their geographic origin and accession number (Genbank).
1264	
1265	Plate Captions
1266	
1267	Plate 1. Light microscope images of Pentaplacodinium saltonense based on cyst-theca
1268	experiment from the Salton Sea. A. Living cyst from the Salton Sea St. 1. B-F. Germinated
1269	cyst from St. 2 (culture 2E3 used for single-cell PCR). B. Cross section, showing attached
1270	operculum. C. Focus on elongated simple operculum reflecting plates $\frac{2''+}{3''+4''}$. D–E.
1271	Focus on archeopyle, after removal of operculum. F. Cross section showing processes. G-I.
1272	Germinated cyst from St. 2 (culture 1A7 used for single-cell PCR). G. Focus on precingular

1273 archeopyle reflecting plate *(3''+4''), showing attached operculum. H. Focus on operculum. I. 1274 Cross section, showing opened operculum. Scale bars = 20 µm.

1275

Plate 2. Light microscope images of cyst-theca experiment from the Salton Sea. A–I. Images
of living cells of *Pentaplacodinium saltonense* germinated from cyst depicted in Plate 1, Figs.
B–F (culture 2E3). A. Globular cell. B. Angular cell. C. Fusiform cell. D. Epitheca. E.
Hypotheca. F. Ventral view showing configuration of apical plates. G–I. Sulcal plates. Scale

1280 bars = $20 \,\mu m$.

1281

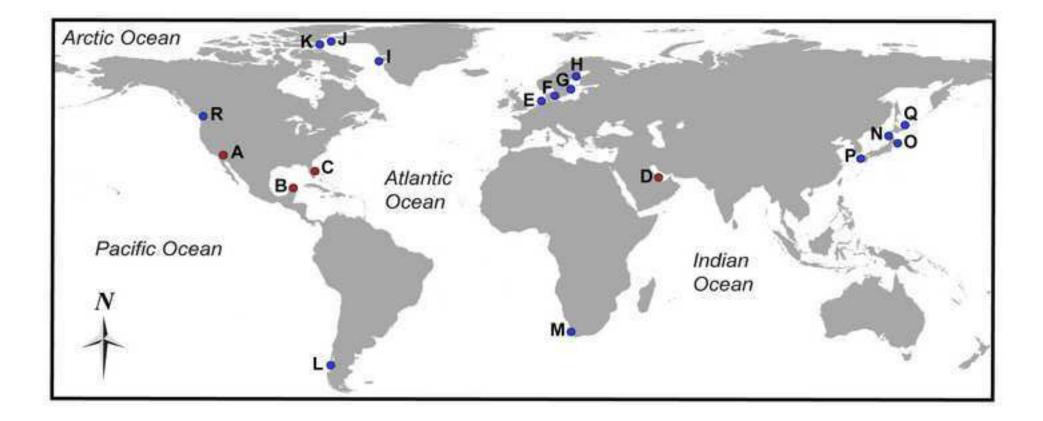
1282 Plate 3. Scanning electron microscope images of *Pentaplacodinium saltonense*, all different cells from the Salton Sea, except D. A. Holotype. Ventral view. Arrowhead points to ventral 1283 pore between plates 1' and *4'. Arrow shows flange on plate 1p. B. Apical view, missing the 1284 1285 cover plate. Small arrowhead points to small pores inside the thecal pores. Large arrowhead points to ventral pore between plates 1' and *4'. Small arrowhead points to the three minute 1286 1287 pores inside most pores. C. Dorsal view, showing dextral torsion. Note the cell roundness. D. 1288 Sulcal plates of a cell from culture SSCAP K-1479 (Indian River Lagoon, Florida). Arrowhead shows the narrow point of contact between the Sa and 1' plates. E. Antapical 1289 1290 view. Scale bars A–C, $E = 10 \mu m$; $D = 5 \mu m$. 1291

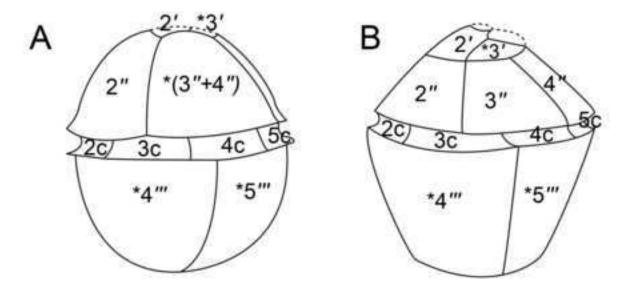
Plate 4. Scanning electron microscope images of *Pentaplacodinium saltonense* from the
Indian River Lagoon. A. Apical view of a cell from culture SSCAP K-1479. Arrowhead
points to ventral pore between plates 1' and *4'. B. Same specimen as in A. Ventral view.
Arrowhead points to ventral pore between plates 1' and *4'. C. A different cell from a
plankton sample courtesy of Paul Hargraves. Ventral view. Arrowhead points to ventral pore
between plates 1' and *4'. Arrow shows flange on plate 1p. D. Ventral view of a cell from a

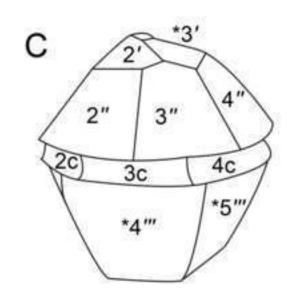
culture established by Paul Hargraves. E. Antapical view of a cell from the same culture as in
D. E. Apical view of a cell from the same culture as in D. D–F: SEMs by Paul Hargraves.
Scale bars = 10 μm.

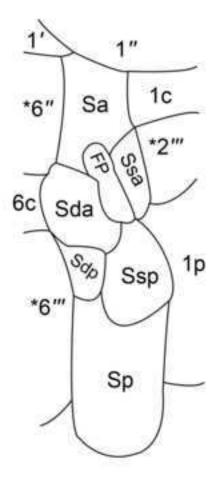
1301

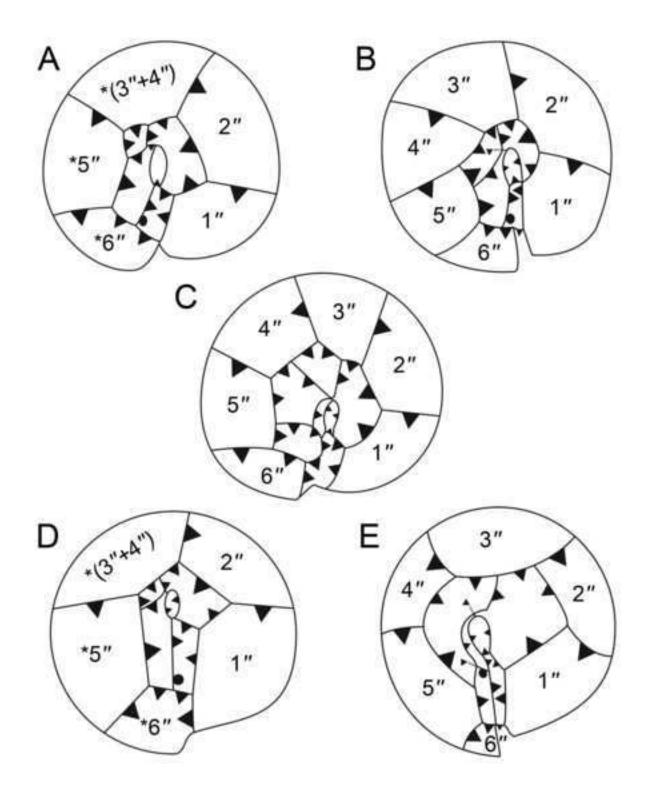
Plate 5. Scanning electron microscope images of cysts of *Pentaplacodinium saltonense*extracted from Salton Sea sediment (St. 2) using palynological methods. A–C. Views showing
shape of archeopyle, reflecting plate *(3"+4"). D. Specimen that is torn along the cingulum.
E. Specimen showing alignment of processes along the cingulum. F. Specimen with relatively
large openings in cyst wall. G. Specimen with distinct intratabular processes. H. Specimen
with relatively coarsely reticulated wall surface. I. Internal view of smooth cyst wall. Scale
bars = 10 μm.

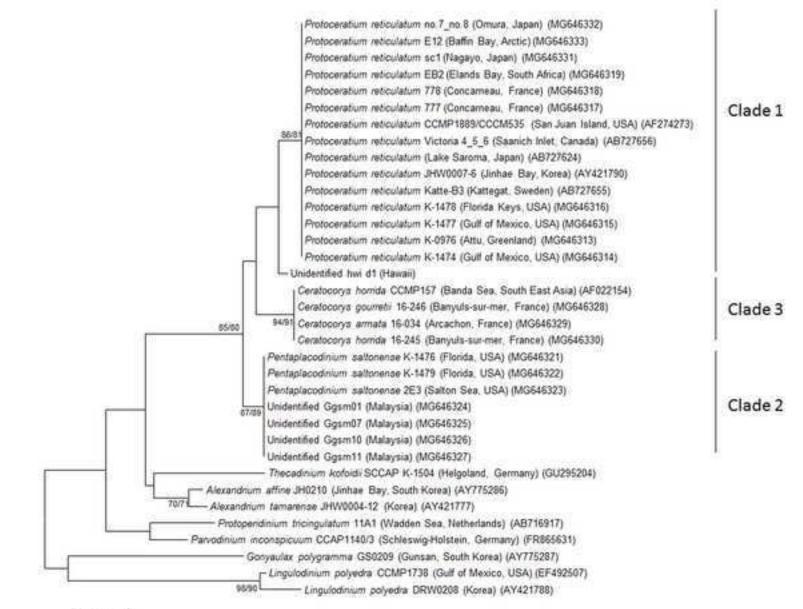

1309

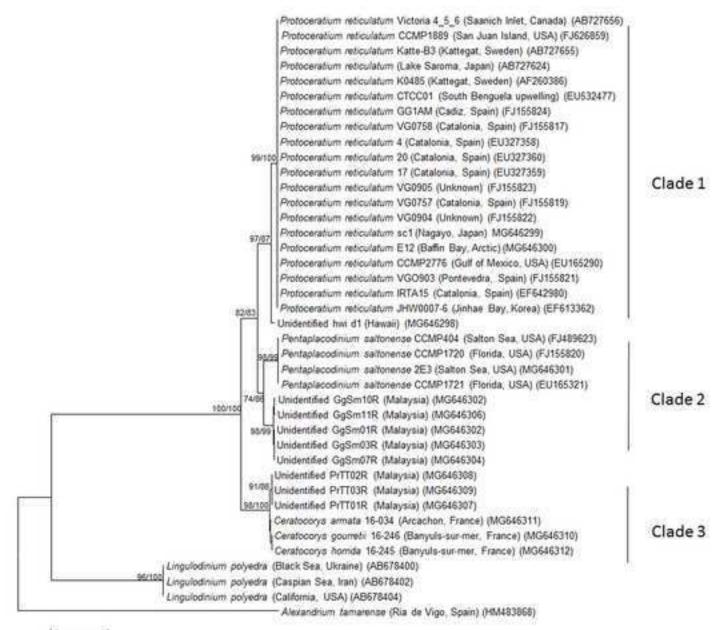

1310 Plate 6. Scanning electron microscope images of cysts of *Pentaplacodinium saltonense* formed in culture of strain 3243 (Indian River Lagoon). A. Specimen showing preformed 1311 archeopyle and margins of principal archeopyle suture with reduced ornament. B. Specimen 1312 with attached thecal plate. C. Specimen with partly developed processes. D. Specimen with 1313 processes clearly reflecting tabulation. E. Specimen with preformed archeopyle. F. Specimen 1314 1315 showing reflection of the sulcus. G-H. Specimen with well-developped wall texture. I. Wall texture of specimen with 'spider-web' microreticulation. Scale bars = $10 \mu m$, except H, I, 1316 scale bars = $1 \mu m$. 1317


1318


Plate 7. Scanning electron microscope images of *Protoceratium reticulatum* cells and of the
apical pore plates of the gonyaulacoids discussed in this study. A. *Protoceratium reticulatum*.
Cell from Greenland, ventral view. B. Same cell in apical view. C. *Protoceratium reticulatum*.
Cell from Elands Bay, South Africa. Dorsal view, note the dextral torsion. D. Apical pore


- 1323 plates of a different cell of *Protoceratium reticulatum* (Greenland). E. Apical pore plates of a
- 1324 | cell of *Ceratocorys horrida* (Central equatorial Pacific). F. Apical pore plates of a cell of
- 1325 *Pentaplacodinium saltonense* from culture SSCAP K-1479 (Indian River Lagoon). G. Apical
- 1326 pore plates of a cell of *Ceratocorys gourretii*. H. Apical pore plates of another cell of
- 1327 *Pentaplacodinium saltonense* from culture SSCAP K-1479 (Indian River Lagoon). Scale bars
- 1328 $A-C = 10 \ \mu m; D-H = 5 \ \mu m.$





0.05

Figure 5

Figure 6 Click here to download high resolution image

0.1

Figure 6

Protoceratium reticulatum VG0757 (Catalonia, Spain) (DQ990371) Protoceratium reticulatum Omura-no 7 no 8 (Omura Bay, Japan) (MG646291) Protoceratium meticulatum Nagayo-sc1 (Nagayo, Japan) (MG64628) Protoceratium reticulatum N10511 vort. Japan) (MG64628) Protoceratium reticulatum K-1471 (Florida, USA) (MG64628) Protoceratium reticulatum K-1472 (Florida, USA) (MG646285) Protoceratium reticulatum 030624-OK-PR1 (Okirai Bay, Japan) (MG646285) Protoceratium reticulatum 030624-OK-PR1 (Okirai Bay, Japan) (MG646285) Protoceratium reticulatum 03071-79-PR1 (Yamada Bay, Japan) (MG646283) Protoceratium reticulatum 020717-OK-PR7 (Okirai Bay, Japan) (MG646283) Protoceratium reticulatum 020717-OK-PR7 (Okirai Bay, Japan) (MG646283) Protoceratium reticulatum 020717-OK-PR7 (Okirai Bay, Japan) (MG646283) Protoceratium reticulatum CEA1 (Ancona, Laty)(AM183800) Protoceratium reticulatum CCC01 (South Benguela upwelling) (EU532486) Protoceratium reticulatum 17 (Catalonia, Spain) (EU327361) Protoceratium reticulatum VG0758 (Catalonia, Spain) (FJ489626) Protoceratium reticulatum VG0758 (Catalonia, Spain) (FJ489626) Protoceratium reticulatum VG0904 (Unknown) (FJ489627) Protoceratium reticulatum VG0905 (Unknown) (FJ489627) Protoceratium reticulatum VG0904 (Unknown) (FJ489627) Protoceratium reticulatum VG0905 (Unknown) (FJ489627) Protoceratium reticulatum VG0904 (Unknown) (FJ489627) Protoceratium reticulatum VG0904 (Unknown) (FJ489627) Protoceratium reticulatum VG0904 (Unknown) (FJ489627) Protoceratium reticulatum Satoma (Lake Satoma, Japan) (AB727654) Protoceratium reticulatum RTA15 (Satiera, Spain) (EU327553) Protoceratium reticulatum RTA15 (Satiera, Spain) (EJ8727654) Protoceratium reticulatum PRSH4 (Ship Harbour, NS, Canada) (EU927572) Protoceratium reticulatum PRSH4 (Ship Harbour, NS, Canada) (EU927569) Protoceratium reticulatum PRSH4 (Ship Harbour, NS, Canada) (EU927569) Protoceratium reticulatum PRSH4 (Ship Harbour, NS, Canada) (EU927569)	Sub-clade 1A	Clade 1
Protoceratium reticulatum K-0976 (Attu, Greenland) (MG646292) Protoceratium reticulatum E12 (Baffin Bay, Arctic) (MG646293) Protoceratium reticulatum 091223-38 M16 (Helgoland, Germany) (MG646294) Unidentified hwi d1 (Hawaii) (MG646295) Pentaplacodinium saltonense K-1476 (Florida, USA) (MG646296) Pentaplacodinium saltonense K-1479 (Florida, USA) (MG646297) Pentaplacodinium saltonense CCMP1720 (Florida, USA) (FJ489629) Pentaplacodinium saltonense CCMP1720 (Florida, USA) (FJ489629) Pentaplacodinium saltonense CCMP1720 (Salton Sea, USA) (FJ489629) Caratocoys homda CCMP157 (Banda Sea, South East Asia) (EU927577)		Clade 2

0.05

Plate 1 Click here to download high resolution image

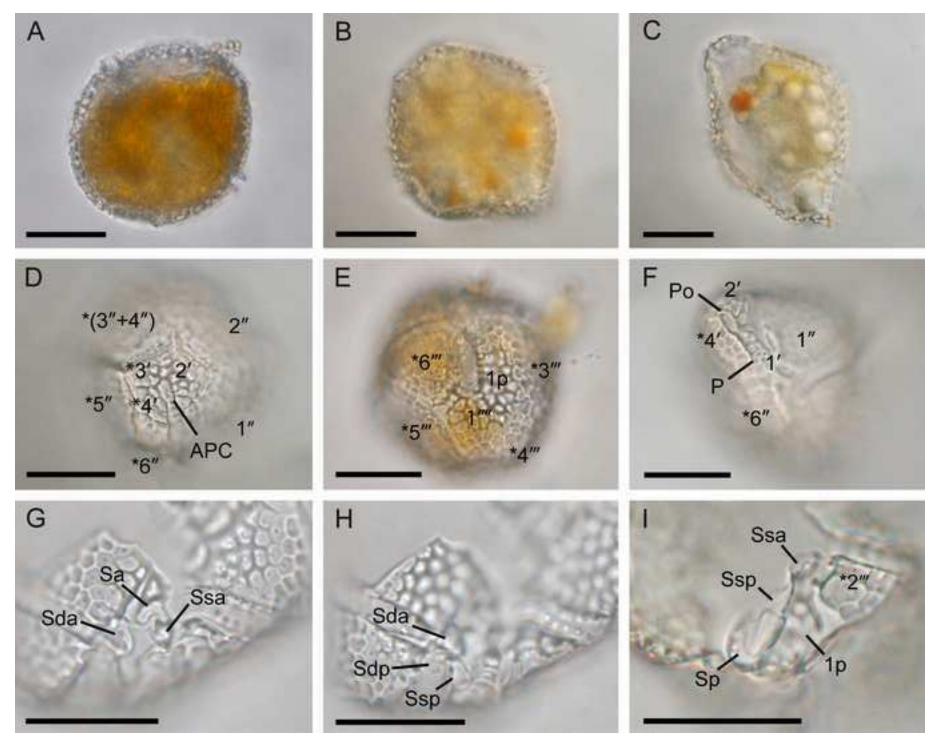
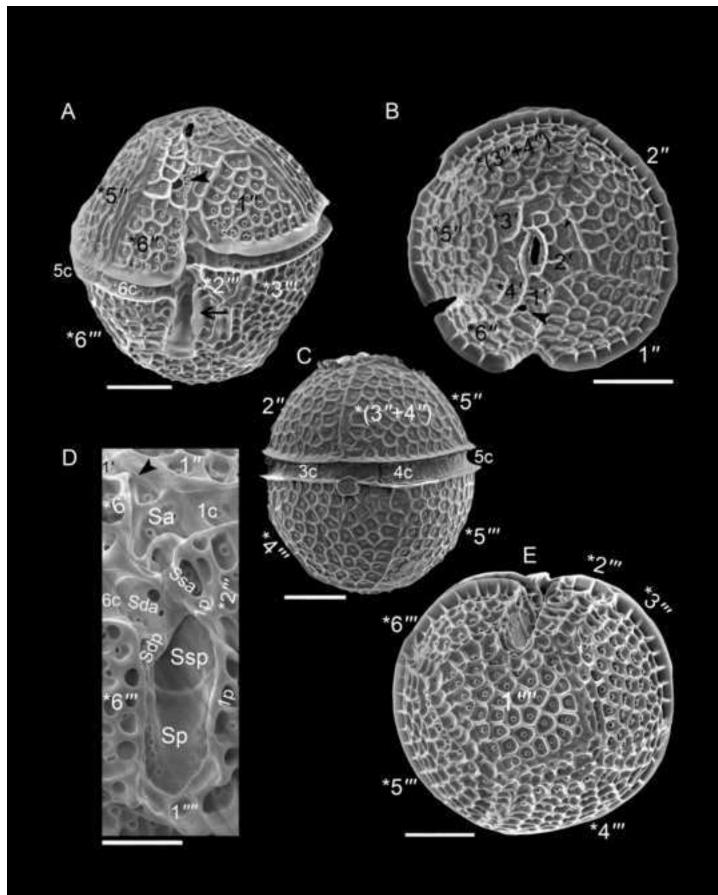




Plate 2 Click here to download high resolution image

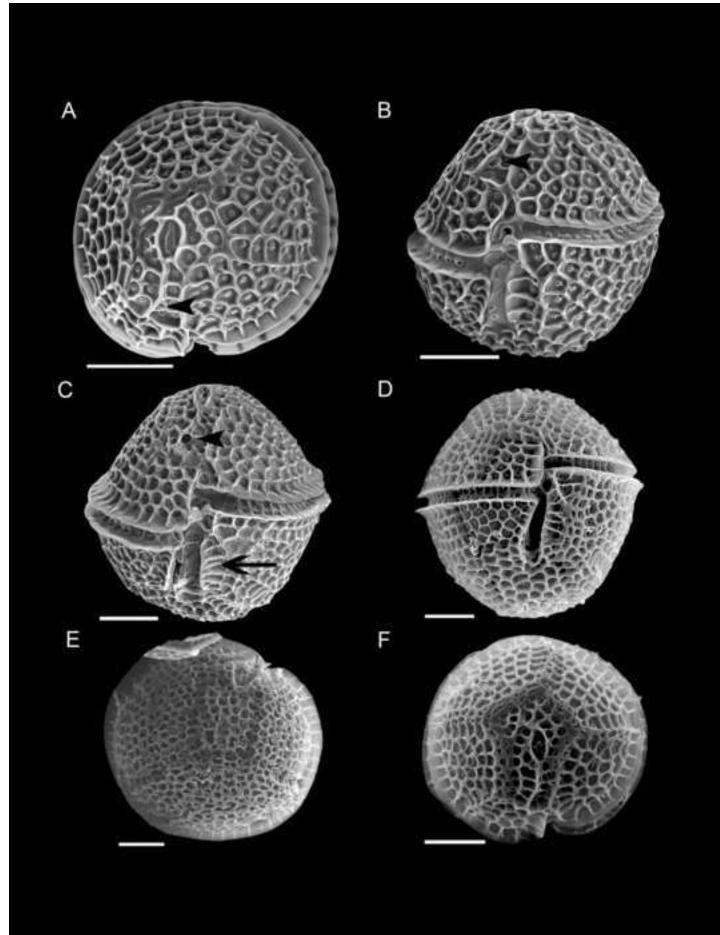


Plate 5 Click here to download high resolution image

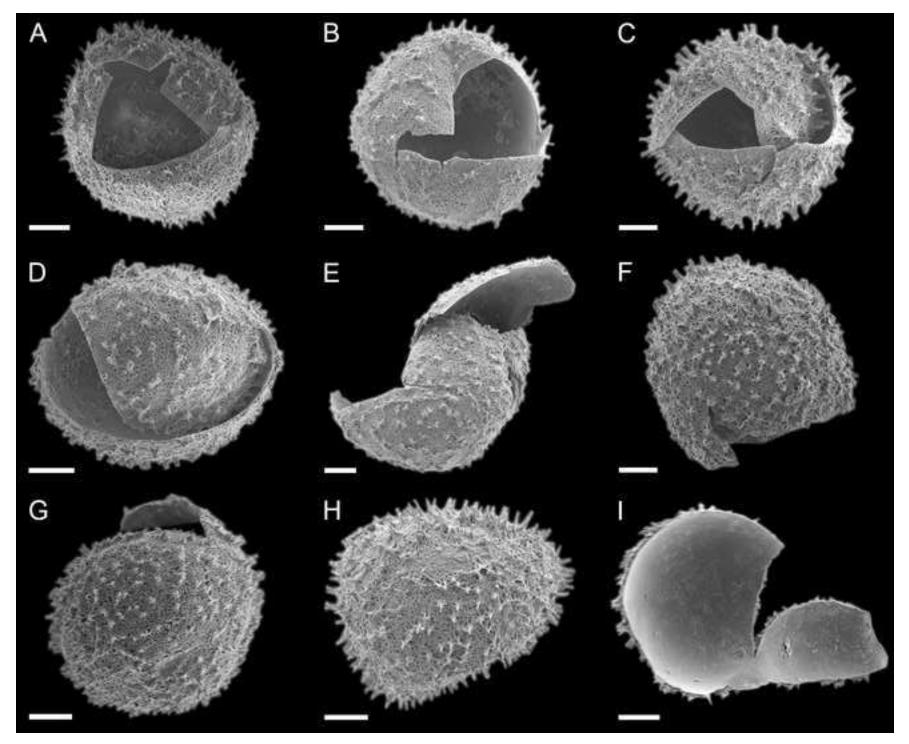
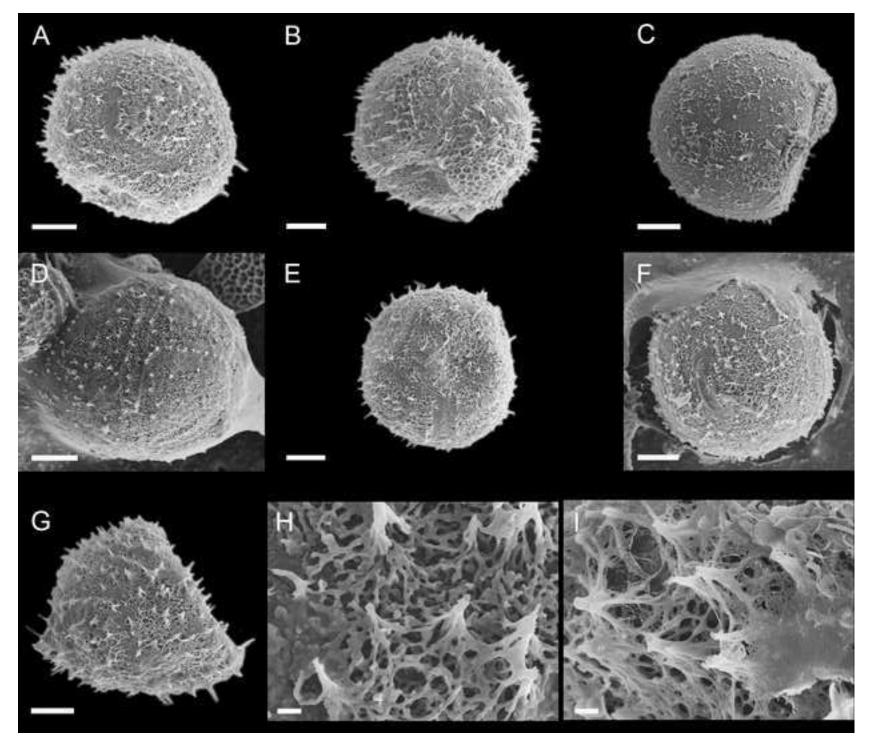
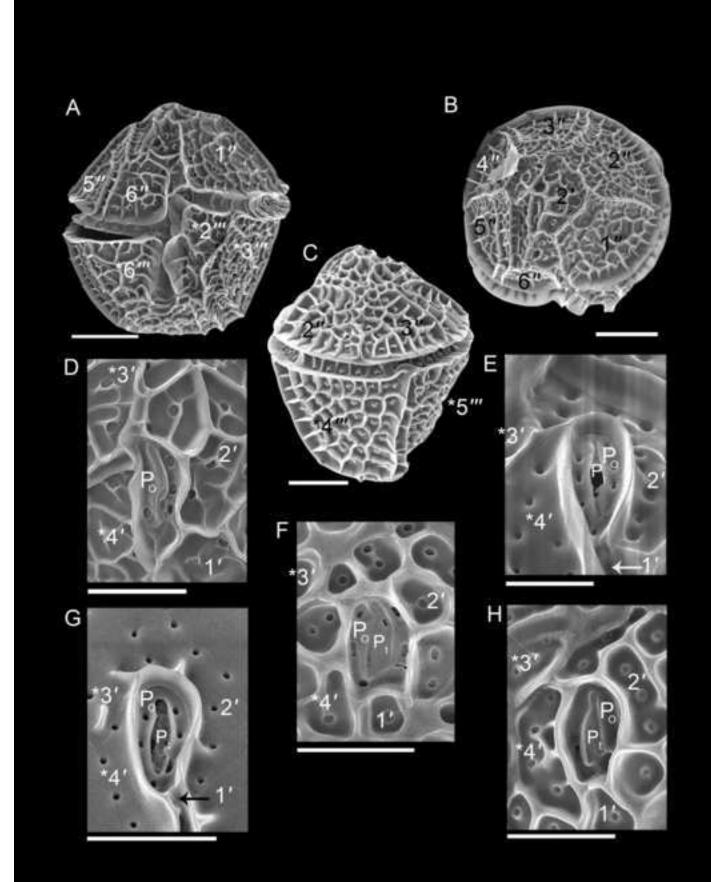




Plate 6 Click here to download high resolution image

Sampling site	Location mark on Figure 1	Sampling date	Latitude (°)	Longitude (°)	SSS (psu)	SST (°C)	Sampling device	Fixative used	Species present	Sampled by
										KM, VP, MH,
Salton Sea, St. 1, California, USA	А	24-Oct-09	33,50	-115,91	>40.2 (62)	23,1	Plankton net > 20 μm	Ethanol 100%	PS	MCCM
Salton Sea, St. 2, California, USA	А	24-Oct-09	33,50	-115,91	>40.2 (64)	25,5	Plankton net $> 20 \ \mu m$	Ethanol 100%	PS	KM, VP, MH, MCCM
Salton Sea, St. 3, California, USA	А	24-Oct-09	33,50	-115,92	>40.2 (65)	25,5	Plankton net $> 20 \ \mu m$	Ethanol 100%	PS	KM, VP, MH, MCCM
Salton Sea, St. 4, California, USA	А	24-Oct-09	33,50	-115,91	>40.2 (56)	30,3	Plankton net > 20 µm	Ethanol 100%	PS	KM, VP, MH, MCCM
Salton Sea, St. 5, California, USA	А	24-Oct-09	33,50	-115,91	>40.2 (65)	~30	Plankton net > 20 µm	Ethanol 100%	PS	KM, VP, MH, MCCM
Off Yucatan, St. 4, Gulf of Mexico, Mexico	В	19-May-09	21,39	-88,08	31,0	24,1	Plankton tow >20 µm	Formaldehyde	PS	YO
Off Yucatan, Gulf of Mexico, Mexico	В	19-May-09	21,40	-88,84	31,0	24,1	Plankton tow >20 µm	Formaldehyde	PS	YO
Indian River Lagoon, St. TR, Florida, USA	C	28-May-08	27,50	-80,34	37,4	29,5	Plankton tow >20 µm	Formalin 2%	PS	PH
Off Qatar, Persian Gulf	D	Sept. 1991	25,29	51,54	38-43	20-35	Plankton net	Formalin 5%	PS	AA
North Sea, Helgoland, Germany	E	3-Jun-02	54,19	7,90	32,0	12,5	Plankton net >20 µm	Lugol	PR	МНО
Kattegat, St. Central, Denmark	F	NA	56.92	11,28	NA	NA	Plankton net	Lugol & Formalin	PR	Л
Kattegat, St. 431, Denmark	F	22-Jun-05	55,77	12,75	NA	NA	Plankton net	Lugol	PR	л_ Л_
Kattegat, St. 925, Denmark	F	17-Aug-00	56,08	11,02	NA	NA	Plankton net	Lugol	PR	JL
Baltic Sea, St. F64, Finland	G	20-Aug-10	60,18	19,13	5,7	17,6	Plankton net	Lugol	PR	AK, MHU
Gulf of Bothnia, Baltic Sea, St. US5B, Finland	Н	20-Aug-10	62,58	19,98	5,1	16,0	Plankton net	Lugol	PR	AK, MHU
Western Greenland, St. 516, Denmark	Ι	30-Jul-12	69,20	-54,10	33,2	6,9	Water Bottle-CTD	Formaldehyde	PR	UT
Baffin Bay, St. 2008-029-0039/9/0039A, Canada	J	6-Sep-08	76,57	-73,96	31,0	2,2	Plankton net >20 µm	Formaldehyde	PR	AR
Baffin Bay, St. 2008-029-027A, Canada	J	5-Sep-08	77,29	-74,34	30,8	2,2	Plankton net >20 µm	Formaldehyde	PR	AR
Baffin Bay, St. 2008-029-0043A, Canada	К	7-Sep-08	75,58	-78,63	31,0	2,0	Plankton net >20 µm	Formaldehyde	PR	AR
Baffin Bay, St. 2008-029-0035A, Canada	J	6-Sep-08	76,33	-71,43	31,0	4,5	Plankton net >20 µm	Formaldehyde	PR	AR
Off Puerto Aguirre, Chile	L	21-May-06	-44,99	-73,53	28,8	10,0	Plankton net > 26 µm	Formaldehyde	PR	XV
Elands Bay, South Africa	М	16-Mar-13	-32,31	18,32	NA	NA	Plankton net	Formaldehyde	PR	MP
Off Cape Town, South Africa	М	NA	-33,89	18,42	NA	NA	Plankton net	Lugol + formalin Glutaraldehyde	PR	ЛL
Mutsu Bay, Aomori, Japan	Ν	5-Apr-10	40,92	141,12	32,7	5,9	Plankton net >20 μm	1% Glutaraldehyde	PR	KK
Okkirai Bay, Iwate, Japan	0	16-Jul-03	39,08	141,85	32,6	15,8	Plankton net >20 μm	5% Glutaraldehyde	PR	KK
Okkirai Bay, Iwate, Japan	0	28-Aug-03	39,08	141,85	32,3	20,0	Plankton net >20 μm	5% Glutaraldehyde	PR	KK
Okkirai Bay, Iwate, Japan	0	23-Jun-04	39,08	141,85	32,7	16,0	Plankton net >20 μm	5% Glutaraldehyde	PR	KK
Okkirai Bay, Iwate, Japan	0	12-Aug-04	39,08	141,85	33,5	23,0	Plankton net >20 µm	5%	PR	KK
Omura Bay, Nagayo-ura, Japan	Р	9-May-11	32,85	129,87	32,7	20,2	Plankton net >20 µm	Formalin	PR	KMA
Omura Bay, Inoura, Japan	Р	12-May-11	33,05	129,74	25,6	18,5	Plankton net >20 µm	Formalin	PR	KMA
Omura Bay, Togitsu Port, Japan	Р	23-May-11	32,85	129,87	32,6	19,5	Plankton net >20 µm	Formalin	PR	KMA
Kagoshima Bay, St. 1, Japan	Р	20-Jun-11	31,55	130,57	23,8	22,9	Plankton net >20 µm	Formalin	PR	KMA
Saroma Lake (Lagoon), St. 1, Japan	Q	22-Jul-11	44,12	143,82	32,2	17,1	Plankton net	Ethanol	PR	KM

Table 1. Site location of plankton samples investigated, location mark on Figure 1, sampling date, latitude, longitude, sea surface salinity (psu), sea surface temperature (°C), sampling device, used fixative, and name of persons who did the sampling.

Saanich Inlet, St. S2, BC, Canada	R	13-Jul-10	48,55	-123,53	27,8	14,8	Plankton net	Formaldehyde	PR	VP
Saanich Inlet, St. S5, BC, Canada	R	13-Jul-10	48,71	-123,46	27,8	13,6	Plankton net	Formaldehyde	PR	VP
Saanich Inlet, St. S3, BC, Canada	R	13-Jul-10	48,59	-123,48	27,8	14,8	Plankton net	Formaldehyde	PR	VP
Saanich Inlet, St. S4.5, BC, Canada	R	14-Jul-10	48,67	-123,49	28,0	13,7	Plankton net	Formaldehyde	PR	VP
Saanich Inlet, St. S11, BC, Canada	R	14-Jul-10	48,73	-123,54	28,0	13,7	Plankton net	Formaldehyde	PR	VP
Saanich Inlet, St. S4, BC, Canada	R	13-Jul-10	48,63	-123,49	27,4	15,1	Plankton net	Formaldehyde	PR	VP
Saanich Inlet, St. Pat UVic 262, BC, Canada	R	10-Aug-11	48,65	-123,44	29,0	17,8	Plankton net	Formaldehyde	PR	VP
Saanich Inlet, St. Pat UVic 264, BC, Canada	R	21-Aug-11	48,65	-123,44	31,0	17,9	Plankton net	Formaldehyde	PR	VP

Abbreviations: NA = Not available, PS = *Pentaplacodinium saltonense*, PR = *Protoceratium reticulatum*, AK = Anke Kremp, AR = André Rochon, AA = Abdulrahman Al-Muftah, *M*CCM = Consuelo Carbonell-Moore, JL = Jacob Larsen, KK = Kazuhiko Koike, KM = Kenneth Neil Mertens, KMA = Kazumi Matsuoka, MH= Martin J. Head, MHO = Mona Hoppenrath, MHU=Maija Huttunen, MP = Maya Pfaff, PH = Paul Hargreaves, UT = Urban Tillmann, VP = Vera Pospelova, XV = Ximena Vivanco, YO = Yuri B. Okolodkow

Suppl. Table 1. Culture strains and cells or cyst picked for SEM and/or phylogenetic analysis.

CODI (Strain ID)	Identified here by its morphology as	Geographic Origin	Latitude (°N)	Longitude (°E)	Isolation date	Isolated by	LSU (28S) Genbank	ITS Genbank	SSU (18S) Genbank	Sequenced in this study by
CCMP404 = ALO011	P. saltonense	Salton Sea (California)	33.375	-116.0	1966	Dodson, A.	EU532476	FJ489629	FJ489629***	
Salton Sea 2E3 *	P. saltonense	Salton Sea (California)	33° 30.122'	-115° 54.879'	19/11/2013	Mertens, K.	MG646301	Not sequenced	MG646323	Aika Yamaguchi
	T. suitonense	Sanon Sea (Camorna)	30.122	-113 54.879	19/11/2013	Mertens, K.	NIG040301	sequenced	MG040323	Aika Tamagucin
CCMP1720 = K-1475 = ALO013	P. saltonense	Biscayne Bay (Florida)	25.8	-80.3333	15/02/1995	Hargraves, P.	FJ155820	FJ489628	FJ489628***	
CCMP1721 = K-1480 =	1 · Suitonense	Discussio Day (Fiorida)	2010	00.5555	10/02/1990	Thug ut co, T .	10100020	Not	10109020	
ALO012	P. saltonense	Biscayne Bay (Florida)	25.8	-80.3333	01/06/1994	Hargraves, P.	EU165321	sequenced	Not sequenced	
										Andrea Highfield / Declar
CCMP3241 = K-1479	P. saltonense	Indian River Lagoon (Florida)	27.83	-80.45	11/06/2008	Hargraves, P.	Not sequenced	MG646297	MG646322	Schroeder
		- · · ·					*			Andrea Highfield / Declar
CCMP3243 = K-1476	P. saltonense	Indian River Lagoon (Florida)	27.83	-80.45	05/06/2008	Hargraves, P.	Not sequenced	MG646296	MG646321	Schroeder
										Andrea Highfield / Decla
CCMP3031 = K-1474	P. reticulatum	Off coast Florida, Gulf of Mexico	25.0167	-81.4003	NA	NA	Not sequenced	MG646287	MG646314	Schroeder
Victoria-no.4_5_6 *	P. reticulatum	Brentwood Bay, Saanich Inlet	48.57	123.47	Oct. 2011	Mertens, K.	AB727656	AB727656	AB727656	
CCMP1889 = K-0634 =		Friday Harbor, San Juan Island,				,				
CCCM535	NA	Washington USA	48.544	-123.01	1983	Taylor, F.J.R.	EU532475	EU532484	FJ626858***	
		0								Andrea Highfield / Decla
CCMP2776 = K-1477	P. reticulatum	Gulf of Mexico, U.S.A.	25,0167	-81,4003	NA	Sinigalliano, C.	EU165290	MG646288	MG646315	Schroeder
										Andrea Highfield / Decla
CCMP3113 = K-1478	P. reticulatum	Marquesa Keys, Florida Keys	-24.58	-82.1	NA	NA	Not sequenced	MG646286	MG646316	Schroeder
VGO757	NA	Ebro Delta (Catalonia, Spain)	NA	NA	NA	Fernandez-Tejedor, M.	FJ155819	DQ990371	DQ990371***	
								-	-	
VGO758	P. reticulatum**	Alfacs Bay, Ebro Delta (Catalonia Spain)	NA	NA	NA	Fernandez-Tejedor, M.	FJ155817	FJ489624	FJ489624***	
VGO903 = ALO014	P. reticulatum**	Ría de Ponteverde (Bueu)	NA	NA	NA	Fernandez-Tejedor, M.	FJ155821	FJ489625	FJ489625***	
VGO904	NA	NA	NA	NA	NA	Fernandez-Tejedor, M.	FJ155822	FJ489630	FJ489630***	
VGO905	NA	NA	NA	NA	NA	Fernandez-Tejedor, M.	FJ155823	FJ489627	FJ489627***	
IRTA015	P. reticulatum	Ebro Delta (Catalonia Spain)	NA	NA	NA	Fernandez-Tejedor, M.	EF642980	EF642972	EF642972***	
20	NA	Catalan Coast	NA	NA	NA	Fernandez-Tejedor, M.	Not sequenced	EU327363	EU327363***	
GG1AM	NA	La Atunara (Cádiz, Spain)	NA	NA	NA	Fernandez-Tejedor, M.	FJ155824	FJ489626	FJ489626***	
17	NA	Catalan Coast	NA	NA	NA	Fernandez-Tejedor, M.	Not sequenced	EU327362	EU327362***	
4	NA	Catalan Coast	NA	NA	NA	Fernandez-Tejedor, M.	Not sequenced	EU327361	EU327361***	
							1			
Katte-B3 *	P. reticulatum (cyst-based)	Kattegat, Swedish coast	57.5	11.8	Nov. 2011	Mertens, K.	AB727655	AB727655	AB727655	
	T. Tenculatum (Cyst-based)	Kattegat, Swedish Coast	57.5	11.0	NOV. 2011	Mertens, K.	AB/2/055	AB727055	AB727055	
091223-38_M16_Protocer3- ITS1	P. reticulatum	Helgoland, Germany	54.19	7,9	avr-03	Hoppenrath, M.	Not sequenced	MG646294	Not sequenced	Karin Röder
1151	1. / Circulation	Teigoland, Germany	54,19	1,5	411 05	Hoppenium, M.	The sequenced	110040274	Hot sequenced	Karin Kouci
Lake Saroma *	P. reticulatum (cyst-based)	Lake Saroma, Japan	44.12	143.87	Aug. 2011	Mertens, K.	AB727654	AB727654	AB727654	
						,				Andrea Highfield / Decla
K-0976	P. reticulatum	Attu, Greenland	67.924068	-53.649824	21.08.2005	Moestrup, Ø.	Not sequenced	MG646292	MG646313	Schroeder
Arctic E12 = K1-1-1 - K-1-3		,				1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
*	P. reticulatum	Station 323, Northern Baffin Bay	74.12	79.45	02-mai-11	Mertens, K.	MG646300	MG646293	MG646333	Yoshihito Takano
V 0495	D matimulatum	Southarm Kattagat Daury St	56.20	12.04	02 arr 90	Hansan C	4 5260296	Not	Not compared	
K-0485	P. reticulatum	Southern Kattegat, Bouy St.	56.20	12.04	03-avr-89	Hansen, G.	AF260386	sequenced	Not sequenced	
PRSH6 (NRC Halifax)	P. reticulatum	Ship harbour, NS, Canada	NA	NA	NA	Ferrell, J. F.	Not sequenced	EU927572	EU927572***	
PRSH3 (NRC Halifax)	P. reticulatum	Ship harbour, NS, Canada	NA	NA	NA	Ferrell, J. F.	Not sequenced	EU927569	EU927569***	
PRSH4 (NRC Halifax)	P. reticulatum	Ship harbour, NS, Canada	NA	NA	NA	Ferrell, J. F.	Not sequenced	EU927570	EU927570***	
PRSH1 (NRC Halifax)	P. reticulatum	Ship harbour, NS, Canada	NA	NA	NA	Ferrell, J. F.	Not sequenced	EU927568	EU927568***	
CTCC 01	P. reticulatum	Southern Benguela upwelling region	NA	NA	NA	NA	EU532477	EU532486	EU532486***	
			-	10010 015		a		Not		Andrea Highfield / Decla
Elands Bay 2013 (EB2) *	P. reticulatum	Elands Bay, South Africa	32°18.618'	18°19.267	16 March 2013	Carbonell-Moore, C.	Not sequenced	sequenced	MG646319	Schroeder

		I	1		1		1	Not		1
JHW0007-6	NA	Jinhae Bay, Korea	NA	NA	juil-00	Kim, KY.	EF613362	sequenced	AY421790	
CBA-1	NA	Adriatic Sea, Ancona, Italy	NA	NA	NA	Totti C.	Not sequenced	AM183800	AM183800***	
020717-OK-PR7	P. reticulatum	Okkirai Bay, Iwate, Japan	39.08	141.85	17-Jul-02	Koike, K.	Not sequenced	MG646283	Not sequenced	Kazuhiko Koike
030707-YB-PR1	P. reticulatum	Yamada Bay, Iwate, Japan	39.46	141.97	7-Jul-03	Koike, K.	Not sequenced	MG646284	Not sequenced	Kazuhiko Koike
030624-OK-PR1	P. reticulatum	Okkirai Bay, Iwate, Japan	39.08	141.85	24-Jun-03	Koike, K.	Not sequenced	MG646285	Not sequenced	Kazuhiko Koike
Omura-no.7_no.8 *	P. reticulatum		32.85	129.87	2 may 2011	Takano, Y.	Not sequenced	MG646291	MG646332	Yoshihito Takano
		Omura Bay, Japan								
Nagayo-sc1 *	P. reticulatum	Nagayo, Japan	32.85	129.87	24 May 2011	Takano, Y.	MG646299	MG646290	MG646331	Yoshihito Takano
Togitsu-sc2 *	P. reticulatum	Togitsu Port, Japan	32.85	129.87	23 May 2011	Takano, Y.	Not sequenced	MG646289 Not	Not sequenced	Yoshihito Takano
777	P. reticulatum	Concarneau large, France	47.83	-3.95	16 July 2008	Nézan, E.	Not sequenced	sequenced	MG646317	Gwenael Bilien
778	P. reticulatum	Concarneau large, France	47.83	-3.95	16 July 2008	Nézan, E.	Not sequenced	Not sequenced	MG646318	Gwenael Bilien
					, , , , , , , , , , , , , , , , , , ,	,	*	Not		
16-034	Ceratocorys armata	Bouée 7, Arcachon, France	44.54	-1.26	18 Dec 2015	Nézan, E.	MG646311	sequenced	MG646329	Gwenael Bilien
		Station B70, Banyuls-sur-mer, French						Not		
16-246	Ceratocorys gourretii	Mediterranean	42.48	3.18	26 Sept 2016	Nézan, E.	MG646310	sequenced	MG646328	Gwenael Bilien
		Station B70, Banyuls-sur-mer, French						Not		
16-245	Ceratocorys horrida	Mediterranean	42.48	3.18	26 Sept 2016	Nézan, E.	MG646312	sequenced	MG646330	Gwenael Bilien
CCMP157	Ceratocorys horrida	Banda Sea, South East Asia	-5,00	130.00	22 April 1975	Sweeney, B.	Not sequenced	EU927577	AF022154	
00111107	eeraioeerijs normaa	Bundu Bou, Boun East Fish	5,00	150,00	2214111970	Streeney, B.	rior bequeneeu	Not	11 022101	
SCCAP K-1504	Thecadinium kofoidii	Helgoland, Germany	54.19	7.9	Aug. 2002	Hoppenrath, M.	GU295207***	sequenced	GU295204	
								Not		
JH0210	Alexandrium affine	Jinhae Bay, South Korea	NA	NA	NA	NA	Not sequenced	sequenced	AY775286	
			1				· · · · · · · · · · · · · · · · · · ·	Not		
JHW0004-12	Alexandrium tamarense	Korea	NA	NA	NA	NA	Not sequenced	sequenced	AY421777	
								Not		
CCMP116	Alexandrium tamarense	Ria de Vigo, Spain	42.23	-8.8	1 June 1984	Yentsch, C.M.	HM483868	sequenced	Not sequenced	
								Not		
CCMP1738	Lingulodinium polyedra	Gulf of Mexico, USA	27.8	-97.13	NA	Buskey, E.	Not sequenced	sequenced	EF492507	
DDW/0200		W.			4 2001	274	N	Not	11/101500	
DRW0208	Lingulodinium polyedra	Korea	NA	NA	Aug. 2001	NA	Not sequenced	sequenced	AY421788	
BLACK1	Lingulodinium polyedra	Black Sea, Ukraine	49.90	30.29	2011	Takano, Y.	AB678400	AB678399***	AB693195***	
CASP1	Lingulodinium polyedra	Caspian Sea, Iran	37.51	49.91	2011	Takano, Y.	AB678402	AB678401***	AB693194***	
SANPEDRO1	Lingulodinium polyedra	San Pedro Harbor, California, USA	33.74	-118.24	2011	Takano, Y.	AB678404	AB678403***	AB693196***	
								Not		
GS0209	Gonyaulax polygramma	Gunsan, South Korea	NA	NA	NA	NA	Not sequenced	sequenced	AY775287	
	Protoperidinium							Not		
11A1	tricingulatum	Wadden Sea, Netherlands	53,60	6,58	2006	Kawami, H.	Not sequenced	sequenced	AB716917	
	in terrigeneting	,	55,00	0,00	2000		rior bequeneeu	A	10/10/17	
		Kl. Ukleisee, Schleswig-Holstein,						Not		
CCAP1140/3	Parvodinium inconspicuum	Germany	NA	NA	NA	Meyer	Not sequenced	sequenced	FR865631	
hwi d1	Unidentified	Hawaii	21,59	-158,10	04-mars-14	Anne de Vernal and Geneviève Vautour	MG646298	MG646295	MG646320	Haifeng Gu
liwiui	Ondentified	Hawan	21,57	-156,10	04-11813-14	Genevieve validar	1/16040278	Not	W1G040320	Haneng Gu
GgSm10R	Unidentified	Malaysia	1,60	110,32	17-janv-13	Bao Juan Kam	MG646305	sequenced	MG646326	Haifeng Gu
ogonnon	Childentified	Windyshi	1,00	110,52	17 juli v 15	Duo Juun Kunn	110040505	Not	110040520	Finneng Gu
GgSm11R	Unidentified	Malaysia	1,60	110,32	17-janv-13	Bao Juan Kam	MG646306	sequenced	MG646327	Haifeng Gu
c		2	·		-			Not		C
GgSm01R	Unidentified	Malaysia	1,60	110,32	10-août-10	Toh Hii Tan	MG646302	sequenced	MG646324	Haifeng Gu
								Not		
GgSm03R	Unidentified	Malaysia	1,60	110,32	22-sept-10	Toh Hii Tan	MG646303	sequenced	Not sequenced	Guat Ru Liow
G G 07D			1.60	110.22	17.1 10		Maria	Not	100000	
GgSm07R	Unidentified	Malaysia	1,60	110,32	17-janv-13	Toh Hii Tan	MG646304	sequenced	MG646325	Zhen Fei Lim
D-TT02D	Unidentified	Moleveie	1.02	100.77	29 mana 12	Sing Tung Tana	MCCACODO	Not	Not command	Haifana Cu
PrTT02R	Unidentified	Malaysia	1,92	109,77	28-mars-13	Sing Tung Teng	MG646308	sequenced Not	Not sequenced	Haifeng Gu
PrTT03R	Unidentified	Malaysia	1,92	109,77	28-mars-13	Sing Tung Teng	MG646309	sequenced	Not sequenced	Haifeng Gu
PrTT01R		•						-	-	-
	Unidentified	Malaysia	1,92	109,77	28-mars-13	Sing Tung Teng	MG646307	Not	Not sequenced	Haifeng Gu

						sequenced	
--	--	--	--	--	--	-----------	--

* = single cells or cysts sequenced through single-cell PCR; Accession numbers in bold denote sequences from this study. ** = these cultures showed presence of 5 precingular plates and are considered aberrant. *** = sequence not used in phylogenies. NA = Not acknowledged.