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• Understanding trade-offs between yield
and environment is essential for SI.

• The Landscape Model aids the under-
standing of crop-soil-water interactions.

• Model validated against 50 years of data
from two long-term experiments.

• Model validated against spatially-
explicit data from the North Wyke
farm platform.

• The model simulated wheat yield, grain
N and grain P particularly well.
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We describe a model framework that simulates spatial and temporal interactions in agricultural landscapes and
that can be used to explore trade-offs between production and environment so helping to determine solutions to
the problems of sustainable food production. Here we focus on models of agricultural production, water move-
ment and nutrient flow in a landscape. We validate these models against data from two long-term experiments,
(the first a continuous wheat experiment and the other a permanent grass-land experiment) and an experiment
wherewater and nutrient flow aremeasured from isolated catchments. Themodel simulatedwheat yield (RMSE
20.3–28.6%), grain N (RMSE 21.3–42.5%) and P (RMSE 20.2–29% excluding the nil N plots), and total soil organic
carbon particularly well (RMSE 3.1−13.8%), the simulations of water flow were also reasonable (RMSE 180.36
and 226.02%). We illustrate the use of our model framework to explore trade-offs between production and nu-
trient losses.

© 2017 Rothamsted Research. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Increasingly, agricultural production is being compelled to look not
just at its externalities such as the environmental pollution or depletion
of natural resources but also at the provision of wider ecosystem ser-
vices such as biodiversity. Schemes to monitor or assess land for all of
cle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig 1. Representation of an environmental-economic production possibility frontier. The
blue diamonds are independent outcomes of management that optimises both yield and
environmental quality at the same time. A decision along this line is a matter for policy.
The orange squares within the envelope are inefficient in the sense that either
production or environmental quality could be improved without impacting the other.
This is the region for extension. Beyond the envelope is a zone where outcomes are
currently infeasible and this is the area which research addresses. An origin placed over
any point (for example the cross shown in the figure on the middle of the envelope),
facilitates the definition of the envelope algorithmically: if another point can be found in
the first quadrant (North East) then the first point in not on the envelope.
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these factors are prohibitively expensive and yet there is a need to ana-
lysemodern agricultural systems for the purposes of policy, planning or
management. Not surprisingly therefore, computer simulation models
have a role to play in filling the large gaps between what we need to
know and what is available from measurements.

Simulation models of agricultural systems abound, some focussing
on specific aspects such as soil organic matter dynamics (Coleman
et al., 1997), crop growth (Semenov and Stratonovitch, 2015), water
movement (Addiscott and Whitmore, 1991), emissions (Rolston et al.,
1984), competing organisms (Andrew and Storkey, 2017), and some in-
tegrating to agricultural management systems (Brisson et al., 2003;
Keating et al., 2003). Others focus on the natural systems, tracing biodi-
versity often quite specifically (Andam et al., 2008; Koh et al., 2010).
Some models, particularly agricultural ones, focus on field (Bell et al.,
2012; Parton et al., 1994) or farm scales (Del Prado et al., 2011). Biodi-
versity models often focus on larger scales and water management
models are naturally focussed on river basins or catchments
(Whitehead et al., 2014).

Many models simulate fields or regions, some simulate particular
fluxes, say water from land to rivers. It is rarer to find models that try
to integrate several of the impacts of farming in the landscape, and
those that do adopt a relatively empirical, data-driven approach
(Jackson et al., 2013; Tilman et al., 2001) that makes it difficult to ex-
plore the interactions between components of that landscape that
might be better managed with a more holistic overview. It is rarer still
to findmodels that make explicit spatial and temporal linkage between
adjacent fields and integrate all aspects of the managed farm environ-
ment up to the catchment level. Such amodelwould be useful to under-
stand the spatial interactions and impact of the natural (weeds, pest and
diseases) aswell asmanagement (irrigation, fertilizer and application of
pesticides) events on an agricultural landscape. Our aim is to develop a
spatially explicit model that can simulate the essential processes of soil,
water, crop growth and biodiversity for agricultural landscapes in the
UK. This model can then be used to understand the trade-off between
farm management practices on farm economy and the environment.
The ability to quantify such trade-offs is critical to our management of
the landscape and underpinsmany sustainability frameworks including
the three pillars of sustainability (environmental, economic and social),
the UN Sustainable Development goals which includes several targets
that relate to agricultural landscapes (Gil et al., 2017), and water-
energy-food nexus approaches that aim to consider the use of all of
these resources. While tradeoff models exist (e.g. see Sharps et al.,
2017) they usually operate at large scales, not accounting for the field
or farm scale at which land management decisions are often made.
These models are often focussed on land-use options within GIS-based
systems, operate on annual time-scales and can be focussed on policy.
Our approach, and ultimate aim, is to simulate interactions between
the multiple processes that take place in agricultural fields and the
farmed landscapewith a view to uncovering strategies for development
and improvement of agri-environmental systems, beyond the current
envelope (Fig. 1). By working on a daily time-step we can simulate the
processes and inform the decisions that someone who manages land
will have to take.

Here we report the first version of ourmodel that integrates agricul-
tural production,watermovement and nutrientflow in a landscape. The
model combines aspects of several published models [RothC (Coleman
and Jenkinson, 2014), LINTUL (Wolf, 2012), SUCROS (van Laar et al.,
1997), and Century (Parton et al., 1994)], but also includes novel factors
that have been implemented to capture potential improvements in
yield that result from management actions. These include coupling the
RothC model to include the dynamics of N and P and responses to
changes in bulk-density that result from changes in soil organic matter.
We evaluate themodel against data on crop growth andnutrient uptake
for cereals and for grass, and the integration in space of water and nutri-
ents leaving agricultural fields.We then illustrate how ourmodel can be
used to explore trade-offs between production and environment with a
scenario based on a wheat crop grown in conditions typical of arable
England.

2. Methodology

Our intention was to build a model system capable of exploring the
multiple interactions between components of a simple landscape and to
take into account both within and between field movement of compo-
nents such as water and nitrate. Nonetheless, because we wished to
build a system that can be used on a reasonably large landscape com-
prising many fields and boundaries, we based our system on simple
but adequate descriptions of the processes involved. Here we report
on interactions and differences between single or adjacent but joined
fields and focus our discussion on productivity and loss of water and ni-
trogen towater courses and the atmosphere. To do sowe describe an in-
tegrated model of crop, water and soil processes that runs on a daily
time step. We validate this using data from the Broadbalk and Park
Grass long-term experiments at Rothamsted Research, in Harpenden,
SE England, and spatial interactions are tested on data from themore re-
cently established NorthWyke Farm Platform, at Rothamsted Research,
near Okehampton, SW England (Orr et al., 2016).

2.1. Spatial structure

We impose a grid on the landscape where, dependant on size, each
field is represented by one or more grid cells. Soil properties are set in
each cell and initial values are given for bulk density, pH and soil
water. Within each cell we model crop growth, the dynamics of soil
water, total soil organic carbon (TOC), changes in bulk density and nu-
trient flows on a daily time step. In cases where fields are made up of
several cells, water and nutrients can move laterally between cells, as
well as vertically though the soil profile. This model structure allows
us to explore both temporal and spatial interactions. Cell edges can be
designated as ditches (into which water and nutrients may flow),
hedgerows or field margins.

Image of Fig 1
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2.2. Soil water

The soil water model uses a capacity based approach (Addiscott and
Whitmore, 1991; Van Ittersum et al., 2003; van Laar et al., 1997). The
soil is divided into three layers. This choice is a compromise between
capturing the heterogeneity of the soil profile (which would require
multiple layers in the simulation) and minimising complexity to enable
fast run-timeswhich are importantwhen couplingmodels with optimi-
sation algorithms over large spatial scales. In our study each layer was
initially set to 230mm. The capacity of each of the soil layers is calculat-
ed with van Genuchten (1980) soil water release curves determined
using the HYPRES pedo-transfer functions (Wösten et al., 1999). These
functions use texture, soil organic matter and bulk density to derive
the water release curves. For the topsoil, these release curves are up-
dated daily to take into account changes in bulk density, for example,
when farmyard manure (FYM) is added (see Section 2.6).

Infiltratingwater fills the soil layers to field capacity (−10 kPa), and
starting from the top layer, excess water drains to the layer below, with
water draining from layer 3 becoming drainage. In addition to percola-
tion, water is lost by runoff and evaporation from the soil surface, and
transpiration by the growing crop. The water available for crop uptake
at any time is equal to the quantity of water stored above wilting
point (−1500 kPa) in the rooted soil profile. A detailed description of
the soil water model can be found in van Laar et al. (1997), with our
modifications described in Section 2.7. The change in water content in
each layer is derived from the balance between inputs from precipita-
tion, and outputs from drainage, runoff, evaporation and transpiration.

Working at the water catchment scale Bell et al. (2007) developed a
simple algorithm for estimating the total surfacewater leaving a sloping
(i.e. not uniform in the vertical dimension) region. The storage capacity
(S) of high zones is reduced in relation to the topographic gradient ac-
cording to

S ¼ 1−
g

gmax

� �
Smax ð1Þ

where Smax is themaximumstorage capacity, g is the average gradient in
the cell and gmax is the upper limit on the gradient. By adopting this
strategy on a grid cell basis, we increase the flow of water out of each
cell compared to that if it were flat. Runoff moves from the highest
cell to the lowest by moving between cells with neighbouring bound-
aries. The proportion of runoff allocated in each direction is determined
by the relative magnitude of the downward slopes. Dissolved sub-
stances such as nitrate, move in proportion to the water.

2.3. Soil total organic carbon, nitrogen and phosphorus

The soil total organic carbon (TOC) model is based on the
Rothamsted carbon model, RothC, (Coleman and Jenkinson, 2014).
Soil total organic carbon is split into four active compartments and a
Table 1
The fertilizer and manure treatments applied annually to the Broadbalk experiment plots
used in the simulations.

Treatments

Plot Up to 1967 1968–1984 1985–2000 2001–2004 2005–2012

3 Nil Nil Nil Nil Nil
5 P K Na Mg P K Na Mg P K Mg K Mg K Mg
6 48 N P K Na Mg 48 N P K Na Mg 48 N P K Mg 48 N K Mg 48 N K Mg
7 96 N P K Na Mg 96 N P K Na Mg 96 N P K Mg 96 N K Mg 96 N K Mg
8 144 N P K NaMg 144 N P K NaMg 144 N P K Mg 144 N K Mg 144 N K Mg
9 48 N* P K Na Mg 192 N P K NaMg 192 N P K Mg 192 N K Mg 192 N K Mg
15 96 N P K Na Mg 144 N P K NaMg 240 N P K Mg 240 N K Mg 240 N K Mg
16 96 N* P K Na Mg 96 N P K Na Mg 288 N P K Mg 288 N K Mg 288 N K Mg
2.1 FYM since 1885 FYM 96 N FYM 96 N FYM 96 N FYM 144 N
2.2 FYM FYM FYM FYM FYM
small amount of inert organic matter (IOM). The four active compart-
ments are Decomposable PlantMaterial (DPM), Resistant PlantMaterial
(RPM), Microbial Biomass (BIO) and Humified Organic Matter (HUM).
Each compartment decomposes by a first-order process with its own
rate constant. The IOM compartment is resistant to decomposition. De-
composition of each of the four active pools is modified by rate modify-
ing factors for temperature, moisture and plant retainment. Full details
of the model can be found in Coleman and Jenkinson (2014).

The dynamics of the soil organic nitrogen (SON) and soil organic
phosphorus (SOP) are modelled in a similar way to the TOC dynamics,
both SON and SOP have the same pool structure as the active TOC
pools. To determine initial values for each TOC pool, the model is run
to equilibrium so that the modelled TOC matches the initial measured
TOC. The initial values of each of the SON and SOP pools are then deter-
mined using the TOC values, and the C:N and C:P ratios of each pool. The
C :NBio and C :NHum ratios are both fixed at 8.5 (Bradbury et al., 1993),
whereas C :NDPM and C :NRPM ratios vary over time depending on the
carbon inputs to soil from the crop or the addition of organic amend-
ments. The C :PBio and C :PHum ratios are fixed at 50.0 and 100.0 respec-
tively, like nitrogen the C :PDPM and C :PRPM ratios vary over time
depending on the carbon inputs to the soil from the crop or the addition
of organic amendments.

The N in pool i that is mineralised or immobilized is given by

Mi ¼
Δi

ρi
−

Bi

ρBio
−

Ui

ρHum
ð2Þ

where Δi is the change in pool i from day t to t+1, Bi is the amount of
pool i transformed to biomass from day t to t+1, Ui is the amount of
pool i transformed to humus from day t to t+1, ρi is the C:N ratio for
pool i, and ρBio and ρHum are the C:N ratios for the biomass and humus
pools respectively. The sum of Mi across the four pools gives the net
mineralisation or immobilization, if the sum ofMi is negative immobili-
zation occurs and mineral N is removed from the soil, if the sum of Mi

positive is mineralisation occurs and mineral N is added as NH4
+ to the

soil. If there is not enough soil mineral N (NO3
− andNH4

+) on a particular
day, then decomposition of TOC does not happen. If there is enough soil
mineral N, then N is removed from the NH4

+ pool in preference to NO3
−

pool.
The Pmineralisation or immobilization of each SOP pool is calculated

in a similar way to the mineralisation N, where in Eq. (2), ρi is the C:P
ratio for pool i, and ρBio and ρHum are the C:P ratios for the biomass
and humus pools respectively. See Section 2.5 for details on P
mineralisation.

2.4. Soil mineral nitrogen

In the model, soil mineral N consists of N in ammonium (NH4
+) and

nitrate (NO3
−). Inputs of N through atmospheric deposition

(NAtDep) were set to 35 kg N yr−1 (Anon, 1998) for the UK in 1966, de-
creasing linearly to 20 kg N yr−1 in 2012 (pers. comm. Goulding). Like
Sundial (Anon, 1998) it was distributed evenly throughout the year as
nitrate. Nitrogen applied as fertilizer enters the NH4

+ or NO3
− pools de-

pending on the type of fertilizer applied. When organic amendments
are added, N enters the soil inorganic nitrogen pools by mineralisation
(see Section 2.3).

Rainfall runoff mixes in the model with the water and minerals in
the top 20 mm of the soil profile. The amount of mineral nitrogen
(NH4

+ and NO3
−) in runoff from the top 20 mm of soil (NRun) is given

by Sharpley (1985)

NRun ¼ NSurf WRun

WRun þWSurf
ð3Þ

where the surfacewater (WSurf) is given by difference in the volumetric
water content at saturation and air dried, multiplied by 20 to give the
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Fig. 2. Example of how a Pareto front is identified from a number of points simulated by
the model with the aim to improve multiple objectives (1 & 2) simultaneously. Point B
is selected over point A because B scores better for both objectives. It can be seen that
neither of points B or C dominates the other, because point B does better at objective 1
whilst point C improves on objective 2. Consequently, both are retained. The Pareto
front (line) can be identified by connecting together all of the non-dominated points.
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water (mm) in the top 20 mm, WRun is the water runoff (mm) and the
surface N (NSurf) is given by

NSurf ¼
20
δ 1ð Þ NNH4 þ NNO3ð Þ ð4Þ

where δ(1) is the depth of the first layer.
Any nitrate in the soil can potentially move down the soil profile

with the water. The concentration of NO3
− in layer l, (γNO3(l)) is given

by:

γNO3 lð Þ ¼ NNO3 lð Þ
W lð Þ ð5Þ

where NNO3(l) is the NO3
− (kg N ha−1) in layer l, l=1…3, and W(l) is

the water content of layer l.
The amount of NO3

− (kg N d−1) that moves down each layer l is
given by

FNO3 lð Þ ¼ max 0 min NNO3 l−1ð ÞγNO3 l−1ð ÞFW lð Þf gð Þ ð6Þ

where FW(l) is thewater that flows from layer l to layer l+1. The nitrate
that moves down from layer 3, FNO3(3), is N leached out of the profile.

Nitrification is an aerobic process whereby the NH4
+in the soil is

oxidised to form NO3
− and N2O. Our models are based on Milne et al.

(2005) and Parton et al. (2001). The rate of nitrification depends on
the soil properties, such as water filled pore space θ/θSat, soil tempera-
ture (T), soil moisture (M), and pH (SpH). In the model the amount of
N2O (kg N ha−1 day−1) produced from a given amount of NH4

+

(NNH4 (l)) in layer l is given by

NN2O lð Þ ¼ kN2O NNH4 lð ÞSpH lð Þ 1−
θ

θSat lð Þ
� �

ð7Þ

where kN2O is a constant that takes the value 0.0001. The amount of ni-
trate (kg N ha−1 day−1) produced from soil NH4

+ is given by

NNO3 lð Þ ¼ max NNH4 lð Þ−NN2O lð Þ−Nminð Þ 1−e−k
� �

f T lð Þð Þg M lð Þð Þ0
h i

ð8Þ

where Nmin is the minimum amount of NH4
+ that must be in the soil for

nitrification to occur (we assumeNmin=0.05), k is a constant for nitrifi-
cation which is set at 0.15, and f(T(l)) and g(M(l)) are functions that
describe the effect respectively of temperature and moisture on nitrifi-
cation, for details see Godwin and Allan (1991).

Denitrification is an anaerobic processwhereby theNO3
− in the soil is

reduced to nitrous oxide and nitrogen. The amounts of these gases pro-
duced depends on the soil conditions, most notably the nitrate in the
soil (NNO3, kg ha−1), the water filled pore space (θ/θSat), and soil tem-
perature (T,°C), (Del Grosso et al., 2000; Milne et al., 2011; Nömmik,
1956). We assumed the following simple model to describe N2O emis-
sions (kg N ha−1 day−1)

N2O lð Þ ¼ aNNO3 lð Þ f θ=θSat lð Þð Þg T lð Þð Þ ð9Þ

where a is a constant. We took the functional forms of f(θ/θSat) and
g(T(l)) from the literature and then fitted the model parameters to data
from field experiments from around the UK where nitrate, soil tempera-
ture, water filled pore space, and N2O emissions (kg N ha−1 day−1) were
measured. Similar to other empirical or semi-empirical models, these pa-
rameter values canonly be assumed tohold for the range of conditions for
which theywere fitted, and outside of this range further validationwould
be required. Nitrous oxide is linearly related to nitrate (NNO3) and we
used the function defined by Lark andMilne (2016) to describe the effect
of water-filled-pore space on N2O emissions. That is

f θ=θSat lð Þð Þ ¼ exp −0:6151 log
θ=θSat lð Þ

1−θ=θSat lð Þ
� �

−1:19
� �2

" #
ð10Þ

where θ/θSat(l) is the water filled pore space in each layer l. Data from
Nömmik (1956) suggested that the relationship between temperature
and N2O emissions should follow a normal distribution with mean
23.65 and standard deviation 5.53. However, data from the Defra project
AC0116 (http://www.environmentdata.org/archive/ghgno:676) which
we used to relate average temperature to emissions, did not conform to
the standard deviation given by Nömmik (1956). Therefore, we assumed
the same mean but fitted the standard deviation to our field data. Our
fitted model was

N2O lð Þ ¼ 0:000735 NNO3 lð Þ f θ=θSat lð Þð Þ exp −0:00045 T lð Þ−23:65ð Þ2
h i

ð11Þ

whichwe apply in only the top two layers of ourmodel as there is not suf-
ficient biological activity for denitrification to occur in the bottom soil
layer.

When water filled pore space increases, the soil becomes more an-
aerobic and so the amount of N2 produced increases. A similar relation-
ship holds for temperature (Nömmik, 1956). We used the following
model and fitted the parameters so that our model gave proportions
of N2O to N2 similar to those observed in Colbourn (1988)

N2 ¼ 0:0052 NNO3

1þ e−0:14975 Tþ4:0ð Þð Þ 1þ e−12:0 θ=θSat−0:62ð Þð Þ ð12Þ

The nitrogen taken up by the crop each day is taken from the nitrate
pool with an upper limit of 6 kg N ha−1 day−1 (Semenov et al., 2007).

2.5. Soil mineral phosphorus

In themodel, mineral phosphorus is split into two pools: available P
(which includes phosphorus in soil solution and loosely adsorbed to the
clay surface) and non-available P. Eighty percent of the fertilizer P en-
ters the available P pool and the remaining 20% enters the non-
available P pool (Wolf et al., 1987).

Similar to the N model, a proportion of the available P contained in
the top 20 mm of soil can be lost through runoff

PRun ¼ PSurf WRun

WRun þWSurf
ð13Þ

http://www.environmentdata.org/archive/ghgno:676
Image of Fig. 2


Fig. 3.Measured (black lines) andmodelled (red dashed lines) grain yields for tenplots from the Broadbalk long-termwheat experiment, 1968–2012, continuouswheat (Sections 1 and9).
The measured values were averaged over Sections 1 and 9 (see 2.9.1).
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where the surface P (PSurf) is given by

PSurf ¼
20
δ 1ð Þ PM ð14Þ

where PM is the mobile (dissolved and particulate) P which we assume
to be 10% of PAV. We set solution P to 1% of the available P (pers. comm.
Paul Poulton). This can potentially be leached when water flows down
the profile.

The soil organic P that is mineralised is added to the available P pool.
Mineral P may also be immobilized, in which case it is taken from the
available P pool first and then from the non-available P pool.

Available P (PAv) is converted to non-available P (PNonAv) by revers-
ible processes which reduce its extractability. In the model, the P
content for each soil layer (available and non-available P),whichwe de-
fine PTot, is calculated in mg kg−1 soil. The release to fixation variable,
V(l), for layer l is given by

V lð Þ ¼
αb PTot lð Þ þ βb

PTot lð Þ ; PTot lð ÞN βa−βb

αb−αa
αa PTot lð Þ þ βa

PTot lð Þ ; PTot lð Þ≤ βa−βb

αb−αa

8>><
>>: ð15Þ

wereαb andβb are the slope and intercept, of value 0.113 and−49.3 re-
spectively, for the linear relationship between PAv and PTot. For small
values of PTot, an alternative set of coefficients αa and βa, of value
0.0201 and −5.1, are used (see Supplementary Fig. 1). The ratio of

Image of Fig. 3


Table 2
Summary statistics for measured and simulated grain yields (at 85% drymatter), 19,68-2,012
for the Broadbalk wheat experiment. The measured values for yield in each year were aver-
aged over Sections 1 and 9 (see 2.9.1).

Plot
no.

Measured Simulated

Mean t
ha−1

Standard
deviation/t
ha−1

Mean t
ha−1

Standard
deviation/t
ha−1

RMSE
(%)

Correlation

3 1.16 0.5 1.26 0.22 42.56 0.28
5 1.37 0.42 1.27 0.22 33.41 0.16
6 3.4 0.67 2.86 0.51 28.61 0.07
7 4.99 1.02 4.62 0.7 24.03 0.16
8 5.71 1.18 6 1.01 24.27 0.25
9 6.23 1.06 6.66 1.32 23.01 0.36
15 6.32 1.28 6.58 1.37 23.29 0.4
16 6.34 1.41 6.12 1.64 20.88 0.64
2.1 7.16 1.35 6.75 1.41 20.28 0.49
2.2 5.67 1.12 5.49 1.13 22.84 0.35
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release to fixation is given by

RRF lð Þ ¼ V lð Þ
1:0−V lð Þ ð16Þ

The transfer of P from the non-available to the available pool PNA→Av,
and the reverse transfer PAv→NA in layer l on day t+1 are given by

PAV→NA ¼ λ PAv l; tð Þ f pH SpH lð Þ� 	 ð17Þ

PNA→Av ¼ λ PNonAv l; Tð ÞRRF lð Þ f pH SpH lð Þ� 	 ð18Þ

and so

PNonAv l; t þ 1ð Þ ¼ PNonAv l; tð Þ þ PAv→NA−PNA→Av ð19Þ

PAv l; t þ 1ð Þ ¼ PAv l; tð Þ−PAv→NA þ PNA→Av ð20Þ

The constant λ determines the rate of re-equilibration between PAv
and PNonAv following the addition of mineral P, and is set to 0.01 giving
a half-life of approximately 65 days. The values of coefficients,α,β and λ
were established for a silty clay loam soil at Rothamsted. The rate mod-
ifying function fpH linearly increases from0.0 to 1.0 as pH increases from
0 to 7, and then linearly decreases back to zero as pH increases from 7 to
14. The P required by the crop is taken from the available P pool, up to a
limit of 2 kg P ha−1 day−1.

2.6. Bulk density

To take into account changes in depth caused by changes in bulk
density as a result of, for example, the addition of FYM, we used the
Rawls (1983) nomogram to estimate bulk density in relation to sand,
clay and organic carbon contents of soil. The depth of the topsoil ismod-
ified to reflect the change in bulk density (changes in depth and bulk
density only occur in the top soil). Because of the changes in depth
and bulk density in the top soil, we modify water properties, such as
the water content at saturation, field capacity, and wilting point, daily
(see Section 2.2). Modelling bulk density dynamically in this way has
been described previously by Whitmore et al. (2011).

2.7. Crop model

Our crop model is a generic plant growth model, which uses a light
use efficiency (LUE, g dry matter MJ−1) based approach to calculate
the biomass production (Monteith, 1990; Monteith and Moss, 1977).
The rate of biomass (Bcrop) produced each day is given by

d Bcrop

dt
¼ Q ε Wrf NNI PNI ð21Þ
where Q is the intercepted PAR (MJ PAR m−2 surface area) which de-
pends on the solar radiation and canopy leaf area, ε is the crop specific
LUE, which for grass, changes with development stage see
Schapendonk et al. (1998), Wrf is the transpiration reduction factor,
NNI and PNI are the nitrogen and phosphorus nutrition indices, which
range from zero to one. For grass, LUE is reduced for higher radiation
levels (Schapendonk et al., 1998). In our model LUE is reduced by a fac-
tor RLUEwhich decreases from1.0 to 0.33when radiation increases from
10 to 40 MJ m−2 d−1. Schapendonk et al. (1998) also modified LUE, by
the temperature factor TLUE, which in this study increases linearly from
0.0 to 1 between 6.0 and 9.0 °C. The biomass formed is partitioned be-
tween roots, stem, leaves and storage organs based on the development
stage (DVS) (Boons-Prins et al., 1993; Wolf, 2012).

The transpiration reduction factor (Wrf) is defined as the ratio of ac-
tual transpiration (mm day−1) to potential transpiration (mm day−1)
and is calculated

Wrf ¼
X3

l¼1
ATran lð Þ

PTran

ð22Þ

where PTran is the daily potential transpiration which is calculated as in
Lintel (Wolf, 2012).

The amount of the actual transpiration coming out of layer (l) is
given by

ATran lð Þ ¼ PTran lð ÞWS lð Þ2 FRL lð Þ
WS 1ð Þ FRL 1ð Þ þWS 2ð Þ FRL 2ð Þ þWS 3ð Þ FRL 3ð Þ ð23Þ

Here FRL is the fraction of root in each layer and WS is the impact of
water content on the water stress function. This follows the approach
of Li et al. (2001). This impact of water content is based on the method
described in Feddes et al. (1976) given by

WS ¼

θs−θ
θs−θa

; for θNθa
1 for θa≥θNθd

θ−θw
θd−θw

; for θd≥θNθw

8>>><
>>>:

ð24Þ

where θ is the volumetric water content, θs is the water content at satu-
ration, θa is the water content at −5 kPa, θd is the water content at
−40 kPa, and θw is the water content at wilting point (−1500 kPa).
Water stress affects grass less than arable crops (per comms J. Storkey).
In simulations, when the soil is saturated grass does not suffer water
stress. When the volumetric water content falls below θd = −40 kPa
the water stress factor WS decreases linearly between θd and θw to 0.4.

The proportion of root (FRL) in each layer l is given by

FRL lð Þ ¼ RLen lð Þ
RLen 1ð Þ þ RLen 2ð Þ þ RLen 3ð Þ ð25Þ

where RLen is the root length per unit area (mm mm−2).
The root depth (droot) increases by 12.0 mm per day to a maximum

root depth which depends on the crop being modelled. The root length
per unit area within each layer, calculated according to an adaptation of
the method of Gerwitz and Page (1974), is given by

RLen lð Þ ¼ −
R0

a e−a Z2 lð Þ−e−a Z1 lð Þ� 	 ð26Þ

where R0 is the root length density at the soil surface (mm mm−3) the
value of which is non-essential to themodel as it cancels out in Eq. (25),
z1(l) and z2(l) are the upper and lower horizon depth (mm) of layer l,
and a is given by

a ¼ −
ln 1−Frð Þ

droot
ð27Þ



Fig. 4. Measured (black lines) and modelled (red dashed lines) grain N content for ten plots from the Broadbalk long-term wheat experiment, 1968–2012, continuous wheat. The
measured values were from Section 1 only (see 2.9.1).
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where Fr is the fraction (arbitrarily defined as 0.98) of the root length
that is present above droot.

The uptake of plant nutrient (N and P) is determined by the crop de-
mand and the supply of these nutrients by soil. The total nutrient de-
mand of the crop is the sum of the nutrient demand from its
individual organs (i.e. roots, stems and leaves excluding storage organs,
for which nutrient demand is met by translocation from the other or-
gans). Nutrient demand of the individual organs is calculated as the dif-
ference between maximum and actual organ nutrient contents. The
maximum nutrient content is defined as a function of canopy develop-
ment stage. The total nutrient uptake of the crop takes place before an-
thesis. Sub-optimal nutrient availability in the soil leads to nutrient
stress in the crop. A detailed description of crop nitrogen dynamics is re-
ported by Shibu et al. (2010) and P dynamics follows N in a similar way.
Nitrogen stress in the plant growth model is expressed as nitrogen
nutrition index (NNI) and is calculated by:

NNI ¼ max 0 min 1
Nleaf þ Nstem−NRes Ωleaf þΩstemð Þ

ΩleafNMaxPropleaf þΩstemNMaxPropstem−NRes Ωleaf þΩstemð Þ
� �
 �

ð28Þ

where Nleaf and Nstem are the N in the leaf and stem respectively, Ωleaf

and Ωstem are the weights of the leaf and stem respectively, NMaxPropleaf

and NMaxPropstem are the maximum proportion of N in the leaf and stem
respectively. The residual N (NRes) is the fraction of N which is part of
the cell structure and was fixed at 0.004 for wheat (Wolf, 2012) and
0.01 for grass (Bouman et al., 1996). For wheat, the maximum N in

Image of Fig. 4


Fig. 5.Measured (black lines) and modelled (red dashed lines) grain P content for ten plots from the Broadbalk long-term wheat experiment (1968–1975 and 1986–2011), continuous
wheat. The measured values were from Section 1 only (see 2.9.1).
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the leaf is given by:

NMaxPropleaf ¼ 0:046 exp −1:7Dð Þ þ 0:014 ð29Þ

where D is the development stage of the crop which is calculated using
thermal timemodified by a vernalisation factor and the photosensitivity
of the crop (see Wolf, 2012, and references therein). For grass we set
NMaxPropleaf to 0.0425. The maximum N in the stem is given by
NMaxPropStem=0.5 NMaxPropLeaf, (see Wolf, 2012).

The phosphorus nutrition index (PNI) is calculated by:

PNI ¼ max 0 min 1
Pleaf þ Pstem− Ωleaf PResLeaf þΩstemPResStemð Þ

Ωleaf PMaxPropleaf þΩstemPMaxPropstem−PRes Ωleaf PResLeaf þΩstemPResStemð Þ
� �
 �

ð30Þ
where Pleaf and PStem are the P in the leaf and stem respectively, and
PMaxPropleaf and PMaxPropstem are the maximum proportion of P in the
leaf and stem respectively. For wheat the residual P in the leaf is
PResLeaf=0.0003 and in the stem PResStem=0.00018. For grass both
PResLeaf and PResStem are set to 0.001 (Wolf et al., 1987). For wheat the
maximum P in the leaf reduces with development stage. From develop-
ment stages 0 to 0.7 it reduces linearly from 0.0066 to 0.0036 and then
from 0.0036 to 0.0009 from development stage 0.7 to 1, after which it
holds the value of 0.0009. For grass the maximum P in the leaf is fixed
at 0.0035 (Bouman et al., 1996).

Processes leading to the aboveground litter formation and carbon
turnover below ground are similar for both crops and grass but their
rates are different. We assume that 50% of the dead leaves become litter
on a daily basis and the remainder is left on the stem. The rate at which

Image of Fig. 5


Fig. 6.Measured (black circles) andmodelled (red dashed lines) soil total organic carbon (TOC) for ten plots from the Broadbalk long-termwheat experiment. Themeasured valueswere
averaged over Sections 1 and 9.
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the roots die is a function of growth stage. In the case of crops, the root
death happens towards the latter part of the growing season (DVS N 1.5)
at a rate of 0.02 per day. In the case of grass, once the root system has
been established (3–6months after sowing, DVS=0.01), root death be-
comes continuous at a rate of 0.01 per day. The root exudates are con-
sidered to be a part of root death, so are not modelled separately. The
leaf death rate is a function of heat stress, nitrogen stress and shading
as described in Schapendonk et al. (1998). All C, N, and P from dead
roots and litter is returned to the soil.

The grass model differs somewhat from the crop model as grass has
indeterminate growth and is not allowed to flower (so always has a DVS
b1.0) as it can be cut or grazed in the model (unlike the crop which
completes its life cycle in a given growing season). Grass is a perennial
crop that grows for one or more seasons before being reseeded. Cut
grass and grazed grass is removed from the modelled system. The
amount removed is such that the remaining biomass cannot fall below
50 g m−2. Livestock deposit nutrients into the system as manure.
When animals are on the field, we set the deposition of C and N for
each animal type based on data from Cottrill and Smith (2007), for
each beef animal this was 4.03 kg C of manure per day containing
0.22 kg N, for each dairy cow this was 6.45 kg C per day containing
0.35 kg N, and for each sheep this was 0.45 kg C per day as fresh deposit,
containing 0.02 kg N per day. These rates are multiplied by the stocking
rate to give the rate of deposit per hectare.

Image of Fig. 6


Fig. 7. Measured for three replicates (black dashed lines) and modelled (red line)
volumetric water content in soil from plot 8 of the Broadbalk experiment.
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2.8. Data requirements

For each layer of the soil, the model requires initial values for soil
depth, clay, silt, TOC, bulk density, available P, non-available P, soil
NH4, soil NO3, soil pH. Initial values for elevation and latitude are also
needed. The model runs with a daily time-step and so for each simulat-
ed day weather data (minimum and maximum temperature, rainfall,
radiation, vapour pressure andwindspeed) are needed. For each season
and where relevant to the crop, sowing dates, fertilizer application
timing, type and dose and dates when the grass is cut are required.

2.9. Case studies

To test ourmodel, we used data from two long-term agricultural ex-
periments and one more recent grass-livestock experiment. These
were: The Broadbalk wheat experiment, and the Park Grass permanent
grassland experiment at Rothamsted Research, Hertfordshire, UK (51.8°
N, 0.37° W), and the more recent North Wyke farm platform at
Rothamsted Research, near Okehampton, UK (50.77° N, 3.92° W),
which has spatially integrated data from livestock-bearing grassland
in a sloping terrain. We used a suite of statistical metrics (including
the mean, standard deviation, root mean square error, and sample cor-
relation coefficient, r) to quantify the performance of our model (see
Smith et al., 1997).

2.9.1. Broadbalk
The Broadbalk wheat experiment has been running since 1843, and

wheat has been sown and harvested on all or part of the experiment
every year since then. The original aim of the experiment was to test
the effects of various combinations of inorganic fertilizers and organic
manures on the yield of winter wheat. The experiment was divided
into different strips given a range of fertilizer applications, which ex-
tended thewhole length of the field. In 1926 the experiment was divid-
ed into five Sections, crossing the fertilizer treatments at right angles,
where each section was bare fallowed one year in five to control
weeds. In 1968 the experiment was further divided into 10 Sections,
so that the yield of wheat grown continuously could be compared
with that grown in rotation after a two-year break. The plots receive
management consistent with standard practice for the time. The soil is
clay loam to silty clay loam, predominately Batcombe series (Avery
and Catt, 1995), FAO classification: Chromic Luvisol (or Alisol), U.S.
Soil Taxonomy: Aquic (or Typic) Paleudalf. The site is thought to have
been in arable cropping formany centuries before the start of the exper-
iment. Further details are available fromhttp://www.era.rothamsted.ac.
uk/Broadbalk

The plots from the continuouswheat sections (Sections 1 and 9), se-
lected for this study, receive a range of fertilizer and FYM applications
(see Table 1). Wheat has been grown every year on these Sections,
since 1966. Modern, short-strawed high yielding varieties were intro-
duced in the 1967–1968 season and it is from this date that we test
the model. Most of the data are available from the electronic
Rothamsted Archive (e-RA http://www.era.rothamsted.ac.uk). Periodic
measurements of TOC were made on all plots (Watts et al., 2006; Pers.
comm. P. Poulton for later data), measurements of volumetric water
content on plot 8 in 2007 (Pers. Comm, C. Watts) and measurements
and estimates of N leaching were made between 1990 and 1998
(Goulding et al., 2000). Grain N was measured 1968–2012, and grain P
from 1968 to 2011 (except 1976–1985), Section 1 only.

The values of N are in kg N ha−1, applied as ammonium sulphate
1843–1967, as calcium ammonium nitrate between 1968 and 1985,
and as ammonium nitrate thereafter. Treatments with * were applied
as sodium nitrate. Farmyard manure (FYM) was applied at 35 t ha−1

fresh weight, and contains approximately 250 kg N ha−1. Other ele-
ments were applied at 35 kg P ha−1, 90 kg K ha−1, 16 kg Na ha−1

until 1973 and 12 kg Mg ha−1 respectively. P has not been applied
since 2001, due to high levels of plant available P in the soil. For more
details see http://www.era.rothamsted.ac.uk/Broadbalk

We ran themodel to simulate the plots listed in Table 1 usingweath-
er data from the Rothamstedmeteorological station from 1966 to 2012.
Comparisons were made between measured and simulated values of
crop yield, content of N and P in the grain, TOC, volumetric water con-
tent and nitrate leaching.

2.9.2. Park Grass
The Park Grass experiment is the oldest experiment on permanent

grassland in theworld. Started by Lawes and Gilbert in 1856, its original
purposewas to investigateways of improving the yield of hay by the ap-
plication of inorganic fertilizers and organic manure.Within three years
it became clear that these treatments were having a dramatic effect on
the species composition of what had been a uniform sward. The con-
tinuing effects of the original treatments on species diversity and on
soil function, togetherwith later tests of liming and interactionswith at-
mospheric inputs and climate change (Storkey et al., 2015), has meant
that Park Grass has become increasingly important to ecologists, envi-
ronmentalists and soil scientists. The soil is silty clay loam, predomi-
nately Hook series, with areas more typical of the Batcombe series
(Avery and Catt, 1995), FAO Classification: Chromic Luvisol (or Alisol),
U.S. Soil Taxonomy: Aquic (or Typic) Paleudalf. The site is known to
have been in permanent pasture for at least 100 years before the start
of the experiment. For further details see http://www.era.rothamsted.
ac.uk/Park

The plots are cut in mid-June, and made into hay. A second cut is
usually taken in the autumn, except in a few years, when there was in-
sufficient herbage to sample. Since 1960, yields have been estimated
from strips cut with a forage harvester. The remainder of the plot is
still mown and made into hay, continuing earlier management. For
the second cut, the whole of each plot is cut with a forage harvester.
The experiment is never cultivated, and the site was in permanent
grassland for at least 100 years before the experiment began. Further
details are available from http://www.era.rothamsted.ac.uk/Park

Herewe simulated two plots, Plot 3a and 14/2a, with contrasting fer-
tilizer treatments. Plot 3a has received no inorganic fertilizer or manure
since 1856. Plot 14/2a has received 96 kgNha−1 in the spring, and 35 kg

http://www.era.rothamsted.ac.uk/Broadbalk
http://www.era.rothamsted.ac.uk/Broadbalk
http://www.era.rothamsted.ac.uk
http://www.era.rothamsted.ac.uk/Broadbalk
http://www.era.rothamsted.ac.uk/Park
http://www.era.rothamsted.ac.uk/Park
http://www.era.rothamsted.ac.uk/Park
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Table 3
Summary statistics for measured and simulated grain N content, 1968–2012, for the
Broadbalk wheat experiment. The measured values for grain N were from Section 1 only
(see 2.9.1).

Plot
no.

Measured Simulated

Mean
kg N
ha−1

Standard
deviation/
kg N ha−1

Mean
kg N
ha−1

Standard
deviation/
kg N ha−1

RMSE
(%)

Correlation

3 16.33 7.23 19.76 3.1 42.54 0.57
5 18.48 6.36 20.07 3.15 31.58 0.47
6 46 9.12 47.69 5.79 23.42 0.03
7 76.69 16.21 80.44 9.03 23.58 0.11
8 99.03 21.31 110.25 15.84 25.44 0.29
9 117.91 20.91 126.27 23.92 23.32 0.32
15 122.99 28.03 124.05 25.96 25.17 0.35
16 121.34 37.12 113.62 32.82 22.98 0.71
2.1 128.08 23.56 129.28 27.52 21.27 0.44
2.2 86.83 18.58 98.09 17.27 27.04 0.34

Table 5
Summary statistics for measured and simulated total soil organic carbon (TOC), measured
between 1967 and 2012 for the Broadbalk wheat experiment. The measured values for
TOC were averaged over Sections 1 and 9 (see 2.9.1).

Plot
no.

Measured Simulated

Mean
t C
ha−1

Standard
deviation/
t C ha−1

Mean
t C
ha−1

Standard
deviation/
t C ha−1

RMSE
(%)

Correlation

3 22.95 1.37 21.01 1.6 11.51 0.28
5 24.84 1.05 21.78 1.76 13.83 0.47
6 27.96 0.88 26.82 0.84 6.07 −0.08
7 29.57 0.83 30.39 0.3 3.88 0.24
8 29.73 1.12 31.69 0.53 7.88 −0.1
9 29.97 1.47 30.36 1.18 3.11 0.82
15 29.45 1.84 29.74 1.33 4.42 0.72
16 30.75 1.96 30.55 1.06 4.3 0.78
2.1 68.9 4.76 68.97 2.61 5.46 0.62
2.2 75.18 3.27 72.36 1.06 5.61 0.28
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P in the autumn each year since 1858, plus K, Na and Mg. In 1965 the
plots were divided into four subplots, given different amounts of chalk
to maintain soil at pHs of 7, 6 and 5 (sub-plots a, b and c, respectively).
The fourth sub plot (d) receives no chalk. We have selected sub-plot ‘a’
for this simulation, with a pH of 7.We use yield data from 1966 to 2012,
with two cuts each year except in 2003, when no second cut was taken,
with weather data from the Rothamsted meteorological station.

We chose Plot 14/2a over the other N fertilizer plots because N is ap-
plied as sodium nitrate, whereas in most other plots N is applied as am-
monium sulphate, which has an acidifying effect on the soil and so a
dramatic effect on species composition and the decomposition of soil
organic matter (see http://www.era.rothamsted.ac.uk/Park).

2.9.3. The North Wyke Farm Platform
The NorthWyke Farm Platform, near Okehampton, SWEnglandwas

established as a UK National Capability for collaborative research, train-
ing and knowledge exchange in agro-environmental sciences related to
beef and sheep production in lowland grasslands (Orr et al., 2016). The
soils on the farm platform are predominately Halstow series, (Pelo-
stagnogley soils, Avery, 1980), FAO Classification: Stagni-vertic
cambisol, U.S. Soil Taxonomy: Typic haplaquept. For more details see
Harrod and Hogan (2008). A system based on permanent pasture was
implemented on three 21-ha farmlets to obtain baseline data on hydrol-
ogy, nutrient cycling and productivity for two years. Since then, two of
the farmlets have been modified by either (i) planned reseeding with
grasses that have been bred for enhanced sugar content or deep-
rooting traits or (ii) sowing grass and legumemixtures to reduce nitro-
gen fertilizer inputs. The third farmlet continued under permanent pas-
ture. The quantities of nutrients that enter, cycle within and leave the
farmlets are recorded using sensor technologies alongside more
Table 4
Summary statistics formeasured and simulated P in the grain, 1968–1975 and 1986–2011
for the Broadbalk wheat experiment. Themeasured values for grain Pwere from Section 1
only (see 2.9.1).

Plot
no.

Measured Simulated

Mean
kg P
ha−1

Standard
deviation/
kg P ha−1

Mean
kg P
ha−1

Standard
deviation/
kg P ha−1

RMSE
(%)

Correlation

3 3.04 1.49 5.36 0.43 89.47 0.29
5 4.05 1.47 5.4 0.43 48.33 0.26
6 9.89 2.23 10.35 0.86 22.5 0.26
7 14.11 2.89 14.58 1.66 20.73 0.29
8 15.38 3.85 17.31 2.38 29.01 0.23
9 16.49 3.59 18.64 3.06 27.8 0.26
15 17.47 4.73 18.77 3.27 28.34 0.33
16 17.33 4.3 18.42 3.57 25.47 0.42
2.1 21.49 4.09 19.36 3.26 20.42 0.47
2.2 17.14 3.57 15.8 2.5 20.24 0.49
traditional field studymethods. Here we simulated thewater and nutri-
ent flows from October 2012 to 25th December 2013 from catchment 4
(Golden Rove) and catchment 5 (Orchard Dean), two of the un-
modified permanent grassland catchments, that had contrasting topol-
ogies. The North Wyke data that we used for this study are available
from http://www.rothamsted.ac.uk/farmplatform.

2.10. Trade offs

We coupled the simulationmodelwith an optimisation algorithm to
determine Pareto optimal fronts betweenmultiple objectives defined in
terms of outputs from the model. The optimised Pareto fronts describe
the trade-offs between objective variables such as yield and nitrate
leaching. To illustrate how these can be identified, we used the fertilizer
application time and amount as twomanagement variables that the op-
timisation algorithm could vary in order to affect three objectives: the
yield of a wheat crop, nitrate leaching and N2O emissions. Simulations
used the soil properties and weather data from plot 9 of the Broadbalk
experiment for the years 1968–1978. For this period the mean mea-
sured yield was 5.4 t ha−1 at 85% dry matter.

Initially the algorithm, which combines non-dominated sorting
(Deb et al., 2002) with differential evolution (Storn and Price, 1997),
randomly selects a number of possible management variables, imple-
ments these management options in the simulation model and records
the effect on each of the multiple objectives. Non-dominated sorting
then identifies the management options that result in the ‘best’ objec-
tives, i.e. those that are non-dominated. A point is said to be dominated
by another if it isworse for every single objective. For example, ifwe aim
tomaximise two objectives, point A (Fig. 2) is dominated by point B be-
cause the value of both objectives is greater at B than A. Points B and C,
Table 6
Summary statistics for measured and simulated nitrate leached (kg N ha−1 y−1) between
1990 and 1998, Broadbalk wheat experiment. Measurements are from Section 9 only.

Plot
no.

Measured Simulated

Mean
kg N
ha−1 y−1

Standard
deviation/
kg N ha−1

y−1

Mean
kg N
ha−1 y−1

Standard
deviation/
kg N ha−1

y−1

RMSE
(%)

Correlation

3 13.00 8.51 11.94 5.99 33.29 0.85
5 11.71 8.92 12.86 6.21 58.56 0.60
6 11.88 9.76 18.24 7.38 111.01 −0.02
7 15.00 10.38 20.68 7.01 81.13 0.17
8 22.00 16.55 22.73 6.47 65.70 0.36
9 30.00 22.44 32.74 12.83 57.82 0.58
15 42.38 33.31 53.57 17.51 79.79 0.36
16 47.57 47.02 77.51 22.69 107.32 0.23
2.1 76.86 36.19 130.33 50.46 85.84 0.38
2.2 59.00 50.10 105.98 37.58 103.82 0.45

http://www.era.rothamsted.ac.uk/Park
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Table 7
Summary statistics for measured and simulated yield 1966–2012, Park Grass experiment (47 years, n = 93).

Plot no. Measured Simulated

Mean
t ha−1

Standard deviation/
t ha−1

Mean
t ha−1

Standard deviation/
t ha−1

RMSE (%) Correlation

3a 1.61 0.78 1.79 0.43 49.91 0.28
14/2a 3.32 1.67 2.91 1.24 34.35 0.77
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however, are both non-dominated with respect to one another because
whilst objective 1 is higher for B, objective 2 is higher for C. The non-
dominated sorting algorithmperforms a series of pairwise comparisons
in order to identify all of the management options that lead to non-
dominated sets of objectives. The differential evolution algorithm then
combines aspects of the management options that led to non-
dominated objectives to identify new management options that could
potentially perform even better. The process is iterated in directions
that the differential evolution algorithm suggests will be an improve-
ment, until the results converge and produce a similar Pareto front
with each iteration.
3. Results

3.1. Broadbalk

The simulated and measured grain yields for the plots listed in
Table 1 are shown in Fig. 3. Themodel captures the differences between
the plots well and this is quantified by the overall correlation between
modelled and measured (Pearson correlation, r=0.86). The plot
means for themodelled and measured yields are similar, as are the var-
iances, although the variance for the modelled yield in plots with little
fertilizer N applied are smaller than the observed (Table 2). The model
reflects the year-to-year fluctuations in yield, although notably under-
predicts the 1995 yield from the plots with larger N applications (9,
15, 16, 2.1 and 2.2).

The model replicates the plot-to-plot and year-to-year variation in
grain N, grain P and TOC (see Figs. 4, 5 and 6, and Tables 3, 4 and 5), al-
though we note that year-to-year variation in TOC is minimal. The cor-
relations across all plots betweenmodelled andmeasured grain N, grain
P, and TOC are 0.88, 0.84 and 0.99 respectively. The model reproduces
the pattern in the variation of volumetric water content for plot 8, fol-
lowing one of the observed realisations closely (Fig. 7). Note that mea-
surements with such probes are sometimes biased towards drier
measurements because instrument range is short and if contact is lost
between the access tube and soil then the soil can appear drier than it
actually is.

The measured (Goulding et al., 2000) and modelled N leached for
each plot are shown in Fig. 8. The model predictions match the N
leached from the mineral fertilized plots reasonably well, although the
model consistently overestimates N leached from plots receiving the
most N (plots 15 and 16 and the FYM plots 2.1 and 2.2) and in the driest
years (1991/2, 1996/7 and 1997/8). The variances for measured
leaching are larger than the modelled for all but plot 2.1 (Table 6).
Note that measurements were not determined for every plot in every
year.
Table 8
Summary statistics for measured and simulated flow and nitrate (kg N per catchment per day

Catchment Flow (m3 day−1)

Measured Simulated

Mean Std dev Mean Std dev RMSE (%) Correla

4 213.60 457.01 147.83 315.90 180.36 0.57
5 114.10 281.82 122.88 258.19 226.02 0.55
3.2. Park Grass

The model captures the differences between the plots and between
the first and second cuts well (Fig. 9 and Table 7). The first cut, usually
taken in June, is normally higher than the second cut which is usually
taken in November.
3.3. North Wyke Farm Platform.

The simulation of water flow rates (m3 day−1) for catchments 4 and
5 reflect those measured (Fig. 10 and Table 8). This is quantified by the
correlations between modelled and measured (Pearson correlation,
r=0.57 and r=0.55 respectively). The modelled water flow rate and
variation are slightly smaller than the measured in each case.

The simulation of nitrate in the drainage water over estimates ni-
trate for catchment 4 and under estimates it for catchment 5, but the
peaks of nitrate after May 2013 broadly correspond to that which was
measured (Fig. 11 and Table 8).
3.4. Trade offs

By allowing an optimisation algorithm to vary the timing and
amount of a single fertilizer application, we identified the trade-offs be-
tween yield, nitrate leaching and N2O emissions for an illustrative ex-
ample (Fig. 12). The results show that as the yield increases (due to
changes in fertilizer application) the lowest possible N2O emissions
that could be achieved simultaneously increases non-linearly. The
range of fertilizer N applied to achieve these Pareto optimal objectives
was 0–210 kg N ha−1 y−1. The N2O emissions reduce as a result of ap-
plying less fertilizer later in the growing season. As yield approaches
its maximum, both the N2O emissions and the nitrate leaching increase
substantially with increasing amounts of fertilizer for an increasingly
marginal improvement in yield. Nitrate leaching and N2O emissions
are synergistic throughout most of the range, however a trade-off ap-
pears as the emissions reach their minimum value, as this also results
in an increase in leaching. This illustrates how an optimisation approach
(e.g. minimisingN2O) could have unintended consequences for another
process (nitrate leaching), if both objectives are not considered simulta-
neously. The optimisation algorithm does not identify a single fertiliza-
tion strategy, but highlights nonlinearities thus identifying where a
small reduction in one objective could have a large benefit to another.
Here, for example, the simulation indicates that the fertilizer application
conditions which correspond to a moderate yield, reduce the nitrate
that is available to leach from the soil substantially compared to those
required for the most yield.
) in the drains, North Wyke Farm Platform Catchments 4 and 5.

Nitrate (kg N catchment−1 day−1)

Measured Simulated

tion Mean Std dev Mean Std dev RMSE (%) Correlation

0.13 0.27 0.47 1.64 1287.69 0.21
0.13 0.29 0.01 0.08 248.45 −0.01



Fig. 8. Estimated andmodelled N leached from study plots on the Broadbalkwheat experiment 1990–1998.Measurements are from Section 9 only. The black open circle indicates that no
measurement was taken.
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4. Discussion

We have built and used a model framework to simulate spatial and
temporal interactions in agricultural landscapes. The framework allows
us to explore trade-offs between production and environmental out-
comes to determine strategies that could contribute to sustainable
food production. It is important that the models reflect the important
mechanisms that relate to production and the environment. It is also es-
sential that themodels are parsimonious and run quickly so that a large
range of scenarios can be tested, perhaps in conjunctionwith an optimi-
sation algorithm. Our simulations are within 25% of all the observations
acrossmultiple years and plots and this is good evidence that themodel
is robust and that we can use it with confidence to explore trade-offs
relevant to farm and environmental management.

Image of Fig. 8


Fig. 9. Simulated (red dashes) and measured (black lines) yields for plots 3a and 14/2a
Park Grass permanent grassland experiment, showing both cuts each year.

Fig. 10. Simulated (red) and measured (black) flow rates (m3 day−
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Simulation ofwheat yields from the Broadbalk experiment and grass
yields from the Park Grass experiment reproduced both the differences
between plots caused by the various fertilizer rates (ρN0.78) and the
observed year-to-year variation (RMSE ranging between 20.3 and
28.6% for the mineral N and FYM plots on Broadbalk and 34.3% for
Park Grass, correlations were up to 0.77). According to the RMSEs, the
model performed less well for the plots that received no fertilizer
(plots 3 and 5 on Broadbalk and plot 3a on Park Grass) where the
RMSEs were 42.6, 33.4% and 49.9% respectively. The larger values for
the RMSE on the lower-yield plots to some extent result from the
formof this statisticwhich is scaled by the reciprocal of themean obser-
vation (i.e. the sum of the squared difference for the lower-yielding
plots are scaled by larger values than the higher-yielding plots). Over
the 46 years that we simulated Broadbalk, the model tended to under
predict yield between 1994 and 1996 for plots with higher rates of N
fertilizer applied (plots 8, 9, 15, 16, 21, 22) (Fig. 3). This is likely to be
a result of excessive water stress when there was no N limitation. It
was drier than normal in the three months before harvest in 1994,
1995 and 1996, this led to higher water stress during those months,
and so a reduction in dry matter production.

The predictions of the variation in grain N for the Broadbalk plots
were also good, with the RMSE ranging from 21.3 to 42.5% (Fig. 4,
Table 3), and again illustrated the differences between plots receiving
different rates of fertilizer N. For P uptake by the crop, the model per-
formed well for most plots with RMSE between 20.2 and 29.0% for all
plots except 3 and 5 which had RMSE of 89.5% and 48.3% respectively
(Fig. 5 and Table 4). In the experiment applications of P stopped in
2001 due to large amounts of plant-available P in the soil, and the P
measured in the grain declines noticeably in plots with larger applica-
tions of fertilizer but this is not exhibited in the model. However, this
does not affect the measured grain yields (Fig. 3). The variations in
1) for catchments 4 and 5 of the North Wyke Farm Platform.

Image of Fig. 9
Image of Fig. 10


Fig. 11. Simulated (red line) and measured (black line) log nitrate (kg N/catchment) for catchments 4 and 5 of the North Wyke Farm Platform. The black discs show when nitrogen
fertilizer was applied. For details see http://www.rothamsted.ac.uk/farmplatform.
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simulated yield, grain N and P are approximately 50% smaller than the
observed for plots 3 and 5 (for other plots the variation is proportionally
more similar). This suggests that the nitrogen stress function maybe
over-damping the simulated response to variation in the weather.

The modelled TOC for the Broadbalk plots fits the measured data
well with the RMSE ranging from 3.1 to 13.8% (Fig. 6 and Table 5).

The model simulations of N leached from the Broadbalk plots were
compared with estimates of leaching (Goulding et al., 2000), based on
nitrate concentrations in drainage and soil water and calculations of
drain flow. The measured concentrations of nitrate in soil water were
subject to the usual large spatial variation with typical CVs of 50–90%.
The simulations reflected the differences in leaching between the differ-
ent amounts of N, although they tended to overestimate N leached at
the largest N rates and in the driest years (Fig. 8 and Table 6). IPCC
guidelines (IPCC, 1997; Del Grosso et al., 2005) assume that 30% of ap-
plied N is leached or runs off into groundwater or surface waters and
this accords with our simulations of Broadbalk where approximately
31.7% of N applied is lost through leaching.

The simulation of water flow from the two NorthWyke Catchments
matches the pattern in the variation ofwater flowbut the averagewater
flow over the simulated periods was larger than that simulated, as was
the variation. This suggests that ourmodel system is buffering thewater
through-put in the catchment and that too much is being taken by the
crop or evaporating from the system. The simulations of nitrate in drain-
agewater on the NorthWyke plots appeared to be poorer than the sim-
ulations of N losses for Broadbalk. Although the timing of peaks in
nitrate towards the end of the simulation were determined well, little
nitrate was simulated in the first part of the simulated time period.
This was because there was very little nitrate left in the model soil pro-
files at the beginning of the simulated run, and during the summer pe-
riod (May 2013 – September 2013) there was very little simulated
discharge (see Fig. 10). An addition of nitrate on 5th March 2013 to
catchment 4 increased the nitrate levels in the soil and a peak in nitrate
followed. Further additions of nitrate fertilizer kept the soil nitrate in
this simulation at a larger concentration than that in the catchment 5
simulation, which despite having similar levels of nitrate applied,
retained less nitrate in the soil. The difference in the simulated soil ni-
trate between the two catchments manifests as differences in the ni-
trate in the drainage water in the autumn and winter of 2013 where
the nitrate leached was greater for catchment 4 than for catchment 5.
The simulated nitrate in the drainagewater is larger than thatmeasured
for catchment 4 yet smaller for catchment 5. This suggests problems
with the modelled uptake of nitrate by the grass and retention in the
soil in this case, but we have no explanation for the counter-intuitive
discrepancy between the measurements on the two plots. Quantifying
the fate of nitrate can be difficult (Senapati et al., 2016). Recently calcu-
lated field level budgets of N from the NorthWyke Farm Platform show
unaccounted for losses of between 30 and 60 kg N ha−1 (Misselbrook
pers. comm.). This highlights the need for more research on the
processes that control N transformations from micro-scale to field
scale, and larger-scales. Facilities such as theNorthWyke Farm Platform
are ideally placed to support this kind of research. Models such as the
one described here can help to identify the parts of the processes
where understanding is incomplete and so can help to inform the
design of experiments as well as benefit from any new understanding
obtained.

Image of Fig. 11
http://www.rothamsted.ac.uk/farmplatform
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Fig. 12. Illustrative example of use of the model to identify trade-offs between multiple
objectives such as maximising yield, minimising nitrate leaching and minimising N2O
emissions. As maximising or minimising any one of these objectives affects the others,
the optimisation identifies points on a multi-dimensional frontier with Pareto
optimality. On this frontier no objective can be improved upon without a detrimental
effect on at least one of the other objectives. This frontier therefore represents the best
trade-offs that can be achieved.
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Others have explored trade-offs using empirical data. For example
Phalan et al. (2011) compared the effects of land sparing and land shar-
ing on crop yields and the densities of tree and bird species across the
UK, while Lamb et al. (2016) explored the need to cut greenhouse gas
emissions, while increasing agricultural yields tomeet the rapidly rising
food demand through land sparing. Eory et al. (2013) examined the
trade-offs and synergies between greenhouse gas mitigation measures
and other environmental pollutants. The limitation of such empirical
studies is that there is a lack of data and so it is often not possible to con-
sider more than two factors at a time. Whilst models should always be
used with caution, they do allow us to consider multiple interactions
under a large range of management strategies. Used appropriately,
models such as the onewepresent here should allow sound conclusions
to be drawn on the relative impact of management strategies andmight
highlight unintended consequences of certain actions. Whilst the com-
plexity of agricultural systems across the landscape could warrant a
complex model, a simpler model that runs more quickly but still cap-
tures the key processes can be coupled more easily to an optimisation
algorithm. This then provides the opportunity to identify the form of
the synergies and trade-offs between multiple objectives at a broad
and often neglected scale. Here, for example, we observe that objectives
that are largely synergistic such as nitrate leaching and N2O emissions
still exhibit a trade-off as the N2O emissions approach the minimum.
The non-linearity in the leaching and emissions as yield increases is
also clear, indicating a strong trade-off.

In order to generate frontiers such as the ones we did here (Fig. 12)
an optimisation algorithmmust be chosen and a set ofmanagement op-
tions that the optimisation algorithm canmanipulate identified. Within
an agricultural landscape, management options are numerous. For ex-
ample, even considering only fertilizer applications, the timing, amount
and type ofmultiple applications could all be included in the set ofman-
agement options to be optimised. This set of options will constrain the
frontier, thus care must be taken to identify a reasonable range of op-
tions, whilst keeping the number of variables that the algorithm can
manipulate to a minimum. Even so, the set of options is likely to repre-
sent a complex optimisation problem, involving multiple control
variables, with the risk that the algorithmmay be trapped in local min-
ima. The optimisation algorithm must be chosen and implemented to
minimise this risk. In this case we chose to use non-dominated sorting
combined with differential evolution. Whilst the non-dominated
sorting allowed us to consider multiple-objectives, which is critical to
our aim of generating trade-off curves, the differential evolution com-
bines a genetic algorithm and a gradient based search to allow a com-
plex control space to be explored efficiently.

Our framework includesmodels of crop growth, the dynamics of soil
conditions and water and nutrient flows in order to quantify the trade-
offs between agricultural production and environmental factors. It could
be expanded to include volatilisation and biological N fixation (which
should improve the simulation for certain grass and crop types). Our
framework is distinct from alternative models of the agricultural land-
scape because it simulates multiple functions simultaneously and dis-
tinct from other models of ecosystem services (e.g. Sharps et al., 2017)
because it focuses on scaling up the effect of field and farm scale man-
agement practices to landscape scale. Additional environmental factors
are also relevant to the agricultural landscape and to include these the
model could be expanded to include weeds, pests and diseases and as-
pects of biodiversity. For each new component there will be feedbacks
into existing models that alter the dynamics of yield accumulation and
soil nutrient status. For example, weed population dynamics will de-
pend on the crop and the soil conditions, but in turn weeds will have
a competitive effect on the crop, primarily for light, that will affect
both yield and to some extent soil nutrient status (Kropff and van
Laar, 1993). Our model framework is spatially explicit and simulates in-
teractions between cells, in particular it describes the lateral flows of
nutrients and water from cell to cell based on relative elevation and
slope of model cell. Themovement of insect pests, for example, is some-
what different as choice of destination are influenced by host plant dis-
tribution and the dispersal characteristics of the species in question. It
will be straightforward to include these dispersal mechanisms within
the landscape framework, see Milne et al. (2015).

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.scitotenv.2017.07.193.
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