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Abstract 

The major aim of this project is to develop novel computational approaches for rapid 

identification of key omic variations, particularly SNPs that are likely to be associated with the 

variability of the ADP (Adenosine diphosphate) activated platelet responses. The ADP platelet 

response was chosen as a model system due to its distinct role during the platelet amplification 

and aggregation, and it is the main therapeutic target for cardiovascular disease (CVD) 

antiplatelet drug treatments. Based on recent studies, CVD is currently the second lethal non-

communicable disease after cancer in both developed and developing countries. Inter-

individual variability of the ADP platelet responses was previously reported in genetic 

association studies, and susceptible SNPs were identified. However, most of the standard 

biostatistical methods that were previously employed were found to be suboptimal, and it is 

assumed that other crucial SNPs might have been potentially missed. In genetics, this 

phenomenon is known as ‘missing heritability’ problem. Therefore, to address this issue, this 

study aims to employ alternative computational approaches in an integrated manner in order to 

identify previously unidentified key SNPs, which may underlie the ADP platelet responses 

variability. Additionally, the project aims to develop predictive approaches to unveil the 

molecular mechanisms of the identified key SNPs, which are likely to underpin the inter-

individual variability in the ADP platelet responses and aggregation. The molecular 

mechanisms underpinning these SNPs, or ‘omic variations are rarely addressed in standard 

genetic mapping or association studies. This may be due to the experimental hurdles related to 

the costs and labour that are required in pursuing such undertakings, hence our predictive 

approach seeks to address such inefficiencies in closing these knowledge gaps. Moreover, the 

project culminates in the development of a method for predicting an individuals’ ADP platelet 

response levels with a focus on determining the extreme cases, i.e., individuals showing high 

and low responses to ADP platelet activation. Predicting ADP responses levels might be 
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suitable for determining which allelic features will contribute most to the extreme ADP platelet 

responses. This understanding may be useful for suggesting new drug targets or individualised 

treatments in the targeted CVD therapeutics or personalised medical settings for the next 

generation of medical practice.  
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Chapter 1 – Introduction and background 

1.0 Abstract 

The major aim of this project is to develop novel computational approaches for rapid 

identification of key omic variations, particularly SNPs that are likely to be associated with the 

variability of the ADP (Adenosine diphosphate) activated platelet responses. The ADP platelet 

response was chosen as a model system due to its distinct role during the platelet amplification 

and aggregation, and it is the main therapeutic target for cardiovascular disease (CVD) 

antiplatelet drug treatments. Based on recent studies, CVD is currently the second lethal non-

communicable disease after cancer in both developed and developing countries. Inter-

individual variability of the ADP platelet responses was previously reported in genetic 

association studies, and susceptible SNPs were identified. However, most of the standard 

biostatistical methods that were previously employed were found to be suboptimal, and it is 

assumed that other crucial SNPs might have been potentially missed. In genetics, this 

phenomenon is known as ‘missing heritability’ problem. Therefore, to further address this 

issue, this study aims to employ alternative computational approaches in an integrated manner 

in order to identify previously unidentified key SNPs, which may underlie the ADP platelet 

responses variability.  

1.1 Introduction 

This introductory chapter begins by giving an overview of CVD and the ADP platelet activation 

mechanism, which is one of the key physiological processes underlying major CVD events. 

The section also provides an outline of the genetic aspects of the ADP platelet responses by 

explicitly looking at the associated single nucleotide polymorphisms or SNPs. SNPs are 

considerable variations of single DNA bases among individuals and they are widely spread (i.e. 

~ 90%) in the human genome (Collins et al., 1998). A significant number of these SNPs are 

disease/trait associated (Shastry, 2002). Furthermore, the section briefly describes other SNPs 
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associated ‘omic variations and highlights different approaches that are applied in the 

identification of the disease/trait associated SNPs. In this case, the focus is on the standard 

methods used in genetic association studies (GASs). Following this, the integrated 

computational approaches developed in this study, which are an alternative to the standard 

biostatistical methods, are discussed. Additionally, the concept of personalised medicine, which 

utilises individual genomic information for disease treatment is briefly discussed. Finally, this 

section describes the overall objectives and conceptual detail of the study using the 

computational framework and integrated predictive pipelines for ‘omic variation analyses. 

1.2 CVDs and their types 

CVDs are a variety of disorders affecting the heart and blood vessels. These include: coronary 

heart disease, cerebrovascular disease, peripheral arterial disease, rheumatic heart disease, 

congenital heart disease, deep vein thrombosis, pulmonary embolism, myocardial infarction 

and strokes (“WHO | Cardiovascular diseases (CVDs),” 2016). This study broadly entails the 

alternative approaches in further addressing CVDs and their associated risks. 

1.2.1 CVD in developing and developed countries 

Cardiovascular diseases are the leading cause of death worldwide. There are an estimated 18 

million deaths from CVDs each year, which accounts for 33% of the 55 million total deaths, 

and 75% of these are from coronary heart disease and stroke (Stanner, 2008; “WHO | 

Cardiovascular diseases (CVDs),” 2016). Recently published data from the World Health 

Organisation (WHO) estimated that there are 7.5 million deaths worldwide due to the 

hypertension (“WHO | Raised blood pressure,” 2016). In the United Kingdom CVDs are the 

leading cause of death after cancer (British Heart Foundation, 2015; Stanner, 2008). Figures 

1.1 and 1.2 shows the CVD death statistics in the UK relative to other disease problems for 

men and women under 75 respectively. 
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Figure 1.1 The recent statistical data showing the mortality rate caused by the CVD related problems for men in the 

UK. It is clear that CVD is the second deadly non-communicable disease after cancer, which kills men. (The Figure was taken 

from British heart foundation (British Heart Foundation, 2015)) 
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Figure 1.2 The recent statistical data showing the mortality rate caused by the CVD related problems for women in the 

UK. A similar trend of mortality rate for men can be also observed in the women’s fatality rate caused by CVD. Nevertheless, 

it appears that women have less mortality rate due to CVD than men. (The Figure was taken from British heart foundation 

(British Heart Foundation, 2015)) 

In the developing countries particularly in Sub-Saharan Africa, CVDs are predominant 

emerging non-communicable diseases (NCD), termed as ‘silent killers’ with the combination 

of risks factors (Ouyang, 2014). It has been estimated that one in two people whose age is 25 

years and above has undiagnosed hypertension in Sub-Saharan Africa and three-quarters of the 

CVD deaths are from the low- and middle-income countries (Ouyang, 2014; “WHO | 

Cardiovascular diseases (CVDs),” 2016). In developing countries, CVD is reported to account 

for nearly 40 percent of all deaths, which is higher than in the UK (Mbewu and Mbanya, 2006). 

Figure 1.3 shows the estimated increase of CVD deaths for male and female in Africa.  



44 

 

 

Figure 1.3 The estimated deaths caused by CVD in Africa by 2030. The trend as it can be observed is that the mortality rate 

due to CVD is yearly increasing for both genders with higher rate in women. (The image was taken from (WHO | Department 

of Measurement and Health Information, 2006)) 

Therefore, from the above data, the deaths contributed from CVD seems to be relative high for 

both developed and developing countries in Africa. Thus, efforts have been stepped up further, 

particularly in scientific research aimed at understanding, identifying, and minimising the risks 

associated with CVD problems (Craddock et al., 2010; Keating et al., 2016; Ouyang, 2014; 

Reddy and Yusuf, 1998; Stanner, 2008; Vizioli et al., 2009; “WHO | Cardiovascular diseases 

(CVDs),” 2016).  

1.2.2 Major risk factors for CVDs 

Many of the CVD risk factors are non-genetic and are related lifestyle factors such as diet, 

tobacco and alcohol use (Banerjee, 2012; Berry et al., 2012). One major risk factor includes the 

nature of blood clots within the blood vessels, which may block the flow of the blood to the 
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heart and brain. (Stanner, 2008; “WHO | Cardiovascular diseases (CVDs),” 2016). The 

mechanism of blood clotting is controlled by the platelet activity in the blood, which has a 

strong genetic association (Lewis et al., 2013; Williams et al., 2010). Therefore, understanding 

the genetic basis underpinning platelet function is vital for further elucidating the genetic risk 

factors that are -associated with CVD (Kvasnicka et al., 2015; Lewis et al., 2013). 

1.3 Platelet activation and responses 

Platelets are small anucleate cells packed with complex signalling machinery that enables them 

to react rapidly to damage in blood vessels to prevent blood loss. Platelets are formed from the 

megakaryocytes in the bone marrow. There are approximately one thousand billion platelets 

circulating in the human body, continually screening the vascular endothelium for biochemical 

signals of injury. 

Platelets are multifunctional in nature and are associated with several pathophysiological 

processes including; thrombosis, clot retraction, vessel constriction and repair, inflammation 

including promotion of atherosclerosis, host defence and even tumour growth (metastasis) 

(Harrison, 2005). Figure 1.4 depicts the multifunctional nature of the blood platelet. 
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Figure 1.4 The multifunctional nature of the platelet in different pathophysiological processes. The haemostasis & 

thrombosis and inflammation, which are more inclined to CVD problems are the focus of this study. (The image was taken 

from (Harrison, 2005) 

This study mainly focuses on haemostasis and thrombus formation, and in particular the latter, 

which has been associated with several CVDs (Rauch et al., 2001; Stanner, 2008). 

Platelets must be activated to form a clot, or thrombus, and there are many agonists (small 

molecules that activate receptors) involved in the activation process. These include thrombin, 

collagen, ADP (Adenosine Diphosphate), Thromboxane A2, adrenaline and serotonin, some of 

which act together in vivo with other agonists (Gibbins, 2004; Jackson et al., 2003; Rivera et 

al., 2009). Platelet activation is a result of the attachment of these agonists to the receptors of 

the platelet's plasma membrane and von Willebrand factor (VWF) and collagen in the 

subendothelium. Figure 1.5 shows the key agonists involved for activating platelets. 



47 

 

 

Figure 1.5 Platelet before and after activation by different agonists, with their involved receptors. There are many 

agonists, which are required in activating the platelet depending on the involved activation stage. ADP which is the core agonist 

in the secondary activation stage of the platelet is the main focus of this study. Similarly, different receptors are involved in 

different stages of activation. The most important of these receptors are glycoproteins or integrins, which mediate collagen and 

fibrinogen binding during the primary adhesion and the follow-up platelet aggregation for eventual thrombus formation. 

1.3.1 A brief description of platelet activation, responses and thrombus formation 

The general platelet activation mechanism for thrombus formation can be explained as follows. 

At sites of vascular damage, platelets adhere to the sub-endothelial matrix (Alevriadou et al., 

1993; Ruggeri, 2003; Wu et al., 2000). These first adherent platelets are stabilised and activated 

by the binding of GPVI and integrin α2β1 to exposed collagens (Siljander et al., 2004), Figure 

1.6. Following this initial deposition, subsequent encountering platelets are activated by a host 

of other agonists, which are generated and secreted by the activated platelets. Such agonists are 

ADP released upon platelet degranulation (Gachet et al., 1997), Thromboxane A2 (Siess et al., 

1983a, 1983b), synthesised on the platelet surface from arachidonic acid, or thrombin (Bevers 

et al., 1982; Coughlin, 2000), activated from prothrombin on the negatively charged surface of 

activated platelets. 
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Intracellular signalling cascades, which are initiated by the interaction of agonists with specific 

cell surface receptors lead to: calcium mobilisation (from both internal stores and the 

extracellular space into the cytoplasm), platelet shape change, degranulation and a change in 

the affinity of integrin αIIbβ3 for VWF and fibrinogen (Fg) binding (Coppinger et al., 2004; 

Hartwig, 2006; Italiano Jr et al., 2008; Ma et al., 2007; Varga-Szabo et al., 2009). The binding 

of fibrinogen to integrin αIIbβ3 on different platelets supports their aggregation and thrombus 

formation (Bennett, 2001; Pytela et al., 1986). Figure 1.6 further shows the underlying 

activation process. 

 

Figure 1.6 The underlying platelet aggregation process and thrombus formation. Three main phases are involved. The 

tethering and rolling are when the platelets encounter the exposed collagen and VWF in the extracellular matrix (ECM), which 

results in the primary activation through GPVI channel. The secondary adhesion, secretion, and aggregation is the next phase 

before the thrombus is formed. The latter involve rapid platelet aggregation through ADP channel in the amplification process 

to increase the size of the thrombus. TXA2 is Thromboxane A2 (Image was taken from Spiel et al., 2008). 

1.3.2 Platelet activities and CVDs 

The process of platelet aggregation and thrombus formation is highly regulated. Abnormal 

platelet functions have been associated with many blood and CVD related problems including 
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stroke, peripheral vascular disease, and diabetic mellitus (Michelson, 2004). Reduced or slow 

thrombus formation results in bleeding, whereas larger thrombi that occlude vessels and block 

the flow of blood can lead to CVD events, such as myocardial infarction or stroke (Zee et al., 

2008). In addition, the growth in thrombus size due to platelet aggregation is one of the 

principal causes of ischemic stroke (Viles-Gonzalez et al., 2004).  

1.3.3 Why focusing on the ADP platelet responses? 

1.3.3.1 ADP ultimately governs platelet aggregation and thrombus formation 

Studies have found that ADP plays a distinct role in the amplification of platelet activation and 

subsequent aggregation in vivo (Fontana et al., 2003; Jin et al., 2002). ADP is involved in the 

activation of platelet through two major G protein-coupled receptors (GPCRs): P2Y1 and 

P2Y12 (Hollopeter et al., 2001; Zhang et al., 2001). The P2Y1 receptor activates phospholipase 

C, which is involved with changes in platelet shape and an increase of the intracellular Ca2+ 

store required for platelet aggregation. P2Y12 suppresses cAMP formation, which is necessary 

for activation to occur since it inhibits platelet aggregation (Noé et al., 2010; Woulfe et al., 

2001). Moreover, the platelet activation by ADP mediates the function and release of other 

agonists, particularly TXA2, which further increases the platelet aggregation (Jin et al., 2002). 

1.3.3.2 ADP platelet responses are the key focus for CVD clinical treatments 

ADP is one of the key molecules, which is widely used in clinical investigations and platelet 

responses to ADP are a treatment focus for CVD patients. For instance, the severity of CVD 

conditions was assessed by examining the increase of the platelet aggregation before and after  

acute myocardial infarction attack, which was monitored through ADP concentration 

(Miyamoto et al., 2000). Moreover, the effectiveness of acute coronary syndrome (ACS) 

treatment among patients was assessed by examining platelet aggregation through fibrinogen 
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binding in response to ADP platelet activation. Patients treated with low concentration of 

orbofiban (GPIIbIIIa antagonist) (suboptimal dose) enhances platelet aggregation in the 

presence of ADP, while those treated with high concentration of orbofiban, platelet aggregation 

appeared to be decreasing (Cox et al., 2000). 

Furthermore, several anti-platelet aggregation agents such as aspirin, are widely used as CVD 

treatments and tend to work efficiently in dose combination with other agents such as 

Ticlopidine and Clopidogrel (Albers et al., 2001). These are used to target and inhibit the 

activity of the P2Y12, which is an ADP receptor (Woulfe et al., 2001). In principle, aspirin 

blocks COX-1 and thus, prevent synthesis of thromboxane, while thienopyridine drugs inhibits 

the activity of P2Y12. However, in most cases, these drugs tend only to work effectively with 

particular groups of patients while showing low efficacy in others (Hollopeter et al., 2001). It 

was suggested that this was likely to be due to genetic factors, which may underlie the 

variability of the disease pathophysiology and responses to treatment amongst individual 

patients (Fontana et al., 2003). 

1.4  ‘Omic’ variations 

1.4.1 Types of ‘omic’ variations 

1.4.1.1 DNA sequence variations (genomic) level 

Since the completion of the human genome project (Consortium, 2004), a central focus of 

researchers in biology and medicine has been to understand the existing relationship between 

genotype and phenotype (Consortium, 2005). Although the human reference genome 

sequencing has been completed, the need for systematic investigating and understanding of 

human DNA sequence variations in the genome has received much attention through different 

projects such as HapMap (Consortium, 2005), and 1000 genomes (Consortium, 2012, 2010). 
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This is because human genome variations play a major role in the differences between 

individuals in terms of their disease states and other traits (Pevsner, 2009). Despite some 

successes of GASs in identifying thousands of genomic regions in the DNA associated with 

disease states and other traits using the data from these projects, a deeper understanding of the 

genomic variations and their association with phenotype is still needed (Consortium, 2010).  

At the genome level there are different categories of variations, which include non-functional 

and functional associated variations, ranging from, but not limited to, SNPs, small insertions 

and deletions, copy number variations (CNVs) and non-coding RNAs (Bhartiya and Scaria, 

2016; Collins et al., 1998; Djebali et al., 2012; Iafrate et al., 2004; McCarroll et al., 2008; Sebat 

et al., 2004; Wong et al., 2007). Among these variations, SNPs are arguably the most prevalent 

and associated with many complex diseases and traits, which include platelet responses and 

CVD in general (Brookes, 1999; Burton et al., 2007; Johnson et al., 2010; Wang and Moult, 

2001). The next section gives details of the underlying representation of SNPs in GASs and 

then highlights how GASs infer the SNPs’ association to the diseases based on this 

representation. 

1.4.1.1.1 Single nucleotide polymorphisms (SNPs) 

SNPs represent most of the human genome variations (Pevsner, 2009), and are attributed to the 

most complex diseases and traits (Craddock et al., 2010). From the genomic perspective, a SNP 

refers to the DNA sequence variation where one base changes to another, and there are 

reportedly 15 million recognised SNPs in the human genome (Riancho, 2012). Consider the 

following SNP (rs41306982) of the GP6 gene (from dbSNP (Sherry et al., 2001), an Entrez 

database of SNPs): 

CTGGGGAGGTCCCCACACCTGCCTA[A/G]GAGCTGGGGAGCTTTTTGGCTGTAT 
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This means that the DNA base Adenine (A) is substituted by Guanine (G), which 

conventionally means there are two variants (A or G) in the population in this red-coloured 

position of the genome. Both may also be represented as A or B for the major (dominant), or 

minor (recessive) alleles in the population respectively, and therefore, for a diploid human 

individual a genotype call would be AA or BB (homozygous) or AB (heterozygous). 

Understanding the individual SNPs genotype may provide a clue for assessing susceptibility to 

a particular disease or trait (Masood, 1999). 

1.4.1.1.1.1 Data structure for the SNPs 

SNPs can be represented in different structures and formats using different platforms (Danecek 

et al., 2011; Riva and Kohane, 2004; Sherry et al., 2001). However, for inferring genotype-

phenotype in the association studies, SNPs are generally represented in the matrix form using 

tabular structure (Zhang et al., 2006). Individual’s samples are represented in rows while the 

columns are divided in two parts; one part stores the SNPs genotypes and the other part, the 

phenotype. 

Table 1.1 shows this representation of the data: 

 

 

 

 



53 

 

 SNP1 SNP2 … SNPp Phenotype1 Phenotype2 

Subject 1 A/T C/C … G/A 0.444 Y 

… … … … … …  

Subject n A/A G/C … G/G 0.1234 N 

Table 1.1 Representation of SNP data sets. The genotype call for each SNP is represented in the column. For example, SNP1 

for each subject in a population may be either A/T, A/A, or T/T for heterozygote, homozygous dominant, or recessive 

respectively. A certain combination of SNPs across columns involving one subject and a single base may form a haplotype in 

the genomic sequence of an individual subject. Example, a haplotype 1 for subject1 may contain SNP1, SNP2, and SNPp with 

nucleotides A, C, and G. Phenotype1 is for quantitative trait (QT) and Phenotype2 for case control studies. 

Each individual SNP genotype for particular subject is derived from the two sequence reads of 

a pair of chromosomes: 

   SNP1 

Chromosome1: ACCGTTTAGGGTTA 

Chromosome2: ACCGTTTTGGGTTA 

Subject 1 genotype:   {A/T} 

Subject 1 genotype:   {A/T} (heterozygous allele) 

Chromosome1: ACCGTTTAGGGTTA 

Chromosome2: ACCGTTTAGGGTTA 
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Subject 2 genotype:   {A/A} (major allele) 

Chromosome1: ACCGTTTTGGGTTA 

Chromosome2: ACCGTTTTGGGTTA 

Subject 3 genotype:   {T/T} (minor allele) 

For smooth processing in the statistical and computational methods used, these genotypes are 

transformed into a numeric representation. For each SNP, major (dominant), heterozygous, or 

minor (recessive) alleles, are conventionally represented as 1, 2, or 3 respectively, or 0, 1, or 2 

respectively (Zhang et al., 2006).  

Thus, Table 1.1 would now become represented as follows, Table 1.2: 

 SNP1 SNP2 … SNPp Phenotype1 Phenotype2 

Subject1 3 1 … 3 0.444 Y 

… … … … … …  

Subject n 1 3 … 2 0.1234 N 

Table 1.2. Numeric representation of SNP data sets. An alternative way of representing SNPs by genotyping using dummy 

variables in numeric form. 

From the above tables, a typical genotype-phenotype association task will then be as follows: 

given genotypes and phenotypes of individuals in a population, identify which genomic 

positions or SNP combinations are associated with a particular phenotype. For identification 
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and mapping of these genomic positions to the phenotype, a quantitative trait loci (QTLs) 

analysis is applied (Miles et al., 2008). In QTL analysis, multiple SNPs may come from 

multiple loci (genes) and the association study may aim to quantify candidate genes (multiple 

loci) contributing to the overall continuous phenotypic effect, e.g. phenotype1 in the Table 1.2 

above. 

In most GASs, the number of SNPs (p) is larger than the number of subjects (n), since few 

individuals in a sample may give thousands to tens of thousands of SNPs. This phenomenon 

typically leads to the large p and small n feature selection problem, i.e. p > n (Ayers and 

Cordell, 2010; Hastie et al., 2005; Saeys et al., 2007; Touw et al., 2013).  

Based on the above representation, the central focus of the initial part of the study (Chapter 2) 

is to design an alternative approach, which rapidly identifies potential and previously 

unidentified key SNPs that may contribute quantitatively to the variability of the ADP activated 

platelet responses phenotype. 

1.4.1.1.2 Other types of genomic variations 

There are other types of variations at the genome level, which are associated with 

diseases/complex traits and subject to ongoing research. These are structural variants, which 

mainly include, but are not limited to, copy number variations (CNV) (Sebat et al., 2004; Wong 

et al., 2007), and DNA methylation (Jones and Takai, 2001; Mikeska and Craig, 2014; Moore 

et al., 2013). These variants were elsewhere reported to be associated with complex diseases, 

including CVD (Mikeska and Craig, 2014; Myocardial Infarction Genetics Consortium et al., 

2009; Stankiewicz and Lupski, 2010). However, they are not well characterised and extensively 

studied in comparison with SNPs (Stankiewicz and Lupski, 2010). Nevertheless, DNA 

methylation has gained considerable attention in understanding its disease associated epigenetic 
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mechanisms, and there are several emerging computational approaches for curating and 

identifying these epigenetic variations (Balaur et al., 2016; Pancione et al., 2012; Roznovăţ and 

Ruskin, 2013). For future related studies, it would be worth examining the epigenetic features, 

such as methylation, that may underlie ADP platelet responses and CVD. 

1.4.1.2 Protein sequence (Proteomic) variations (Amino acid substitutions) 

These are variations, which are related to SNPs, that occur in the exon region of the gene or 

coding regions (formally known as cSNPs) and they are more likely to affect gene function and 

cause individual phenotypic variations and disease (Collins et al., 1998). It has been reported 

that nearly 50% of cSNPs are missense mutations (missense or non-synonymous SNPs), 

meaning they lead to the codons that code for different amino acids (aa). These genomic 

changes may result in the allele-specific variations in the corresponding protein structure 

(Cargill et al., 1999; Collins et al., 1998; Wang and Moult, 2001). In this case, the cSNPs are 

regarded as deleterious (damaging), which may result in the possible functional differences of 

the associated proteins (Chen et al., 2010; Fazel-Najafabadi et al., 2015; Shi et al., 2012; Shukla 

and Mishra, 2011). Several of these missense mutations have been suggested to cause the 

variability of the individual traits, responses to drugs, and susceptibility to disease (Cargill et 

al., 1999; Flaherty, 2007; Pal and Moult, 2015; Shi and Moult, 2011; Wang and Moult, 2001). 

Moreover, there are several of these cSNPs that have been reported to be associated with CVD 

(Ohnishi et al., 2000; Okuda et al., 2002).  

Therefore, identification of these deleterious protein sequence variations is of high importance 

(Burke et al., 2007). Thus, a compendium of computational methods to predictably identify 

these missense mutations are under continuous development (Gnad et al., 2013; Teng et al., 

2008). Furthermore, to understand the potential molecular mechanisms of the identified 

deleterious SNPs (cSNPs) that are associated with the ADP platelet responses, new predictive 



57 

 

approaches will be described, which exploit several cutting-edge structural and functional 

protein bioinformatics tools (Chapter 3). 

1.4.1.3 Transcriptomic variations 

Transcriptomic variations involve inter-individual variations in differentially expressed genes, 

in specific cells, or cell lines in which the mRNA transcripts are produced (Djebali et al., 2012). 

In this case, the variations might be due to the presence of SNPs in the regulatory regions of 

genes, which can significantly lead to differences in the cellular mRNA transcript levels 

(Stepanova et al., 2006).  For instance, the SNPs might be localised in the binding sites (BS) of 

various transcription factors (TFs; TFBS), and lead to a possible functional effect on gene 

transcription regulation (Bryzgalov et al., 2013). The regulatory effect might be as a result of 

the increase or decrease in the binding specificity of the TFs, which may lead to allele-specific 

gene expression (Alj et al., 2004). In turn, this may lead to the differential trait/disease 

phenotypic states and drug responses among individuals (Chhibber et al., 2016; Drachkova et 

al., 2011).  

Therefore, identification of the SNPs, which lead to the individual transcriptomic variations is 

vital in understanding the underlying molecular mechanisms of complex traits and diseases. 

Hence, efforts for designing experimental and computational methods for determining and 

predicting these regulatory SNPs have been stepped up (Andersen et al., 2008; Djebali et al., 

2012; Hanson et al., 2015; Meyniel et al., 2010; Wan et al., 2014). Thus, in realising the 

potential of the transcriptomic variation, a subsequent objective of this study is to design a 

computational methodology or protocol, which predictably identifies how likely the SNPs may 

lead to the differential transcriptomic variations (Chapter 4). Doing this may further provide a 

clue on the variability of the ADP platelet responses and aggregation.  



58 

 

1.4.1.4 Phenotype variations (Phenomic) level 

This may refer to the observed variability of the complex trait/disease phenotype among 

individuals, which might be due to the genomic, proteomic, and transcriptomic variations 

(Moyra, 2011; Weischenfeldt et al., 2013). The key phenotypic variation, which is the focus of 

this study, is the variability of the ADP platelet responses and aggregation among individuals. 

1.4.2  ‘Omic’ variations, platelet activities, and CVDs 

An individual’s platelet response to agonists shows a high level of heritability and is highly 

variable within the population. Several experimental studies have sought to understand the role 

of ‘omic variations in the underlying platelet functioning, and considerable success has been 

achieved.  

In this case, for the genomic variations, numerous studies were able to explain in detail and 

illuminate the genetic determinants that underpin platelet responses. These studies include 

those which examined and identified genetic variant(s) in a single gene, as well as those which 

performed genetic mapping involving many genes and genome-wide association (GWAS) 

(Herrera-Galeano et al., 2008; Johnson et al., 2010; Jones et al., 2009; Soranzo et al., 2009). 

However, as it is later described, there are reported inherent flaws in the underlying methods 

in these studies, among other things, which have led to unaccounted crucial genetic variants 

(Moore et al., 2010). 

Furthermore, notable studies have been performed in examining the effects of proteomic 

variations, i.e. the underlying effects caused by the missense mutations leading to individual 

protein structural and functional perturbations that may alter platelet activities. For instance, 

the point mutation Gly > Ser at position 233 (G233S) in GPIbalpha protein was identified to be 

deleterious by affecting the protein’s binding affinity to VWF in allele-specific manner. This 
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was suggested to be the likely cause of platelet-von Willebrand factor disease (VWD) 

(Matsubara et al., 2003). In addition, a missense mutation (4115T>G) in the VWF gene, which 

leads to the substitution of an isoleucine with serine at position 1372 (I1732S) of VWF protein, 

was linked with the increased platelet aggregation (Casonato et al., 2007). In a similar study, a 

missense mutation (4263C > G) in the VWF, which causes N1421K mutation in the VWF 

domain was reported to be affecting the binding affinity of VWF with GPIb leading to the 

differential platelet aggregation (Lanke et al., 2008). Another related study that examined the 

effects of these mutations on the different proteins associated with the platelet dysfunction was 

performed by Lozano et al. (Lozano et al., 2016). However, each of these experimental studies 

are expensive in terms of equipment and consumables, which is compounded with the costs in 

labour and time, leading to inefficiencies in identifying novel molecular mechanisms associated 

with genetic changes (Yue and Moult, 2006). Therefore, as the platelet contains >5000 proteins, 

alternative/parallel computational efforts to rapidly and confidently identify each of the 

structural and functional variations in these proteins will be crucial to further illuminate our 

understanding of platelet responses and aggregation, and CVD pathogenesis (Boyanova et al., 

2012; Burkhart et al., 2014; Vélez and García, 2015). 

Furthermore, in the case of transcriptomic variation, numerous studies have been undertaken 

to analyse the effect of differential transcript levels on platelet activation and responses. For 

instance, Goodall et al. performed transcriptomic analyses to examine the SNPs that are 

involved in the regulation of variation of gene expression levels, which were associated with 

the ADP and collagen-related peptide CRP-XL. They identified crucial regulatory genomic 

regions, which influence the variability of the gene expression levels and are also associated 

with the myocardial infarction (Goodall et al., 2010). Moreover, other platelet dysfunctions 

were found to be associated with variability in regulatory transcriptomic regions among 
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individuals with risk of cardiovascular disease (Glembotsky et al., 2014; Lood et al., 2010; 

Raghavachari et al., 2007; Sun et al., 2007).  

Therefore, it is clear that we must develop a deeper understanding of the regulatory SNPs 

underpinning the differential transcription and gene expression profiles that likely contribute 

to the variability of the platelet responses and aggregation. However, the inherent labour costs 

accompanied with the required resources make these studies expensive. Hence, alternative 

bioinformatics-based approaches which exploit the current computational advances and ‘omic 

data availability, will likely drive forward our understanding of the differential transcriptomic 

variations underpinning inter-individual ADP platelet responses. 

1.4.2.1 Genetic association studies (GASs) involving ADP platelet responses 

Genetic association studies (GASs) allow scientists to study and analyse SNPs that are 

associated with complex traits/diseases. Essentially, GASs aim at identifying the SNPs that are 

likely to be predisposing the trait or disease at a single gene or many genes, either in the specific 

genomic region, or on a genome-wide scale (Cordell and Clayton, 2005; Riancho, 2012). The 

SNPs determined from these studies are thought to be the basis of the associated variability at 

the molecular levels, i.e. proteomic and transcriptomic levels, which in turn may bring about 

the phenotypic variability (Pal and Moult, 2015; Wang and Moult, 2001). 

The inter-individual variability of platelet responses and aggregation in the population is mainly 

heritable and associated with the predisposing genetic variant(s) or SNPs, which might be 

determined through genetic mapping or GASs (Herrera-Galeano et al., 2008; Soranzo et al., 

2009). Previous GASs on the ADP platelet response were gene specific, such as those focused 

on P2Y12 (Cavallari et al., 2007; Fontana et al., 2003). Cavallari et al. further identified key 

variants in this gene that were susceptible to low response to antiplatelet drugs and potential 
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risk of the atherothrombosis. Other studies investigated the effect of SNPs in the PEAR1 gene 

on ADP platelet aggregation (Faraday et al., 2011; Herrera-Galeano et al., 2008; Lewis et al., 

2013). However, the prevailing theory is that for the complex disease/trait, the predisposing 

associated SNPs in a single gene are interdependent with others in different genes or loci (i.e., 

polygenic) (Riancho, 2012; Robinson et al., 2014).  

Thus, from polygenic aspects of the ADP platelet responses, there are GASs, which examined 

linkage disequilibrium (LD) of many genes or loci spanning either a particular region or at the 

genome-wide level (Goodall et al., 2010; Johnson et al., 2010; Jones et al., 2009). In this regard, 

Jones et al. analysed two ADP platelet responses, which were P-selectin exposure (a marker of 

degranulation) in response to ADP agonist (PA), and fibrinogen binding to integrin in response 

to ADP (FA) (Jones et al., 2009). They identified several significant SNPs that are associated 

with PA and FA platelet responses. However, it is argued that the employed biostatistical 

methods in most of these GASs are suboptimal and are not able to explain all genetic variants 

(Moore et al., 2010; Robinson et al., 2014).  Thus, holistic approaches incorporating current 

advances in computational methods and bioinformatics are required for further explanation of 

unaccounted genetic variability (Moore et al., 2010).  

Therefore, this study extends Jones et al., (2009) work further by alternatively investigating 

potentially unaccounted genetic variability (SNPs) and their roles underpinning ADP platelet 

responses variability using integrated computational approaches. The premise is that these 

approaches might become useful additional tools to aid future CVD personalised medicine. 

1.5 Approaches for identifying trait/disease associated SNPs 

The traditional approach for the most polygenic GASs is to analyse one SNP at a time, which 

normally fails to account for the effects of other causal SNPs (Hoggart et al., 2008). Besides, 
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as the number of SNPs keeps increasing, the single SNP analysis approach, using individual 

test statistics is prone to the risk of selecting false positive SNPs due to the multiple testing 

correction problem (Balding, 2006). The difficulty is compounded with testing large number 

of SNPs (p) containing a small number of observations (n), i.e. p > n, which is typically a 

feature selection problem, where different methods may be applied (Saeys et al., 2007). Due to 

these problems, in most cases, the traditional approach might be leading to the ‘missing 

heritability’ issue (Manolio et al., 2009). 

The methods that adopt simultaneous inclusion of all SNPs, for a while have become the 

standard approach for GAS in dealing with the problem (Hoggart et al., 2008). These include 

the widely used standard forward stepwise method for multiple SNP analysis (Cordell and 

Clayton, 2002), which was adopted in the Jones et al. work to analyse nearly 1553 SNPs from 

approximately 500 subjects (Jones et al., 2009). The stepwise approach is argued to be 

statistically sub-optimal (Harrell, 2001) and tends to omit key genetic variants, particularly 

those with high linkage (Malo et al., 2008). Other multiple-SNP approaches include variants of 

penalised regression methods (Ayers and Cordell, 2010; Wu et al., 2009).  

Besides these improvements, different analytical techniques are still needed that might be able 

to further identify unaccounted genetic variants that are associated with the complex 

traits/diseases and which address the ‘missing heritability’ (Manolio et al., 2009; Moore et al., 

2010; Robinson et al., 2014). Thus, several authors have suggested approaches, which involve 

machine learning and data mining, in addition to bio-statistical methods, for efficient 

identification of novel SNPs associated with complex traits (Ao, 2008; Fernald et al., 2011; 

Moore et al., 2010; Touw et al., 2013). 

Therefore, in addressing the above problems, this study is proposing a novel computational 

pipeline (RAPIDSNPs) (Salehe et al., 2017), which rapidly identifies previously unaccounted 
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potential key SNPs that are associated with ADP platelet responses. The pipeline involves an 

integrated, heuristic-based, hybrid strategy, incorporating data mining and machine learning 

methodologies to identify potential key and significant unaccounted SNPs. The project further 

incorporates the bioinformatics and predictive approaches for unravelling the underlying 

molecular mechanistic effects of the identified key SNPs’, which likely contribute to the 

variability of the ADP platelet responses and CVD risk.  

1.6 Integrated computational and predictive approach  

1.6.1 Integrated approaches for analysing omic variations  

In addressing the above analytical problems related to GASs, the integrated analytical approach  

appears to be a more pragmatic strategy (Ritchie et al., 2015). To implement this approach, 

different data sets and results are integrated in multi-phased analyses rather than focusing only 

on each SNP’s genotype and its association with the concerned phenotype (Sieberts and Schadt, 

2007; Hamid et al., 2009).  

In this regard, the integrated analytical approach entails generating models that may describe 

and predict the potential interactions and complexity between SNPs, and other omic variations, 

which may further explain the variability of the ADP platelet responses phenotype (Ritchie et 

al., 2015).  

1.6.2 Integrated approach using data mining and machine learning for ‘omic variations 

analyses 

Several different integrated approaches for analysing omic data have been developed by 

different research groups. Each depend on, or are guided by, the homogeneity or heterogeneity 

of the data that are to be integrated (Hamid et al., 2009). However, systems genomics 

approaches, which incorporate meta-dimensional and multi-staged analyses have gained higher 
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attention (Hawkins et al., 2011; Holzinger and Ritchie, 2012). In the interests of this study, the 

multi-staged approach is appropriate, where the omic variations that underlie the trait or disease 

are examined in hierarchical or linear manner. For instance, the DNA sequence variation or 

SNP is examined and if it leads to changes in the protein sequence, then it is further investigated 

to examine its effects on the structure/function, and resulting changes in phenotype (Ritchie et 

al., 2015).  

Data mining and machine learning methods have been extensively used in order to implement 

such approaches (Ao, 2008; Hamid et al., 2009; Nicodemus and Malley, 2009). Data mining 

and machine learning have been found to be effective, as they incorporate prior biological 

knowledge such as different omic interactions and are capable of finding useful patterns from 

the multivariate data (Moore et al., 2010; Holzinger and Ritchie, 2012).  

Since the data and results in this study might come from the different omic levels, then, a hybrid 

strategy for integrating data and results is designed and implemented. In the initial phase, the 

RAPIDSNPs approach, which is a hybrid and integrated approach for key SNPs identification, 

is developed. The underlying mechanism of RAPIDSNPs is explained in detail in Chapter 2. 

The method combines and integrates multiple approaches, which are grounded on data mining 

and machine learning algorithms to form a consensus selection of the key SNPs associated with 

ADP platelet responses variation. It has been suggested that combining multiple individual  

approaches in downstream analyses is a useful strategy for minimising the selection of false 

positive SNPs in genotype – phenotype studies (Holzinger and Ritchie, 2012). 

In the intermediate phase of the pipeline, key SNPs are investigated using integrated 

bioinformatics approaches. The results from this phase provide a further understanding of the 

likely molecular mechanisms that may lead to differential ADP platelet responses and 

aggregation. In the long term, this knowledge might be useful for guiding the interpretation of 
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the results for CVD personalised medical decisions in clinical settings. Figure 1.7 shows the 

information flow in a simplified integrated approach for investigating the underpinning 

variability of ADP platelet responses for CVD personalised healthcare.  

 

Figure 1.7 The linear relationship showing the analytical flow of the data and results from different phases in the 

integrated manner. The research’s primary hypothesis is that there are potential previously unidentified key SNPs, which are 

associated with the ADP platelet responses and that may underpin CVD risks. However, the broader hypothesis is that these 

SNPs are related to other omic variations, which further may underpin the variability of the ADP platelet responses and may 

also underlie the CVD risks. Hence, there are several intermediate hypotheses between the identification of key SNPs phase 

and the omic enhanced CVD personalised healthcare phase. 

1.6.2.1 Brief description of the integrated approach of the project 

In Figure 1.7 the identified SNPs or key SNPs, are obtained using RAPIDSNPs, which 

incorporates feature selection tools for ultimately selecting significant and key SNPs patterns 

associated with ADP platelet responses. 

Several of these significant SNPs cause missense and deleterious mutations to the related 

proteins, which are shown to have likely structural and functional effects that may underlie the 

differences in ADP platelet responses and CVD. The identification of the deleteriousness of the 

SNPs and their potential structural/functional effects on the related proteins, which likely 
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underpins the molecular mechanisms, are performed using protein bioinformatics analyses. 

Numerous 3D models of tertiary structures are generated using a protein structure prediction 

protocol stack. Moreover, for further understanding of the molecular mechanisms, the 

identified significant intronic, non-coding, non-deleterious missense and synonymous SNPs 

are examined their possible involvement in the regulatory roles. The aim is to investigate how 

likely it is that the identified SNPs are localised in the regulatory regions and involved in the 

differential gene transcription (transcriptomic variations). The presence of SNPs in the 

regulatory regions, in turn, may likely affect the regulation of the individuals’ ADP platelet 

responses or levels. 

Furthermore, another predictive approach, which is based on supervised ML algorithm has been 

developed for predicting the individuals’ ADP platelet responses levels based on the identified 

SNPs’ allelic features in phase 1 (Chapter 5). This new predictive approach has been used to 

generate models, which can help to determine how likely an individual’s ADP platelet response 

levels would be, based on examination of the population’s SNPs genotypes (alleles). These 

models may be useful for identifying potential individuals with extreme cases of ADP platelet 

responses, i.e. high and low responders. Ultimately, the predictive models may be used for 

therapeutic or clinical purposes, as basis for predicting the individuals’ increased (or decreased) 

platelet aggregation and potential risk of CVD (Chapter 6).  

Furthermore, apart from the specific ADP platelet responses, the likelihood of the identified 

SNPs to be associated with CVD in general is determined using a literature search and 

following a meta-analysis technique. This task is aided by exploiting computational tools such 

as SNPedia (Cariaso and Lennon, 2012) and SNPNexus (Ullah et al., 2012). The results will 

help us to generate hypotheses for future studies on how likely the identified omic variations, 

that are associated with the ADP platelet responses, participate in CVD pathogenesis. In the 
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long term, the results will also be useful in assessing the individual’s genetic determinants, 

CVD risk levels (Chapter 6), and help to develop appropriate targeted therapeutics in clinical 

settings.  

The approach as demonstrated in Figure 1.7 entails modelling complex interactions, which may 

underlie complex disease (CVD) by integrating information from the different aspects of the 

omic variations underpinning ADP platelet responses variability.  

1.7 Personalised healthcare using identified omic variations associated with 

ADP platelet response levels for CVDs? 

1.7.1 What is personalised healthcare? 

Personalised healthcare is a modern approach to healthcare delivery, which is based on the 

examining the variations in an individual’s inherited characteristics that might contribute to the 

disease outcome (Collins and Varmus, 2015). This has been made possible by the recent 

advancement of key biotechnologies, computational tools and methods, which are capable of 

characterising and generating large-scale omic and other biological data for individual patients 

(Collins and Varmus, 2015). Personalised healthcare is mainly derived from the term 

personalised medicine, which was originally defined as providing medicines based on 

individual genetic makeup (Langreth and Waldholz, 1999). It might also be more simply 

defined as the ability of practitioners to provide the right drugs for the right patients (Bates, 

2010). However, this definition bears controversy, as no doctor intentionally prescribes the 

wrong medicine (Bates, 2010)! A standard definition is provided by PCAST (US President’s 

Council of Advisors on Science Technology): 

‘Personalized medicine refers to the tailoring of medical treatment to the individual 

characteristics of each patient. It does not literally mean the creation of drugs or medical 



68 

 

devices that are unique to a patient but rather the ability to classify individuals into 

subpopulations that differ in their susceptibility to a particular disease or their response to a 

specific treatment. Preventive or therapeutic interventions can then be concentrated on those 

who will benefit, sparing expense and side effects for those who will not’ (President’s Council 

of Advisors on Science Technology, 2008). 

The key component of personalised healthcare is the use of information implicit in the genome 

and its expressed products, such as RNAs and proteins, to guide medical decisions. Thus, 

personalised medicine is alternatively termed genomic medicine (Ginsburg and Willard, 2009). 

Another alternative name is precision medicine, which means tailoring medical treatment by 

incorporating individual variability in genes, lifestyle, and environment (Precision Medicine 

Initiative, 2015). 

Furthermore, personalised healthcare might be further and broadly defined based on its 

features, i.e. it is a model of healthcare, which is predictive, personalised, preventive, and 

participatory (P4 medicine) (Hood and Flores, 2012). This healthcare paradigm is characterised 

by the development and application of computational tools to biomedical research data through 

bioinformatics, which hopefully may guide healthcare providers and consumers in making an 

informed decision for improving human health (Overby and Tarczy-Hornoch, 2013). 

At the core of personalised healthcare is the use of data analytics and emergent technologies in 

identifying and understanding the underlying cause of disease (NHS England, 2015). These 

technologies are embedded with or rely on the advances in research in the molecular biology, 

genomics, and bioinformatics (Collins and Varmus, 2015). Data on omic variations is at the 

heart of personalised healthcare, exemplified through the advancement of GWAS and its 

related technologies (Peterson et al., 2013). These data are being generated at an ever increasing 

rate (Consortium, 2012, 2010; Djebali et al., 2012; Reva et al., 2011; Wilhelm et al., 2014). 
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This big data phenomenon urgently requires new methods and optimised computation tools for 

integrating data and results in order to understand the underlying genetic interactions and 

molecular mechanisms governing disease, which can be eventually translated into personalised 

healthcare practice (Fernald et al., 2011). 

1.7.2 Why do we need personalised healthcare? 

Conventional medicine and clinical practice are based on the philosophy of ‘one size fit all’, 

which results in treatment designed for the average patient. This can often work well for the 

majority of patients but not for others (Precision Medicine Initiative, 2015). Personalised 

healthcare is tailored to proactively deliver healthcare services to meet patient’s individual 

health needs (diagnosis, treatment, prevention). There is clearly a need for the development 

tools, using bioinformatics and systems biology approaches, for predicting individual responses 

to treatments, which will allow us to reduce healthcare costs, while improving and maintaining 

the wellbeing of patients (Burnette et al., 2012; Hood and Flores, 2012; Overby and Tarczy-

Hornoch, 2013; Snyderman R and Dinan MA, 2010).  

1.7.3 Omic variations and personalised healthcare for ADP platelet responses and CVD 

SNPs play a significant role in the genetic heritability of platelet responses through their 

influences on the hypo and hyper-reactiveness of the platelet responses among individuals. It 

has been suggested that understanding the genetic contribution to platelet functioning might 

have a clinical impact on personalising platelet focused CVD therapeutics (Williams et al., 

2010). This is due to the fact current anti-platelet drugs that target the ADP receptor (P2Y12) 

have been reported to have reduced efficacy in many patients (Offermanns, 2006; Woulfe et 

al., 2001). Therefore, we are focusing our attention on ADP platelet responses as they have 

high potential for directing personalised therapeutics using antiplatelet drug combinations. 
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1.8 General aim and hypothesis 

In general, the study aims at the development of computational methods for the identification 

of novel or key SNPs and other omic variations that might be associated with variability of 

complex traits/diseases, for potential application in personalised medicine.   

The study specifically aims to investigate the effect of omic variations on ADP activated 

platelet responses that are likely to contribute to the inter-individual variations in platelet 

aggregation and thrombus formation, and CVD disease risks. The study further aims to 

elucidate the genotype – phenotype relationship underpinning high or low ADP platelet 

response levels, which may be used in the long term for the development of personalised 

approaches to the treatment of CVD. 

The primary hypothesis that drives this study is that there are previously unaccounted genetic 

variants (SNPs) or omic variations, which are likely to be associated with the variability of the 

ADP platelet responses. These unaccounted variants might play further key roles in the 

molecular mechanisms, which may underlie inter-individual variability in platelet aggregations 

(or thrombus formation) that will lead to differing CVD prognoses. 

In vitro experiment to measure thrombus formation over time among individuals was 

performed by C.I Jones. Initial rate of platelet calcium flux and fibrinogen binding were then 

measured and associated with the rate and size of thrombus formation. The plot in Figure 1.8 

(data from this  preliminary study) shows the differing thrombus sizes of 45 individuals, which 

are potentially due to the effects of key genetic variants indicated in previous studies (Jones et 

al., 2007; Pruissen et al., 2009; Rauch et al., 2001). 
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Figure 1.8 The variation of the in vitro thrombus formation (Hounsfield unit) of 45 individuals at the different time (in 

seconds). Each line represents the intra-individual variation of the thrombus formation rate for each subject out of the 45 

subjects’ blood samples. It might be seen clearly that individuals’ thrombus formation varies relative to each other (inter-

individual variations). The rate of thrombus formation data for 45 subjects was acquired from C.I. Jones, University of Reading. 

This inter-individual variation was further examined through the in vitro measurement of P-

selectin expression and fibrinogen binding platelet responses as the result of ADP activation 

(measured by flow cytometry). Platelet responses to ADP were analysed in vitro using flow 

cytometer, in which the binding of fibrinogen to platelets and expression of P-selectin by 

platelets was measured. The resulting data are plotted in Figure 1.9, which shows the correlation 

between two ADP platelet response measures (PA and FA) and Figures 1.10 and 1.11, which 

show their distribution. 
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Figure 1.9 The correlation between PA and FA platelet response measures. The x and y-axes are P-selectin expression 

and fibrinogen binding in response to ADP platelet activations (pa & fa) respectively.  

From Figure 1.9, PA and FA appear to be positively correlated. And based on the standard 

Pearson correlation test, their correlation appears to be significant (p-value = 9.697e-08). This 

might mean the increase or decrease in degranulation, which results in P-selectin release may 

signify the increase or decrease in fibrinogen binding in response to ADP activation. 
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Figure 1.10 The distribution of the PA platelet response among different subjects. There are total of 497 subjects who 

were measured for their PA platelet responses. The plot further reflects Figure 1.8, which shows the inter-individuals variability 

of the ADP activated platelet responses and thrombus formation. The interesting subjects are those with extreme values, i.e., 

those with high and low responses. The data was acquired from (Jones et al., 2007). 

 

0

20

40

60

80

100

120

140

160

180

200

-2.25 -1.45 -0.65 0.15 0.95 1.75 2.55 3.35 4.15 4.95

Fr
e

q
u

e
n

cy

P-selectin expression measures in response to ADP: or PA (fluorescence unit/FU)

Distribution of P-selectin expression measures 
in response to ADP (PA)



74 

 

 

Figure 1.11 The distribution of FA platelet responses among different subjects. Similarly, the total number of subjects 

were 497. Again, here the interesting subjects are those with the extreme responses, i.e. tails of the distribution. The data was 

acquired from (Jones et al., 2007). 

The plots in Figures 1.8, 1.10 and 1.11 show the possible effects of the omic variations to the 

overall inter-individual variations in thrombus formation, P-selectin ADP responses and 

fibrinogen ADP responses, respectively. Nevertheless, some of the variations are due to 

environment. The most interesting individuals, from clinical and biological perspectives, are 

those showing extreme variations in the thrombus formations, and ADP platelet response 

levels. 

Therefore, a further aim of this study is to determine the predictive ability of the identified key 

SNPs in predicting the likelihood of an individual to have extreme ADP platelet responses (high 

or low PA or FA) levels based on their alleles. In addition, the related aim is to elucidate which 

of the alleles (allelic-patterns) are more likely to be associated with these extreme variations of 

high or low PA/FA levels (Chapter 5). The approach would highlight the important associated 

individual SNPs and their alleles, which could be used to guide future CVD personalised 
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healthcare decisions or strategies (for instances in CVD diagnosis or/and treatments) (Chapter 

6). 

1.9 Study objectives 

To achieve the above aims, the specific objectives are to:  

1) Design a computational approach for rapid identification of the previously unidentified 

key SNPs that might be associated with the inter-individual ADP platelet responses 

phenotype. 

2) Investigate the roles of the identified SNPs that are likely to underpin the mechanisms 

of ADP platelet responses and aggregation at the molecular level. In this case, the 

objectives are to: 

a. Design the predictive approaches that may identify the deleterious missense 

SNPs and investigate their effects on the structures/functions of the related 

proteins at the proteomic level. 

b. Design the computational approach for investigating the potential regulatory 

mechanisms of the identified non-damaging missense, non-coding and intronic 

SNPs. 

3) Design a method for predicting the ADP platelet response levels (high or low, i.e. the 

extreme cases), which may underpin increases or decreases of platelet aggregation, 

thrombus formation, and CVDs risks for personalised healthcare. 

Generally, it is hoped that the study will further contribute to the current knowledge of the 

genetic basis underpinning the ADP activated platelet responses and CVD prognosis. In 

addition, the results obtained might have wider implications in overall platelet systems biology 

and potential to affect personalised CVDs medical decisions. 
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The key research questions of the study are: (1) What are the key previously unidentified 

genomic variations (SNPs), which are likely to be further involved with the variation of ADP 

platelet responses (PA and FA)? (2) Are the identified key SNPs damaging to the structures 

and/or functions of the proteins associated with ADP platelet functions? (3) Can we confidently 

predict the structures/functions of the identified interesting proteins with damaging mutations 

(SNPs)? (4)  Do the identified key SNPs found in the regulatory regions affect the regulation 

of genes transcription associated with ADP platelet functions? (6) How are the identified SNPs 

involved in the regulation of genes transcription associated with the ADP functions? (7) Can 

we predict ADP activated platelet responses levels in an individual?  

The research will focus particularly on ADP platelet activation pathways, which play an 

important role in the amplification of platelet aggregation and thrombus formation, and CVD 

prognosis. However, these computational and predictive approaches may also generally be 

applied for the study of other genetic diseases/traits involve continuous phenotypic variation. 

1.10 Conceptual framework 

To elucidate the aims and objectives of this study further, the designed conceptual framework 

underpinning the genotype-phenotype aspects of the study is shown in the Figure 1.12.  
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Figure 1.12 The general framework for studying and analysing omic variation data for understanding their likely 

association with complex traits and disease prognosis. At the genome level, the main focus is on the identification and 

understanding of the key SNPs that might initially associate with or contribute to the intermediate changes. For instance, SNPs 

in the genome level might lead to the regulatory changes and result in the transcriptomic variations. These changes may have 

possible effects on the proteome levels, which may include structural and functional changes of the proteins or the amount of 

protein produced. These molecular changes might lead to changes or variability associated with the complex traits that may 

progress to the disease status at the phenome level. At the phenome level, the framework emphasises the study of ADP platelet 

responses and its effect on the thrombus formation as a complex trait, which may underpin the CVD prognosis. However, the 

general framework is adaptable to other complex traits/diseases. 

Holistically, the integrated approach described earlier in the section 1.6.2 (Figure 1.7) is applied 

to interpret and integrate the results from one phase of the conceptual framework to another 

(Figure 1.12). Moreover, the project pipeline is based on the described integrated framework, 
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comprising an integrated computational approach for analysing the omic variations in ADP 

platelet responses. 

1.10.1 General project pipeline for omic variation analyses  

Functional genomics partly involves finding and understanding the relationship between 

genotype and phenotype for complex traits and diseases (Pevsner, 2009). To further understand 

the genotype-phenotype association, researchers have described the urgent need for genomic 

analysis pipelines (Bromberg, 2013; Morris and Zeggini, 2010). Therefore, the computational 

pipeline is designed for integration and smooth interpretation of the data and results from the 

various phases of the described conceptual framework. This pipeline is configured in order to 

unveil the relationship between complex genetic or molecular interactions and phenotypes, for 

future applications in biomedical science and potentially clinical practice. 

The anatomy of this pipeline, which in this case is applied for investigating the relationship 

between SNPs and ADP platelet activated responses, has the following phases; phase A – SNP 

screening and discovery, phase B – bioinformatics analyses (for investigating the molecular 

aspects of the SNPs, i.e. damaging missense, regulatory, etc.), phase C – phenotype 

identification (intermediate, including 3D structural models), phase D – phenotype prediction 

(ADP platelet response levels/CVD potential risks), phase E – evaluation (iterative in some 

phases). Figure 1.13 depicts this pipeline as a flow chart: 
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Figure 1.13 The high-level flow of data and results in the pipeline for the integrated computational approach, which is 

needed to implement the framework shown in Figure 1.11. This pipeline shows critical stages and necessary outputs/inputs 

during the analyses of the various omic variations under the study. The filtering (screening) phase describes an approach for 

performing screening of the SNPs obtained from GASs. The aim is to reduce the model space of the SNPs for finding those 

that likely underpin the ADP platelet responses phenotype. In polygenic traits, different SNPs have varying degrees of effect 

i.e. some are more/less contributing to the phenotypic effect. Therefore, this phase is crucial for obtaining useful key SNPs for 

further analyses. The bioinformatics phase aims to investigate the underlying molecular aspects of the obtained key SNPs 

underpinning the ADP platelet response. The prediction phase aims to generate models for predicting ADP platelet response 

levels and potential CVD disease risk status. Thus, there are three key outputs expected: 1) Previously unidentified key SNPs, 

which are identified through a rapid computational approach (RAPIDSNPs). 2) Intermediate phenotypes, such as protein 3D 

structural models for investigating the damaging missense SNPs, and transcriptomic variation related data such as transcription 

factor binding sites, RNA binding sites, and eQTL that might be due to the regulatory roles of the identified key SNPs. 3) 

Predictive models for predicting ADP response levels and potential CVD risks. 
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This pipeline adheres to an integrated analytical approach strategy, which was designed by 

Ritchie et al. for modelling of ‘omic’ variations associated with complex phenotypes. The 

integrated approach is an effective means for identifying predictive models for complex 

phenotypic traits outcomes (Moore et al., 2010; Ritchie et al., 2015) (Figure 1.14). 

 

Figure 1.14 An integrated framework involving multistage analyses underlying genotype-phenotype association for 

‘omic’ variation data proposed by Ritchie et al. This framework complements our designed conceptual framework for this 

study, shown in Figure 1.11. The developed theoretical framework for this study involved the key SNPs at the genome level, 

eQTL or transcription factors, RNA binding sites, etc. at the transcriptome level, and protein 3D structures/functions at the 

proteome level. Holistically, all levels may be contributing to the underlying variability of the ADP platelet responses, 

thrombus formation and CVDs risks at the phenome level. (Figure was taken from (Ritchie et al., 2015). 

The following sections briefly describe the individual phases of the pipeline in the Figure 1.13 

and further reflect the designed integrated approach in the sections 1.6.2 and 1.6.2.1. 

1.10.1.1 Screening phase 

90% of human genome variations in DNA are SNPs (Collins et al., 1998). Nevertheless, only 

a small proportion of SNPs that occur around and in the coding regions are of biological 
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importance (Pevsner, 2009). Therefore, the screening phase is important to remove from the 

sample data those SNPs, which are likely to be less significant to the overall variability of the 

ADP platelet functions. Thus, a rapid computational methodological approach (RAPIDSNPs) 

has been developed and employed for identifying key SNPs, which were previously 

unidentified.  

1.10.1.2 Bioinformatics analyses 

This phase aims to investigate the possible molecular effects of the identified key SNPs from 

the screening phase. In general, bioinformatics approaches can help us to determine whether 

the identified SNPs are likely to play any role at the molecular level (Hutchins, 2014). For 

instance, in the case of the identified SNPs in the coding regions, the interest is to find their 

effect on the sequences, structures and functions of the resulting proteins. Thus, the major focus 

is to identify whether the SNP is likely to be a deleterious missense mutation and then predict 

the possible structural/functional effects of the related proteins (Cavallo and Martin, 2005; 

Wang and Moult, 2001). 

Conversely, for the identified intronic, non-coding, and synonymous SNPs, the purpose is to 

find whether they are involved with the regulatory activities. These are likely to contribute to 

the variations at the transcriptome level that may also underpin the variability of the ADP 

platelet responses (Gerasimova et al., 2013; Gibson et al., 2001; Hull et al., 2007). 

Figure 1.15 is a flowchart, which illustrates a detailed flow of information for the molecular 

analyses of the identified key SNPs using the Bioinformatics approaches. 



82 

 

 

Figure 1.15 The schematic flowchart of the bioinformatics analysis pipeline for investigating the molecular aspects of 

the key SNPs obtained in the filtering phase. The interest is to examine the structural/functional effects due to the identified 

damaging missense SNPs in addition to the regulatory mechanisms of the intron, non-damaging and non-coding, and 

synonymous SNPs that likely underpin the ADP platelet responses variability. The identified SNPs from the filtering phase are 

first analysed using genome browsers. Depending on the SNPs category, different computational and bioinformatics methods 

are then applied to determine their effect on the structural and/or functional, or regulatory activities of the related 

proteins/genes. 
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1.10.1.3 Prediction 

The data on significant SNPs, which are obtained from the filtering phase, may be further 

utilised to predict whether individuals are likely to have low or high level ADP platelet 

responses. Such predictions would be useful for determining whether platelet 

aggregation/thrombus formation is likely to be decreased or increased. In turn, the results might 

be used to predictively determine the individuals’ CVD risk, informing therapeutic and clinical 

decisions, or interventions, depending on the confidence in the model and the SNPs allelic 

features involved in making the prediction. 

1.10.1.4 Evaluation 

Various predictive models are evaluated using the standard approaches to determine their 

accuracy and quality for potential application in the personalised medicine or targeted 

therapeutics. In the case of the generated protein 3D structural models, the state of the art Model 

Quality Assessment Programs (MQAPs) are used. For the predictive models of ADP platelet 

response levels, the standard approaches such as confusion matrices are used to evaluate 

prediction quality. 

1.11 Organisation of the thesis 

Based on the framework and pipeline, this thesis is organised as follows: Chapter 2 describes 

the RAPIDSNPs approach for the rapid identification of the previously unidentified key SNPs, 

which are likely to be associated with variability of the ADP platelet responses. Chapter 3 

describes the predictive approaches for identification of the potential structural/functional 

effects of the identified key SNPs (missense SNPs) identified in Chapter 2. Chapter 4 describes 

the computational approaches, to identify or predict the potential regulatory roles of the key 

SNPs identified in Chapter 2. Chapter 5 describes a method for predicting the ADP platelet 
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response levels by exploiting the allelic features of the identified SNPs in Chapter 2. Lastly, 

Chapter 6 provides the synopsis and future direction of the research based on the results from 

different chapters. 

1.12 Summary 

The ability to generate high throughput genomic sequences has enabled many genetic 

association studies to be performed to understand complex trait/disease causing variants (e.g. 

SNPs). However, the methods employed by these studies have not fully accounted for key 

genomic/post-genomic variations nor have they explained the remaining or missing heritability. 

In addition, these studies rarely offer insight on the molecular mechanisms of the variants, 

which is vital for our deep understanding of the variability of complex traits/diseases and their 

pathophysiology for personalised healthcare/medical decisions. 

This project provides an alternative integrated computational and predictive approach for 

further elucidating the remaining unexplained genetic aetiology of complex traits/diseases. The 

ADP platelet responses, which play the significant role in the platelet aggregation, 

underpinning various CVD problems, has been used in this study as a key “model system”, for 

testing our methodology. The results provide some new insights into platelet biology and 

suggest new directions for targeted antiplatelet therapy for personalised healthcare. In future, 

our approaches might be applied to investigate other complex traits/diseases. 
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Chapter 2 – RAPIDSNPs: Rapid computational pipeline for 

identifying key SNPs associated with ADP platelet responses 

2.0 Abstract 

This chapter describes a novel computational pipeline for identification of the previously 

unidentified SNPs, which are associated with continuous phenotype from the genetic 

association studies (GASs). Advances in omics particularly genotyping technologies have led 

to the discovery of genetic markers, or single nucleotide polymorphisms (SNPs), that are 

associated with complex diseases/traits using GASs approaches. Although there have been 

significant improvements in the GASs approaches used to analyse associations of SNPs with 

the disease, further optimised and rapid techniques are needed to keep up with the rate of SNP 

discovery, which has exacerbated the ‘missing heritability’ problem. Herein, a novel, 

integrated, heuristic-based, hybrid analytical computational pipeline, for rapidly detecting 

novel or key genetic variants (SNPs) that are associated with diseases or complex traits is 

described. The pipeline (RAPIDSNPs) is more efficient for investigating small sets of 

genotyped SNPs defined in high dimensional spaces that may be associated with continuous 

phenotypes, rather than for the investigation of whole genome variants. The RAPIDSNPs 

employs a consensus approach to rapidly identify previously unseen key SNPs. It is able to 

identify SNPs, which are significantly associated with the ADP platelet response that is used 

as a complex trait case study (phenotype). Several of these SNPs, such as rs6141803 of 

COMMD7 and rs12953 in PECAM1, have independently confirmed associations with 

cardiovascular diseases (CVDs) according to other unrelated studies, suggesting that the 

RAPIDSNPs is robust in identifying key genetic variants. This approach provides an important 

step towards addressing the problem of ‘missing heritability’ through enhanced detection of 

key genetic variants (SNPs) that are associated with continuous complex traits/disease 

phenotypes. Moreover, the identified key SNPs might be indicating novel biological loci, which 

may require further attention and worth pursuing. 
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2.1 Introduction 

Genetic association studies (GASs) allow scientists to study and analyse SNPs associated with 

complex traits or diseases. The traditional approach for genetic association (GA) analysis is to 

analyse one SNP at a time. However, multiple SNP analysis approaches have recently received 

much attention, and different strategies have been designed and adopted (Hoggart et al., 2008). 

For instance, the widely used standard multiple SNP analysis approach is the forward stepwise 

method (Cordell and Clayton, 2002). Other approaches include variants of penalised regression 

methods (Ayers and Cordell, 2010; Wu et al., 2009) and a compendium of the burden tests 

methods for analysing and detecting rare variants (Han and Pan, 2010; Hoffmann et al., 2010; 

Li and Leal, 2008; Liu and Leal, 2010; Morgenthaler and Thilly, 2007). Besides these 

improvements, approaches that are computational and bioinformatics-based, are likely to 

complement the biostatistical methods and further improve crucial SNPs identification, and 

hence, further addressing missing heritability (Eichler et al., 2010; Manolio et al., 2009; Moore 

et al., 2010). Here a novel, integrated, heuristic-based, hybrid analytical computational pipeline 

(RAPIDSNPs), for rapidly detecting novel or key genetic variants that are associated with 

complex traits continuous phenotype is described. The pipeline combines the power of random 

forests (RF) (Breiman, 2001) and regularised regression methods, using ridge and least absolute 

shrinkage and selection operator (lasso) (Hoerl and Kennard, 1970; Tibshirani, 1996) for the 

analysis of SNPs in GASs, in addition to the stepwise method. The RAPIDSNPs has also been 

coupled with an additional feature selection layer containing Boruta method (Kursa and 

Rudnicki, 2010), for further improving the SNPs identification. In brief, this pipeline describes 

a consensus model based on the RF for identifying key genetic variants (SNPs) for further 

biological interpretation or predictive purposes.  

The RAPIDSNPs is able to select key SNPs associated with continuous phenotypic responses 

and has been applied to analyse the effect of multiple SNPs and loci associated with ADP 
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platelet responses. The RAPIDSNPs has identified several novel genetic variants significantly 

associated with platelet responses that were previously unidentified when only the standard 

forward stepwise method was used, yet it is also generally applicable for studying other 

continuous phenotypes. 

The previous study by Jones et al. (2009) analysed genotyped SNPs, which were associated 

with four platelet responses: 1. P-selectin exposure (a marker of degranulation) in response to 

adenosine diphosphate (ADP) agonist (denoted by PA), 2. Fibrinogen binding in response to 

ADP (FA), 3. P-selectin in response to the GPVI specific agonist cross-linked collagen-related 

peptide (CRP-XL) (PC), and 4. Fibrinogen binding in response to CRP-XL (FC) (Jones et al., 

2009). The genotyped SNPs data was obtained from the previous platelet responses functional 

genomic study (Jones et al., 2007). The key analytical method that was deployed was based on 

the forward stepwise method (Cordell and Clayton, 2002), which is argued to be statistically 

suboptimal (Harrell, 2001) and tends to omit key genetic variants, particularly those with strong 

linkage disequilibrium (Malo et al., 2008). 

Here, the RAPIDSNPs is critically evaluated against the previous method using the same data 

(Jones et al., 2007), focusing on the ADP platelet responses (i.e. PA and FA). Furthermore, it 

is shown that using RAPIDSNPs, enhances the ability to identify key significant SNPs that are 

associated with ADP platelet responses phenotypes while also assessing their confidence level. 

Several of these SNPs were missed when previously analysed using the standard biostatistical 

forward stepwise method. Several of these SNPs such as rs6141803 of COMMD7 and rs12953 

in PECAM1 have been also independently confirmed associations with cardiovascular diseases 

(CVDs) in other unrelated studies, suggesting the approach’s robustness in identifying key 

genetic SNPs. 
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Additionally, the RAPIDSNPs was tested with the age covariate and demonstrated that it has 

promising potential in accounting for further heritability of platelet responses and other 

continuous complex traits phenotypes, and in reducing the difficulty in finding ‘missing 

heritability’. Moreover, the RAPIDSNPs is useful in the genetic association studies where the 

genotyped SNPs data are highly dimensional (p > n). 

2.2 Methods 

2.2.1 Data acquisition and pre-processing 

2.2.1.1 Data acquisition 

The data containing SNPs was acquired from the Jones et al. arising from the Bloodomics 

project (Jones et al., 2007). The data consisted of nearly 1553 SNPs from 512 individuals. The 

data is therefore highly dimensional with the number of all SNPs ‘p’ greater than the number 

of observations ‘n’ (i.e. p > n). The data was represented based on the structure described in 

the section 1.4.1.1 in the previous chapter. The phenotypes contained is the standardised logit 

transformed of two ADP platelet responses, i.e. PA, and FA. These were quantitative and 

essentially continuous trait phenotypes and measured in a previous study by flow cytometry 

through the expression level of the two released molecules, i.e. fibrinogen (F) and P-selectin 

(P) after the platelet has been activated by agonists ADP (Adenosine diphosphate). Each SNP 

in a column is genotyped by using numeric factor variables 1, 2, and 3 for major homozygous 

(dominant allele), heterozygous, and minor homozygous (recessive allele) respectively, for 

each individual in a population, Table 2.1. 
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Table 2.1 Screenshot showing a spreadsheet table containing individual subjects and their genotyped SNPs. Each SNP 

in the column is named using SNP1, SNP2, …, SNP1553 and SNP’s dbSNP reference id with its respective gene/locus. 

2.2.1.2 Data pre-processing 

The SNPs dataset was pre-processed mainly to remove missing genotypes between the SNPs 

(column-wide) and observations or subjects (row-wide) (Figure 2.2 and Figure 2.3). 

 

Figure 2.1 The missing genotype counts of few selected SNPs. The SNPs are represented horizontally with their dbSNP id, 

and the total number of missing genotypes for each SNP is represented on the vertical axis. The total missing genotype count 

for most SNPs are below 20. There are few observed SNPs with extreme missing genotypes. 
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Figure 2.2 The distribution of missing genotypes among the individual subjects. Many individuals have relatively small 

number of missing genotype in each row with some few exceptions, whom their genotypes seem to be not recorded in entirety. 

These exceptional subjects were then completely removed from the table. The meaningful strategies were then applied to deal 

with the remaining missing genotypes. 

In dealing with the missing genotypes, three different strategies were applied based on the 

presence of missing genotypes in SNPs (column-wide) and individual cases (row-wide) as 

described below:  

In the first approach, since 72.33% of subjects possessed missing genotype values across SNPs, 

then all missing genotypes among subjects and SNPs were removed crosswise. This was 

performed after first omitting subjects and SNPs with a large number of missing genotypes 

(Figures 2.1 and 2.2). Then, the resulting dataset (named dataset 1) contained 462 subjects, i.e. 

93% of all 497 subjects, with 1430 SNPs. 

In the second approach, the dataset (dataset 2) was obtained after imposing threshold value 

based on the purity of each SNP genotype in the column. The SNP genotype with above 97% 

purity was removed from the set, i.e. the SNP with 97% threshold or above, of either 1, 2, or 3 

genotypes was removed from the dataset. The major assumption is that the particular SNP’s 
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genotype is conserved across the population, which genetically means does not exhibit any 

variability (Foulkes, 2009). Then random imputation method (Zhu, 2014) was applied to 

replace the remaining missing values with the most frequent genotype across the SNPs based 

on the distribution of the SNPs genotypes (1, 2, or 3). Eventually, the resulting dataset for 

analyses contained 497 subjects and 1270 SNPs. 

In the third strategy, each row containing case with missing genotypes was completely removed 

by using default handling based on the ‘complete case analysis’ theory (Briggs et al., 2003). 

After doing this, 27.77% of the subjects remained as complete cases (138 subjects with 1553 

SNPs). This dataset was named as dataset 3.  

The entire pre-processing was carried out using R scripts (RC Team, 2014), in additional to 

other software tools such Microsoft Excel. 

2.2.2 The computational pipeline (RAPIDSNPs) 

The RAPIDSNPs aims to address the screening phase of the integrated omic analyses pipeline, 

which was discussed in the section 1.10.1 in the previous chapter.  

2.2.2.1 The general method 

The RAPIDSNPs is based on the random forests (RF) (Breiman, 2001). The use of RF as an 

efficient tool for dealing with high dimensional data in the biomedical and life science has been 

elucidated in this previous review (Touw et al., 2013). The RAPIDSNPs follows a two staged 

analyses involving RF based on the work of (Schwarz et al., 2007), which is a standard for SNP 

discovery, as further explained by Goldstein et al. (Goldstein et al., 2011). The detailed 

description of the RAPIDSNPs approach is as follows 
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The random forests (RF) models were iteratively trained by using the above data subsets 

(Section 2.2.1). For each subset, the models were used to select the useful k SNPs from p. In 

this case, for each iteration based on the ntree (the number of trees used in generating RF 

model), an RF regression model was trained for both ADP platelet responses (PA and FA) in 

the dataset using all p SNPs. Then, the top 40 (k) among the overall ranked SNPs were selected 

using the permutation variable importance (VI) feature score measure (Breiman, 2001). An 

approximation of √𝑝 as a cut-off value was used for selecting the top ranked k SNPs in each 

platelet responses. The k SNPs were used as a baseline for the downstream selection of the key 

significant SNPs in the pipeline. 

For each iteration, the RF model was retrained using the k SNPs to examine whether the model 

has improved. The performance improvement was observed with the increase in the value of 

ntree, starting from 500, up to 3000 trees (i.e. 500, 1000, 2000, 3000 for iterations 1, 2, 3, and 

4 respectively) where the models exhibited a stable performance. The relative increase of ntree 

was shown to significantly increase the performance, and proven to enhance the selection of 

the relevant variables (Strobl and Zeileis, 2008). The performance of the RF models was 

evaluated using equation (1).  

                                    𝑅2 =  1 −
∑(𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑− 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2

∑(𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝑃̅𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)2
                      (1) 

Where: 

𝑅2 is the root mean squared, 𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  and 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  are observed and predicted platelet 

responses respectively for each of the FA, and PA. 𝑃̅𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 is the mean platelet responses for 

each of the FA, and PA. 
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For each iteration, the k SNPs were further passed through the designed layer of (regularised) 

regression methods ensemble, which was used to find highly significant SNPs associated with 

platelet responses. The rationale was that devising this layer would potentially increase the 

likelihood of identifying many significant SNPs based on the varying performances of the 

individual methods (Hastie et al., 2005). An additional aim in applying this layer was to 

increase the power of detecting significant SNPs that are likely to be missed by any of the other 

methods. 

In the implementation of this layer, ridge and lasso were used in additional to the stepwise 

forward regression methods. The forward stepwise method was initially used to examine the 

number of SNPs that would have been selected relative to the previous study using the same 

data (Jones et al., 2009). Lasso was included to retain potentially sparse interactions among the 

genetic variants (Wu et al., 2010). Ridge regression was applied to take into account potential 

multicollinearity among SNPs, particularly those with strong linkage (Malo et al., 2008).  

The SNPs resulting from each model, which was generated from the different selected 

regression methods were collated and tested to find those that were significantly associated 

with PA and FA platelet responses. The significant SNPs from each method were 

parametrically tested and selected based on the cut-off p-value of <= 0.01. 

Tables 2.2, 2.3, and 2.4 demonstrate the effect of relatively increasing the RF’s ntree 

parameter on the variance of k SNPs for PA platelet response and significance of regression 

models for the datasets 1, 2, and 3 respectively. 
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Random Forests (RF) Run RF+Stepwise RF+Ridge 

regression 

RF+Lasso 

#Iterations Number 

of trees 

(ntree) 

% 

Variance 

all (p) 

SNPs 

% 

Variance 

k SNPs 

Model 

significance 

(r-squared & 

p-values) 

Model 

significance 

(%Variance) 

Model 

significance 

(r-squared 

& p-values) 

1 500 -0.67 8.58 0.088 & 

4.965e-09 

14.7 0.096 & 

1.83e-09 

2 1000 0.43 13.7 0.11 & 

4.771e-11 

17.83 0.10 & 8.1e-

10 

3 2000 0.23 16.66 0.111 & 5.4e-

11 

18.77 0.138 & 

7.108e-13 

4 3000 0.51 17.94 0.13 & 1.49e-

12 

17.5 0.16 & 

6.61e-15 

Table 2.2 The performance evaluation of the models for PA in the pipeline (RAPIDSNPs) using dataset 1. For each 

iteration, the RF model performance was evaluated based on the increase of % variance when the model was run using all p 

SNPs and selected k important SNPs. This was further followed up by passing the k SNPs into the multiple regression methods, 

where the confidence of their models was subsequently evaluated. This was repeated until the models showed convergence. 

Note, the % variance is a negative number (-0.67) in the first iteration, i.e. ntree=500. The negative number indicates that the 

prediction is very poor due to incorporating all SNPs (p) in the full model, a situation where many bad variables (SNPs) might 

be included (Genuer et al., 2010; Strobl et al., 2008). 

Random Forests (RF) Run RF+Stepwise RF+Ridge 

regression 

RF+Lasso 

#Iterations Number 

of trees 

(ntree) 

% 

Variance 

all (p) 

SNPs 

% 

Variance 

k SNPs 

Model 

significance 

(r-squared & 

p-values) 

Model 

significance 

(%Variance) 

Model 

significance 

(r-squared 

& p-values) 

1 500 -0.5 10.05 0.1016 & 

1.761e-10 

19.44 0.1085 & 

6.363e-11 

2 1000 -0.5 15.06 0.09728 & 

2.485e-10 

20.94 0.1315 & < 

3.787e-13 

3 2000 -0.19 15.18 0.09766 & 

2.256e-10 

18.41 0.1517 & 

8.44e-15 

4 3000 -0.08 16.69 0.16 & 

3.353e-11 

20.68 0.1512 & 

9.774e-15 

Table 2.3 The performance evaluation of the models for PA in the pipeline (RAPIDSNPs) using dataset 2. The relative 

similar performance can be observed as it was in the dataset 1. 
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Random Forests (RF) Run RF+Stepwise RF+Ridge 

regression 

RF+Lasso 

#Iterations Number 

of trees 

(ntree) 

% 

Variance 

all (p) 

SNPs 

% 

Variance 

k SNPs 

Model 

significance 

(r-squared & 

p-values) 

Model 

significance 

(%Variance) 

Model 

significance 

(r-squared 

& p-values) 

1 500 -4.72 21.07 0.323 & 

1.256e-10 

17.93 0.3348 & 

9.909e-11 

2 1000 -6.27 22.81 0.2791 & 

2.634e-09 

17.89 0.335 & 

9.742e-11 

3 2000 -5.32 27.65 0.2097 & 

1.462e-07 

19.02 0.2314 & 

6.242e-08 

4 3000 -5.9 24.71 0.3211 & 

3.436e-10 

15.92  0.2558 & 

1.923e-08 

Table 2.4 The performance evaluation of the models for PA in the pipeline (RAPIDSNPs) using dataset 3. The relative 

similar performance can be observed as it was in the dataset 1 and 2. 

Thus, from Tables 2.2, 2.3, and 2.4, the increase in the variance explained by the RF, and 

confidence of the intermediate regression models might be an indicative feature of the 

importance of the selected k and highly significant SNPs respectively. A similar pattern is 

observed when the pipeline is validated using the simulated data (see a section titled ‘Validation 

of the pipeline’). This further supports the work of Paul et al. (2013) and (Strobl and Zeileis, 

2008)  who showed that the variables selected using the VI measures are likely to be statistically 

significant, and the increase in the value of ntree plays a significant role in the selection of the 

relevant variables respectively. The k SNPs from the optimal or converged RF model (i.e. when 

the ntree=3000) were thus used to find the most significant and key SNPs in the final consensus 

approach. 

Furthermore, for each iteration the k SNPs were alternatively passed through Boruta method 

(Kursa and Rudnicki, 2010) layer, which is an RF-based method normally used to select all 

relevant important features from the RF model. The Boruta method has previously shown the 

relative robustness in selecting potentially important genes (Kursa, 2014). In this approach, it 

was applied to enhance the consensus during the identification of the most significant SNPs by 
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independently examining the significant SNPs relatively to those selected by the regression 

methods layer in addition to new ones. The Boruta method finds k′ relevant (important) SNPs 

from k. The significance (or the importance) of SNPs in the Boruta method is measured using 

the Z-score. Once the optimal state of the pipeline was determined (i.e. in convergence), the 

SNPs from each method in the regression layer and Boruta were then extracted and compared 

to discover which of those were found to be the most significant by consensus, indicating to be 

key genetic variants (Figure 2.3).  

 

Figure 2.3 Flowchart showing the general methodological approach underpinning the RAPIDSNPs. In high dimensional 

genetic data of n samples with p genotyped SNPs, the number of SNPs was first reduced from p to k by means of the RF layer. 

The selected k SNPs were further reduced by means of two alternative methods, the ensemble of three regression methods and 

the Boruta method. The most significant SNPs are those that are selected by both methods, i.e. in consensus during the final 

iteration. 
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Based on the examined significant SNPs in different intermediate models in each iteration (i.e. 

ntree) of the pipeline, a confidence level was then assigned during the final iteration to verify 

that the selected key significant SNPs were not false positives. The confidence level also allows 

to ensure that true key significant SNPs (true positives) are not rejected, due to either being 

selected by a single method or being completely missed out in the final iteration when the 

pipeline converges. In order to assign a confidence score, a plot was created showing the 

frequency of the selected significant SNPs in the intermediate models in every iteration (see 

the Results section). The higher the frequency of appearance in the intermediate models, the 

greater the confidence score, or higher likelihood of being true key significant SNPs (true 

positives), i.e. during the observed convergence, if the same SNP appears in different 

intermediate models and in several iterations, then it is more likely to be a true positive. The 

confidence level of the selected significant SNP was then determined by taking the ratio of the 

frequency of appearance of a SNP (pm) in the intermediate models in all iterations (i.e. 

ntree=500, ntree=1000, ntree=2000, and ntree=3000) to the normalised total number of the 

models multiplied by total number of iterations. Equation (2) 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑓𝑜𝑟 𝑆𝑁𝑃 (𝑃𝑚) =  
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑆𝑁𝑃 (𝑃𝑚) 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙𝑠 𝑖𝑛 𝑎𝑙𝑙 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙𝑠 × 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
           (2) 

 

From equation 2, a minimum threshold confidence level can be set, for instance, any score 

greater than 0.5 is more likely to be a true positive significant SNP. 
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2.2.2.2 Detail theoretical underpinnings and implementation of the RAPIDSNPs 

2.2.2.2.1 Random Forests (RF) 

The RF is a tree-based ensemble machine learning algorithm, which encapsulates the data 

resampling idea. It is a variant of resampling method, known as bagging, which was proposed 

by Breiman (Breiman, 1996). The RF tends to construct several ensembles of tree-based models 

from different drawn bootstrap samples from the original sample data taken with/without 

replacement for the purpose of improving learning through aggregating all models (regression) 

or majority selected class votes (prediction). This might be determined based on the response 

variable type, i.e. the response variable is whether a categorical or continuous (Breiman, 2001; 

Liaw and Wiener, 2002)..  

The mechanism of RF 

The underlying mechanism of RF algorithm generally works as follow: 

1) For b = 1 to B (Total number of trees) 

a. Draw a training set or ‘bootstrap’ Z of size k from the original data set (n). 

b. Grow the random forest tree Tb to the bootstrapped data by recursively repeating 

the following steps for each terminal node of the tree, until the minimum node 

size kmin is reached. 

i. Select m variables at random from the p variables. 

ii. Pick the best variable/split-point among the m. 

iii. Split the nodes into two daughter nodes. 

2) Produce the output of trees ensemble. 

3) Aggregate information from the B trees such as majority voting for classification. 
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Therefore, for regression the following function might be used: 

      ℱ̂𝑟𝑓
𝐵 (𝓍) =  

1

𝐵
∑ 𝑇(𝓍)𝐵

𝑏=1     (3) 

where: 𝑇(𝓍) is the total number of forests (tree ensemble) generated from the data. 

The key thing about RF is that trees are not pruned like the classical decision trees, since, the 

random selection of candidate variables ensures a low correlation between trees and avoiding 

excessive training of forests (Breiman, 2001). The unselected data during the bootstrapping 

process of RF is called out-of-bag (OOB). This is used as test data in the built-in cross-

validation mechanism and for finding variable importance using the permutation score. 

RF and variable importance (VI) measure: Ranking 

RF can estimate the importance of variables for classification or prediction (Breiman, 2001). 

Variable importance (VI) estimates might be useful in understanding the relevance of variables 

in the given data set through the importance scores (Breiman, 2001; Breiman and Cutler, 2004; 

Liaw and Wiener, 2002). In the RAPIDSNPs, the RF is used as a method for selecting initial 

important SNPs for further downstream analyses using VI measure. And this is a gold standard 

approach for SNPs discovery in the genetic association studies (Goldstein et al., 2011; Schwarz 

et al., 2007). Different reviews have further discussed the suitability of this approach for high-

dimensional data in the genomic and genetic association analyses (Chen and Ishwaran, 2012; 

Szymczak et al., 2009; Touw et al., 2013; Verikas et al., 2011).  

Gini index and permutation importance scores are the two most common used VI measures in 

RF (Breiman, 2001; Breiman and Cutler, 2004; Liaw and Wiener, 2002). For the regression 

purpose, permutation importance is the used VI measure (Breiman, 2001). In this case, to 
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calculate VI, the variable is permuted in the OOB, which is the original data and that is unused 

during bootstrapping or training. The prediction error estimate is calculated using the OOB. 

The difference between this error involving permutation and the OOB error without 

permutation is computed for each tree. Finally, the average for all trees is calculated and 

normalised by its standard deviation for the permutation scores of a variable, and hence its 

importance. The variable becomes much more important if it contains far larger permutation 

importance (Breiman, 2001). 

VI measures using permutation scores can be described using Figure 2.4 

 

Figure 2.4 The mechanism of VI measure using permutation score. The OOB data is used for testing prediction accuracy 

of the training data in dataset i and when permuting with variable j. The average of the differences in the prediction error is 

used to compute the VI. The diagram was adapted from1. 

Therefore, from the diagram above VI can mathematically be computed as follows: 

                                                 

1 http://stat.ethz.ch/education/semesters/ss2012/ams/slides/v10.2.pdf  

http://stat.ethz.ch/education/semesters/ss2012/ams/slides/v10.2.pdf
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𝐷 ̅ =
1

𝑚
∑ 𝐷𝑖

𝑚
𝑗=1      (4) 

where, 𝐷 ̅is an average of individual difference of prediction error (𝐷𝑖) for each OOB data. 

Then to obtain VI, the variance for each mean squared error prediction is computed as follows: 

 

𝑠𝐷
2 =

1

𝑚−1
∑ (𝐷 −  𝐷)̅̅̅̅ 2𝑚

𝑗=1     (5) 

where: 𝑠𝐷
2  is the variance due to all permutations of OOB dataset (1,..., m). 

Hence: 

𝑉𝐼 =  
𝐷̅

𝑠𝐷
    (6) 

For GASs, the recommended (VI) measure for selecting and ranking important SNPs is 

permutation score rather than Gini index (Chen and Ishwaran, 2012). This is because Gini index 

tends to favour SNPs with large MAFs (Nicodemus et al., 2010; Nicodemus and Malley, 2009). 

The randomForest (Liaw and Wiener, 2002) package in R language (Ihaka and Gentleman, 

1996) is used to run the RF layer. 

2.2.2.2.2 Regression methods (Regression layer) 

Generally, the regression methods, which were used in the RAPIDSNPs pipeline, are based on 

the standard linear regression model given by equation (7). 
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   XY  
(7) 

where: 

Y  is the response phenotype of concern (i.e. ADP platelet responses PA, and FA for 

individuals), which is (n x 1) vector of dependent variables; X  is an (n x p) design matrix, in 

this case, are the SNPs genotype-coded with 1 for major homozygous, 2 for heterozygous, and 

3 for minor homozygous;   is a (p x 1) vector of regression coefficients j , j = (1,…,p); and 

  is an assumed vector of normally distributed random errors with mean 0 and unit standard 

deviation. So the model is a relationship between the continuous phenotype Y (i.e. ADP 

platelet responses) determined by weighted SNPs Xp of n individuals. 

2.2.2.2.2.1 Stepwise forward regression 

The stepwise regression was applied with the forward selection method, after filtering the SNPs 

using RF. Generally, the forward stepwise selection method starts with a null model and allows 

one SNP at a time to enter the model, based on which SNP is most correlated with each of the 

platelet responses, i.e. the addition of the SNP in the model depends on the SNP that gives the 

highest significant improvement in fit (Cordell and Clayton, 2002). The selected SNPs in the 

stepwise model were tested for significance using the Wald test. The stepwise regression was 

implemented using the LEAPS package (Lumley, 2015) in R. 

2.2.2.2.2.2 Shrinkage (regularised or penalised) regression methods 

Shrinkage methods (Hastie et al., 2005), use a regularisation strategy to penalise SNPs from k 

SNPs from the RF layer, assuming that the underlying RF functioning might select SNPs that 
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are not significant. Thus, the shrinkage methods further simplified and enhanced the selection 

of highly significant SNPs. The shrinkage methods were applied using the ridge regression and 

lasso with R packages ‘ridge’ (Cule, 2015) and ‘glmnet’ (Friedman et al., 2010) respectively. 

In applying the glmnet package, the family option is set to “gaussian” as the response 

phenotypes (platelet responses) are quantitative and assumed to follow the Gaussian 

distribution. 

Ridge regression (RR) 

Ridge regression (Hoerl and Kennard, 1970) is the method that shrinks regression parameters 

by penalising their size and reduced towards zero. The ridge regression was applied to ensure 

that potential collinear SNPs were kept in the models, particularly those with strong linkage 

(Malo et al., 2008). Thus, based on the model given by equation (6) above, the regression 

coefficients estimates could be determined using the ordinary least square method (OLS), 

which is the standard approach and is given by equation (8).  

 𝛽̂ =  (𝑋′𝑋)−1𝑋′𝑌 (8) 

However, this equation does not work particularly in the context of genetic data where 

collinearity is common among SNPs due to the high linkage (Malo et al., 2008). RR shrinks 

regression coefficients by penalising their size and reducing towards zero using the computed 

ridge shrinkage parameter (lambda). The optimal shrinkage parameter helps to identify the 

regions where the model parameters are stable and control the classical trade-off between the 

high bias and variances, which commonly occur when there are a large number of parameters 

and collinearity among SNPs. Equation (9) shows the ridge regression model: 
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𝛽̂ =  (𝑋′𝑋 +  𝜆𝐼)−1𝑋′𝑌    (9) 

where, the lambda (𝜆) is a ridge parameter, which determines the degree of shrinkage. I is a p 

x p identity matrix. Adding the term 𝜆𝐼 in the model, reduces the coefficient estimates toward 

each other, potential collinearity among SNPs, and eliminates the possibility of matrix 𝑋′𝑋 

being singular. The parameter 𝜆 is selected between 0 and ∞ values. If λ = 0 then the RR model 

is turned to be OLS solution, and if λ = ∞ then the model would behave as if no parameters 

have been estimated, and the solution would be the mean of the response variable, i.e. 𝑌̅ = 𝛽0. 

An automatic lambda selection method proposed by (Cule et al., 2011) and the Wald test for 

testing the significant SNPs from the RR were used. In implementing RR, the ridge package 

(Cule, 2015) from the R language was used to generate RR models. 

Lasso (least absolute shrinkage and selection operator) 

Lasso  (Tibshirani, 1996) was applied to the selected important SNPs from the RF model to 

reduce further the SNPs with insignificant low coefficients (Hastie et al., 2005), which might 

be selected from the RF filtering procedure. Additionally, lasso may possibly retains sparse 

interactions among the SNPs (Wu et al., 2010). The lasso model is given in equation (10). 

𝛽̂𝑙𝑎𝑠𝑠𝑜 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝛽
∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗

𝑝
𝑗=1 𝛽𝑗)

2
+  𝜆 ∑ |𝛽𝑗|𝑝

𝑗=1
𝑁
𝑖=1   (10) 

where: 

 yi is the vector of particular response phenotype (platelet activation pathway among PA and 

FA) for observation i; X is a design matrix of SNPs and 𝛽̂𝑙𝑎𝑠𝑠𝑜 are the coefficient estimates of 

the SNPs; the lambda term is the weight given for the regularisation term (L1 norm), which 
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sparsely picks the SNPs entering the model when the tuning parameter is very small or exactly 

zero. 

The best SNPs from the lasso models were extracted through the selection of the smallest 

optimal lambda (or tuning parameter) using 10-fold cross validation (Motyer et al., 2011). The 

lasso models generated the sparse matrix of SNPs coefficients estimates. The SNPs with 

relative large coefficient estimates from the sparse matrix were selected and tested in a stepwise 

manner using the partial F-test (Kohannim et al., 2012) to determine the individual SNP’s 

significance level in the model. For these analyses, the glmnet package (Friedman et al., 2010) 

implemented in R was used. 

2.2.2.2.3 Boruta method 

Boruta is all-relevant feature selection method, which provides an improved mechanism for 

selecting an important feature or variable from the RF using Z-score. It is a wrapper algorithm, 

which ranks the features from the RF through improved Z-score.  The applied Z-score within 

Boruta provides the statistical significance, and hence the relevance of the selected important 

variable or feature. This is performed by comparing the relevance of the true feature to that of 

the random probe or permutation in the RF (Kursa and Rudnicki, 2010). In doing this, the 

method employs ‘shadow attributes’ whose importance are used to determine the true important 

attribute. Shadow attributes provide demarcation for examining whether the selected important 

features from the RF are truly important or are just due to the random fluctuations as the results 

of the underlying RF mechanism (Kursa and Rudnicki, 2010). Thus, adding Boruta layer to the 

RAPIDSNPs pipeline, potentially provides further enhanced consensus selection of the key 

SNPs, in addition to the regression layer. 

Boruta was run using Boruta package in R (Kursa and Rudnicki, 2010). 
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2.2.3 The performance of the pipeline with the inclusion of covariates 

The pipeline is specifically designed for analysing predetermined, genotyped SNPs to identify 

the most significant SNPs (key SNPs) that are associated with continuous complex trait 

phenotypes and would have been likely to be missed by other approaches such as stepwise. The 

pipeline was initially applied to alternatively analyse the combined effect of the SNPs and 

benchmarks the results against those obtained from the stepwise forward approach (Jones et 

al., 2009), which did not need to take into account the covariates, such as age, gender, height, 

weight, ethnicity, aspirin taking, medication, smoker, contraceptive pill, because they were 

already treated separately during the data pre-processing stage of the Bloodomics project  

(Jones et al., 2007). 

Nevertheless, the pipeline have been re-tested to demonstrate the incorporation of  an 

example key covariate for CVD: age. The approaches for handling covariates in determining 

the effect of SNPs on the phenotype using RF have been well elucidated by Nonyane and 

Foulkes (Nonyane and Foulkes, 2008). In running the pipeline, the age was included as a 

numeric type and potential predictor together with SNPs under the additive model. 

Tables 2.5 shows the performance of the RF models when the pipeline is run with age as a 

covariate in identifying the most significant SNPs associated with PA platelet response.  

Random Forests (RF) – SNPs without age incorporated as a 

covariate 

RF - SNPs with age 

incorporated as a covariate 

#Iterations Number of 

trees (ntree) 

% Variance 

all (p) SNPs 

% Variance k 

SNPs 

% Variance 

all (p) SNPs 

% Variance k 

SNPs 

1 500 -0.16 11.85 0.17 13.95 

2 1000 -0.5 14.29 -0.69 14.46 

3 2000 -0.06 16.86 0.15 18.54 

4 3000 0.33 15.92 0.12 16.36 

Table 2.5 The performance of the RF with and without age as a covariate in determining the PA platelet response. 

From Table 2.5, there are an observed marginal increase in the variation explained by the RF 

models when age is included as a covariate. The residuals plots are shown in the Figures 2.5 
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and 2.6. The significance of the regression models due to the covariate in the intermediate 

regression models are shown in the Table 2.6. Few intermediate models have higher 

significance in the early iterations when age is included as a covariate comparing than when it 

is excluded. 

 

Figure 2.5 The residual plot when fitting the PA response using SNPs with or without age as a covariate. 
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Figure 2.6 The residual plot when fitting the FA response using SNPs with or without age as a covariate 

 

#Iteration

s 

Intermediate models with no age 

covariate 

Intermediate models with age covariate 

RF+Stepwis

e 

RF+Ridge 

regression 

RF+Lasso RF+Stepwis

e 

RF+Ridge 

regression 

RF+Lasso 

Model 

significance 

(r-squared & 

p-values) 

Model 

significance 

(%Variance

) 

Model 

significanc

e (r-

squared & 

p-values) 

Model 

significance 

(r-squared & 

p-values) 

Model 

significance 

(%Variance

) 

Model 

significanc

e (r-

squared & 

p-values) 

1 0.088 & 

4.965e-09 

14.7 0.096 & 

1.83e-09 

0.09  

& 4.06e-09 

18.21 0.097  

& 1.38e-09 

2 0.11 & 

4.771e-11 

17.83 0.10 & 

8.1e-10 

0.089  

& 4.136e-09 

18.01 0.097  

& 2.63e-09 

3 0.111 & 

5.4e-11 

18.77 0.138 & 

7.108e-13 

0.123  

& 6.982e-12 

15.92 0.12  

& 2.98e-11 

4 0.13 & 

1.49e-12 

17.5 0.16 & 

6.61e-15 

0.113 

& 3.286e-11 

13.53 0.096 

& 8.64e-10 

Table 2.6 The significance of the intermediate models due to the exclusion and inclusion of age as covariate to the PA 

platelet response. 
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2.2.4 Validation of the RAPIDSNPs pipeline 

2.2.4.1 Validation of the pipeline 

To validate the pipeline, 460 subjects containing 1400 artificially genotyped SNPs with their 

associated continuous phenotype were randomly simulated. The R code snippet for reproducing 

the data is shown in Figure 2.7.  

 

Figure 2.7. The R code snippet for reproducing the simulated artificial SNPs and phenotype. 

The simulated phenotype is a univariate normal distribution with n(0,1). The genotypes of these 

artificial SNPs follow the standard representation consisting of 1, 2, and 3, which represents 

major homozygous, heterozygous and minor homozygous respectively. This simulated data set 

was applied to the RAPIDSNPs. The RF and the multiple regression models using k SNPs were 

observed to improve as ntree was increased in each iteration starting from 500, 1000, 2000, 

until 3000 trees, where the variance and confidence of the models started to converge (Table 

2.7).  
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Random Forests (RF) Run RF+Stepwise RF+Ridge 

regression 

RF+Lasso 

#Iterations Number 

of trees 

(ntree) 

% 

Variance 

all (p) 

SNPs 

% 

Variance 

k SNPs 

Model 

significance 

(r-squared 

& p-values) 

Model 

significance 

(%Variance) 

Model 

significance 

(r-squared 

& p-values) 

1 500 1.14 11.84 0.12 & 

7.342e-12 

24.36 0.14 & 

2.482e-13 

2 1000 1.71 16.36 0.14 & 

1.042e-13 

27.51 0.20 & 

2.2e-16 

3 2000 2.55 21.31 0.15 & 

1.082e-14 

28.97 0.22 & 

2.2e-16 

4 3000 1.6 19.34 0.13 & 

1.604e-12 

28.2 0.19 & 

2.2e-16 

Table 2.7 The performance evaluation of the pipeline for the simulated SNPs. As ntree is increased in each iteration the 

resultant RF models for both full and simplified models with p and k SNPs respectively, the significance of the subsequent 

regression models also relatively increases, which may imply that selected SNPs are likely to be significant. 

The models’ patterns observed using the artificial SNP data are shown to reflect those observed 

with the real SNP data (Table 2.2, 2.3, and 2.4), even though the convergence, in this case, 

seems to be in the third iteration when the ntree was 2000. 

2.2.4.2 Further validation of the RAPIDSNPs using second simulated data set 

The second simulated data set containing similar size with that of section 2.2.4.1 was used to 

further validate the pipeline. The simulated artificial genotypes within this set were not identical 

as were the previous set and thus, its artificial allele genotypes were more reflecting the real 

genotypes in the population based manner. In this regard, there were fewer minor alleles 

comparing to major and heterozygous alleles. The simulated phenotype used followed the same 

univariate distribution n(0,1). Table 2.8 shows the performance of the pipeline with this second 

simulated set. 
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Random Forests (RF) Run RF+Stepwise RF+Ridge 

regression 

RF+Lasso 

#Iterations Number 

of trees 

(ntree) 

% 

Variance 

all (p) 

SNPs 

% 

Variance 

k SNPs 

Model 

significance 

(r-squared 

& p-values) 

Model 

significance 

(%Variance) 

Model 

significance 

(r-squared 

& p-values) 

1 500 -0.03 13.27 0.12 & 

1.998e-12 

25.82 0.10 & 

2.601e-10 

2 1000 -0.44 18 0.12 & 

2.724e-12 

28.61 0.16 & 

3.3e-15 

3 2000 0.05 20 0.15 & 1.69e-

14 

29.08 0.17 & 

1.31e-15 

4 3000 1.09 19.99 0.15 & 

8.755e-15 

27.67 0.20 & < 

2.2e-16 

Table 2.8 The performance evaluation of the pipeline for the second simulated SNPs with fewer minor alleles. 

From Table 2.8, the models’ performance pattern appears to be similar with the previous Table 

2.7. Nevertheless, there is slightly decrease in significance of some intermediate models in 

some iterations. 

Therefore, the similarity in the performance of the pipeline using both the real and simulated 

genotyped SNPs data sets, indicates that the pipeline is likely to be robust when applied to other 

continuous phenotypes.  

Additionally, the identified key SNPs (Section 2.3.1.1) could be seen to be randomly associated 

with the phenotype due to randomly selection of the artificial simulated SNPs. Hence, the 

reasearcher further validated the robustness of the RAPIDSNPs by alternatively testing whether 

these key SNPs are truly associated with the simulated phenotype. In this regard, the key SNPs 

were initially identified (See section 2.3.1.2) and the simulated phenotype values were 

alternatively increased and decreased. Based on the identified artificially simulated key SNPs’ 

coefficient estimates, the phenotype values were increased or decreased by the scale of (+/-0.2) 

under the same gaussian distribution. The identified key SNPs were then checked whether they 

are still associated with the phenotype under these alterations.  
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2.3 Results 

2.3.1 The consensus approach for identifying key SNPs 

Firstly, the new approach has identified several significant SNPs that are associated with both 

ADP platelet responses and are consistent with the previous study (Jones et al., 2009). 

Importantly, the method has also discovered numerous additional SNPs that are significantly 

associated with platelet responses and were not previously identified, or previously found to be 

insignificantly associated with platelet responses using the forward stepwise method.  

Tables 2.9 and 2.10 show the overall significant and key SNPs identified by this pipeline and 

the previous method that are associated with PA, and FA platelet responses respectively using 

dataset 1. From the results, a consensus approach for the key SNPs identification is established, 

in which a SNP is identified as key if it has been selected by the three out of four methods 

within the pipeline. 

  Stepwis

e (Jones 

et al 

2009) 

RF with 

Stepwise 

RF with 

Ridge 

regressi

on 

RF 

with 

LASS

O 

RF 

with 

Boruta 

(P=0.0

1) 

Consens

us (3/4) 

Platelet response 

type 

Beta 

(+ve/-

ve) 

PA PA PA PA PA PA  

SNPs ID Gene/L

ocation 

       

rs1722970

5 

VAV3 +ve ✔ 

(0.0009) 

× × × ×  

rs3788337 GNAZ -ve ✔ 

(0.0009) 

× × × ×  

rs5227 PTGS2 +ve ✔ (0.01) × × × ×  

rs1778614 ITPR1 +ve ✔ 

(0.003) 

× × × ×  

rs246406 ITGA2 -ve ✔ 

(0.002) 

× × × ×  

rs1163147

4 

MAP2

K5 
+ve ✔ 

(0.007) 

× × × ×  
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rs851007 MAPK

14 
+ve ✔ 

(0.003) 

× × × ×  

rs6141803 COMM

D7 

-ve × ✔ 

(0.0033) 

× ✔ 

(0.000

6) 

✔ ✔ 

rs6442896 ITPR1 -ve × 

(0.049) 
✔ 

(0.0006) 

✔(0.000

2) 

✔(0.0

021) 

✔ ✔ 

rs3730051 AKT2 +ve × 

(0.031) 
✔ 

(0.0002) 

✔ 

(0.0031) 

✔ 

(0.000

2) 

× ✔ 

rs1527480 CD36 -ve × 

(0.449) 
✔ 

(0.0021) 

✔(0.000

8) 

✔ 

(0.003

6) 

✔ ✔ 

rs8033381 CSK -ve × 

(0.792) 
✔ 

(0.0018) 

✔ 

(0.0082) 

✔ 

(0.003

8) 

× ✔ 

rs1006173

0 

ITGA2 -ve × 

(0.517) 

× × ✔ 

(0.000

5) 

×  

rs2292867 ITGB3 -ve ×(0.039

) 

× ✔ 

(0.017) 

✔ 

(0.008

0) 

×  

rs2300065 SKP1 +ve  × ✔(0.013

8) 

✔(0.0

164) 

×  

rs3212391 ITGA2 -ve × ✔ 

(0.0002) 

× × ✔  

rs6433658 ITPR1 +ve × × × × ✔  

rs6442895 ITPR1 -ve ×(0.029

) 

× × × ✔  

rs1704140

1 

ITPR1 +ve ✔(0.003

) 

× × × ✔  

rs3212386 ITGA2 -ve ×(0.378

) 

× × × ✔  

rs33443 ITGA2 -ve ×(0.547

) 

× × × ✔  

rs26682 ITGA2 -ve ×(0.126

) 

× × × ✔  

rs3212418 ITGA2 -ve ✔(0.013

) 

× × × ✔  

rs1174255

8 

ITGA2 -ve ×(0.713

) 

× × × ✔  

rs7568033 NFE2L

2 

+ve × × × × ✔  

Table 2.9 Consensus identification of the most significant SNPs associated with PA platelet response in dataset 1. The 

consensus SNP is selected if it has been identified by at least three methods, which means it has higher significance and hence 

is more likely to be a key genetic variant. × indicates either the SNP was not identified by the method or previously identified 

as insignificant. ✔ indicates the SNP was identified by the method. Numbers inside the brackets after ✔ or × indicate p values 
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of the SNPs calculated using Wald test, or partial F-test. +ve/-ve indicate the sign of coefficient estimates of the SNPs from 

the regression models. 

 

  Stepwise 

(Jones et 

al 2009) 

RF with 

Stepwise 

RF with 

Ridge 

regressio

n 

RF 

with 

LASS

O 

RF with 

Boruta 

(P=0.01

) 

Consensu

s (3/4) 

Platelet response type Beta 

(+ve/-ve) 

FA FA FA FA FA FA  

SNPs ID Gene/L

ocation 

       

rs11637556 MAP2K

1 
+ve ✔ 

(0.005) 

✔ (0.0007) ✔ 

(0.0083) 

✔ 

(0.000

8) 

✔ ✔ 

rs10429491 JAK2 -ve ✔ 

(0.0006) 

× × × ×  

rs3729931 RAF1 +ve ✔ 

(0.0001) 

× × × ×  

rs41305896 ITGA2 +ve ✔ 

(0.001) 

× × × ×  

rs350916 MAP2K

2 
+ve ✔ 

(0.001) 

× × × ×  

rs17786144 ITPR1 +ve ✔ 

(0.002) 

× × × ×  

rs11264579 PEAR1 -ve ✔ 

(0.004) 

× × × ×  

rs41304345 MADD +ve ✔ 

(0.003) 

× × × ×  

rs1388622 P2RY12 +ve × (0.058) ✔ (0.0001) × × ✔  

rs2071676 CA9 -ve × ✔ (0.0122) ✔(0.005

8) 

✔(0.0

098) 

✔ ✔ 

rs1491978 P2RY12 +ve × (0.092) × × ✔(0.0

003) 

✔  

rs1537593 CD36 -ve × (0.731) × × ✔(0.0

058) 

✔  

rs9895150 ITGB3 -ve × (0.177) × ✔(0.0193

) 

✔(0.0

141) 

×  

rs1038639 ITPR1 +ve × (0.138) × ✔(0.001

9) 

✔(0.0

006) 

✔ ✔ 

rs10499858 CD36 -ve × (0.129) ✔ (0.0012) × × ✔  

rs7034539 JAK2 +ve × (0.061) ✔ (0.0053) ✔(0.0058

) 

✔(0.0

077) 

× ✔ 

rs3742633 PRKCH -ve × (0.985) ✔ (0.0172) × ✔(0.0

075) 

×  

rs41282607 MAPK1 +ve × (0.2) ✔(0.0113) ✔(0.003

4) 

✔(0.0

087) 

✔ ✔ 

rs41305272 MAP2K

5 

+ve × (0.955) × ✔(0.0127

) 

✔(0.0

100) 

✔ ✔ 
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rs7180408 GTF2A

2 

+ve × × ✔(0.0191

) 

× ×  

rs3736101 MADD -ve ✔(0.015) × × ✔(0.0

076) 

×  

rs304076 ITPR1 -ve × (0.395) × × ✔(0.0

083) 

×  

rs17204437 P2Y12 +ve × (0.499) × × ✔(0.0

010) 

✔  

rs6787801 P2Y12 +ve × (0.448) × × × ✔  

rs3173798 CD36 -ve × (0.085) × × × ✔  

Table 2.10 Consensus identification of the most significant SNPs associated with FA platelet response in dataset 1. The 

consensus SNP is selected if it has been identified by at least three methods, which means it has higher significance and hence 

is more likely to be a key genetic variant. × indicates either the SNP was not identified by the method or previously identified 

as insignificant. ✔ indicates the SNP was identified by the method. Numbers inside the brackets after ✔ or × indicate p values 

of the SNPs calculated using Wald test, or partial F-test. +ve/-ve indicate the sign of coefficient estimates of the SNPs from 

the regression models. 

In Figure 2.8 A – B Venn diagrams are provided for the overall significant and key SNPs 

identified by the multiple regression methods layer within the pipeline using dataset 1. These 

diagrams provide an alternative way of observing the key SNPs lying within the intersection 

regions.  

 

Figure 2.8 Venn diagrams showing the identified significant and key SNPs from the regression layer in the pipeline 

using dataset 1. The identified significant SNPs in (A) and (B) are associated with PA (p-selectin in response to adenosine 

diphosphate) and FA (fibrinogen binding in response to adenosine diphosphate) respectively. The newly detected SNPs or 

those reported as insignificant in the previous study are shown in bold. The key SNPs are found in the intersection regions and 

detected by a consensus of the three methods 
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Using the Boruta method layer, several of the identified significant SNPs that were found to be 

associated with both ADP platelet responses, were also closely similar to those identified by 

the regression methods layer (Figure 2.9 A – B). Thus, this similarity further improved the 

consensus selection of the most significant SNPs associated with the ADP platelet responses 

and strengthens the confidence of their association with each ADP platelet response phenotype.  

 

 

Figure 2.9 The Boruta method plot shows SNPs that are associated with (A) FA, and (B) PA platelet responses. The 

green, yellow and red boxplots are the confirmed important, tentative, and rejected SNPs respectively. The confirmed important 

SNPs are the significant SNPs associated with platelet responses. The selected significant SNPs here add more weight to the 

already identified SNPs from other methods, which may improve the consensus identification of the key SNPs. Also, it 

highlights other significant SNPs that might potentially be missed by other methods in the pipeline. 

Moreover, using Boruta as an additional layer in the pipeline enhances further the discovery of 

significantly associated SNPs that may be missed by other methods in the pipeline. 

Furthermore, the results of the RAPIDSNPs analyses for the dataset 2 are shown in Table 2.11 

and 2.12, which include the significant and key SNPs that are associated with PA and FA 

respectively. 
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  Stepwis

e (Jones 

et al 

2009) 

RF with 

Stepwise 

RF with 

Ridge 

regressi

on 

RF 

with 

LASS

O 

RF 

with 

Boruta 

(P=0.0

1) 

Consens

us (3/4) 

Platelet response 

type 

Beta 

(+ve/-

ve) 

PA PA PA PA PA PA  

SNPs ID Gene/L

ocation 

       

rs1722970

5 

VAV3 +ve ✔(0.000

9) 

✔(0.0021

) 

✔(0.010

03) 

✔(0.0

0312) 

✔ ✔ 

rs246406 ITGA2 -ve ✔(0.002

) 

✔(0.0045

) 

✔(0.011

7) 

✔(0.0

04) 

✔ ✔ 

rs1163147

4 

MAP2

K5 

+ve ✔(0.007

) 

× ✔(0.010

03) 

✔(0.0

05) 

× ✔ 

rs6057638 ch20:3

275152

6 

-ve × × × ✔(0.0

12) 

✔  

rs1472122 P2Y12/

MED12

L 

-ve ✔(0.000

7) 

✔(0.0003

4) 

✔(0.015

3) 

✔(0.0

009) 

✔ ✔ 

rs950365 ch21:1

884064

4 

+ve × × × ✔(0.0

06) 

✔  

rs2815805 MAPK1

4 
+ve ✔(0.007

) 

✔(0.0032

) 

✔(0.008

) 

✔(0.0

04) 

✔ ✔ 

rs5277 PTGS2 +ve ✔(0.006

) 

✔(0.0011

) 

✔(0.003

67) 

✔(0.0

02) 

× ✔ 

rs4130714

7 

CD109 -ve ✔(0.013

) 

× ✔(0.009

2) 

✔(0.0

105) 

× ✔ 

rs2228671 LDLR +ve ✔(0.017

) 

✔(0.01) ✔(0.002

6) 

✔(0.0

065) 

× ✔ 

rs1704140

1 

ITPR1 +ve ✔(0.003

) 

× × × ✔  

rs2769668 VAV3 +ve ✔(0.005

) 

× × × ✔  

rs6141803 ch20:3

275255

0 

-ve × × × × ✔  

rs1241084

2 

VAV3 +ve ✔(0.005

) 

× × × ✔  

rs2825207 ch21:1

885507

3 

+ve × × × × ✔  

rs3788337 GNAZ -ve ✔(0.000

9) 

× × × ✔  
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rs9612234 GNAZ +ve ×(0.024

) 

× × × ✔  

rs3745406 PRKC

G 

-ve ×(0.085

) 

× ✔(0.014

) 

× ×  

rs2633717 ITPR1 +ve × ✔(0.008) × × ×  

Table 2.11 Consensus identification of the most significant SNPs associated with PA platelet response using the imputed 

dataset 2. The consensus SNP is selected if it has been identified by at least three methods, which means it has higher 

significance and hence is more likely to be a key genetic variant. × indicates either the SNP was not identified by the method 

or previously identified as insignificant. ✔ indicates the SNP was identified by the method. Numbers inside the brackets after 

✔ or × indicate p values of the SNPs calculated using Wald test, or partial F-test. The string characters started with ‘ch’ 

represent the chromosomal location of the SNP in the genome. +ve/-ve indicate the sign of coefficient estimates of the SNPs 

from the regression models. 

 

  Stepwise 

(Jones et 

al 2009) 

RF with 

Stepwise 

RF with 

Ridge 

regressio

n 

RF 

with 

LASS

O 

RF with 

Boruta 

(P=0.01

) 

Consensu

s (3/4) 

Platelet response type Beta 

(+ve/-ve) 

FA FA FA FA FA FA  

SNPs ID Gene/L

ocation 

       

rs1248573

8 

ARHG

EF3 

+ve × × ✔(0.010

4) 

✔(0.0

085) 

✔ ✔ 

rs1778614

4 

ITPR1 +ve ✔(0.003

) 

✔(0.0024

) 

✔(0.006

63) 

✔(0.0

03) 

× ✔ 

rs5746223 RAF1 +ve ✔(0.000

5) 

× × ✔(0.0

0054) 

×  

rs4130714

2 

GAS6 -ve × × ✔(0.003

5) 

✔(0.0

062) 

×  

rs6450105 ITGA2 +ve ✔(0.001

) 

× × ✔(0.0

07) 

✔ ✔ 

rs822442 PEAR1 +ve ✔(0.017

) 

✔(8.73e-

05) 

✔(0.000

66) 

✔(5.5

2e-

05) 

× ✔ 

rs1163755

6 

MAP2

K1 
+ve ✔(0.005

) 

✔(3.96e-

05) 

✔(0.000

47) 

✔(0.0

0046) 

✔ ✔ 

rs1126457

9 

PEAR1 -ve ✔(0.004

) 

✔(8.17e-

06) 

✔(0.000

16) 

✔(6.4

6e-

06) 

✔ ✔ 

rs1042949

1 

JAK2 -ve ✔(0.000

6) 

✔(0.0003

9) 

✔(0.000

22) 

✔(9.6

3e-

05) 

✔ ✔ 

rs7180408 GTF2A

2 

+ve × × ✔(0.008

9) 

× ✔  

rs1552031 BNIP2 -ve × × × × ✔  



119 

 

rs1291075

1 

ch15:5

963096

6 

+ve × × × × ✔  

rs1704140

1 

ITPR1 +ve × 

(0.023) 

× × × ✔  

rs2838551 ch21:4

434451

4 

+ve × × × × ✔  

rs4130589

6 

ITGA2 +ve ✔(0.001

) 

× × × ✔  

rs1979422 ch15:5

963601

2 

-ve × × × × ✔  

rs7858447 TLN1 +ve ×(0.329

) 

× × × ✔  

rs7739455 CD109 -ve ×(0.063

) 

× ✔(0.004

9) 

× ✔  

rs350916 MAP2

K2 
+ve ✔(0.001

) 

✔(0.0019

7) 

× × ×  

rs3729931 RAF1 +ve ✔(0.000

1) 

✔(0.0006

2) 

× × ×  

Table 2.12 Consensus identification of the most significant (key) SNPs associated with FA platelet response using 

entropy based SNPs’ genotypes’ imputed dataset 2. The string characters started with ‘ch’ represent the chromosomal 

location of the SNP in the genome. The consensus SNP is selected if it has been identified by at least three methods, which 

means it has higher significance and hence is more likely to be a key genetic variant. × indicates either the SNP was not 

identified by the method or previously identified as insignificant. ✔ indicates the SNP was identified by the method. Numbers 

inside the brackets after ✔ or × indicate p values of the SNPs calculated using Wald test, or partial F-test. The string characters 

started with ‘ch’ represent the chromosomal location of the SNP in the genome. +ve/-ve indicate the sign of coefficient 

estimates of the SNPs from the regression models. 

Figure 2.10 A - B shows the key SNPs that have been selected by the multiple regression 

methods using dataset 2 
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Figure 2.10 Venn diagrams showing the identified significant and key SNPs from the regression layer in the pipeline 

using dataset 2. The identified significant SNPs in (A) and (B) are associated with FA (fibrinogen binding in response to 

adenosine diphosphate) and PA (p-selectin in response to adenosine diphosphate) respectively. The newly detected SNPs or 

those reported as insignificant in the previous study are shown in bold. 

Furthermore, the Boruta method layer identified several significant SNPs, which are associated 

with both ADP platelet responses using dataset 2 and closely similar to those identified by the 

regression methods layer. These can be visualised by using the Boruta plots (Figure 2.11 A - 

B). 

 

Figure 2.11 The Boruta method plot showing SNPs that are associated with ADP platelet responses using dataset 2. 
These SNPs are associated with (A) FA (fibrinogen binding in response to adenosine diphosphate), and (B) PA (p-selectin in 

response to adenosine diphosphate) platelet responses. The green, yellow and red boxplots are the confirmed important, 

tentative, and rejected SNPs respectively. The confirmed important SNPs are the significant SNPs associated with platelet 

responses. 
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Additionally, using the consensus identification approach, the following key significant SNPs 

were obtained when the pipeline was applied to the dataset 3, and are shown in the Tables 

2.13 and 2.14. These SNPs are associated with PA and FA respectively. 

  Stepwis

e (Jones 

et al 

2009) 

RF with 

Stepwise 

RF with 

Ridge 

regressi

on 

RF 

with 

LASS

O 

RF 

with 

Boruta 

(P=0.0

1) 

Consens

us (3/4) 

Platelet response 

type 

Beta 

(+ve/-

ve) 

PA PA PA PA PA PA  

SNPs ID Gene/L

ocation 

       

rs906766 MED1

2L 
+ve × ✔(0.004) × ✔(0.0

12) 

✔ ✔ 

rs246406 ITGA2 -ve ✔(0.002

) 

✔ (0.002) ✔ 

(0.001) 

✔(0.0

04) 
× ✔ 

rs2633717 ITPR1 +ve × × ✔(0.004

) 

× ✔  

rs1778614

4 

ITPR1 +ve ✔(0.003

) 

✔(0.0011

) 

✔ 

(0.005) 

✔(0.0

002) 

✔  

rs2276829 VIPR1 +ve × ✔ 

(0.0067) 

× × ✔  

rs12953 PECA

M1 

-ve × 

(0.421) 
✔(0.0018

) 

✔(0.004

) 

✔(0.0

07) 

✔ ✔ 

rs1772952

5 

ITPR1 +ve ×(0.024

) 

× × × ✔  

rs4130527

6 

THBS1 +ve ×(0.202

) 

×  ✔(0.001

) 

✔(0.0

04) 

✔ ✔ 

rs1297396

8 

GP6 +ve ×(0.111

) 

× × × ✔  

rs9612234 GNAZ +ve ×(0.024

) 

× × × ✔  

rs7853785 TLN1 +ve ×(0.611

) 

× × × ✔  

rs2289171 PIP5K

3 

+ve ×(0.062

) 

×  ✔ 

(0.0083) 

✔ 

(0046

2) 

×  

Table 2.13 Consensus identification of the most significant (key) SNPs associated with PA platelet response using dataset 

3. The consensus SNP is selected if it has been identified by at least three methods, which means it has higher significance and 

hence is a key genetic variant. × indicates either the SNP was not identified by the method or previously identified as 

insignificant. ✔ indicates the SNP was identified by the method. Numbers inside the brackets after ✔ or × indicate p values of 

the SNPs calculated using Wald test, or partial F-test. The string characters started with ‘ch’ represent the chromosomal location 

of the SNP in the genome. +ve/-ve indicate the sign of coefficient estimates of the SNPs from the regression models. 
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  Stepwise 

(Jones et 

al 2009) 

RF with 

Stepwise 

RF with 

Ridge 

regressio

n 

RF 

with 

LASS

O 

RF with 

Boruta 

(P=0.01

) 

Consensu

s (3/4) 

Platelet response type Beta 

(+ve/-ve) 

FA FA FA FA FA FA  

SNPs ID Gene/L

ocation 

       

rs2596831 RAF1 +ve ×(0.146) × × ✔(0.0

05353

) 

✔  

rs17204376 P2RY12 -ve ×(0.059) ✔(0.0095) × ✔(0.0

01146

) 

✔ ✔ 

rs13135667 ch4:176

5340 

+ve × ✔(0.00022

) 

× ✔(0.0

07) 

×  

rs3212603 ITGA2 +ve ×(0.025) ✔(0.0035) × ✔(0.0

009) 

×  

rs4792219 MAP2K

4 

+ve ×(0.039) × ✔(0.010

4) 

✔(0.0

011) 

×  

rs17786144 ITPR1 +ve ✔(0.003) ✔(0.00030

2) 

× ✔(0.0

193) 

× ✔ 

rs12609974 GP6/NL

RP2 

-ve ×(0.746) × × ✔(0.0

01) 

×  

rs2276829 VIPR1 +ve ×(0.456) × ✔(0.012

0) 

✔(0.0

029) 

✔ ✔ 

rs906766 MED12

L 

+ve × ✔(0.00034

) 

✔(7.65e-

05) 

✔(9.0

5e-05) 

✔ ✔ 

rs722432 ITGB1 -ve ×(0.584) × ✔(0.001

1) 

✔(1.4

5e-05) 

×  

rs2290159 RAF1 +ve ✔(0.001) × × × ✔  

rs158687 SYK +ve ×(0.668) × × × ✔  

rs6502752 P2RX1 -ve ×(0.079) × × × ✔  

rs6086714 PLCB1 -ve ×(0.201) × × × ✔  

rs158688 SYK -ve ×(0.785) × × × ✔  

rs2290149 MADD -ve ×(0.113) × × × ✔  

rs2206266 PLCB1 -ve ×(0.252) × × × ✔  

rs17296289 ITGB1 -ve ×(0.448) ✔(0.00678

4) 

✔(0.001

1) 

× ×  

rs2306875 ITPR1 +ve ×(0.075) × ✔(0.003) × ×  

rs3739038 LRRFIP

1 

+ve × ✔(0.00352

) 

× × ×  

Table 2.14 Consensus identification of the most significant (key) SNPs associated with FA platelet response using dataset 

3. The consensus SNP is selected if it has been identified by at least three methods, which means it has higher significance and 

hence is a key genetic variant. × indicates either the SNP was not identified by the method or previously identified as 

insignificant. ✔ indicates the SNP was identified by the method. Numbers inside the brackets after ✔ or × indicate p values of 

the SNPs calculated using Wald test, or partial F-test. The string characters started with ‘ch’ represent the chromosomal location 

of the SNP in the genome. The string characters started with ‘ch’ represent the chromosomal location of the SNP in the genome. 

+ve/-ve indicate the sign of coefficient estimates of the SNPs from the regression models. 
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The key SNPs observed and selected by the multiple regression methods from the dataset 3 

might be similarly visualised by Venn diagram in Figure 2.12 A-B. 

 

 

Figure 2.12 Venn diagram for identifying significant and key SNPs associated with the ADP platelet responses, which 

were identified by the regression layer in the pipeline using dataset 3. The newly detected SNPs or those reported as 

insignificant in the previous study are shown in bold.  In this dataset the key significant SNPs is rs906766 in MED12L, which 

is significantly associated with A) FA using all three multiple regression methods and also selected by the two regression 

methods in B) PA platelet response.  

Similarly, the Boruta method layer identified several significant SNPs, which are associated 

with both ADP platelet responses using dataset 3 and also closely similar to those identified by 

the regression methods layer. These can be visualised by using the Boruta plots (Figure 2.13 A 

– B). 
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Figure 2.13 The Boruta method plot showing SNPs that are associated with ADP platelet responses using dataset 3. 
These are SNPs associated with (A) FA (fibrinogen binding in response to adenosine diphosphate), and (B) PA (p-selectin in 

response to adenosine diphosphate) platelet responses. The green, yellow and red boxplots are the confirmed important, 

tentative, and rejected SNPs respectively. The confirmed important SNPs are the significant SNPs associated with platelet 

responses. 

For verifying the selected significant key SNPs in the final iteration for each of the three 

datasets whether are true positives, the confidence level equation (equation 2) is applied. The 

identified significant SNPs in all iterations are initially visualised using the frequency plot. For 

instance, to assess the confidence of PA associated significant key SNPs for datasets (or 

subsets) 1, 2, and 3, the plots showing the frequency of all significant SNPs in all iterations for 

each of the above datasets are initially created (Figures 2.14, 2.15, and 2.16 respectively). 

Tables 2.15, 2.16, and 2.17 show the frequencies of each selected SNP in each iteration for 

each of the datasets 1, 2, and 3 respectively associated with PA platelet response. 
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Figure 2.14 The frequency of the selected significant SNPs, which are associated with PA platelet responses in all 

iterations within the intermediate models for the dataset 1. It can be seen clearly that some SNPs have relatively low or 

high frequencies, which mean they are more likely to be false or true positive key significant SNPs respectively. The maximum 

frequency is 16, which means the SNP appears in the four models in each of the four iterations 

SNP’s frequency of appearance in 

the models SNP’s Id 

Iteration 

number 

RF + Model 

Name 

1 rs3212391 1 Stepwise 

2 rs6141803 1 Stepwise 

3 rs2292867 1 Stepwise 

4 rs6442895 1 Stepwise 

5 rs12592919 1 Stepwise 

6 rs2292867 1 Ridge 

7 rs6442895 1 Ridge 

8 rs12592919 1 Ridge 

9 rs6442896 1 Ridge 

10 rs3212386 1 Lasso 

11 rs6141803 1 Lasso 

12 rs2292867 1 Lasso 

13 rs12592919 1 Lasso 

14 rs6442896 1 Lasso 

15 rs30091 1 Lasso 

16 rs3212391 1 Boruta 

17 rs6141803 1 Boruta 

18 rs26682 1 Boruta 

19 rs246410 1 Boruta 

20 rs6442895 1 Boruta 
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21 rs138011 1 Boruta 

22 rs6894884 1 Boruta 

23 rs6442896 1 Boruta 

24 rs3212430 1 Boruta 

25 rs3212418 1 Boruta 

26 rs6895049 1 Boruta 

27 rs3212433 1 Boruta 

28 rs3212391 2 Stepwise 

29 rs3730051 2 Stepwise 

30 rs6442896 2 Stepwise 

31 rs6141803 2 Stepwise 

32 rs1527480 2 Stepwise 

33 rs2300065 2 Stepwise 

34 rs6442896 2 Ridge 

35 rs3730051 2 Ridge 

36 rs2300065 2 Ridge 

37 rs1527480 2 Ridge 

38 rs6141803 2 Lasso 

39 rs3730051 2 Lasso 

40 rs2300065 2 Lasso 

41 rs1527480 2 Lasso 

42 rs6136 2 Lasso 

43 rs6895049 2 Lasso 

44 rs6141803 2 Boruta 

45 rs6442895 2 Boruta 

46 rs6442896 2 Boruta 

47 rs6433658 2 Boruta 

48 rs17041401 2 Boruta 

49 rs138011 2 Boruta 

50 rs3212391 2 Boruta 

51 rs17760545 2 Boruta 

52 rs3212386 2 Boruta 

53 rs2424905 2 Boruta 

54 rs2424895 2 Boruta 

55 rs1527480 2 Boruta 

56 rs3212391 3 Stepwise 

57 rs3730051 3 Stepwise 

58 rs6442896 3 Stepwise 

59 rs1527480 3 Stepwise 

60 rs8033381 3 Stepwise 

61 rs11637556 3 Stepwise 

62 rs6141803 3 Ridge 

63 rs3730051 3 Ridge 

64 rs6442896 3 Ridge 

65 rs1527480 3 Ridge 
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66 rs11637556 3 Ridge 

67 rs8033381 3 Ridge 

68 rs10420358 3 Ridge 

69 rs6141803 3 Lasso 

70 rs3730051 3 Lasso 

71 rs6442896 3 Lasso 

72 rs1527480 3 Lasso 

73 rs8033381 3 Lasso 

74 rs11742558 3 Lasso 

75 rs2473277 3 Lasso 

76 rs1063116 3 Lasso 

77 rs11637556 3 Lasso 

78 rs6141803 3 Boruta 

79 rs6442895 3 Boruta 

80 rs6442896 3 Boruta 

81 rs6433658 3 Boruta 

82 rs17041401 3 Boruta 

83 rs3212391 3 Boruta 

84 rs17760545 3 Boruta 

85 rs11742558 3 Boruta 

86 rs7568033 3 Boruta 

87 rs397454 3 Boruta 

88 rs26682 3 Boruta 

89 rs33443 3 Boruta 

90 rs6894884 3 Boruta 

91 rs16865105 3 Boruta 

92 rs6442896 4 Stepwise 

94 rs3212391 4 Stepwise 

95 rs3730051 4 Stepwise 

96 rs6141803 4 Stepwise 

97 rs1527480 4 Stepwise 

98 rs8033381 4 Stepwise 

99 rs14138 4 Stepwise 

100 rs6141803 4 Ridge 

101 rs6442896 4 Ridge 

102 rs3730051 4 Ridge 

103 rs10420358 4 Ridge 

104 rs14138 4 Ridge 

105 rs1527480 4 Ridge 

106 rs12709458 4 Ridge 

107 rs8033381 4 Ridge 

108 rs6141803 4 Lasso 

109 rs6442896 4 Lasso 

110 rs3730051 4 Lasso 

111 rs1527480 4 Lasso 
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112 rs14138 4 Lasso 

113 rs10061730 4 Lasso 

114 rs12709458 4 Lasso 

115 rs11637556 4 Lasso 

116 rs8033381 4 Lasso 

117 rs10420358 4 Lasso 

118 rs6141803 4 Boruta 

119 rs6442896 4 Boruta 

120 rs6433658 4 Boruta 

121 rs6442895 4 Boruta 

122 rs3212391 4 Boruta 

123 rs17041401 4 Boruta 

124 rs3212386 4 Boruta 

125 rs33443 4 Boruta 

126 rs6895049 4 Boruta 

127 rs2424895 4 Boruta 

128 rs26682 4 Boruta 

129 rs3212418 4 Boruta 

130 rs2424905 4 Boruta 

131 rs7568033 4 Boruta 

132 rs17760545 4 Boruta 

133 rs246410 4 Boruta 

134 rs16865105 4 Boruta 

Table 2.15 The frequency table for SNPs, which are associated with PA response for the dataset 1 and that wereselected 

in all iterations of the pipeline. 

For instance, from the data in Figure 2.14 and Table 2.14, the SNP rs6141803 has appeared in 

the intermediate models 13 times in all iterations. The total number of models (methods) within 

the pipeline is 4. The total number of iterations are 4, i.e. four different RF run ntree sizes (ntree 

= 500, ntree = 1000, ntree = 2000, and ntree = 3000), thus, the confidence level of SNP would 

be 13/4*4 = 0.8125. This confidence score exceeds 0.5, and therefore, the selected SNP is more 

likely to be a true positive. 

Applying equation 2 to the data in Figure 2.14 and Table 2.14, 7 key SNPs (rs1527480, 

rs3212391, rs3730051, rs6141803, rs6442896, rs6442895, and rs8033381) have been identified 

with high confidence to be significantly associated with PA platelet response. 
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Figure 2.15 The frequency of the selected significant SNPs, which are associated with PA platelet responses in all 

iterations within the intermediate models for the dataset 2. 

SNP’s frequency of appearance in 

the models SNP’s Id 

Iteration 

number RF + Model Name 

1 rs17229705 1 Stepwise 

2 rs17041401 1 Stepwise 

3 rs246406 1 Stepwise 

4 rs11631474 1 Stepwise 

5 rs3788337_2 1 Stepwise 

6 rs2825207 1 Stepwise 

7 rs851007 1 Stepwise 

8 rs17229705 1 Ridge 

9 rs10935839 1 Ridge 

10 rs11631474 1 Ridge 

11 rs3788337_2 1 Ridge 

12 rs2473317 1 Ridge 

13 rs2825207 1 Ridge 

14 rs851007 1 Ridge 

15 rs17229705 1 Lasso 

16 rs17041401 1 Lasso 

17 rs246406 1 Lasso 

18 rs1491978 1 Lasso 

19 rs10935839 1 Lasso 

20 rs11631474 1 Lasso 

21 rs3788337_2 1 Lasso 
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22 rs851007 1 Lasso 

23 rs2473317 1 Lasso 

24 rs17229705 1 Boruta 

25 rs17041401 1 Boruta 

26 rs12410842 1 Boruta 

27 rs246406 1 Boruta 

28 rs2769668 1 Boruta 

29 rs10935839 1 Boruta 

30 rs11631474 1 Boruta 

31 rs3788337_2 1 Boruta 

32 rs1126643 1 Boruta 

33 rs1062535 1 Boruta 

34 rs1421929 1 Boruta 

35 rs9612234 1 Boruta 

36 rs1472122 2 Stepwise 

37 rs17229705 2 Stepwise 

38 rs246406 2 Stepwise 

39 rs5277 2 Stepwise 

40 rs2633717_2 2 Stepwise 

41 rs7416884 2 Stepwise 

42 rs246406 2 Ridge 

43 rs11631474 2 Ridge 

44 rs308040 2 Ridge 

45 rs17229705 2 Ridge 

46 rs5277 2 Ridge 

47 rs2633717_2 2 Ridge 

48 rs7416884 2 Ridge 

49 rs2228671 2 Ridge 

50 rs1951432 2 Ridge 

51 rs2825207 2 Lasso 

52 rs11631474 2 Lasso 

53 rs1472122 2 Lasso 

54 rs17229705 2 Lasso 

55 rs5277 2 Lasso 

56 rs2633717_2 2 Lasso 

57 rs7416884 2 Lasso 

58 rs2228671 2 Lasso 

59 rs17041401 2 Boruta 

60 rs246406 2 Boruta 

61 rs10935839 2 Boruta 

62 rs2769668 2 Boruta 

63 rs17229705 2 Boruta 

64 rs2608732 2 Boruta 

65 rs2633717_2 2 Boruta 

66 rs9612234 2 Boruta 
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67 rs12410842 2 Boruta 

68 rs246406 3 Stepwise 

69 rs17229705 3 Stepwise 

70 rs10974955 3 Stepwise 

71 rs1472122 3 Stepwise 

72 rs2815805 3 Stepwise 

73 rs5277 3 Stepwise 

74 rs2633717_2 3 Stepwise 

75 rs246406 3 Ridge 

76 rs17229705 3 Ridge 

77 rs2815805 3 Ridge 

78 rs5277 3 Ridge 

79 rs3816835 3 Ridge 

80 rs10215288 3 Ridge 

81 rs308040 3 Ridge 

82 rs246406 3 Lasso 

83 rs17229705 3 Lasso 

84 rs11631474 3 Lasso 

85 rs6057638_2 3 Lasso 

86 rs1472122 3 Lasso 

87 rs2815805 3 Lasso 

88 rs2825207 3 Lasso 

89 rs5277 3 Lasso 

90 rs17786144 3 Lasso 

91 rs7416884 3 Lasso 

92 rs308040 3 Lasso 

93 rs246406 3 Boruta 

94 rs17041401 3 Boruta 

95 rs17229705 3 Boruta 

96 rs2769668 3 Boruta 

97 rs6057638_2 3 Boruta 

98 rs2815805 3 Boruta 

99 rs2825207 3 Boruta 

100 rs1126643 3 Boruta 

101 rs12410842 3 Boruta 

102 rs1062535 3 Boruta 

103 rs2974987 3 Boruta 

104 rs1421929 3 Boruta 

105 rs6141803 3 Boruta 

106 rs246406 4 Stepwise 

107 rs17229705 4 Stepwise 

108 rs1472122 4 Stepwise 

109 rs2815805 4 Stepwise 

110 rs5277 4 Stepwise 

111 rs2633717_2 4 Stepwise 
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112 rs2228671 4 Stepwise 

113 rs246406 4 Ridge 

114 rs17229705 4 Ridge 

115 rs11631474 4 Ridge 

116 rs1472122 4 Ridge 

117 rs5277 4 Ridge 

118 rs3745406 4 Ridge 

119 rs41307147 4 Ridge 

120 rs2228671 4 Ridge 

121 rs246406 4 Lasso 

122 rs17229705 4 Lasso 

123 rs11631474 4 Lasso 

124 rs6057638_2 4 Lasso 

125 rs1472122 4 Lasso 

126 rs950365 4 Lasso 

127 rs2815805 4 Lasso 

128 rs5277 4 Lasso 

129 rs2633717_2 4 Lasso 

130 rs41307147 4 Lasso 

131 rs2228671 4 Lasso 

132 rs17041401 4 Boruta 

133 rs246406 4 Boruta 

134 rs17229705 4 Boruta 

135 rs6787801 4 Boruta 

136 rs2769668 4 Boruta 

137 rs6141803 4 Boruta 

138 rs12410842 4 Boruta 

139 rs6057638_2 4 Boruta 

140 rs2825207 4 Boruta 

141 rs3788337_2 4 Boruta 

142 rs2815805 4 Boruta 

143 rs9612234 4 Boruta 

Table 2.16. The frequency table showing the selected significant SNPs in the intermediate models in each iteration of 

the pipeline. These SNPs are associated with PA platelet response from the dataset 2. 

Furthermore, in applying equation (2) on the data in Figure 2.15 and Table 2.15, nearly 7 key 

SNPs (rs11631474, rs1472122, rs17229705, rs2633717, rs2815805, rs246406, and rs5277) 

were identified with high confidence to be significantly associated with PA platelet response. 
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Figure 2.16 The frequency of the selected significant SNPs, which are associated with PA platelet responses in all 

iterations within the intermediate models for the dataset 3. 

SNP’s frequency of appearance 

in the models SNP’s Id 

Iteration 

number 

RF + Model 

Name 

1 rs17786144 1 Stepwise 

2 rs246406 1 Stepwise 

3 rs2289171 1 Stepwise 

4 rs12953 1 Stepwise 

5 rs2664141 1 Stepwise 

6 rs906766 1 Stepwise 

7 rs246406 1 Ridge 

8 rs2289171 1 Ridge 

9 rs12953 1 Ridge 

10 rs2664141 1 Ridge 

11 rs906766 1 Ridge 

12 rs1030526 1 Ridge 

13 rs12973968 1 Ridge 

14 rs906766 1 Lasso 

15 rs1030526 1 Lasso 

16 rs28930668 1 Lasso 

17 rs17786144 1 Lasso 

18 rs246406 1 Lasso 
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19 rs12953 1 Lasso 

20 rs2664141 1 Lasso 

21 rs17786144 1 Boruta 

22 rs2738465 1 Boruta 

23 rs2276829 1 Boruta 

24 rs10935839 1 Boruta 

25 rs9612234 1 Boruta 

26 rs906766 1 Boruta 

27 rs5951303 1 Boruta 

28 rs1030526 1 Boruta 

29 rs2633717 1 Boruta 

30 rs12973968 1 Boruta 

31 rs7735277 1 Boruta 

32 rs906766 2 Stepwise 

33 rs17786144 2 Stepwise 

34 rs2276829 2 Stepwise 

35 rs12953 2 Stepwise 

36 rs9929088 2 Stepwise 

37 rs17786144 2 Ridge 

38 rs906766 2 Ridge 

39 rs2276829 2 Ridge 

40 rs4968725 2 Ridge 

41 rs12953 2 Ridge 

42 rs3743353 2 Ridge 

43 rs4879924 2 Ridge 

44 rs1760124 2 Ridge 

45 rs9929088 2 Ridge 

46 rs41305276 2 Ridge 

47 rs709282 2 Ridge 

48 rs906766 2 Lasso 

49 rs17786144 2 Lasso 

50 rs2276829 2 Lasso 

51 rs12953 2 Lasso 

52 rs4879924 2 Lasso 

53 rs1760124 2 Lasso 

54 rs9929088 2 Lasso 

55 rs17786144 2 Boruta 

56 rs906766 2 Boruta 

57 rs2276829 2 Boruta 

58 rs2633717 2 Boruta 

59 rs9612234 2 Boruta 

60 rs12973968 2 Boruta 

61 rs41305276 2 Boruta 

62 rs906766 3 Stepwise 

63 rs17786144 3 Stepwise 
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64 rs10935839 3 Stepwise 

65 rs906766 3 Ridge 

66 rs17294112 3 Ridge 

67 rs41305276 3 Ridge 

68 rs906766 3 Lasso 

69 rs17786144 3 Lasso 

70 rs2276829 3 Lasso 

71 rs17786144 3 Boruta 

72 rs2633717 3 Boruta 

73 rs906766 3 Boruta 

74 rs9612234 3 Boruta 

75 rs2276829 3 Boruta 

76 rs10935839 3 Boruta 

77 rs12973968 3 Boruta 

78 rs158689 3 Boruta 

79 rs7853785 3 Boruta 

80 rs41305276 3 Boruta 

81 rs906766 4 Stepwise 

82 rs17786144 4 Stepwise 

83 rs10935839 4 Stepwise 

84 rs2276829 4 Stepwise 

85 rs4879924 4 Stepwise 

86 rs9929088 4 Stepwise 

87 rs17786144 4 Ridge 

88 rs906766 4 Ridge 

89 rs17294112 4 Ridge 

90 rs906766 4 Lasso 

91 rs17786144 4 Lasso 

92 rs41305276 4 Lasso 

93 rs9929088 4 Lasso 

94 rs2289171 4 Lasso 

95 rs17786144 4 Boruta 

96 rs906766 4 Boruta 

97 rs2633717 4 Boruta 

98 rs10935839 4 Boruta 

99 rs9612234 4 Boruta 

100 rs2276829 4 Boruta 

101 rs41305276 4 Boruta 

102 rs17294112 4 Boruta 

103 rs4879924 4 Boruta 

Table 2.17. The frequency table showing the selected significant SNPs in the intermediate models in each iteration of 

the pipeline. These SNPs are associated with PA platelet response from the dataset 3. 
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Lastly, applying equation 2 to the data in Figure 2.16 and Table 2.17, 4 SNPs (rs12953, 

rs17786144, rs2276829, and rs906766) have high confidence score and hence, are true (key) 

positive and significantly associated with PA platelet response. 

Furthermore, for the FA platelet response, to assess the likely true positives key SNPs, the 

frequency plots showing the frequencies of appearance for each significant SNPs in each 

iteration are initially created. Figures 2.17 – 2.19 show these plots. Additionally, Tables 2.18 – 

2.20 show the frequencies of each SNP in each iteration in the intermediate models. The Tables 

are used to generate the plots. 

 

Figure 2.17 The frequency of the selected significant SNPs, which are associated with FA platelet responses in all 

iterations within the intermediate models for the dataset 1. Few SNPs are shown to be highly significant. For instance, 

rs11637556 in MAPK1 has been selected in each iteration 
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SNP’s frequency of appearance 

in the models SNP’s Id 

Iteration 

number 

RF + Model 

Name 

1 rs1388622 1 Stepwise 

2 rs11637556 1 Stepwise 

3 rs10499858 1 Stepwise 

4 rs10974955 1 Stepwise 

5 rs1866047 1 Stepwise 

6 rs1491978 1 Stepwise 

7 rs11637556 1 Ridge 

8 rs10974955 1 Ridge 

9 rs1866047 1 Ridge 

10 rs11637556 1 Lasso 

11 rs10499858 1 Lasso 

12 rs1388622 1 Lasso 

13 rs1491978   Lasso 

14 rs10974955 1 Lasso 

15 rs1866047 1 Lasso 

16 rs10499858 1 Boruta 

17 rs1491978 1 Boruta 

18 rs11637556 1 Boruta 

19 rs1388622 1 Boruta 

20 rs17204437 1 Boruta 

21 rs1866047 1 Boruta 

22 rs2296275 1 Boruta 

23 rs1388622 2 Stepwise 

24 rs11637556 2 Stepwise 

25 rs2071676 2 Stepwise 

26 rs10499858 2 Stepwise 

27 rs10974955 2 Stepwise 

28 rs8192827 2 Stepwise 

29 rs11637556 2 Ridge 

30 rs10974955 2 Ridge 

31 rs9895150 2 Ridge 

32 rs1388622 2 Ridge 

33 rs10499858 2 Ridge 

34 rs11637556 2 Lasso 

35 rs1388622 2 Lasso 

36 rs2071676 2 Lasso 

37 rs10499858 2 Lasso 

38 rs10974955 2 Lasso 

39 rs9895150 2 Lasso 

40 rs1388622 2 Boruta 

41 rs11637556 2 Boruta 

42 rs6787801 2 Boruta 

43 rs17204437 2 Boruta 
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44 rs2071676 2 Boruta 

45 rs1537593 2 Boruta 

46 rs3742633 2 Boruta 

47 rs1866047 2 Boruta 

48 rs1038639 2 Boruta 

49 rs1491978 3 Stepwise 

50 rs11637556 3 Stepwise 

51 rs10974955 3 Stepwise 

52 rs10499858 3 Stepwise 

53 rs2290890 3 Stepwise 

54 rs12910751 3 Stepwise 

55 rs1038639 3 Ridge 

56 rs11637556 3 Ridge 

57 rs10974955 3 Ridge 

58 rs12910751 3 Ridge 

59 rs11637556 3 Lasso 

60 rs1491978 3 Lasso 

61 rs10974955 3 Lasso 

62 rs2290890 3 Lasso 

63 rs12910751 3 Lasso 

64 rs10499858 3 Lasso 

65 rs1491978 3 Boruta 

66 rs1038639 3 Boruta 

67 rs11637556 3 Boruta 

68 rs6787801 3 Boruta 

69 rs1537593 3 Boruta 

70 rs17204437 3 Boruta 

71 rs9641866 3 Boruta 

72 rs10499858 3 Boruta 

73 rs1388622 4 Stepwise 

74 rs11637556 4 Stepwise 

75 rs10499858 4 Stepwise 

76 rs2071676 4 Stepwise 

77 rs7034539 4 Stepwise 

78 rs3742633 4 Stepwise 

79 rs41282607 4 Stepwise 

80 rs11637556 4 Ridge 

81 rs7034539 4 Ridge 

82 rs1038639 4 Ridge 

83 rs41305272 4 Ridge 

84 rs41282607 4 Ridge 

85 rs9895150 4 Ridge 

86 rs7180408 4 Ridge 

87 rs11637556 4 Lasso 

88 rs3736101 4 Lasso 
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89 rs2071676 4 Lasso 

90 rs9895150 4 Lasso 

91 rs1038639 4 Lasso 

92 rs41305272 4 Lasso 

93 rs41282607 4 Lasso 

94 rs304076 4 Lasso 

95 rs7034539 4 Lasso 

96 rs17204437 4 Lasso 

97 rs1537593 4 Lasso 

98 rs3742633 4 Lasso 

99 rs11637556 4 Boruta 

100 rs1491978 4 Boruta 

101 rs1537593 4 Boruta 

102 rs6787801 4 Boruta 

103 rs1038639 4 Boruta 

104 rs2071676 4 Boruta 

105 rs17204437 4 Boruta 

106 rs41305272 4 Boruta 

107 rs41282607 4 Boruta 

108 rs10499858 4 Boruta 

109 rs1388622 4 Boruta 

110 rs3173798 4 Boruta 

Table 2.18. The frequency table showing the selected significant SNPs in the intermediate models in each iteration of 

the pipeline. These SNPs are associated with FA platelet response from the dataset 1. 

From the data in Figure 2.17 and Table 2.17, the rs11637556 SNP in MAPK1 has a confidence 

level of 16/4*4 = 1, (the highest confidence level for an FA platelet response associated SNP). 

Moreover, 7 key SNPs (rs10499858, rs11637556, rs1388622, rs10974955, rs1038639, 

rs1491978, and rs2071676) have been identified to be confidently associated with FA platelet 

responses. 
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Figure 2.18 The frequency of the selected significant SNPs, which are associated with FA platelet responses in all 

iterations within the intermediate models for the dataset 2. 

SNP’s frequency of appearance 

in the models SNP’s Id 

Iteration 

number 

RF + Model 

Name 

1 rs10429491 1 Stepwise 

2 rs7409876_2 1 Stepwise 

3 rs11637556 1 Stepwise 

4 rs11264579 1 Stepwise 

5 rs3737224 1 Stepwise 

6 rs41305896 1 Stepwise 

7 rs7180408 1 Ridge 

8 rs10429491 1 Ridge 

9 rs2838551 1 Ridge 

10 rs7409876_2 1 Ridge 

11 rs11637556 1 Ridge 

12 rs2488311 1 Ridge 

13 rs41307142 1 Ridge 

14 rs11264579 1 Ridge 

15 rs6450105 1 Ridge 

16 rs17786144 1 Ridge 

17 rs3737224 1 Ridge 

18 rs41305896 1 Ridge 

19 rs7180408 1 Lasso 
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20 rs10429491 1 Lasso 

21 rs7409876_2 1 Lasso 

22 rs11637556 1 Lasso 

23 rs12910751 1 Boruta 

24 rs7180408 1 Boruta 

25 rs10429491 1 Boruta 

26 rs2838551 1 Boruta 

27 rs7409876_2 1 Boruta 

28 rs11637556 1 Boruta 

29 rs1552031 1 Boruta 

30 rs11701842 1 Boruta 

31 rs822442 1 Boruta 

32 rs11264579 1 Boruta 

33 rs6450105 1 Boruta 

34 rs1979422 1 Boruta 

35 rs17786144 1 Boruta 

36 rs7739455 1 Boruta 

37 rs41305896 1 Boruta 

38 rs17041401 1 Boruta 

39 rs2290159 1 Boruta 

40 rs10429491 2 Stepwise 

41 rs3729931 2 Stepwise 

42 rs7409876_2 2 Stepwise 

43 rs11637556 2 Stepwise 

44 rs11264579 2 Stepwise 

45 rs350916 2 Stepwise 

46 rs822442 2 Stepwise 

47 rs10429491 2 Ridge 

48 rs7180408 2 Ridge 

49 rs3729931 2 Ridge 

50 rs7409876_2 2 Ridge 

51 rs11637556 2 Ridge 

52 rs11264579 2 Ridge 

53 rs41305896 2 Ridge 

54 rs6450105 2 Ridge 

55 rs822442 2 Ridge 

56 rs12485738 2 Ridge 

57 rs350916 2 Ridge 

58 rs2304182 2 Ridge 

59 rs10429491 2 Lasso 

60 rs3729931 2 Lasso 

61 rs7409876_2 2 Lasso 

62 rs41307142 2 Lasso 

63 rs11637556 2 Lasso 

64 rs11264579 2 Lasso 
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65 rs41305896 2 Lasso 

66 rs822442 2 Lasso 

67 rs350916 2 Lasso 

68 rs2304182 2 Lasso 

69 rs17786144 2 Lasso 

70 rs10429491 2 Boruta 

71 rs7180408 2 Boruta 

72 rs17041401 2 Boruta 

73 rs7409876_2 2 Boruta 

74 rs12910751 2 Boruta 

75 rs6450105 2 Boruta 

76 rs822442 2 Boruta 

77 rs41307142 2 Boruta 

78 rs2838551 2 Boruta 

79 rs11629842 2 Boruta 

80 rs7858447 2 Boruta 

81 rs1552031 2 Boruta 

82 rs11637556 2 Boruta 

83 rs11264579 2 Boruta 

84 rs41305896 2 Boruta 

85 rs10429491 3 Stepwise 

86 rs11637556 3 Stepwise 

87 rs7409876_2 3 Stepwise 

88 rs11264579 3 Stepwise 

89 rs3729931 3 Stepwise 

90 rs350916 3 Stepwise 

91 rs822442 3 Stepwise 

92 rs10429491 3 Ridge 

93 rs7180408 3 Ridge 

94 rs11637556 3 Ridge 

95 rs5746223 3 Ridge 

96 rs350916 3 Ridge 

97 rs2488311 3 Ridge 

98 rs41307142 3 Ridge 

99 rs2048092 3 Ridge 

100 rs11264579 3 Ridge 

101 rs822442 3 Ridge 

102 rs12485738 3 Ridge 

103 rs10429491 3 Lasso 

104 rs11637556 3 Lasso 

105 rs5746223 3 Lasso 

106 rs7409876_2 3 Lasso 

107 rs11264579 3 Lasso 

108 rs822442 3 Lasso 

109 rs12485738 3 Lasso 
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110 rs17786144 3 Lasso 

111 rs41307142 3 Lasso 

112 rs350916 3 Lasso 

113 rs2048092 3 Lasso 

114 rs10429491 3 Boruta 

115 rs7180408 3 Boruta 

116 rs12910751 3 Boruta 

117 rs1552031 3 Boruta 

118 rs11637556 3 Boruta 

119 rs1979422 3 Boruta 

120 rs7409876_2 3 Boruta 

121 rs17041401 3 Boruta 

122 rs11264579 3 Boruta 

123 rs7858447 3 Boruta 

124 rs6450105 3 Boruta 

125 rs12485738 3 Boruta 

126 rs41305896 3 Boruta 

127 rs11629842 3 Boruta 

128 rs2838551 3 Boruta 

129 rs822442 3 Boruta 

130 rs11701842 3 Boruta 

131 rs10429491 4 Stepwise 

132 rs11264579 4 Stepwise 

133 rs11637556 4 Stepwise 

134 rs3729931 4 Stepwise 

135 rs7409876_2 4 Stepwise 

136 rs822442 4 Stepwise 

137 rs17786144 4 Stepwise 

138 rs350916 4 Stepwise 

139 rs7180408 4 Ridge 

140 rs10429491 4 Ridge 

141 rs11264579 4 Ridge 

142 rs11637556 4 Ridge 

143 rs822442 4 Ridge 

144 rs41307142 4 Ridge 

145 rs17786144 4 Ridge 

146 rs7739455 4 Ridge 

147 rs10429491 4 Lasso 

148 rs11264579 4 Lasso 

149 rs11637556 4 Lasso 

150 rs822442 4 Lasso 

151 rs6450105 4 Lasso 

152 rs41307142 4 Lasso 

153 rs5746223 4 Lasso 

154 rs7409876_2 4 Lasso 
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155 rs17786144 4 Lasso 

156 rs12485738 4 Lasso 

157 rs7180408 4 Boruta 

158 rs10429491 4 Boruta 

159 rs1552031 4 Boruta 

160 rs12910751 4 Boruta 

161 rs17041401 4 Boruta 

162 rs11264579 4 Boruta 

163 rs2838551 4 Boruta 

164 rs11637556 4 Boruta 

165 rs6450105 4 Boruta 

166 rs7409876_2 4 Boruta 

167 rs41305896 4 Boruta 

168 rs1979422 4 Boruta 

169 rs7858447 4 Boruta 

170 rs7739455 5 Boruta 

Table 2.19. The frequency table showing the selected significant SNPs in the intermediate models in each iteration of 

the pipeline. These SNPs are associated with FA platelet response from the dataset 2. 

Furthermore, applying equation (2) to the data in Figure 2.18 and Table 2.18, 7 key SNPs 

(rs10429491, rs11637556, rs11264579, rs41305896, rs7180408, rs7409876_2, and rs822442, 

which are in JAK2, MAP2K1, PEAR1, ch5:52979888, GTF2A2, ch21:44344077, and PEAR1 

genomic regions) have been identified to be confidently associated with FA platelet responses. 

In addition, rs10429491 and rs11637556 SNPs obtained the highest confidence level score of 

1, meaning that they might be of biological interest for further experiments.  
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Figure 2.19 The frequency of the selected significant SNPs, which are associated with PA platelet responses in all 

iterations within the intermediate models for the dataset 3. 

SNP’s frequency of appearance 

in the models SNP’s Id 

Iteration 

number 

RF + Model 

Name 

1 rs17786144 1 Stepwise 

2 rs13135667 1 Stepwise 

3 rs3212603 1 Stepwise 

4 rs3739038_2 1 Stepwise 

5 rs1388628 1 Stepwise 

6 rs17786144 1 Ridge 

7 rs3971192_2 1 Ridge 

8 rs1388628 1 Ridge 

9 rs17786144 1 Lasso 

10 rs3971192_2 1 Lasso 

11 rs3212603 1 Lasso 

12 rs3739038_2 1 Lasso 

13 rs13135667 1 Lasso 

14 rs2290159 1 Boruta 

15 rs2596831 1 Boruta 

16 rs158687 1 Boruta 

17 rs13135667 1 Boruta 

18 rs3736101 1 Boruta 

19 rs2206266 1 Boruta 

20 rs6502752 1 Boruta 

21 rs17204376 1 Boruta 
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22 rs6086714 1 Boruta 

23 rs17786144 2 Stepwise 

24 rs13135667 2 Stepwise 

25 rs3739038_2 2 Stepwise 

26 rs1388628 2 Stepwise 

27 rs3212603 2 Stepwise 

28 rs4792219 2 Ridge 

29 rs3212603 2 Ridge 

30 rs7869668 2 Ridge 

31 rs17786144 2 Lasso 

32 rs3739038_2 2 Lasso 

33 rs13135667 2 Lasso 

34 rs7869668 2 Lasso 

35 rs3212603 2 Lasso 

36 rs1388628 2 Lasso 

37 rs2290149 2 Boruta 

38 rs2290159 2 Boruta 

39 rs2596831 2 Boruta 

40 rs158687 2 Boruta 

41 rs13135667 2 Boruta 

42 rs1047381 2 Boruta 

43 rs1388628 2 Boruta 

44 rs2206266 2 Boruta 

45 rs3212603 2 Boruta 

46 rs3736101 2 Boruta 

47 rs6502752 2 Boruta 

48 rs2306875 2 Boruta 

49 rs17204376 2 Boruta 

50 rs6086714 2 Boruta 

51 rs13135667 3 Stepwise 

52 rs7869668 3 Stepwise 

53 rs2633717 3 Stepwise 

54 rs3212603 3 Stepwise 

55 rs906766 3 Stepwise 

56 rs7409876_2 3 Stepwise 

57 rs722432 3 Stepwise 

58 rs2276829 3 Ridge 

59 rs906766 3 Ridge 

60 rs722432 3 Ridge 

61 rs12973968 3 Ridge 

62 rs7869668 3 Ridge 

63 rs2306875 3 Ridge 

64 rs2633717 3 Ridge 

65 rs2596831 3 Ridge 

66 rs3212603 3 Ridge 
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67 rs4792219 3 Ridge 

68 rs2596831 3 Lasso 

69 rs17204376 3 Lasso 

70 rs13135667 3 Lasso 

71 rs3212603 3 Lasso 

72 rs4792219 3 Lasso 

73 rs7869668 3 Lasso 

74 rs7409876_2 3 Lasso 

75 rs2276829 3 Lasso 

76 rs906766 3 Lasso 

77 rs722432 3 Lasso 

78 rs12973968 3 Lasso 

79 rs2290159 3 Boruta 

80 rs2596831 3 Boruta 

81 rs906766 3 Boruta 

82 rs158687 3 Boruta 

83 rs17204376 3 Boruta 

84 rs6502752 3 Boruta 

85 rs3212603 3 Boruta 

86 rs2206266 3 Boruta 

87 rs2290149 3 Boruta 

88 rs3736101 3 Boruta 

89 rs2306875 3 Boruta 

90 rs6086714 3 Boruta 

91 rs7409876_2 3 Boruta 

92 rs906766 4 Stepwise 

93 rs17786144 4 Stepwise 

94 rs13135667 4 Stepwise 

95 rs17204376 4 Stepwise 

96 rs3212603 4 Stepwise 

97 rs17296289 4 Stepwise 

98 rs3739038_2 4 Stepwise 

99 rs2306875 4 Ridge 

100 rs4792219 4 Ridge 

101 rs722432 4 Ridge 

102 rs906766 4 Ridge 

103 rs17296289 4 Ridge 

104 rs906766 4 Lasso 

105 rs17786144 4 Lasso 

106 rs4792219 4 Lasso 

107 rs12609974 4 Lasso 

108 rs2276829 4 Lasso 

109 rs722432 4 Lasso 

110 rs2596831 4 Lasso 

111 rs17204376 4 Lasso 
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112 rs13135667 4 Lasso 

113 rs3212603 4 Lasso 

114 rs2290159 4 Boruta 

115 rs2596831 4 Boruta 

116 rs158687 4 Boruta 

117 rs17204376 4 Boruta 

118 rs6502752 4 Boruta 

119 rs6086714 4 Boruta 

120 rs158688 4 Boruta 

121 rs2290149 4 Boruta 

122 rs2206266 4 Boruta 

123 rs13135667 4 Boruta 

124 rs2276829 4 Boruta 

125 rs906766 4 Boruta 

Table 2.20. The frequency table showing the selected significant SNPs in the intermediate models in each iteration of 

the pipeline. These SNPs are associated with FA platelet response from the dataset 3. 

For the case of dataset 3 (Figure 2.19 and Table 2.19), which is associated with FA, when the 

equation (2) is applied, 6 key SNPs (rs13135667, rs17204376, rs17786144, rs2596831, 

rs3212603, and rs906766) were identified with high confidence to be true (key) positive and 

significantly associated with FA. 

2.3.1.1 Validation of the pipeline – Identified consensus or key artificial SNPs 

Furthermore, several of the artificially simulated genotyped SNPs were consistently identified 

across the methods (i.e. in consensus) in the final optimised RF model and were significantly 

associated with the simulated continuous phenotype. Table 2.21 and Figure 2.20 show the 

selected key and significant artificial simulated genotyped SNPs in a consensus manner.  
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Artificial SNPs 

ID 

SNP’s significance in the models  

RF with 

Stepwise 

RF with 

Ridge 

regression 

RF with 

LASSO 

RF with 

Boruta 

(P=0.01) 

Consensus 

(3/4) 

X1306 ✔(4.15e-05) ✔(0.0003) ✔(1.73e-

05) 

✔ ✔ 

X92 ✔(0.0004) ✔(0.003) ✔(0.0014) × ✔ 

X1112 ✔(0.0017) ✔(0.00204) ✔(0.0013) ✔ ✔ 

X808 ✔(0.0013) × ✔(0.0073) ×  

X859 ✔(0.0034) ✔(0. 0061) ✔(0.001) × ✔ 

X263 ✔(0.0021) ✔(0.0151) ✔(0.0061) ✔ ✔ 

X829 × ✔(0.0065) ✔(0.009) ×  

X1203 × ✔(0.0171) × ✔  

X242 × ✔(0.0075) ✔(0.003) ✔ ✔ 

X56 × ✔(0.0135) ✔(0.0071) ✔ ✔ 

X1051 × ✔(0.0122) ✔(0.005) ×  

X877 × ✔(0.0151) × ×  

X512 × ✔(0.0019) ✔(0.0131) ×  

X847 × × ✔(0.01) ×  

X760 × × × ✔  

Table 2.21 The selected consensus artificial SNPs from the simulated data set. Xm represents an identifier of the genotyped 

SNP m in the simulated data set. Several of the significant SNPs associated with phenotype were selected across the methods 

meaning that they are likely to be key significant SNPs associated with the complex phenotype. × indicates either the SNP was 

not identified by the method. ✔ indicates the SNP was identified by the method. Numbers inside the brackets after ✔ indicate 

p values of the SNPs calculated using Wald test, or partial F-test. 
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Figure 2.20 The visualisation of the detected key significant artificial SNPs (intersection regions). Xm represents the 

identifier of the simulated genotyped artificial SNP m. Several simulated artificial SNPs were consistently identified to be 

significant by the multiple methods as occurred in the actual SNPs data set. 

Furthermore, Figure 2.21 shows the significant artificial SNPs, which were detected by the 

Boruta layer, which further enhances the key SNP identification in addition to the regression 

layer. 
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Figure 2.21 The confirmed selected artificially simulated key SNPs by the Boruta. It can be clearly seen that most of the 

selected SNPs in the regression layer have been also selected by Boruta, which further enhanced key SNPs selection. 

For the identified significant simulated artificial SNPs, the frequency plot (Figure 2.22) was 

initially created, and the equation 2 was applied to determine true positive key SNPs. Table 

2.22 shows the frequency of significant simulated artificial SNPs, which were selected in every 

iteration. 

For instance, applying the equation 2 to the simulated significant SNP X56, the confidence 

level will be 0.6875, which has surpassed the minimum threshold confidence level and hence, 

is more likely to be a true positive key SNP. In total 8 artificially simulated SNPs were 

identified to be confidently associated with the simulated phenotype. 
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Figure 2.22 The frequency plot showing the overall selected significant artificially simulated SNPs in the intermediate 

models in all four iterations. The highly ‘enriched’ simulated SNPs can be easily identified. 

Artificial SNP’s frequency of 

appearing in the models 

Artificial 

SNP’s Id 

Iteration 

number 

RF + Model 

Name 

1 X1306 1 Stepwise 

2 X1112 1 Stepwise 

3 X485 1 Stepwise 

4 X967 1 Stepwise 

5 X56 1 Stepwise 

6 X956 1 Stepwise 

7 X1306 1 Ridge 

8 X1112 1 Ridge 

9 X56 1 Ridge 

10 X967 1 Ridge 

11 X989 1 Ridge 

12 X859 1 Ridge 

13 X485 1 Ridge 

14 X1204 1 Ridge 

15 X956 1 Ridge 

16 X1306 1 Lasso 

17 X1112 1 Lasso 

18 X56 1 Lasso 

19 X967 1 Lasso 

20 X859 1 Lasso 

21 X485 1 Lasso 

22 X956 1 Lasso 
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23 X1361 1 Lasso 

24 X1306 1 Boruta 

25 X1203 1 Boruta 

26 X760 1 Boruta 

27 X1112 1 Boruta 

28 X56 1 Boruta 

29 X485 1 Boruta 

30 X94 1 Boruta 

31 X956 1 Boruta 

32 X1306 2 Stepwise 

33 X263 2 Stepwise 

34 X485 2 Stepwise 

35 X311 2 Stepwise 

36 X56 2 Stepwise 

37 X658 2 Stepwise 

38 X242 2 Stepwise 

39 X1306 2 Ridge 

40 X1112 2 Ridge 

41 X1203 2 Ridge 

42 X429 2 Ridge 

43 X263 2 Ridge 

44 X1324 2 Ridge 

45 X658 2 Ridge 

46 X242 2 Ridge 

47 X311 2 Ridge 

48 X1306 2 Lasso 

49 X1112 2 Lasso 

50 X56 2 Lasso 

51 X263 2 Lasso 

52 X429 2 Lasso 

53 X1324 2 Lasso 

54 X658 2 Lasso 

55 X877 2 Lasso 

56 X242 2 Lasso 

57 X485 2 Lasso 

58 X311 2 Lasso 

59 X1306 2 Boruta 

60 X1112 2 Boruta 

61 X760 2 Boruta 

62 X263 2 Boruta 

63 X1306 3 Stepwise 

64 X92 3 Stepwise 

65 X1112 3 Stepwise 

66 X1 3 Stepwise 

67 X56 3 Stepwise 
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68 X658 3 Stepwise 

69 X859 3 Stepwise 

70 X808 3 Stepwise 

71 X1306 3 Ridge 

72 X92 3 Ridge 

73 X1112 3 Ridge 

74 X56 3 Ridge 

75 X829 3 Ridge 

76 X859 3 Ridge 

77 X956 3 Ridge 

78 X1 3 Ridge 

79 X311 3 Ridge 

80 X242 3 Ridge 

81 X164 3 Ridge 

82 X1194 3 Ridge 

83 X658 3 Ridge 

84 X1306 3 Lasso 

85 X92 3 Lasso 

86 X263 3 Lasso 

87 X1 3 Lasso 

88 X1371 3 Lasso 

89 X1112 3 Lasso 

90 X56 3 Lasso 

91 X829 3 Lasso 

92 X859 3 Lasso 

93 X124 3 Lasso 

94 X623 3 Lasso 

95 X1194 3 Lasso 

96 X932 3 Lasso 

97 X1306 4 Stepwise 

98 X92 4 Stepwise 

99 X1112 4 Stepwise 

100 X808 4 Stepwise 

101 X859 4 Stepwise 

102 X263 4 Stepwise 

103 X1306 4 Ridge 

104 X1112 4 Ridge 

105 X92 4 Ridge 

106 X1203 4 Ridge 

107 X829 4 Ridge 

108 X242 4 Ridge 

109 X56 4 Ridge 

110 X859 4 Ridge 

111 X263 4 Ridge 

112 X1051 4 Ridge 
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113 X877 4 Ridge 

114 X1306 4 Lasso 

115 X92 4 Lasso 

116 X808 4 Lasso 

117 X1112 4 Lasso 

118 X56 4 Lasso 

119 X829 4 Lasso 

120 X859 4 Lasso 

121 X242 4 Lasso 

122 X847 4 Lasso 

123 X263 4 Lasso 

124 X1051 4 Lasso 

125 X512 4 Lasso 

Table 2.22. The frequency table showing the selected significant artificially simulated SNPs in the intermediate models 

in each iteration of the pipeline. These SNPs are associated with simulated continuous phenotype. 

2.3.1.2 Validation with second simulated set 

With second simulated set, which contains fewer minor alleles among artificial SNPs, the 

results appear to be similar with those in Figure 2.22. Several artificially genotyped SNPs, 

which were detected to be key in the previous section 2.3.1.1 were again identfied to be key. 

Few of the SNPs from the new simulated set were not detected signifying the effect of taking 

into account the true representation of the minor alleles. Figure 2.23 shows the frequencies of 

these identified artificial SNPs in the intermediate models. 
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Figure 2.23 The frequency plot showing the overall selected significant second artificially simulated SNPs in the 

intermediate models in all four iterations. The second simulated SNPs contain low number of minor alleles. 

From Figure 2.23, the artificially SNPs such as X1112, X859, and several others, which were 

identified to be key are now not confidently identified to be key SNPs contrasting the results 

from the first simulated set. On other hand, the artificial SNPs such as X92, X808, and several 

others, which were not confidently identified to be key are now significantly detected to be key. 

The artificial SNP X1306 was confidently identified to be the most significant in both simulated 

sets. The results further show that RAPIDSNPs appears to be capable of identifying the most 

significant SNPs when the validation set reflects true genotypic states using the same model 

assumptions. 

Additionally, the similar artificial key SNPs as those in Figure 2.23 were being picked by the 

RAPIDSNPs when the simulated phenotype values were being altered (Figure 2.24). This may 

indicate that these are true disease/trait associated artificial key SNPs even under the alteration 

of phenotypic values. There is notable variation of confidence levels amongsts trait associated 
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SNPs relative to those in Figure 2.23. For instance, the X112 and X1, which have low 

confidence scores (Figure 2.23) are now associated with the phenotype with high scores.  

 

Figure 2.24 The frequency plot showing the overall selected significant second artificially simulated SNPs in the 

intermediate models in all four iterations when the phenotype values were being perturbed. 

Thus, the selection of the same artificial key SNPs patterns even after being altering the 

phenotype values means that there are real and not random association between these selected 

artificial key SNPs and the phenotype. Hence, these results further indicate and validate the 

robustness of the RAPIDSNPs in detecting the disease/trait associated key SNPs. 

 

2.3.2 Effects of age as an example covariate and the selection of key SNPs 

It has been found that in most cases, the key SNPs, which were significantly identified to be 

associated with the platelet responses when the pipeline is run age incorporated as a covariate 

are the same as those when age is not incorporated. For instance, for PA platelet response, most 

of the SNPs were identical to those selected when age is not included, signifying that the age 
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might have a less significant effect when it is combined with SNPs in explaining the PA 

variation. Table 2.23 shows the frequencies of the SNPs selection in the intermediate models 

associated with the PA platelet response in each iteration, when age is included as a covariate. 

Figure 2.24 shows the plot, which illustrates the most frequent selected significant SNPs that 

are associated with PA for all iterations of the pipeline. All of the selected key SNPs are the 

same, except rs8033381, which was not selected under the presence of age as a covariate. 

SNP’s frequency of appearance in 

the models 

SNP’s Id Iteration number RF + Model 

Name 

1 rs3212391 1 Stepwise 

2 rs6141803 1 Stepwise 

3 rs2300065 1 Stepwise 

4 rs6442895 1 Stepwise 

5 rs12592919 1 Stepwise 

6 rs12709458 1 Ridge 

7 rs12592919 1 Ridge 

8 rs6442896 1 Ridge 

9 rs6136 1 Lasso 

10 rs2300065 1 Lasso 

11 rs927239 1 Lasso 

12 rs12592919 1 Lasso 

13 rs6442896 1 Lasso 

14 rs3212391 1 Lasso 

15 rs3212391 1 Boruta 

16 rs6141803 1 Boruta 

17 rs3212386 1 Boruta 

18 rs16865105 1 Boruta 

19 rs6442895 1 Boruta 

20 rs2424895 1 Boruta 

21 rs2424905 1 Boruta 

22 rs6442896 1 Boruta 

23 rs6433658 1 Boruta 

24 rs17041401 1 Boruta 

25 rs13316843 1 Boruta 

26 rs12592919 1 Boruta 

27 rs26682 2 Stepwise 

28 rs2292867 2 Stepwise 

29 rs6141803 2 Stepwise 

30 rs6442895 2 Stepwise 

31 rs1527480 2 Stepwise 
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32 rs6442896 2 Ridge 

33 rs6442895 2 Ridge 

34 rs2292867 2 Ridge 

35 rs3745406 2 Ridge 

36 rs1527480 2 Ridge 

37 rs6141803 2 Lasso 

38 rs12592919 2 Lasso 

39 rs7187863 2 Lasso 

40 rs1527480 2 Lasso 

41 rs10061730 2 Lasso 

42 rs3745406 2 Lasso 

43 rs2292867 2 Lasso 

44 rs6141803 2 Boruta 

45 rs6442895 2 Boruta 

46 rs6442896 2 Boruta 

47 rs6433658 2 Boruta 

48 rs17041401 2 Boruta 

49 rs12592919 2 Boruta 

50 rs26682 2 Boruta 

51 rs10061730 2 Boruta 

52 rs3212386 2 Boruta 

53 rs2424905 2 Boruta 

54 rs2424895 2 Boruta 

55 rs1527480 3 Stepwise 

56 rs3212391 3 Stepwise 

57 rs3730051 3 Stepwise 

58 rs6442896 3 Stepwise 

59 rs6141803 3 Stepwise 

60 rs2300065 3 Stepwise 

61 rs11637556 3 Stepwise 

62 rs6141803 3 Ridge 

63 rs3730051 3 Ridge 

64 rs6442896 3 Ridge 

65 rs1527480 3 Ridge 

66 rs11637556 3 Ridge 

67 rs6442895 3 Ridge 

68 rs6141803 3 Lasso 

69 rs3730051 3 Lasso 

70 rs6442896 3 Lasso 

71 rs1527480 3 Lasso 

72 rs2300065 3 Lasso 

73 rs3212386 3 Lasso 

74 rs11637556 3 Lasso 

75 rs6141803 3 Boruta 

76 rs6442895 3 Boruta 
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77 rs6442896 3 Boruta 

78 rs6433658 3 Boruta 

79 rs17041401 3 Boruta 

80 rs3212391 3 Boruta 

81 rs17760545 3 Boruta 

82 rs2424895 3 Boruta 

83 rs7568033 3 Boruta 

84 rs3212418 3 Boruta 

85 rs26682 3 Boruta 

86 rs33443 3 Boruta 

87 rs246410 3 Boruta 

88 rs397454 3 Boruta 

89 rs2424905 3 Boruta 

90 rs16865105 3 Boruta 

91 rs6442896 4 Stepwise 

92 rs3212391 4 Stepwise 

94 rs3730051 4 Stepwise 

95 rs6141803 4 Stepwise 

96 rs1527480 4 Stepwise 

97 rs11637556 4 Stepwise 

98 rs6442896 4 Ridge 

99 rs3730051 4 Ridge 

100 rs1527480 4 Ridge 

101 rs11637556 4 Ridge 

102 rs6442896 4 Lasso 

103 rs3730051 4 Lasso 

104 rs11637556 4 Lasso 

105 rs3212418 4 Lasso 

106 rs6141803 4 Lasso 

107 rs6442896 4 Boruta 

108 rs6433658 4 Boruta 

109 rs6442895 4 Boruta 

110 rs3212391 4 Boruta 

111 rs17041401 4 Boruta 

112 rs6058869 4 Boruta 

113 rs33443 4 Boruta 

114 rs6895049 4 Boruta 

115 rs2424895 4 Boruta 

116 rs26682 4 Boruta 

117 rs3212418 4 Boruta 

118 rs2424905 4 Boruta 

119 rs7568033 4 Boruta 

120 rs16865105 4 Boruta 

Table 2.23 The frequency of each selected significant SNP associated with PA platelet response in each iteration 
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Figure 2.25 The frequency plot showing the overall selected significant SNPs that are associated with the PA platelet 

response in the intermediate models in all four iterations when age is included as a covariate. Most of the selected SNPs 

are similar to those selected when age is not included as a covariate. 

 

Furthermore, for the FA platelet response, nearly all the SNPs, which were identified to be 

significantly associated with FA when age is excluded are the same with those under the 

inclusion of age. However, in some stages of the pipeline run, age appears to have a likely 

association with FA platelet response, but in addition to other key SNPs. The plot in Figure 

2.25 with its related table in Table 2.24 shows the different SNPs that are selected in every 

iteration; age is selected in the fourth iteration by the stepwise method with a p-value of 0.016. 
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Figure 2.26 The frequency plot showing the overall selected significant SNPs that are associated with the FA platelet 

response in the intermediate models in all four iterations when age is included as a covariate. 

SNP’s frequency of appearance in the 

models SNP’s Id Iteration number 

RF + Model 

Name 

1 rs1388622 1 Stepwise 

2 rs11637556 1 Stepwise 

3 rs8192827 1 Stepwise 

4 rs1537593 1 Stepwise 

5 rs11637556 1 Ridge 

6 rs7180408 1 Ridge 

7 rs1038639 1 Ridge 

8 rs11637556 1 Lasso 

9 rs1537593 1 Lasso 

10 rs1388622 1 Lasso 

11 rs3173798 1 Boruta 

12 rs1491978 1 Boruta 

13 rs11637556 1 Boruta 

14 rs1388622 1 Boruta 

15 rs17204437 1 Boruta 

16 rs1537593 1 Boruta 

17 rs9641866 1 Boruta 
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18 rs1388622 2 Stepwise 

19 rs11637556 2 Stepwise 

20 rs7180408 2 Stepwise 

21 rs2290890 2 Stepwise 

22 rs11637556 2 Ridge 

23 rs7806711 2 Ridge 

24 rs9895150 2 Ridge 

25 rs7180408 2 Ridge 

26 rs11637556 2 Lasso 

27 rs1388622 2 Lasso 

28 rs2290890 2 Lasso 

29 rs11772036 2 Lasso 

30 rs41305272 2 Lasso 

31 rs9895150 2 Lasso 

32 rs1388622 2 Boruta 

33 rs11637556 2 Boruta 

34 rs6787801 2 Boruta 

35 rs1491978 2 Boruta 

36 rs1491978 3 Stepwise 

37 rs11637556 3 Stepwise 

38 rs10974955 3 Stepwise 

39 rs10499858 3 Stepwise 

40 rs2071676 3 Stepwise 

41 rs41282607 3 Stepwise 

42 rs1866047 3 Stepwise 

43 rs2071676 3 Ridge 

44 rs11637556 3 Ridge 

45 rs41282607 3 Ridge 

46 rs3212417 3 Ridge 

47 rs11637556 3 Lasso 

48 rs2071676 3 Lasso 

49 rs10974955 3 Lasso 

50 rs10499858 3 Lasso 

51 rs41282607 3 Lasso 

52 rs1866047 3 Lasso 

53 rs8192827 3 Lasso 

54 rs3736101 3 Lasso 

55 rs1491978 3 Boruta 

56 rs7034539 3 Boruta 

57 rs10974955 3 Boruta 

58 rs3173798 3 Boruta 

59 rs1537593 3 Boruta 

60 rs17204437 3 Boruta 

61 rs10499858 3 Boruta 

62 rs1388622 4 Stepwise 
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63 rs11637556 4 Stepwise 

64 Age 4 Stepwise 

65 rs2071676 4 Stepwise 

66 rs7034539 4 Stepwise 

67 rs2296275 4 Stepwise 

68 rs11772036 4 Stepwise 

69 rs11637556 4 Ridge 

70 rs7034539 4 Ridge 

71 rs1038639 4 Ridge 

72 rs2071676 4 Ridge 

73 rs11637556 4 Lasso 

74 rs3736101 4 Lasso 

75 rs2071676 4 Lasso 

76 rs11772036 4 Lasso 

77 rs1038639 4 Lasso 

78 rs304076 4 Lasso 

79 rs11637556 4 Boruta 

80 rs1491978 4 Boruta 

81 rs11772036 4 Boruta 

82 rs6787801 4 Boruta 

83 rs1388622 4 Boruta 

84 rs9641866 4 Boruta 

Table 2.24 The frequency of each selected significant SNP associated with the FA response in each iteration. 

The age was separately tested with the key SNPs (rs11637556, rs1388622, and rs2071676) and 

found that it has a likely significance with FA platelet response (p-value = 0.05) along with 

rs1388622 and rs11637556 of P2RY12 and MAP2K1 respectively. Moreover, in almost every 

iteration of the RF, age was among the top ranked predictors, in addition to other SNPs, S17 

Figure 2.26. 
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Figure 2.27 The importance of the variables (SNPs and age) in y-axis, which have been selected by the RF based on 

their ranks and that are associated with FA platelet response. The x-axis shows the increase in mean squared estimate as 

a function of the individual variable’s importance. The higher %IncMSE the higher the variable to be likely important or 

significant in affecting the phenotype, which in this case is FA platelet response. 

 

Therefore, the similarity in the performance of the pipeline and the resultant key SNPs selection 

patterns using both, the real and simulated genotyped SNPs datasets, indicates that the pipeline 

is likely to be workable and robust when is applied to other continuous phenotypes. In addition, 

the pipeline has shown to be promising in simultaneously handling or analysing the SNPs in 

the presence of covariates while investigating the association of the SNPs and continuous 

complex trait/disease. 
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2.3.3 The identified missense (non-synonymous SNPs) 

Several significant SNPs across the datasets were identified to be non-synonymous, or missense 

mutations. Thus, they are likely to have structural/functional effects on the underlying in vivo 

related proteins, which are likely to further contribute to the variability of PA and FA platelet 

responses and hence, differential individual response to treatments and CVD risks. Table 2.25 

shows the missense SNPs that were identified by the pipeline from the three multiple datasets 

used. 

SNP Dataset ADP platelet responses Gene/Locus 

rs2071676 1 FA CA9 

rs12953 3 PA PECAM1 

rs822442 2 FA PEAR1 

rs3739038 3 FA LRRFIP1 

rs3736101 1 FA MADD 

Table 2.25 The overall identified missense SNPs, which are significantly associated with ADP platelet responses from 

the different three datasets applied to the pipeline. The bolded SNPs were unidentified in the previous study. These SNPs 

might be worth considering investigation of their structural/functional effects related to their proteins and that may further 

underlie the variability of the ADP platelet responses. 

 

Therefore, in the next chapter, these identified missense SNPs are investigated their likely 

damaging level to the structural/function roles of related proteins that may likely to explain the 

molecular mechanisms underpinning the ADP platelet responses variability. 

2.4 Discussion and Conclusion 

2.4.1 Advantages of this approach (RAPIDSNPs) 

There are several advantages of the RAPIDSNPs approach. Firstly, the RF layer plays a crucial 

role in ensuring that potentially highly important SNPs are selected and passed through to the 

regression ensemble and Boruta layers. This use of the RF as an initial filtering stage is a well 

described standard approach for SNP discovery and plays a crucial role in selecting potentially 

highly important SNPs, using the appropriate ntree and VI parameters (Goldstein et al., 2011; 
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Nicodemus et al., 2010; Strobl and Zeileis, 2008). The selection bias introduced by the VI 

measure with the ranking approach has been shown to mainly affect predictors with different 

categories and scale of measurements (Strobl et al., 2007), which is not the case in this study. 

In addition, the use of the VI measure with a ranking approach is still regarded as a useful 

strategy for selecting important SNPs for downstream analyses (Braga-Neto et al., 2004; Díaz-

Uriarte and Andrés, 2006).  

Secondly, it is possible to rapidly identify the key genetic variants, or markers, using a 

consensus of multiple alternate methods. Additionally, by introducing the multiple alternate 

methods layers, the likelihood of identifying other significant SNPs that might have been 

missed in one or more of the methods increases. This combination of methods in an integrated 

manner is a good approach for reducing false positives as multiple methods might be pointing 

to the same SNPs (Ritchie et al., 2015). This potentially increases the chance of keeping 

functional SNPs associated with the phenotype, minimising the risk of ‘missing heritability’ 

(Manolio et al., 2009), which is one of the thorny issues in GASs (Moore et al., 2010). 

Moreover, based on this approach, the identified true complex trait associated key SNPs are 

more likely to be indicating the significantly overexpressed loci, which are likely to be proper 

candidates for follow-up experiments. 

Furthermore, the pipeline is computationally adaptable and scalable to different 

implementations, particularly in the regression methods ensemble layer. It is possible to 

increase the number of (regularised) regression methods for optimising the detection of the key 

SNPs through consensus identification. 

Furthermore, the computational speed of the pipeline means that is practical to implement as 

an additional tool. For the dataset 1, the time taken to run the entire pipeline was 229.77012 

secs on a modest quad core system running Ubuntu 14.04. The RAPIDSNPs does not 
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necessarily aim to replace existing methods such as EMMAX (Kang et al., 2010) and PLINK 

(Purcell et al., 2007), rather it may be used to supplement and further enhance the identification 

of key SNPs associated with continuous response phenotypes, with little additional 

computational overhead. 

In addition, the pipeline may have an observed advantage over existing RF based methods in 

terms of its ability to identify other true trait associated SNPs. For instance, Boruta is the RF 

based method for relevant feature selection. After comparing the SNPs that were obtained 

after running the pipeline with those from the Boruta method, it was found that the pipeline 

has the potential edge in identifying key SNPs, which might be missed by using only Boruta. 

For example, in the case of the PA associated significant SNPs for the dataset1, it was found 

that the pipeline is able to identify rs3730051 in the AKT2 locus as a key SNP, which was not 

recognised as a relevant important feature by the Boruta. 

2.4.2 Limitations/caveats of the approach (RAPIDSNPs) 

The limitations of the approach are discussed below. 

2.4.2.1 Sample size of the SNPs data 

Furthermore, the RAPIDSNPs is likely to be most suitable for genetic association studies with 

relatively small SNP datasets (Reif et al., 2006), and it appears to perform well when applied 

to the platelet responses data. However, this approach has not yet been tested or applied to 

genome-wide scale data e.g. with several million SNPs for association mapping. In such cases, 

the subspace SNPs selection methods could be initially employed (Nguyen et al., 2015; Wu et 

al., 2012), for selecting a subspace of informative SNPs and minimising the computational cost 

in generating trees, prior to using this approach. 



169 

 

2.4.2.2 Missing genotypes 

For large numbers of missing genotypes, several established methods and tools, such as 

IMPUTE (Howie et al., 2009; Marchini and Howie, 2010), Beagle (Browning and Browning, 

2007)  and PLINK could be used. 

2.4.2.3 Long range LD and rare variants 

The pipeline is solely generic in use for the identification of key significant SNPs within 

candidate genes associated with continuous phenotypic traits. For examining whether the 

identified SNPs are in long range LD  (Koch et al., 2013), the pipeline could be supplemented 

with other methods or tools such as GLIDERS (Lawrence et al., 2009) and GWAS3D (Li et 

al., 2013). Furthermore, the pipeline has not been tested whether it is able to detect the rare 

variants. Instead, other approaches such as those proposed by Hoffmann et al. (Hoffmann et 

al., 2010), sequence kernel association test (SKAT) (Wu et al., 2011), and kernel-based 

adaptive cluster (KBAC) (Liu and Leal, 2010) might be used accordingly for detection of rare 

variants. 

2.4.3 Newly identified SNPs and their biological and clinical significance 

This approach was able to discover numerous and previously undetected SNPs, which are 

significantly associated with the ADP platelet response phenotype. Several of these SNPs have 

also been highlighted in other independent studies as being implicated in CVD. The following 

examples underpin the results and serve to further strengthen the confidence on the ability of 

the approach for identify key genetic variants.  

For example, the identified intergenic SNP rs6141803 in COMMD7, which is associated with 

PA was also identified in another platelet functional study (Goodall et al., 2010) to be a likely 
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risk factor for myocardial infarction. In addition, the SNPs rs1491978 and rs1388622 in P2Y12, 

which were previously found to be insignificant, have been identified by this new pipeline to 

be significantly associated with FA. Interestingly, P2Y12 is the main receptor of ADP in 

platelets and a target of antiplatelet drugs prescribed to CVD patients (Offermanns, 2006). 

P2Y12 has been widely studied in order to understand its associated risks and devise better 

treatment strategies for CVDs (Fontana et al., 2003; Offermanns, 2006; Woulfe et al., 2001), 

suggesting that these SNPs in this gene also have potential biological and clinical significance. 

Moreover, this pipeline significantly identified non-synonymous SNP rs2071676 in CA9, 

which is associated with FA and was previously unidentified. The CA9 product (CA IX) is one 

of the isoforms of the carbonic anhydrases which have been linked with several disease 

problems (Frost and McKenna, 2013) in addition to the platelet and CVD (Woodman et al., 

2010). Moreover, several CA9 polymorphisms have been identified to be associated with 

oncological problems (Chien et al., 2012; de Martino et al., 2009). Thus, it might be worth 

pursuing the effects of the rs2071676 SNP that may underlie CA9 with its product and platelet 

functions. 

The identified new key non-synonymous SNP rs12953 of PECAM1 has been a subject of 

interest for clinical studies related to PECAM1 polymorphisms, which are associated with 

myocardial infarction and other CVD problems (Pamuk et al., 2014; Ye et al., 2013). Hence, it 

might be of clinical importance to investigate whether its identified ADP platelet responses 

association is likely to lead to the related CVD prognosis. Thus, the reported association of the 

SNP with MI may further indicate the robustness of the RAPIDSNPs in identifying these key 

SNPs. Also, the key SNPs rs11264579 and rs822442 in the PEAR1 were identified to be 

significantly associated with FA in the dataset 2. Suffice to note that there are several 

polymorphisms in this PEAR1, which have been found to be associated with the increase of the 
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platelet aggregation and that have been reported to have an inhibitory role to the aspirin among 

CVD patients (Herrera-Galeano et al., 2008). Therefore, it might be clinically interesting to 

examine whether both identified key SNPs in this gene have a similar role, which also could 

be vital for targeted therapeutics. In particular, the non-synonymous (ns) SNP rs822442 might 

be of further interest since, in this study has been found to be significantly associated with FA. 

This is in contrast with previous study, which was found to be associated with the CRP platelet 

responses (Jones et al., 2009). 

Furthermore, RAPIDSNPs identified rs12485738 in the upstream of ARHGEF3, which was not 

identified using the previous approach by Jones et. al (Jones et al., 2009). This SNP is known 

to be associated with the increase in the mean platelet volume (MPV), which is a feature 

observed in the morbidity and mortality cases among MI and cerebral infarction (ischemic 

stroke) patients (Meisinger et al., 2009). The fact that it has been identified by the pipeline to 

be associated with FA, this SNP might be a potential marker for the genomic studies that are 

intended to find the link between ADP responses (particularly FA) and MI. This identification 

strongly and further suggests the robustness of the pipeline in identifying crucial markers, 

which are likely to be unidentified by the standard biostatistical approaches such as forward 

stepwise.  

The RAPIDSNPs was also able to identify a SNP rs2228671 in LDLR to be significantly 

associated with PA platelet response. This SNP has been also identified in several unrelated 

studies, which investigated the polymorphisms in LDLR and their association with CVDs 

(coronary heart and MI) (Franceschini et al., 2009; Myocardial Infarction Genetics Consortium 

et al., 2009). The fact that it has been significantly identified to be associated with PA platelet 

response, it might be clinically interesting to find the association or correlation between PA 

and MI using this SNP as a marker. Also, the pipeline identified the common SNP rs5277 in 
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COX-2 (PTGS2) to be significantly associated with PA. This gene produces the 

cyclooxygenase-2 enzyme, which catalyses prostaglandins that are involved with 

atherosclerosis (Belton et al., 2000).  Type-2 diabetic individuals with the SNP rs5277 in this 

gene were found to be associated with the high risk of developing CVD (Rudock et al., 2009). 

Based on these results, there is a likely association between the PA and atherosclerosis that 

might be linked through this SNP. Hence, this warrants its further investigation.  

In general, the above results further suggest and strengthen the belief that the devised pipeline 

(RAPIDSNPs) is capable of identifying crucial complex trait/disease-associated key SNPs. 

2.4.4 Summary of ADP platelet responses and CVD associated SNPs 

Based on the results and discussion, Table 2.26 summarises the identified ADP platelet 

responses SNPs and their likely CVD type association.  
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S/N Identified 

SNPs 

Gene/Locus Associated 

ADP 

platelet 

responses 

High 

response/ 

Increase 

Low 

response 

/Decrease 

Likely associated CVD 

type based on the 

discussion 

1 rs6141803 COMMD7 PA low Myocardial Infarction 

(MI) (Goodall et al., 2010) 

2 rs1491978 P2Y12 FA high Has a potential for 

atherothrombosis (Simon 

et al., 2009; Zee et al., 

2008) 

4 rs2071676 CA9 FA low Has a potential for 

hypertension (Woodman 

et al., 2010) 

5 rs12953 PECAM1 PA low MI/atherosclerosis (Listì 

et al., 2004; Pamuk et al., 

2014) 

7 rs822442 PEAR1 FA high Has a potential for MI 

(Herrera-Galeano et al., 

2008) 

8 rs12485738 ARHGEF3 FA high MI & ischemic stroke 

(Meisinger et al., 2009) 

9 rs2228671 LDLR PA high Coronary artery disease 

(Linsel-Nitschke et al., 

2008) 

10 rs5277 PTGS2 PA high Atherosclerosis (Rudock 

et al., 2009) 

11 rs1472122 P2Y12 PA low Potential for Ischemic 

Stroke (Zee et al., 2008) 

Table 2.26. The ADP platelet responses associated SNPs that were identified by the RAPIDSNPs pipeline and have 

association or potential association with CVD. The bolded SNPs were previously unidentified or found to have insignificant 

association with the ADP platelet responses. Some of these SNPs were not directly reported to have association with CVD but 

other SNPs in the same genomic position or LD were found to have association. Thus, termed to be ‘potential’ for a particular 

CVD type. High or low response means the SNP is likely to increase or decrease platelet aggregation and is based on the 

estimated coefficient value. 

2.4.5 Conclusion 

The RAPIDSNPs is a developed robust computational tool for rapid discovery of key bio-

markers associated with complex phenotypes. In this study the approach has been applied to 

reveal previously unidentified SNPs associated with ADP platelet response phenotypes, which 

have been independently implicated in CVDs. This strongly suggests that the approach is robust 

in identifying key genetic variants or SNPs that are likely to be missed by following only the 

standard stepwise forward or single method. Moreover, it may be generally applied in other 
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disease contexts for the discovery of multiple genetic variations that may better account for the 

heritability of continuous phenotypes. Thus, the approach has strong potential to become a 

useful additional tool for rapid discovery of key critical biomarkers prior to performing 

complex analyses in the GASs. 

In the coming two chapters, the molecular mechanisms underpinning the roles of these 

identified variations (key SNPs) are examined through predictive approaches. In Chapter 3, the 

focus will be on examining the role of the identified missense (non-synonymous) SNPs that 

likely underlies ADP induced platelet responses variability. To the best of the researcher’s 

knowledge, there is still a gap in the understanding of the effect of the missense SNPs to the 

proteins’ structures and functions associated with ADP platelet response. The follow-up 

Chapter 4 aims to examine the likely regulatory roles of these identified SNPs that may further 

contribute to the variability of the ADP platelet responses and potentially CVD prognosis. 
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Chapter 3 – Predicting structural & functional effects of the ADP 

platelet responses associated with missense SNPs using structural 

bioinformatics approaches  

3.0 Abstract 

The RAPIDSNPs method developed in the previous chapter that rapidly identifies key 

significant SNPs is like other genetic association analysis tools. In most cases, they might be 

able to identify the SNPs that are susceptible to complex disease/traits. However, such analysis 

methods do not provide an indication of the underlying molecular mechanisms that are likely 

to contribute to the phenotypic variations. In this chapter, the molecular mechanisms of the 

previously identified missense SNPs are elucidated using predictive structural bioinformatics. 

Normally, the missense SNPs are likely to affect the structures of in-vivo related proteins and 

their functions, which may likely to lead to the changes in the individual phenotypic effect. 

Thus, the objective of this chapter is to design a structural bioinformatics approach for 

investigating the likely structural and functional effects (roles) of the identified missense SNPs 

on their related proteins. The driving hypothesis is that the identified missense SNPs from the 

RAPIDSNPs are likely to cause harmful mutations and change structures and/or functions of 

the associated proteins, which may further explain the ADP platelet responses variability. 

Furthermore, predicting these likely changes in structures and functions of the related proteins 

might indicate new avenues of investigation for targeted CVD therapeutics. 

3.1 Introduction 

The RAPIDSNPs pipeline, like other GAS analysis tools, are used to identify SNPs in the 

genome that are susceptible to the disease/trait being studied. The pipeline identified SNPs that 

are significantly associated with FA and PA platelet responses. However, the pipeline, on its 

own, is similar to many other GASs approaches, which do not allow for further elucidation of 

the mechanisms by which these SNPs lead to the disease/trait (Pal and Moult, 2015). There are 
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number of ways by which the presence of these SNPs may be linked to the gene product’s 

functional effect and hence disease or complex trait risk. One of these ways involves missense 

SNPs, which cause the amino acid substitution. The missense SNPs might play a substantial 

role in common human disease and traits by altering in vivo function of the associated protein 

in many ways. For instance, they may change protein’s fold (3-dimensional structure), ligand 

binding ability, or catalysis (Pal and Moult, 2015).  

Thus, the identified missense SNPs from the RAPIDSNPs are further examined to investigate 

their structural and functional role(s), which may contribute to the differential FA and PA 

platelet responses among individuals. To achieve this aim, a sequence-structure-function 

prediction protocol is designed in order to build 3D protein models for determining potential 

structural or/and functional effects of the identified missense SNPs. 

3.2 Why build 3D models to investigate the identified missense SNPs? 

A missense SNP, which leads to an amino acid substitution in the translated protein, may cause 

changes in the protein’s fold and hence, alter its intended function. This study is based on the 

prevailing theory that sequence determines structure – also known as Anfinsen’s dogma - and 

in turn that the structure determines function (Anfinsen et al., 1961). Understanding structural 

and functional impacts of the identified missense SNPs is vital as they have been widely 

reported to play key roles in the several diseases or traits including CVD (Ohnishi et al., 2000; 

Okuda et al., 2002; Porto et al., 2015; Shi et al., 2012).  

Thus, this study aims to investigate the roles of identified missense SNPs and their likely effect 

on the related proteins structures that may underlie ADP platelet responses and potentially 

contribute to the CVD.  
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In undertaking this objective, public databases such as the Research Collaboratory for 

Structural Bioinformatics/Protein Data Bank (RCSB/PDB) (Kouranov et al., 2006; Rose et al., 

2013) and Protein Data Bank in Europe (PDBe) (Gutmanas et al., 2014) are essential for the 

structure prediction approaches. There has been a yearly exponential growth of experimentally 

solved structures particularly in RCSB/PDB (Figure 3.1), which serve as reliable templates for 

predicting yet to be solved structures of known sequences. 

 

Figure 3.1. The exponential growth of the number of structure per year in the RCSB. The public availability of these 

structures may play substantial role in performing the predictive task for investigating the potential or likely structural change 

due to missense SNPs on the proteins associated with ADP platelet responses. (The Figure was adapted from (Agüero et al., 

2007). 

While this growth in known structures is impressive, it is far outstripped by the growth in 

sequence databases, Figure 3.2 
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Figure 3.2 The growth of sequences in different databases which outstrips the number of experimental structures 

deposited in PDB (Figure 3.1). (Image was taken from http://gorbi.irb.hr/en/method/growth-of-sequence-databases/).  

Thus, structure prediction methods are essential for bridging the sequence-structure gap and 

therefore supplementing our knowledge of protein functions. 

3.3 What are the identified protein mutations? 

Table 3.1 shows a summary of the overall identified missense SNPs from the RAPIDSNPS 

method, which are significantly associated with ADP platelet responses. The detail on their 

selection basis can be found in the Chapter 2. 
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SNP ID  SNP’s selected 

flanking DNA 

sequence 

mRNA 

accession 

number 

Allele 

change and 

position in 

the mRNA 

Residue 

change 

and 

protein 

position 

Protein name and 

accession numbers 

(NCBI and UniProt) 

rs2071676 ACTGCTGCT

GTCACTGCT

GCTTCTG[A/

G]TGCCTGT

CCATCCCCA

GAGGTTGCC 

NM_001216.2 GTG ⇒ ATG 

(139) 

Val33Met carbonic anhydrase 9 

[precursor] 

NP_001207.2 & 

Q16790 

rs822442 GCCCGCTCT

TTGCCAGCC

TGCAGAA[A/

C/T]CCTGAG

CGGCCAGGT

GGGGCCCAA

G 

NM_00108047

1.1 
AAC ⇒ 

AAA (2660) 

Asn848Lys platelet endothelial 

aggregation receptor 

1 [precursor] 

NP_001073940.1 & 

Q5VY43 

rs12953 GCATTTTGG

ACCAAGCAG

AAGGCTA[A/

G/T]CAAGGA

ACAGGAGG

GAGAGTATT

AC 

NM_000442.4 AGC ⇒ AAC Ser563Asn platelet endothelial 

cell adhesion 

molecule1 [precursor] 

NP_000433.4 & 

P16284 

rs3739038 TCTTCTCTG

CTTTCTGGA

TTGAAGT[C/

G]CCCTGGC

TCTCTTCCT

GGTGCCGAC 

NM_00113755

3.1 
CAC ⇒ GAC His727Asp leucine-rich repeat 

flightless-interacting 

protein 1 isoform 5. 

NP_001131025.1 & 

Q32MZ4 

rs3736101 GAAGTATGG

ATTGTCATA

GATTCGC[C/

T]GGCGCAC

TGACCCCTC

TCCAATTTC 

(C/T REV) 

NM_130470.2 CGG ⇒ CAG Arg765Gln MAP kinase-

activating death 

domain protein 

isoform a. 

NP_569826.2 & 

Q8WXG6 

Table 3.1 The identified missense SNPs from the RAPIDSNPs that are associated with both FA and PA platelet 

responses. The bolded nucleotide letters are SNPs’ allele changes in the second and fourth columns respectively. The 

corresponding mutation (wildtype-mutant residues and its position) is in the fifth column, and the involved wildtype protein 

name is in the last column. 

The above SNPs in the Table 3.1 are examined initially for their likely deleteriousness levels 

in the associated proteins before performing the structure prediction approaches. 
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3.4 Structure prediction approaches 

Tertiary structural prediction approaches aim to produce accurate three-dimensional (3D) 

models of a protein from its amino acid sequence. Determining protein’s 3D structure is vital 

for understanding its underlying molecular functions, which govern physiological processes. 

Moreover, from the theory, the protein’s function is derived from its 3D structure, which is 

determined from the amino acid sequence - Anfinsen’s dogma. Thus, changes in sequence may 

likely to cause changes in structure and maybe function. However, the experimental procedures 

for determining the proteins 3D structures are expensive, laborious, and time consuming. 

Therefore, predicting 3D structure is indispensable for understanding any underlying functional 

changes, which are caused by the changes in sequence. In turn, that knowledge may have a 

potential impact on biomedical studies, including those involving personalised medicine.  

In this regard, different approaches have been developed for the purpose of predicting high 

accuracy 3D structures, which may be used for biomedical applications. These approaches are 

described beneath. 

3.4.1 Homology modelling approaches 

Template based homology/comparative modelling (TBM) is a protein structure prediction 

approach, which is used to recognise the protein fold of a given sequence based on the 

evolutionary information of the experimentally determined structures available at the 

RCSB/PDB. This is likely to be achieved when there is a good similarity between sequence of 

unknown structure “target” and the experimentally determined structures from the PDB 

“template” (Krieger et al., 2003). Two important theories underpinning the homology 

modelling are: 1) the information necessary for a particular protein to uniquely fold into three 

dimension structure is deciphered in its amino acid sequence (Anfinsen et al., 1961), 2) 

Throughout evolution, structures are more highly preserved than the sequences, which 
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practically means, two proteins with very similar sequences are likely to have near identical 

structures, and even low homology sequences (~25-30% identity) will still fold into similar 

structures (Chothia and Lesk, 1986).  

Chothia and Lesk’s theory was further demonstrated by (Rost, 1999) who objectively showed 

that the theory holds only when the percentage of the residues are within the ‘safe’ zone, i.e. 

two protein sequences are likely to have the same fold if their percentage identity is above 25%, 

depending on the length of their sequences (Godzik, 2003). This might be achieved through the 

alignment and alignment correction steps of TBM approaches (Krieger et al., 2003). Obtaining 

the optimal alignment is crucial for achieving the desired accuracy of homology models and 

providing a solid groundwork for subsequent functional analyses, including investigating 

protein-ligand interactions in the missense SNPs mutation studies (Torrent et al., 2004; Wilson 

et al., 2000). TBM methods are widely applied in modelling of proteins in different diseases 

studies and, in particular, for modelling of missense mutations (Lino Cardenas et al., 2011; 

Moghaddasian et al., 2014). Thus, majority of the incorporated methods in the designed 

bioinformatics pipeline for this study are under this category. 

3.4.2 Fold recognition and threading approaches 

Homology modelling is a better approach for 3D modelling for the protein structure when there 

is a good homology or significant identity between the target and template sequences. But, 

when there is very low percentage identity, particularly if the percentage identity is beyond the 

twilight zone (<25-30%), then fold recognition methods are essential for identifying the correct 

fold of the target sequence (Godzik, 2003; McGuffin, 2008b). The terms ‘fold recognition’ and 

‘threading’ are used interchangeably, although the latter term has started to fade in use. They 

literally mean finding the 3D structure that best fits the sequence as opposed to homology 

modelling, which aims to find the sequence that best fits the 3D structure (McGuffin, 2008b).  
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The underlying theory behind this approach is that the structure will often remain more highly 

conserved than the sequence and many proteins with very unrelated sequences tend to have 

similar folds, which implies that the “fold space” for the most proteins is limited (Orengo et al., 

1994; Sander and Schneider, 1991; Zhang and Skolnick, 2005a). The original threading method 

(Jones et al., 1992) worked by trying to fit (or ‘thread’) the target sequence to the backbone of 

the fold of each template and then use knowledge-based statistical energy and solvent potentials 

to evaluate and obtain the desired fold with minimum free energy. The traditional threading 

approach contained several drawbacks: i) they were CPU intensive due to the applied double 

dynamic programming algorithm, ii) they were not reliable for producing accurate coordinates 

for 3D models due to gaps & loop modelling requirements, iii) they were hard to automate due 

to the generation of many alternative energy potentials rather than a single score. These 

drawbacks led to the development of the hybrid and fully automated methods for fold 

recognition which are now routinely used (McGuffin, 2008b). The hybrid fully automated 

approach has been elsewhere successfully used to model the effect of missense SNPs 

(Monteagudo et al., 2015; Shukla and Mishra, 2011). Thus, we have also incorporated this 

approach in the designed bioinformatics pipeline for investigating the role of the identified 

missense SNPs that likely underpin the ADP responses variability. 

3.4.3 Ab initio or free modelling (FM) approaches 

Ab initio or template free modelling (FM) approaches seek to model the protein’s 3-

dimensional structure solely from its amino sequence without the prior knowledge of any other 

similar sequences or structures. The fundamental assumption is that the protein’s true native 3-

dimensional structure (protein’s active form) becomes into its folded state under the lowest free 

energy. The prediction methods require a free energy function that is close to this native state 

and an ability to search the vast conformational space (due to the combinatorial number of 
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residues) for the lowest energy conformation (Chivian et al., 2003). The underlying theory is 

based on the (Anfinsen et al., 1961) who showed that the information necessary for a protein 

to fold into its native 3-dimensional structure is entirely encrypted in its amino acid sequence. 

The ab initio modelling approaches are only usually applied when the underlying assumptions 

for the sequence-based searches or structure-based fold recognition methods fail, i.e., the 

protein’s fold has to be completely modelled in the absence of any homologous/analogous 

structural information. This is because there are still many protein targets, which have 

completely novel sequences and folds. In addition, some proteins might have some sequence 

similarities but fold differently (Helles, 2008). 

There are current successful methods that have shown very promising results in achieving near 

crystal structure folds, but these are highly computationally intensive and only perform well in 

predicting single domain proteins with a small number of residues (<100) (Helles, 2008; 

Kryshtafovych et al., 2010). Nevertheless, these methods may be used for modelling missense 

SNPs, when the mutation is located in a specific protein region of interest (for instance, a short 

binding domain) (Taylor et al., 2003). Thus, some of the methods, which are in the designed 

bioinformatics pipeline for this chapter, inherently employ, or are entirely based on this 

structure prediction category. 

3.4.4 The CASP experiment 

The critical assessment of protein structure prediction (CASP) is the pre-eminent biennial 

experiment for evaluating the performance of numerous protein structure prediction methods 

(Kryshtafovych et al., 2010; Moult et al., 1995). The CASP experiment is a blind competition 

in which different independent research groups around the world attempt to make accurate 

predictions of the 3D-structures of proteins prior to the release of their experimentally 

determined atom coordinates. The only data available to the predictors are the amino acid 
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sequences of the proteins or ‘targets’. Researchers use various computational approaches, as 

described above, in order to predict the structures of the targets.  

Furthermore, different categories of predictions have been gradually added since the start of 

the challenge. The more interesting categories for biomedical applications are TBM and model 

quality assessment (MQA). TBM is by far the most successful of the tertiary structure 

prediction approaches, producing models that are often close to near native structures. 

Additionally, MQA is important for evaluating the predicted models and assessing how close 

they are to the experimentally determined structures (Kryshtafovych et al., 2010). The 

predictors and assessors gather in biennial conferences for intense discussions of the top 

performing methods in each of these categories. 

3.4.4.1 Why CASP experiment is important  

The CASP experiment has been a major driving force in the field of structure prediction. 

Despite major advances there are still bottlenecks, and challenges in the underlying prediction 

process (Bourne, 2003; Kryshtafovych et al., 2010; Moult, 2005). Achieving near native 

structure models is vital for the advancement of biological research, particularly biomedicine, 

where molecular aspects of the diseases are now closely investigated for the personalised 

medicine (Collins and Varmus, 2015; de Bono and Ashworth, 2010). In our case, for 

investigating the role of missense SNPs that may underlie ADP platelet responses, we use the 

CASP recommended top performing methods, in both structural prediction and model quality 

assessment. 

The next section describes methods for modelling the effects of identified missense SNPs. 
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3.5 Methods 

3.5.1 The procedure used to identify the deleteriousness of missense SNPs (damaging 

mutations) 

The identified significant SNPs in the coding region (missense/ns/cSNPs) (Table 3.1) were 

initially analysed to determine their potential damaging level to the in vivo proteins using 

different computational methods. The missense SNPs were judged to be deleterious if they 

were identified by the selected sequence profile and evolutionary conservation, and machine 

learning methods, which are SIFT (Ng and Henikoff, 2003), Polyphen-2 (Adzhubei et al., 

2010), and Fathmm (Shihab et al., 2013)), and (SuSpect) (Yates et al., 2014) respectively. The 

selection of these methods was based on their performance assessment reported by Gnad et al. 

(Gnad et al., 2013). The flowchart in the Figure 3.3 shows the general approach, which was 

used to determine the deleteriousness of the identified missense SNPs. 
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Figure 3.3 The general approach used to identify the deleteriousness of the nsSNPs identified by the RAPIDSNPs. The 

damaging level of the SNPs were judged based on the agreement of the results from varying prediction methods. 

In using Fathmm, two algorithms (weighted and unweighted) were alternatively applied with 

human phenotype ontology being generic phenotype association.  

3.5.2 Predictive modelling of proteins related to the identified deleterious missense SNPs 

The structural bioinformatics pipeline that incorporates different methods (TBM and FM 

based) was developed in order to model the effect of the identified damaging missense SNPs 
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on the related proteins. The initial structural modelling approach involved TBM methods to 

generate the initial 3D models for full sequence protein. Subsequently, modelling of short 

sequences, particularly in the disordered regions and/or loops, was followed, if the full 

sequence produced low accuracy protein models. 

In applying TBM, template recognition and initial alignments were carried out using Clustal 

omega (Sievers et al., 2011), HHalign (Söding, 2005) and PSI-BLAST (Altschul et al., 1997), 

which allowed us to examine the homologous sequence similarity between targets (both 

wildtype and mutant proteins) and templates. However, in most cases TBM was carried out in 

a fully automated mode. The methods deployed include IntFOLD3-TS (McGuffin et al., 2015), 

HHpred (Söding, 2005), GenThreader (McGuffin and Jones, 2003), SwissModel (Biasini et al., 

2014), I-TASSER (Zhang, 2008), RaptorX (Källberg et al., 2012), and SparksX (Yang et al., 

2011). The IntFOLD3 server was also used to examine per residue accuracy, which helps to 

identify the well-folded and badly predicted regions. PSIPRED (McGuffin et al., 2000) was 

used to provide the secondary structure comparisons. 

The selection of the above methods was also guided by the CAMEO project data (Haas et al., 

2013), which provides continuous performance evaluation of public methods, supplementary 

to the top performers identified in the CASP experiment. Moreover, using a combination of 

different methods from TBM and FM based approaches, enables to observe the variations likely 

model quality, as a result of underlying parameter settings and/or varying target-template 

alignments (Kryshtafovych and Fidelis, 2009).  

The workflow diagram showing the general approach used to model these identified mutations 

is shown in the Figure 3.4 
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Figure 3.4. The general workflow showing the overall methods used for generating the 3D structural protein models to 

analyse the effect of the identified missense SNPs. The applied structural prediction methods are among the top performing 

in the previous 2014 and recent 2016 CASP challenges, and according to CAMEO.org. The models are then assessed their 

quality using model quality assessment programs (MQAP) before selecting the final model(s). 

For further investigating mutations in the termini regions or short or unstructured sequences, 

FM and disorder prediction methods were used. For FM, Quark (Xu and Zhang, 2012) and 

Robetta (Kim et al., 2004) were used. The disordered regions were predicted using DISOPRED 

(Ward et al., 2004) and DISOclust (McGuffin, 2008a).  
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3.5.3 Model quality assessment (MQA) 

The top performing Model Quality Assessment Programs (MQAPs) were applied to Estimate 

the likely Model Accuracy (EMA) of each of the generated models. In particular, the 

ModFOLD4 (McGuffin et al., 2013) was applied in addition to ModFOLD6 (Maghrabi and 

McGuffin, 2017), which were among the top performers in the latest CASP challenges 

(CASP10-12). In addition, ModFOLD4 and ModFOLD6 are continuously validated as top 

performing methods according to the CAMEO project. 

Furthermore, in evaluating the quality of the models, the TM score was initially used to align 

the models to each other, and the comparison matrices containing TM scores were then 

produced to examine the closely correlated models, i.e. most similar in structure. The closely 

correlated models were then compared and run through ModFOLD4/6 to select the final models 

for downstream analyses.  

3.5.4 Functional prediction of the predicted models 

FunFOLD2 server (Roche et al., 2013) was used for functional prediction to identify any 

putative ligand binding sites in the selected models. 

3.5.5 Further models analyses 

Further molecular analyses, visualisation and rendering of the individual predicted models was 

performed using PyMOL (DeLano, 2002). 

3.5.6 Overall prediction protocol 

The sequences for the wildtype proteins were obtained from the NCBI based on their accession 

numbers, CA IX = NP_001207.2, PECAM1 = NP_000433.4, and PEAR1 = NP_001073940.1 
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with their full length containing 459, 738 and 1037 amino acids respectively. These proteins 

were selected since their related missense SNPs are the most damaging among the identified 

missense SNPs, refer to the “Results” section on deleteriousness prediction (section 3.6). Then 

TBM models for each full-length individual protein, for both wildtype and mutant, were 

generated using the pipeline described above. TM-align method (Zhang and Skolnick, 2005b) 

was later used to superpose the models and template, providing structural alignments. 

For the CA IX protein, DISOPRED and DISOclust were further used to examine the PG domain 

in the N terminus region, which proved to be difficult to fold up and was where the V33M 

mutation located. Hence, part of this domain region, consisting of residues numbered from 1-

50, was later re-modelled using the above pipeline (figure 3.4) with both TBM and FM methods 

applied. The sequence of this region was further analysed using the alignment programs, as 

previously described (section 3.5.2), in order to examine the conserved regions in which the 

mutation appears to be localised. Moreover, the predicted topology within part of 1-50 residues 

shows similarity across methods (see Results). Following this similarity, the models were 

aligned or superposed to each other using TM-score program (Zhang and Skolnick, 2004). The 

aim was to compare and determine the closely correlated models, which have the closest fold 

similarities for further quality assessment and analyses. The comparison matrices containing 

pairwise TM-scores were generated for each combination. 

Furthermore, based on the CA IX annotation, in the Uniprot (Consortium, 2008) (accession ID 

= Q16790) within PTM/Processing, the mutation (V33M) appeared to be predicted as part of 

signal peptide (1 – 37 residues). Thus, SignalP (Petersen et al., 2011) with signalP HMM 

(Bendtsen et al., 2004), was then applied to predict the selected residues from 1-26 positions. 

This region was selected as initial signal peptide prediction using the same methods in the 1 – 

37 residues appeared to have low score and in addition to indicating that the cleavage site to be 
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likely within residues 1 – 26. Additionally, it was in our interest to examine whether the highly 

conserved region within residues 22 – 45, where the V33M mutation was located, was part of 

the signal peptide or in the transmembrane region within the PG domain. Therefore, in this 

case, MEMSAT SVM (Nugent and Jones, 2009) was also applied. 

For PECAM1, the region from 497 – 596 of the protein was additionally modelled as the full-

length protein using the above pipeline failed to produce high quality models (see the Results 

section). The selection of this region is based on the DomFOLD predictions (McGuffin and 

Roche, 2011) (see the Results section). The mutation S563N was located within this predicted 

domain. The mutant and wildtype proteins of this domain were subsequently modelled using 

the TBM and FM methods in the pipeline previously described. Furthermore, the TM-score 

comparisons were applied for further quality assessment, as the models were similar in 

topology. The obtained high quality wildtype and mutant models were further analysed by 

comparing their structures with templates found using PSI-BLAST. The sequence (PECAM1 

domain 6 from Uniprot – Family & Domains (499 – 591 residues) was run against the PDB 

structures, and two iterations of PSI-BLAST were used. The aim was to examine the likely 

structural and functional effects when the wildtype residue Ser at 563 is changed to Asn as the 

predicted domain type for wildtype in Uniprot is of C2 Ig domain, while the mutant appeared 

to adopt V-type Ig domain (See the Results section).  

For PEAR1, the modelling process using the above pipeline was repeated three times with 

different subsequences. The full sequence protein was computationally hard to predict, as it 

contains 1037 amino acids. Only two methods IntFOLD3 and SPARKS-X managed to produce 

models but with poor quality. As the mutation of interest is in the positon N848K, the protein 

was repeatedly re-modelled focusing on the 801 – 900 and 801 – 850 residues sub regions. The 

selection of these regions was based on the disordered predictions and secondary structure 
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prediction using PSIPRED, which was recalled to check the likely secondary structure of the 

wildtype/mutant residues. 

3.6 Results 

3.6.1 Predicted deleteriousness missense SNPs 

Firstly, the rs2071676 SNP is predicted to be the most deleterious comparing to other SNPs. 

The prediction of damage level of the missense SNPs associated with the ADP associated 

proteins are summarised in Table 3.2 below: 

SNP ID Protein Method Score Overall score 

rs2071676 Carbonic anhydrase IX 

(CA IX) 

Polyphen-2 0.718 Damaging 

SuSpect 44 Near damaging 

fathmm -4.54 Damaging 

rs12953 Platelet endothelial 

cell adhesion molecule 

(PECAM1) 

Polyphen-2 0.995 Damaging 

SuSpect 20 Neutral 

fathmm -5.09 Damaging 
rs822442 Platelet endothelial 

aggregation receptor 1 

(PEAR1) 

Polyphen-2 0.057 Neutral 

SuSpect 22 Neutral 

fathmm -2.46 Damaging 

rs3739038 Leucine-rich repeat 

flightless-interacting 

protein 1 isoform 5 

(LRRFIP1) 

Polyphen-2 0.000 Neutral 

SuSpect 14 Neutral 

fathmm 2.13 Neutral 

rs3736101 MAP kinase-activating 

death domain protein 

isoform a (MADD) 

Polyphen-2 0.000 Neutral 

SuSpect 7 Neutral  

fathmm -0.83 Neutral 

Table 3.2 Predictions of deleteriousness of the identified missense SNPs associated with ADP platelet responses. 
Polyphen-2 uses the value between 0 and 1 with the highest score for deleteriousness of the SNPs being 1. For SuSpect, the 

damage score is between 1 and 100. The cut-off for “damaging” is 50, a score between 1 and 50 means that it is more tolerated, 

and the values above 50 represent deleteriousness of the SNPs. Fathmm’s deleterious score ranges between -ve and +ve values 

with the larger –ve values implying higher likelihood of deleteriousness. 

The damage level of the identified missense SNPs can be further visualised using Figure 3.5, 

which is based on Polyphen-2: 
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Figure 3.5 The predicted damage level of all identified missense SNPs based on Polyphen-2. (A) rs2071676 of CA9 (B) 

rs12953 of PECAM1, (c) rs822442 of PEAR1 (d) rs3739038 of LRRFIP1 and (e) rs3736101 of MADD. The green, yellow, 

orange, and red colour legends indicate the damage levels starting from: neutral, maybe damaging, slightly damaging and 

damaging respectively. The black vertical bar represents the score for the SNP. 

From the results in the Tables 3.2 and Figure 3.5, it is clear that three missense SNPs 

(mutations) rs2071676 (V33M), rs12953 (S563N), and rs822442 (N848K) in the CA9 (CA IX), 

PECAM1 (PECAM1), and PEAR1 (PEAR1) genes (proteins) respectively are more likely to be 

damaging to their respective proteins structures/functions.  
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3.6.2 3D models and function predictions characterising the CA IX The V33M mutation 

3.6.2.1 Predicted structures of the full-length wildtype and mutant CA IX 

Several 3D models of the full-length CA IX were produced, but the models are predicted to be 

of poor quality. Based on the UniProt accession annotation family & domain database reports, 

the protein contains three main sequence domains, which are the N-terminus proteoglycan (PG) 

which includes signal peptide and transmembrane region, CA catalytic, and C-terminus 

intracellular (IC) cytoplasmic domains. The only domain that appears to be predicted well by 

a majority of the models is the catalytic (CA) domain. In addition, this domain is the only region 

of the protein, which has been experimentally solved; the PDB entry 3iai (Alterio et al., 2009) 

containing 257 residues, which was selected as a homologous template by nearly all of the 

TBM methods. The models align well when superposed with CA domain crystal structure using 

TM-align. Table 3.3 and 3.4 show different models scores (both wildtype and mutant) when 

the template-models are superposed using TM-align. As the template used by the methods is 

similar, these tables aim to examine the models with relative higher scores. 

    TM-Align 

ModFOLD4 

global score 

Sequence 

length 

coverage 

METHOD 

TEMPLATE 

(PDB ID) RMSD (TM-Score) 

  

IntFOLD-TS 3iaiA 0.16 (0.55967) 0.643 257 

RAPTORX 3iaiA 0.07 (0.55981) 0.531 257 

SPARKS-X   3iaiA 0.28 (0.55920) 0.527 257 

Bioserf/GenThreader  3iaiA 1.54 (0.54215) 0.538 255 

SwissModel  3iaiA 0.06 (0.99991) 0.513 251 

I-TASSER  3iaiA 0.222 (0.55673) 0.536 255 

HHpred 3iaiA 0.16 (0.55968) 0.533 253 

Table 3.3 TM-align scores of different methods when the wildtype model was aligned with the template. The gray 

highlighted score from the Swissmodel truncated both termini of the full length CA IX. 
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    TM-Align 

ModFOLD4 

global score 

Sequence 

length 

Coverage 

METHOD 

TEMPLATE  

(PDB ID) 

RMSD (TM-

Score) 

  

IntFOLD-TS 3iaiA 0.12 (0.55977) 0.667 257 

RAPTORX 3iaiA 0.08 (0.55986) 0.5297 257 

SPARKS-X 3iaiA 0.27 (0.55928) 0.5270 257 

GenThreader 3iaiA 0.94 (0.55001) 0.5312 255 

SwissModel 3iaiA 0.06 (0.99989) 0.5242 255 

I-TASSER  3iaiA 0.30 (0.55908) 0.5292 257 

HHpred 5fl4 0.15 (0.54664) 0.633 257 

Table 3.4 TM-align scores of different methods when the mutant model was aligned with the template (s). 

The predicted structures vary in the termini regions of CA IX, as no good template was obtained 

to fit the models well in these regions, particularly the N-terminus, which contains the PG 

domain and where the mutation is located. Thus, most generated models are of low estimated 

quality. A few are of good quality, but this is only achieved by truncating the termini and then 

comparing the trimmed models with the well-aligned CA domain. This is illustrated in Figures 

3.6 A – B, 3.7 A – B, 3.8 A – B, and 3.9 A – B, which show the models from IntFOLD-TS and 

RaptorX and their predicted per-residue error plots according to ModFOLD4. The RaptorX 

method truncates the entire N-terminus region of the mutant model, while the SwissModel 

method truncates both termini of the proteins. 

 

Figure 3.6 An IntFOLD-TS model (A) wildtype and (B) mutant showing the hard-to-model N and C termini (red) and 

the catalytic domain (blue), which was well modelled. The mutation of interest V33M is in the N-terminus labelled Val-33 

for wildtype residue and Met-33 for mutant residue. 
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Figure 3.7. The RaptorX full-length CA IX models (A) wildtype and (B) mutant. Again the catalytic domain is well-

modelled in both cases (blue region). However, the mutant model failed to fold up the N-terminus, which is where the 

mutation occurs. 

 

Figure 3.8. The per residue accuracy based on the ModFOLD4 for the full length CA IX wildtype between A) IntFOLD 

and B) RaptorX models. It can be clearly seen that the core of the protein has a good prediction accuracy for most of the 

predicted residues. However, the N-terminus has been poorly predicted with very poor accuracy in the RaptorX model. 

 

Figure 3.9. The per residue accuracy based on the ModFOLD4 for the full length mutant CA IX models, A) IntFOLD 

and B) RaptorX. The latter failed to fold in the N-terminus where the mutation of our interest is located. The green crosses 

indicate the truncated/missing residues.  
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3.6.2.1.1 Multiple sequence alignment (MSA) for CA IX wildtype PG domain 

Based on the full sequence alignment of the protein, only the CA domain appears to align well 

with the crystal structure (3iaiA), which reflects the results of the models in Figures 3.6 A – B, 

3.7 A – B, 3.8 A – B, and 3.9 A – B. Moreover, the entirety of the N-terminus PG domain (1-

134 residues), where the V33M mutation occurs, is unaligned (Figure 3.10 and Figure 3.11).  

 

Figure 3.10. The pairwise sequence alignment of the CA IX and the crystal structure of the catalytic domain of CA IX, 

PDB 3iaiA. The active catalytic domain of the crystal structure is well-aligned. The mutation of the interest Val33Met is in 

the flanking N-terminus of the wildtype (CA_IX_Homo_sapiens) in the position V33. 
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Figure 3.11 The pairwise alignment of the CA IX with mutant and the crystal structure of the catalytic domain of CA 

IX, PDB 3iaiA. The active catalytic domain of the crystal structure is well-aligned. The mutation of the interest Val33Met is 

in the flanking N-terminus of the wildtype (CA_IX_Homo_sapiens) in the position M33. 

Furthermore, in comparing the multiple sequence alignment (MSA) results involving the N-

terminus PG domain with different homologous sequences, there are sequence patterns and 

tandem repeat motifs, which are conserved and can be clearly observed (Figures 3.12 and 3.13). 

These include the sparsely conserved six-fold tandem repeat of GEELDP peptides, which is 

associated with the cell adhesion (Závada et al., 2000). Additionally, there is relatively highly 

conserved homologous region between 22 and 45 residues, where the V33M mutation resides. 
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Figure 3.12. The spuriously conserved region of six-fold tandem repeat of peptide GEEDLP across different carbonic 

anhydrase isoforms. The first sequence is CA IX, which has a number of these tandem repeat. This N-terminus region of PG 

is believed to be involved with cell adhesion.  

 

Figure 3.13. The relative highly conserved regions between 22-45 residues (the red-highlighted numbers). This region is 

abundant with highly hydrophobic residues and is close to signal peptides. 
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3.6.2.2 3D models of the extracellular PG domain (1 – 50 residues) region 

Based on the disorder prediction of the full protein, the mutation appears to be within the 

intrinsically disordered region of the N-terminus PG domain (1-50 residues). Figures 3.14 and 

3.15 show the disordered plots from DISOclust and DISOPRED respectively, with relatively 

lower disorder probability in the region of V33M mutation, which is also likely to be protein 

binding. 

 

Figure 3.14. The DISOclust plot showing the probability distribution of disordered state for each residues. The 

Val33Met mutation is likely to be in the disordered regions but with low probability, which means it could fold up. 
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Figure 3.15. The disordered plot from DisoPRED showing the probability distribution of the disordered state for each 

residue. The Val33Met mutation likely is in the relatively low disordered and protein binding region. 

In separately modelling the 3D structures for the disordered region from residues 1-50, the 

prediction results show that the highly conserved segment (from 22 – 40/45 residues) can be 

folded, reflecting the above MSA results (Figure 3.13). The majority of the models produced a 

similar fold, which potentially resembles the helix-loop-helix (HLH) motif (Figure 3.16). 
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Figure 3.16 Wildtype (top panel) and mutant (bottom panel) 3D models of the N-terminus PG subdomain of the CA IX 

protein starting from residues 1-50. These are selected models from the methods showing relative similarity in their folds in 

the region 22 – 40/45. They all have long single helix with potentially similar turns and slightly vary on what to be likely 

another helix. 

3.6.2.2.1 Model comparison, scores and quality assessment 

Further assessment of the models from Figure 3.16, using the TM-score pairwise structural 

comparison method, resulted in the score matrices as shown in the Tables 3.5 and 3.6, for all 

five wildtype and mutant models respectively. 
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  IntFOLD Quark  Robetta SparksX RaptorX Bioserf Sum  Mean 

IntFOLD  - 0.3492 0.2812 0.2968 0.3019 0.2057 1.4348 0.239133 

Quark 0.3492  - 0.3054 0.2813 0.3576 0.2181 1.5116 0.251933 

Robetta 0.2812 0.3054  - 0.2944 0.2717 0.2308 1.3835 0.230583 

SparksX 0.2968 0.2813 0.2944  - 0.2498 0.1876 1.3099 0.218317 

RaptorX 0.3019 0.3576 0.2717 0.2498  - 0.188 1.369 0.228167 

Bioserf 0.2057 0.2181 0.2308 0.1876 0.188  - 1.0302 0.1717 

Table 3.5. The comparison matrix showing TM scores among wildtype models (CA IX 1-50 residues). IntFOLD and 

Quark models have relatively higher scores with Quark being the highest. 

  IntFOLD Quark Robetta SparksX RaptorX Bioserf Sum  Mean 

IntFOLD  - 0.3127 0.2776 0.2828 0.3171 0.234 1.4242 0.237367 

Quark 0.3127  - 0.2827 0.3556 0.2847 0.2511 1.4868 0.2478 

Robetta 0.2776 0.2827  - 0.2855 0.275 0.2384 1.3592 0.226533 

SparksX 0.2828 0.3556 0.2855  - 0.2645 0.2118 1.4002 0.233367 

RaptorX 0.3171 0.2847 0.275 0.2645  - 0.2164 1.3577 0.226283 

Bioserf 0.234 0.2511 0.2384 0.2118 0.2164  - 1.1517 0.19195 

Table 3.6. The comparison matrix showing TM-scores among mutant models (CA IX 1-50 residues). Again, IntFOLD 

and Quark models have relatively higher scores with Quark being the highest. 

Based on the ModFOLD4 Estimation of Model Accuracy (EMA) scores, the IntFOLD and 

Quark models have a relatively higher significance scores. The global model quality scores for 

the IntFOLD and Quark are 0.3530 and 0.3458 respectively, with “medium” significance 

statistical confidence p-values of 2.298E-2 and 2.477E-2 respectively (less than a 1/20 chance 

that the models are incorrect). Conversely, the better performing version of the EMA method, 

ModFOLD6, predicts the Quark model to be of higher quality than that of IntFOLD. The global 

scores for the wildtype Quark and IntFOLD models are 0.4708 and 0.3344 respectively, with 
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“high” and “medium” significance statistical confidence p-values of 3.05E-4 (less than a 1/100 

chance that the models are incorrect) and 7.71E-2 (less than a 1/20 chance that the models are 

incorrect) respectively, while the mutant Quark and IntFOLD models are 0.4550 and 0.3496 

respectively, with “high” and “medium” significance p-values 6.045E-4 and 5.026E-2 

respectively. Thus, from Figure 3.16, and based on the EMA method, the highest scoring 3D 

model is from Quark followed by the model from the IntFOLD reflecting the results of the 

comparison matrices in the Tables 3.5 and 3.6. 

3.6.2.2.2 The likelihood of the mutation being part of the signal peptide 

The signal peptide probability score for residues 1-26 is significantly high with a score of 0.885. 

The cleavage site probability is also significantly high, with a score of 0.832, and the predicted 

site is likely to occur between the positions G20 and L21 (Figure 3.17).  

 

Figure 3.17. The signal peptide prediction score for 1 – 26 residues of N-terminus CA IX by signalP HMM. It can be 

seen here that the cleavage site probability score has sharply and significantly increased at position L21 (score > 0.8) 

Therefore, the signal peptide is likely to end at the position L21, which means that the mutation 

does not occur within the signal peptide region of CA IX. Moreover, the results from the 
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transmembrane prediction using MEMSAT SVM is largely consistent with the signal results 

with slight variation. In this case, with MEMSAT SVM, the results indicate that the signal 

peptide is likely to end at the position S28. 

 

3.6.2.2.3 The confidence of the predicted model to form an HLH motif 

Based on the signal peptide predictions, the residues from T22 or V23 are likely to be a start of 

the mature CA IX in the PG domain. And based on the several generated models, its predicted 

3D structure is potentially an HLH-like motif, Figure 3.19A-B. 

 

Figure 3.18 The A) wildtype and B) mutant models from IntFOLD for the region starting from residues 22 – 45 within 

the PG domain. The mature protein is likely to start at position T22 or V23. 

The structural alignment results across models appears to be reflecting the sequence 

alignments, which show the conserved sequences to be within the same the region, i.e. residues 

22 – 40 (Figures 3.10 and 3.11). Hence, it is more likely that the N – terminus PG domain 

contains a potential HLH motif, which seems to be starting at position T22 or V23. Moreover, 
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several of the conserved sequence patterns in this region pertain to those of HLH (Atchley and 

Fitch, 1997), which may further suggest the potential of this region to be HLH like subdomain. 

Additionally, majority of the templates used by several of the methods to predict the folds of 

this HLH-like segment are transcription factors or have some transcription regulatory roles. For 

instance, the template PDB IDs include 2G7G & 3FIW (IntFOLD-TS), 3ZQ7 (Robetta), and 

2I7X (RaptorX). This indicates that the folded region is likely to be involved with certain 

regulatory activity, if not DNA binding. Based on the initial function predicting using 

FunFOLD, the segment is predicted to bind with CLA ligand, which contains Mg2+. 

Furthermore, alternative potential structural motif with HLH could be an EF-hand or calcium 

ion binding proteins, which are associated with cellular signalling or signal transduction 

(Gifford et al., 2007; Yáñez et al., 2012). Hence, this predicted HLH is likely to be metal ion 

binding such as Mg2+ or Ca2+. In this regard, several of the residues in the likely EF loop region 

of this predicted HLH-like structure are closely similar to those that frequently appear in the 

most of the experimentally analysed EF-hand motifs and calcium binding proteins with some 

variations (Gifford et al., 2007; Haeseleer et al., 2002). The variations might be due to the 

prediction errors, which could not rule out the possibility of this segment to be an EF-hand, as 

irregularities and conformational space of the EF-hand and calcium binding residues are vast 

(Grabarek, 2006). 

The final selected high quality models from IntFOLD and Quark methods (wildtype and 

mutant) are shown in Figure 3.19. 
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Figure 3.19. The cartoon representation of predicted potential HLH like subdomain within the N-terminus PG domain 

with A) wildtype and B) mutant superposed models from the IntFOLD and Quark, which interestingly appear to be 

relatively similar. The wildtype Val-33 and mutant Met-33 residues are in blue sticks. The IntFOLD and Quark models are 

coloured with red and green, and cyan and magenta in the helices and loops respectively. 

Based on the selected structural 3D high quality models in the above Figure 3.19 and sequence 

alignments, the V33M mutation due to the rs2071676 missense SNP, is likely to be occurring 

in the putative HLH-like segment within the PG domain in the N-terminus. The similarity of 

the models from two different methods increases the belief that there is likely presence of HLH 

like structure in the domain. Hence, the occurrence of this missense mutation in this region is 

likely to affect the binding activities (due to likely perturbation of binding sites) of the 

associated domain as is further discussed in the section 3.7.1. Besides, the presence of sulphur 

in the side chain of Met33 may further affect the ligand interactions or specificity of the 

molecule. 
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3.6.3 3D models and function predictions characterising the PECAM1 S563N mutation 

3.6.3.1 Predicted structures of the full-length wildtype and mutant PECAM1 protein 

The PECAM1 structures for the full length protein are poorly predicted with low global quality 

score estimates. Figure 3.20 shows the results from the ModFOLD4, which contains the top 

selected models and their global quality scores.  

 

Figure 3.20 The ModFOLD4 result showing the accuracy of the top 3 predicted models for the full length protein. It is 

clear that all models have very low confidence values and global scores. 
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3.6.3.2 3D models for the domain with residues 497-596  

Based on the local per residue accuracy of the full length structure models, several regions 

show a likelihood of being disordered. Figures 3.21 and 3.22 show the predicted disordered 

regions with mutation (S563N) likely to occur within a disordered region.  

 

Figure 3.21 The DISOclust plot showing the disordered state of each residue in the wildtype full-length PECAM-1 

protein. The mutation S563N is likely to be in a disordered region 
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Figure 3.22 The DISOPRED disorder profile showing the disorder probability for each individual residue in the full-

length PECAM-1 protein. Again, here the mutation is likely to be located in a disordered region though not a protein binding. 

Furthermore, the domain prediction indicates the mutation S563N is likely to be in structural 

domain 6, which ranges from 497-596 residues. Re-modelling the protein, focussing only on 

this domain 6 region, resulted in 9 alternative 3D models for each of the wildtype and mutant 

sequences. The predicted wildtype and mutant models of this key domain have higher quality 

scores with the structures to be likely to have an Ig (Immunoglobulin) like fold (Table 3.7). 

Moreover, the predicted Ig domain appears to be relatively similar in each model with the same 

number of sheets. 
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Template Method Model Reliability 

Score based 

on method 

ModFOLD

4 Score 

1e07_A, 1f97_A2 IntFOLD3 

 

0.7791 0.7812 

1im9_D RaptorX 

 

72 0.7425 

4n8v_A SwissModel 

 

57 0.7013 

3p2t_A, HHpred 

 

4646.1411 0.6683 

Igl4b_A SparksX  

 

10.27 0.6339 
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1nbq_A I-TASSER  

 

0.81 0.7035 

4zne_A Robetta  

 

0.55 0.7476 

No template Quark  

 

0.394 0.3378 

2d3vA Bioserf  

 

49.796 0.7357 

Table 3.7 The different models for the wildtype PECAM-1 segment starting from 497-596 positions. The models seem 

to be relatively significant. Most of the templates used are related or contain Ig domain. which is known to be involved with 

cell surface recognition, cell adhesion or other immune system-related roles. 

3.6.3.3 Model quality assessment 

In examining Table 3.7, it appears that the models have closely related structures and share the 

same general fold. This can be further observed through the pairwise comparison matrices 

containing the TM scores. Tables 3.8 and 3.9 show the comparison matrices for the mutant and 

wildtype models respectively. 
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  IntFOLD HHpred Robetta SwissModel RaptorX Bioserf I-tasser Sparksx Quark  

IntFOLD   0.662 0.768 0.686 0.719 0.747 0.789 0.652 0.263 

Hhpred 0.662   0.676 0.605 0.636 0.643 0.749 0.741 0.301 

Robetta 0.768 0.676   0.732 0.791 0.769 0.754 0.634 0.31 

SwissModel 0.686 0.605 0.732   0.819 0.834 0.644 0.581 0.283 

RaptorX 0.719 0.636 0.791 0.819   0.854 0.691 0.62 0.305 

Bioserf 0.747 0.643 0.769 0.834 0.854   0.717 0.615 0.279 

I-tasser 0.789 0.749 0.754 0.644 0.691 0.717   0.671 0.273 

SparksX 0.652 0.741 0.634 0.581 0.62 0.615 0.671   0.29 

Quark                   

Sum 5.023 4.712 5.124 4.901 5.13 5.179 5.015 4.514 2.304 

Mean TM 
score 

0.718 0.673 0.732 0.7 0.733 0.74 0.716 0.645 0.288  

Table 3.8 The TM-scores for the predicted PECAM1 domain 6 mutant models (residues 497-596). Based on the scores 

the models appear to be structurally similar.  

 

  IntFOLD Hhpred Robetta SwissModel RaptorX Bioserf I-tasser SparksX Quark  

IntFOLD   0.651 0.799 0.7 0.731 0.757 0.745 0.623 0.343 

Hhpred 0.651   0.724 0.678 0.723 0.688 0.774 0.646 0.261 

Robetta 0.799 0.724   0.761 0.826 0.811 0.735 0.601 0.317 

SwissModel 0.7 0.678 0.761   0.832 0.825 0.648 0.579 0.31 

RaptorX 0.731 0.723 0.826 0.832   0.856 0.697 0.614 0.316 

Bioserf 0.757 0.688 0.811 0.825 0.856   0.712 0.602 0.307 

I-tasser 0.745 0.774 0.735 0.648 0.697 0.712   0.657 0.285 

SparksX 0.623 0.646 0.601 0.579 0.614 0.602 0.657   0.291 

Quark                   

Sum 5.006 4.884 5.257 5.023 5.279 5.251 4.968 4.322 2.43 

Mean TM 
Score 

0.715 0.698 0.751 0.717 0.754 0.75 0.71 0.617 0.304 

Table 3.9 The TM-scores for the PECAM1 domain 6 wildtype models (residues 497-596). 

The above Tables 3.8 and 3.9 provides an overview of the potential quality of the models. The 

relatively high pairwise TM-scores might imply high model quality (as most models agree) and 

hence they are suited for further quality assessment using MQAPs. When evaluating the models 

using ModFOLD6, the results agree with those shown in the Tables 3.8 and 3.9, (Figures 3.23 

and 3.24). Additionally, the Quark model is the lowest ranked and thus, reflecting the pairwise 

TM-scores as shown in Tables 3.8 and 3.9. 
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Figure 3.23, The ModFOLD6 assessment of the wildtype models (residues 497-596). Most of the models’ scores appear to 

be similar with those in Table 3.8. Based on these scores, the Robetta model was ranked at the top. 
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Figure 3.24 The ModFOLD6 assessment of the mutant models (residues 497-596). Again, the Robetta mutant model was 

ranked at the top. 



216 

 

The 3D models (wildtype and mutant) from Robetta are predicted to be the highest quality and 

thus, are of higher significance, Figures 3.25 and 3.26.  

 

Figure 3.25 The wildtype Robetta model for the PECAM1 domain 6 (residues 497-596). The model was created based on 

the template 4ZNE. The wildtype residue (Ser) is in the position 67, since the domain was separately modelled. The Ig domain 

type of the wildtype appears to be C-type. 
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Figure 3.26 The mutant Robetta model for the PECAM1 domain 6 (residues 497-596). The model was created based on 

the template 4PBV. The mutant residue (Asn) is in the position 67. The Ig domain type of the wildtype appears to be V-type. 

Based on the templates used to generate the selected models, the mutant’s domain 6 appears to 

be adopting a V-Ig domain type similar to the template 4PBV (Coles et al., 2014), while the 

wildtype’s domain 6 is of C-Ig domain type similar to 4ZNE (Oganesyan et al., 2015).  
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3.6.3.4 Further model analyses to investigate the potential structural impact of the 

S563N mutation  

3.6.3.4.1 PSI-BLAST results for the related domain 6 Ig -type from the Uniprot -Family & 

Domains (499 – 591 residues) 

The PECAM1 domain 6 from Uniprot’s Family & Domains is of Ig-like C2- type, which 

contains the residues 499 – 591. This domain appears to be similar with residues 497 – 596 in 

the predicted domain 6 of the wildtype 3D models excluding the additional residues 497 and 

498, and 592 – 596 in N and C termini respectively. The PSI-BLAST results for the PECAM1 

domain 6 from UniProt Family & Domains (499 – 591 residues) show that there is significant 

alignment with the sequence from the PDB structure 2NPL_X, Figures 3.27 and 3.28. 

Moreover, the sequence identity with the aligned structures is just beyond the “twilight zone” 

sequence identity threshold (~25%), where it is possible to perform further comparative 

structural analyses with the predicted 3D models.  

 

Figure 3.27 The PSI BLAST results after aligning the Uniprot Ig domain C2 type 6 (residues 499 – 591) against the 

PDB sequences. It can be seen that the sequence significantly aligned with five structures including those of Ig domains. The 

sequence identity is above the threshold (>25%), where it might be possible to infer function. 
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Figure 3.28 Sequence alignment between the Uniprot wildtype Ig domain C2 type 6 (499 – 591 residues) and the top hit 

2NPL_X structure. The wildtype residue Ser (S) at position 65. 

Furthermore, the PSI-BLAST results involving the mutant residue with the same sequence from 

the Uniprot, shows a significant alignment with 4X4M_E, which was a top hit (Figures 3.29 

and 3.30). 

 

Figure 3.29 The PSI BLAST alignment results after inserting the mutant residue N in the C-type domain 6 of the 

PECAM1, which was retrieved from the Uniprot-Family & Domains. It can be clearly seen that the top hit is 4X4M_E 

structure. But, also other structures have relatively high significant as well though below the threshold set during PSI-BLAST 

parameters’ set up. 
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Figure 3.30 Sequence alignment between the Uniprot mutant Ig domain 6 (residues 499 – 591) and the top hit 

4X4M_E_A structure. The mutant residue Asn (N) is at position 65. 

3.6.3.4.2 Further structural analyses 

From the PSI-BLAST alignments results, the first structure (2NPL_X) (Jiang and Caffrey, 

2007), which significantly aligned with the Uniprot domain (499-591 residues) (E-value 5e-

04) was examined together with the wildtype model. It appears that the published 2NPL_X 

structure is of Ig-domain C-type and hence, may confirm the wildtype domain fold to be of C-

type as shown above and similar to the UniProt’s Family & Domains annotation. Figure 3.31 

compares the folds of 2NPL_X and the predicted wildtype model for PECAM1 domain 6. 
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Figure 3.31 The 3D structures of A) 2NPL_X and B) wildtype PECAM1 Ig – domain 6 model (497-596 residues), which 

is similar to the Uniprot annotated domain (499-591 residues). The wildtype appears to adopt a C-2 type fold as in the case 

for the annotated Uniprot domain and similar to the 2NPL_X structure. The two beta sheets are stabilised by the disulphide 

bonds. 

Furthermore, it appears that the fold of the mutant model resembles that of the 4X4M_E 

(Sondermann et al., 1999), which is likely to be of V-type. Figures 3.32 shows the folds of 

4X4M_E and the mutant model. 

 

Figure 3.32 The 3D structures of the A) 4X4M_E Ig domain 1 (101 – 186 residues) and mutant model PECAM1 (497-

596 residues). The mutant model of the PECAM1 domain appears to adopt the Ig V-type similar to that of aligned 4X4M_E. 
The two beta sheets are stabilised by the disulphide bonds (yellow stick in 4X4M). 
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Therefore, from the top model templates used to generate the 3D structures and the PSI-BLAST 

sequence alignment results, the S563N replacement due to missense SNP might be potentially 

changing the related Ig-domain of PECAM1 from C- to V-type.  

3.6.3.4.3 Overview of Ig – domain types 

The above structures all have classical Ig like fold, which is characterised by a sandwich of two 

beta-sheets containing antiparallel beta strands featuring a Greek key topology. The two sheets 

are normally stabilised by a conserved disulphide bond (Williams and Barclay, 1988).  

In order to further understand the structural impact of mutation, it is vital to examine the 

underlying features or characteristics of the Ig or Ig superfamily (IgSF) domains. The IgSF 

domains can be grouped into four major classes namely V, C1, C2, and I with C1 and C2 

representing the C (constant) domain (Williams and Barclay, 1988). The beta strands in the two 

sheets of both the C and V classes are given the letters starting from A in the N-terminus to G 

in the C-terminus (Figure 3.26). The V (variable) domain is longer and may contain two extra 

strands in the core of the domain named C’ and C” as an extension of the C strand in the core 

of the domain and hence, leading to the variability of the V domain. In addition, the variability 

is enhanced using three loops, which connect B with C, C’ with C”, and F with G strands. These 

are coloured red as shown in the Figure 3.33 (Barclay, 1999; Teichmann and Chothia, 2000; 

Williams and Barclay, 1988). 
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Figure 3.33 The basic Ig fold structure of the V type domains. A) Example of ribbon diagram from human myeloma 

(PDB 7fab, B) and C) are schematics representing the linear relationship between the two sheets and loops. The 

hypervariable loops are coloured in red. The distinguishing feature between Ig C and V type domains, is the extension of the 

C loop through C’ and C”. The Ig C2 type domain does not normally contain the C”. The wildtype model has a short loop and 

resembles the C2 type domain. On other hand the mutant seems to have an extended loop, which resemble with the V-type Ig 

domain. The image was taken from rom (Barclay, 1999). 

Thus, based on the above Ig domain characteristics, the wildtype model when is closely 

observed, it is likely to belong to the C- type, which is similar to the Uniprot annotation, and 

the mutant model appears to be closer to the V type. 

3.6.3.5 Functional analyses of Ig domains and the potential functional effect of the 

S563N mutation 

The Serine (Ser) at position 67 (or 563) in the wild type domain 6, is one of the amino acids, 

which is heavily involved in the proteins function (Holm and Sander, 1996). The presence of 

the OH group enables it to form strong hydrogen bond with other substrates, particularly in the 

protein active sites. Additionally, it could be further interacting with other proteins or protein 

kinases in the phosphorylation process for enhancing signal transduction. The replacement with 

Asn, although often favourable, may likely affect the binding specificity versus a Ser at the 

same position, as Asn is more specific to negatively charged residues. 
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Thus, from the functional perspective the mutation may potentially decrease the protein’s (or 

domain’s) stability and affect the interaction with other proteins, or potentially other Ig domains 

(Valencia and Pazos, 2003; Williams and Barclay, 1988). And this potential functional effect 

of the mutation is further explained elsewhere (Baldwin et al., 1994; Wollscheid et al., 2009). 

3.6.4 3D models and function predictions characterising the PEAR1 N848K mutation 

3.6.4.1 Predicted structures of the full-length wildtype and mutant PEAR1 protein 

Predicted 3D models of the full-length PEAR1 

The generated 3D models for the full-length PEAR1 are poor as the protein sequence is very 

long. Thus, nearly all methods were unable to generate convincing full-length 3D models. For 

instance, the IntFOLD3 predicted wildtype and mutant models are essentially random over the 

full chain. Figures 3.34 shows the overall IntFOLD3 result of the top two wildtype models. 
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Figure 3.34 The IntFOLD results for the predicted models of the full-length wildtype PEAR1 containing the target 

point mutation of interest (N848). The models are poorly predicted with high frequency of likely per-residue errors over the 

full protein chain. 

Disordered state of the models 

Furthermore, the disorder prediction from DISOclust shows that the mutation region has high 

probability of being disordered (Figure 3.35), meaning that modelling a fold for this region is 

likely to be difficult. However, the PSIPRED secondary structure map (Figure 3.36) and 

DISOPRED results indicate that the wildtype/mutant residue(s) are not predicted to be in a 

disordered region. 



226 

 

 

Figure 3.35 The DISOclust plot showing the disordered prediction of the full-length PEAR1. The mutation region has 

high disordered probability indicating that it might be difficult to fold. 

 

Figure 3.36 The secondary structure and disorder map of the full length PEAR1 with the wildtype N848 residue. It can 

be seen the residue is near, but not within, the disordered region. 

Therefore, based on the disorder predictions and PSIPRED’s secondary structure map, the 

protein was remodelled by reducing its length and focusing only on the 100 residues, from 801 

to 900. 
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Predicted 3D models for the wildtype sequence, residues 801 – 900 

The predicted 3D models for this region are of medium significance. Figure 3.37 shows the 

results of the evaluated quality of the models using ModFOLD6 (Maghrabi and McGuffin, 

2017). 
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Figure 3.37 The quality of the 3D models for the PEAR1 region covering residues 801 – 900. All generated models are of 

medium significance. 



229 

 

In addition, the DISOclust results for this region show that the mutation N848K is in the 

relatively low disordered region (i.e. from residues 840-850, or 40-50 on the plot), thus, it may 

or not fold. Figure 3.38 shows the plot for the disordered regions. 

 

Figure 3.38 The disordered plot for residues 801-900 of the wildtype PEAR1. The mutation of interest (N848K) is likely 

to be in the relatively low disordered region between residues 840-850 residues (40-50 on the plot). 

Attempting to remodel the 40 – 50 regions (Figure 3.38) failed to produce any significant and 

reasonable 3D models and hence from the structural aspect the mutation is yet uncharacterised. 

3.6.4.2 Functional effect due to N848K mutation 

Replacement of Asn by Lys is neutrally disfavoured comparing to other polar amino acids such 

as Aspartate (Asp). Thus, substitution may likely decrease the pocket binding specificity, 

particularly with other polar amino acids. Therefore, from functional aspect this mutation has 
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theoretical potential of decreasing or changing the binding specificity of the PEAR1 binding 

involving this particular domain. 

3.7 Discussion 

3.7.1 Remarks on the V33M CA IX mutation 

3.7.1.1 The function of CA IX in relation to platelet activity and CVDs 

The carbonic anhydrase (CA) IX (CA IX) (Pastorek et al., 1994; Závada et al., 2000) is a 

transmembrane protein, which is associated with several oncological problems and is a target 

of different cancer therapies (Robertson et al., 2004; Thiry et al., 2006). Its expression is 

regulated by two main transcription factors, i.e., hypoxia-inducible factor-1 (HIF-1) and SP-1 

that bind to the promoter region of the CA9 gene (Kaluz et al., 2003; Kopacek et al., 2005). CA 

IX is one of the 12 CA isozymes/isoforms, which catalyse the reversible conversion of CO2 to 

bicarbonate ion and proton mainly under hypoxic and non-hypoxic conditions in different cell 

lines and tissue types (Alterio et al., 2012; Berchner-Pfannschmidt et al., 2004; Ihnatko et al., 

2006; Yu et al., 2011). This process occurs in the different cellular compartments depending 

on the involved isoform (Scheibe et al., 2006; Supuran, 2008). 

This protein is associated with many different physiological roles, which include changes in 

the intracellular calcium levels, cell adhesion, cell proliferation, and intracellular and 

extracellular pH regulation (Berchner-Pfannschmidt et al., 2004; Ihnatko et al., 2006; Svastová 

et al., 2003; Swietach et al., 2010). Moreover, CA IX and other CA isoforms are associated 

with different diseases and subjects of multiple proposed inhibitors/activators for therapeutic 

purposes (Alterio et al., 2012; Supuran, 2008).  

With regard to CVD, high levels of CA IX was spotted in cancer patients with thrombosis and 

hypertension, and who exhibited reduced efficacy to the CA inhibitors compared to others 
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(Reardon et al., 2009).  The same effect was observed when these inhibitors were clinically 

applied to assess platelet carbonic anhydrase activity targeting cytosolic CA II isoform for 

cardiovascular disease patients (Woodman et al., 2010). Thus, based on the above evidence, 

there is likely to be an unknown association between CA IX, platelet activity and CVD. Hence, 

the likely effect of the V33M mutation pertaining to this association is further explored below 

based on the results from the above generated 3D models.  

3.7.1.2 Potential effect of the CA IX V33M mutation pertaining to ADP platelet 

activated responses and CVDs  

Based on the model in Figures 3.18 & 3.19, and from the structural/function perspectives, the 

V33M mutation is in the predicted HLH-like segment, which could be a DNA binding involved 

with transcription (Pastorek et al., 1994). Moreover, the predicted structure motif, which 

harbour the mutation could be an EF-hand motif, and thus have affinity to magnesium or 

calcium ion binding supporting signal transduction/signalling mechanisms among cells 

(Gifford et al., 2007; Grabarek, 2006). Therefore, the mutation is also more likely to affect the 

binding affinity of CA IX within the PG domain, which is involved with cell-cell adhesion and 

calcium ion transport (Svastová et al., 2003), and likely to lead to low FA platelet response 

activation and aggregation.  

However, it is hard to establish any plausible relationship with the mechanism underpinning 

Ca2+ signalling/transport (influx/efflux) in the platelet, which is a well-known and an 

established process in the platelets (Dionisio et al., 2012; Jardin et al., 2012; Varga-Szabo et 

al., 2009). Nevertheless, it might open up further investigation on whether CA IX (and in 

particular this potentially HLH-like segment) has any role in the Ca2+ signalling in the platelet. 

This is due to the fact that among the CA IX interacting proteins are linked with nucleo-

cytoplasmic ATP synthase subunits (Buanne et al., 2013), of which have been reported to be 
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involved with control of cytoplasmic Ca2+ in cardiomyocytes sarcolemma or sarcoplasmic 

reticulum (Kettlewell et al., 2009). Interestingly, CA IX has been also reported to be expressed 

in sarcoplasmic reticulum/t-tubules in the cardiomyocytes (Scheibe et al., 2006) and has been 

found to be associated with other protein complex in the heart using a mouse model (Orlowski 

et al., 2012). Moreover, the CA VIII isoform was reported to be expressed in the cerebellar 

cells and thereby modulates calcium signalling after stimulating the binding of ITP to its 

receptor ITPR1 within endoplasmic reticulum (Türkmen et al., 2009). With this regard, it might 

be worth examining whether this potentially damaging mutation has any role pertaining to 

Ca2+ signalling in the platelet. 

Taken together, the wildtype CA IX (with V33) is likely to be involved with the increase of 

platelet aggregation, while the mutant CA IX decreases platelet aggregation. This suggestion 

may likely to tie with the results shown in the previous chapter 2, which identified rs2071676 

SNP in CA9 to be significantly associated with the decrease or low fibrinogen binding due to 

ADP platelet response (FA). Moreover, as the related CA II has been previously reported 

association with CVD, hence, it is worth investigating the likely therapeutic and clinical impact 

of this mutation that may underlie CVD individual health decisions. 

3.7.2 Remarks on the structural and functional effect of S563N PECAM1 mutation 

associated with ADP platelet and CVD 

3.7.2.1 PECAM1’s functions 

PECAM1/CD31 is a glycosylated transmembrane protein of the Ig superfamily, which is 

expressed in the circulating platelets and other cells (Kirschbaum et al., 1994; Sun et al., 1996). 

Structurally, the large part of the protein is extracellularly located with 6 Ig homology units 
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containing 574 residues. The domain 6 in which the mutation S563N occurs is within the 

extracellular region. 

Generally, this protein participates in several functions, which include or are related with cell-

cell adhesion and migrations, cellular signalling and signal transduction, mediation of cellular 

interactions particularly its cytoplasmic domain using both homophilic and heterophilic 

interactions (Brown et al., 2002; Gong and Chatterjee, 2003).  

3.7.2.2 Potential effect of the S563N to the ADP platelet responses and CVD 

In principle, there are three mutations of PECAM1, which have been previously shown to occur 

as a homozygous haplotype blocks, L125V, S563N, and R670G (LSR and VNG) in domains 1 

and 6, and cytoplasmic domain respectively (Novinska et al., 2006). Furthermore, two isoforms 

have been identified to be occurring as heterozygous block (LSR/VNG) underpinning 

neutrophils cell adhesion. Based on these alleles, heterophilic binding of PECAM1 through Ig-

6 domain with CD177 enhanced faster migration of neutrophils for the individuals with the 

LSR block comparing with those with VNG or LSR/VNG block suggesting the role of wildtype 

S563 in enhancing adhesion. The same study further showed that the stimulation of 

phosphorylation event through S563 is affected when it is mutated to N563 and hence, decrease 

the neutrophil migration (Bayat et al., 2010). This data may suggest the molecular mechanism 

underpinning the mutation in decreasing PA response. 

Therefore, based on the 3D models and functional analyses, we have shown that the mutation 

has potential structural impact on changing the PECAM1 Ig-domain type, which may affect 

binding activities of its partners, leading to decrease in PA platelet response and aggregation. 

Hence, it might be worth further investigating the potential implications due to this mutation 
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underpinning targeted antiplatelet and CVD therapeutics as it was previously reported to be 

associated with myocardial infarction (MI) (Listì et al., 2004). 

3.7.3 N848K PEAR1 mutation and its structural and functional effects associated with the 

platelet responses 

3.7.3.1 The role of PEAR1 

Platelet endothelial aggregation receptor 1 (PEAR1; also known as MEGF12 or JEDI) is a 

membrane receptor protein, which is highly expressed in platelets and endothelial cells (Nanda 

et al., 2005). It is present in the resting platelets and also released from the alpha-granules 

during platelet activation, which increases its membrane expression (Kauskot et al., 2012). 

Under agonists activation and platelet aggregation, it becomes phosphorylated through Tyr-925 

and Ser-953/1029, depending on the oligomerisation with αIIbβ3, which sustains the platelet 

aggregation (Kauskot et al., 2012; Nanda et al., 2005). The PEAR1 phosphorylation enhances 

signalling cascades, which culminates in binding of PI3K and form complex with, and activates 

αIIbβ3 for the stabilisation of platelet aggregation (Cosemans et al., 2006; Kauskot et al., 2012).  

3.7.3.2 The structural and functional effect of N848K mutation 

Based on the generated 3D models, the substitution of Asn (N) to Lys (K) at the position 848 

appears to be in the loop regions and hence somewhat little or less damaging. However, as the 

mutation occurs in the vicinity of the active C-terminus where the protein forms a complex with 

PI3K, in its signal transduction role during platelet aggregation (Kauskot et al., 2012), the 

mutation is likely to have a stabilising role during the formation of complexes. Since, from the 

functional aspect, K is positively charged and is more likely to be involved with salt bridges 

and form strong hydrogen bonds, which may stabilise the formed complex. 
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3.7.3.3 PEAR1 polymorphisms and potential effect of N848K mutation on the ADP 

platelet responses and CVD 

It is likely that the N848K PEAR1 mutation plays important molecular role by potentially 

stabilising PEAR1 when it forms complex with the PI3K and therefore upregulating the FA 

response. This in consequence activates binding of αIIbβ3, which maintains the platelet-platelet 

contacts and increases or sustains platelet aggregation as previously reported (Cosemans et al., 

2006; Kauskot et al., 2012). Thus, this mutation merits further investigation for understanding 

its potential as antiplatelet therapy target. 

3.8 Conclusions 

This chapter investigated the molecular mechanisms of the damaging missense SNPs, which 

were identified by the RAPIDSNPs pipeline developed in Chapter 2. The investigation was 

carried out using the structural predictive approaches, which generated several alternative 3D 

models of the full length and subsequences of the proteins containing the mutations. These 

mutations were hypothesised to be affecting the related protein structures and functions that 

may underpin the variability of ADP platelet responses and aggregation. Three key nsSNPs 

were investigated, which were identified by computational predictions to be damaging. These 

are rs2071676 (Val33Met) of CA IX, rs12953 (Ser563Asn) of PECAM1, and rs822442 

(Asn848Lys) of PEAR1 proteins. The results of the 3D models and predicted functional effects 

are reflective their predicted deleteriousness. 

The Val33Met mutation in CA IX (carbonic anhydrase isoform IX), which was predicted to be 

highly damaging, is likely to affect the N-terminus CA IX PG domain, which is yet to be 

experimentally solved. Based on the 3D models, the mutation was identified to be likely 

occurring in the HLH-like structural motif (presumably EF-hand), which is more likely to be 

metal (presumably Ca2+) binding, which may underpin its role in the regulation of signal 
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transduction (ion transport), in and out of the membrane. The mutation was found to potentially 

decrease the platelet aggregation in response to fibrinogen binding mediated by ADP (PA). The 

mutant is likely to affect the ion binding affinity of CA IX in the potential HLH motif region 

and affect the ion transport with its interacting partner(s), and thus, likely to decrease the 

platelet aggregation. Moreover, CA IX is likely to associate with CVD, and thus, the mutation 

merits further investigation for understanding its potential for targeted antiplatelet therapeutics 

for the CVD. 

Furthermore, the S563N mutation of PECAM1 appeared to be changing its Ig-domain 6 

structure from C- to V-type. Based on the follow up analyses, we have shown that this mutation 

may likely to affect the crucial binding partners of PECAM1 which may likely to lead to 

downregulation of PA platelet response and aggregation. This mutation  has been found to be 

associated with CVD (Listì et al., 2004; Pamuk et al., 2014; Sahebkar et al., 2013). Thus, based 

on the 3D structural results and functional analyses, it might also be worth investigating the 

potential of this mutation for CVD targeted antiplatelet therapy. 

On other hand, the rs822442 (Asn848Lys) mutation of PEAR1 appears to be structurally less 

damaging. However, in theory, the substitution to Lysine (i.e. to 848K) from asparagine (N) 

has a potential stabilising role to the structure in the vicinity of the C-terminus where other 

PEAR1 mutations participate in the phosphorylation events, which are important in sustaining 

platelet aggregation. Moreover, several PEAR1 polymorphisms are investigated their 

association with the inter-individual variability of the antiplatelet therapy (Lewis et al., 2013; 

Würtz et al., 2014). 

Taken together, the results above demonstrate the similarity of the results between the predicted 

potential molecular consequences due to missense SNPs underpinning the ADP platelet 

response and identified effect of the same SNPs on the ADP platelet responses in Chapter 2. 
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This may further strengthen our confidence in use of the RAPIDSNPs in identifying crucial 

disease/trait associated SNPs. Moreover, these SNPs have shown association or potential 

association with CVD as discussed in the previous chapter and have been further explored in 

this chapter. Thus, the predicted molecular consequences from structural/functional 

perspectives could be a marker for genetic risks associated with CVD and potentially applied 

in targeted therapeutics and clinical personalised medicine (PM). 
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Chapter 4 - Predicting the regulatory roles of key SNPs from the 

RAPIDSNPs 

4.0 Abstract 

Determining the functional consequences of the complex trait/disease-associated non-coding, 

intronic, and synonymous SNPs identified by genetic association studies (GASs) presents a 

challenge. Nevertheless, it is an indispensable task for a more complete understanding of 

molecular mechanisms underlying the complex trait/disease. Many of these non-coding SNPs 

may have potential regulatory effects at the genome level, such as perturbing the binding 

regions of the transcription factors, which regulate gene transcription. In this chapter, the 

identified non-coding, intronic, and synonymous key SNPs from the described RAPIDSNPs 

approach are hypothesised to be potentially involved in the regulation of the molecular 

functions, which may further underlie the variability of the ADP platelet response. 

Experimental procedures to determine the SNPs’ regulatory roles are laborious and expensive 

and initially theoretical approaches should always be explored. Thus, this chapter describes an 

alternative bioinformatics driven approach for analysing the potential of these key SNPs to be 

regulatory (i.e. rSNPs). The predicted regulatory mechanisms include: expression quantitative 

loci (eQTLs), regulation of transcription factors and RNA binding affinity with bound proteins, 

long range interactions, and chromatins and histone modifications.  

Based on the bioinformatics approach, several key SNPs, were predicted to be involved in 

several regulatory roles. To mention afew, the regulatory SNPs include: rs3730051 in the intron 

of AKT2 and rs6141803 in the intergenic region and proximal to COMMD7. These rSNPs are 

likely to be involved with: eQTL of several related genes, transcription regulation (transcription 

factor binding affinity) and long range interactions targeting other genes/loci, and RNA binding 

affinity. Thus, these molecular roles, which are likely to be regulated by or involving the rSNPs, 

may further contribute to the individual ADP platelet responses variability (increase or decrease 
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of FA/PA responses). Moreover, several of the identified rSNPs appears to have potential 

associations with CVD. 

4.1 Introduction 

4.1.1 Why regulatory genomic variants? 

As explored in Chapter 3, changes in the coding regions of the genes may result in structural 

and functional changes of the resulting proteins at the molecular level, which may further 

elucidate the underlying cause of the inter-individual phenotypic variation of complex 

traits/diseases. The previous chapter described the effect of the missense SNPs in the coding 

region, which are likely to be associated with structural and functional changes of the key 

proteins involved with ADP platelet responses. Furthermore, these molecular changes were 

likely to contribute to the inter-individual variations, which underpin the ADP platelet 

responses and CVD risks 

Despite the vital role of the missense SNPs, the individual phenotypic variations susceptible to 

diseases and drug responses have been further associated with changes in the individual’s gene 

expression (GuhaThakurta et al., 2006). These changes of gene expression are largely caused 

by the SNPs present in the regulatory regions of the genes, which may include cis-regulatory 

elements or cis-expression quantity loci (cis-eQTL) (Franke and Jansen, 2009; GuhaThakurta 

et al., 2006; Wang et al., 2005) and several of these occur in the promoter regions of the genes 

(Stepanova et al., 2006). Additionally, SNPs are present in the transcription factor binding sites, 

such as distal regulatory elements (Heintzman and Ren, 2009). These SNPs are known as 

regulatory SNPs (rSNPs), and have been reported to be common in 50% of all genes and it is 

highly likely that all genes within human population have rSNPs (Buckland, 2006). A majority 

of these rSNPs are suggested to lead to the inter-individual responses to exposure and 

susceptibility to disease/complex trait in allele specific manner (Wang et al., 2005).  
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Therefore, studying and understanding these regulatory variants are vital for uncovering their 

regulatory effects on the individual phenotypic traits/diseases and drug responsiveness 

(Buckland, 2006; Franke and Jansen, 2009; Prokunina and Alarcón-Riquelme, 2004). 

However, the key problem that arises is the ability to identify these crucial rSNPs, and thus, the 

design of different computational methods is an ongoing task (Hudson, 2003; Wang et al., 

2005). 

In light of the above, it is postulated that some of the identified key SNPs from the RAPIDSNPs 

approach in the Chapter 2, are potentially rSNPs and are thus likely to be involved with 

regulatory mechanisms that may underlie ADP platelet response variability. Furthermore, this 

chapter aims to examine the regulatory mechanisms by designing bioinformatics analyses 

pipeline, which may predict potential regulatory roles that are likely to be associated with the 

key SNPs identified in Chapter 2. 

This chapter begins by describing different regulatory mechanisms in which the rSNPs are 

likely to be involved. This may include the regulation of: the eQTL, transcription factors 

binding affinity in the proximal and distal regions of the targeted genes with long range 

interactions, RNA binding affinity of the related proteins, and chromatin and histone 

modifications. 

4.2 Understanding the regulatory mechanisms of the rSNPs  

4.2.1 SNPs in the eQTL genomic regions 

Expression quantitative trait loci (eQTLs) are parts of the genome accommodating DNA 

sequence variants that influence the expression levels of one or more genes. The eQTLs may 

help us to understand the biological mechanisms in which the causal variants, or SNPs 

identified from the GASs, influence the population individuals’ traits or diseases (Albert and 
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Kruglyak, 2015). The regulatory SNPs are able to affect individuals by interfering at any point 

in time during the entire gene expression process. This influence could be measured through 

the differential mRNA, or protein abundance of individuals given gene(s) (pQTL) (Albert and 

Kruglyak, 2015; Liu et al., 2016). Figure 4.1 illustrates the underlying mechanism in which the 

regulatory variants or SNPs influence the gene expression levels and pQTL, leading to high/low 

disease or trait risks in individuals.  

 

Figure 4.1 The results for the eQTL or pQTL study for the two individuals in the population that differ gene expression. 

Depending on the study interest, the mRNA or protein abundance is measured in each individual. The loci involved is marked 

by the star. This molecular variation is compared to the genetic variation among the individuals to determine the significance 

of the mRNA abundance or eQTL using the association or linkage analysis. The allele with high mRNA transcript levels 

determine the individual with high risk of the disease or trait in case of the particular model system. (The image was taken 

from Albert and Kruglyak, 2015). 

Recently, eQTLs have been reported to be heritable across different tissues and model systems 

(Albert and Kruglyak, 2015; Powell et al., 2012). As ADP platelet responses are heritable, it 

might be essential to identify and understand the rSNPs involved with eQTLs, which are likely 

to contribute to the ADP platelet responses variability. However, the identification of these 

crucial variants is still a major challenge (Albert and Kruglyak, 2015; Hudson, 2003).  
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4.2.2 rSNPs in the Transcription Factor (TF) binding sites (TFBS)/Cis-regulatory 

elements (CREs) and involved with TF binding regulation 

The influence of rSNPs may also be examined through the differential TF binding sites 

regulation, (Wittkopp and Kalay, 2012). TF binding sites (TFBS) are more likely candidate 

regions as they have potential to harbour functional rSNPs. TFBS or cis-regulatory elements 

(CREs) are genomic regions or sequences in close proximity (100 – 1000 bps) to a target gene 

and consist of short nucleotides (<30 bps) where a TF protein binds to regulate the transcription 

of the target genes. The mutations or SNPs that affect the function of these sequences may lead 

to phenotypic variability (Brown and Feder, 2005; Savinkova et al., 2009; Wittkopp and Kalay, 

2012). Moreover, the TF binding regulation in CREs could be affected by the rSNPs or 

mutation in the intron of genes (Bianchi et al., 2009; Liao et al., 2013). Hence, identification of 

the rSNPs in these regions is vital in understanding their participation in the regulation of the 

TFs that lead to phenotypic changes. Thus, a further aim is to find whether the identified SNPs 

from the RAPIDSNPs are potentially located in the TFBS or intron regions in regulating 

transcription, and hence, likely to contribute to the ADP platelet response variability.  

For instance, there are number of possible scenarios that might occur at the molecular level due 

to the presence of the rSNPs in the TFBS, as explained by Chorley et al. (2008): 1) The rSNP 

in the TFBS might not have any effect on the binding interaction with the TF and hence cannot 

change the expression. 2) The rSNP may increase, or decrease binding, which may result to 

allele-specific gene expression. 3) The rSNP may completely remove the existing natural 

binding site or produce a novel binding site and thus the gene regulation will no longer 

supported by its original TF. Each of these scenarios indicate that rSNPs in TFBS may have 

key functional roles with potential to be instrumental in driving differential gene expression 
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and resultant phenotypic effects (Chorley et al., 2008). Figure 4.2 demonstrates different effects 

that the rSNPs may exert on gene expression. 

 

Figure 4.2 The possible consequence of rSNP in TF binding site (TFBS). On most occasions the rSNP is unlikely to disrupt 

the TF binding ability or gene expression, because there is allowable variation in the consensus sequence of the binding site. 

It is also possible that, in some occasions, allele-specific gene expression will occur as result of the presence of the rSNP in 

the binding site, which may increase or decrease the TF binding. In rare occasions the rSNP may cause complete removal of 

the original binding site or lead to the generation of a novel binding site, and hence the gene will not be regulated by the original 

TF. (The image was taken from Chorley et al. 2008). 

Thus, it could be argued that the rSNPs in the TF binding sites are the key factors, which lead 

to the differential TF binding that eventually direct the differential mRNA expression and 

eQTL (Albert and Kruglyak, 2015).  

Therefore, identifying rSNPs that have potentially to be located within these sites might be vital 

in complimenting the understanding of the eQTL, which may ultimately contribute to the 

variability/heritability of the disease/trait risk (Albert and Kruglyak, 2015; Chorley et al., 

2008). Indeed, the presence of the rSNPs in TF binding sites has been previously reported to 

be associated with myocardial infarction (MI) and other cardiovascular diseases (Nakamura et 

al., 2002; Savinkova et al., 2009).  
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Although some methods and tools for identifying the rSNPs in TFBS exist (Li et al., 2015), 

there remains a need for further development of techniques for identification of potential 

regulatory SNPs in TFBS (Chorley et al., 2008; Ward and Kellis, 2012a).  

4.2.2.1 rSNPs in the proximal and distal regulatory regions 

The rSNPs may also be altering and affecting the nearby (proximal) or remote (distal, i.e. 

enhancer, silencer, locus control regions (LCR)) regions of promoters (Bryzgalov et al., 2013; 

Bulger and Groudine, 2010; Chorley et al., 2008). The rSNPs in these regions may change their 

TFs binding and result in differential transcription regulation (Bryzgalov et al., 2013; 

GuhaThakurta et al., 2006; Heintzman and Ren, 2009; Hoogendoorn et al., 2003; Li et al., 2015; 

Maurano et al., 2012).  In addition, the presence of rSNPs in these regions has been previously 

reported to be associated with the disease including CVD events (Drachkova et al., 2011; 

Koivisto et al., 1994; Musunuru et al., 2010). Therefore, identification of the rSNPs associated 

with these regions is of high importance (Bryzgalov et al., 2013). Several experimental and 

computational approaches have been designed for the identification of rSNPs in these regions 

(Gerstein et al., 2012; González et al., 2012; Hallikas et al., 2006; Maurano et al., 2012; 

Stepanova et al., 2006). However, these efforts are yet to be able to fully identify these elusive 

genetic variants in these regions on a genomic scale (Albert and Kruglyak, 2015; González et 

al., 2012; Li et al., 2015). 

4.2.3 rSNPs involved with chromatin and histone modifications 

The rSNPs might be involved in the chromatin DNA structure leading to chromatin marks or 

histone modifications, in which case they are likely to be affecting gene transcription and 

associated with the complex trait/disease in allele-specific manner (Parker et al., 2013). These 

rSNPs might be part of the chromatin state, which are profiles used for detecting the regulatory 
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activity of non-coding parts of the genome responsible for intermediate cellular phenotypes and 

diseases (Ernst et al., 2011). Moreover, such profiles enable us to elucidate possible interactions 

between promoters and enhancers that might be influenced by 3D chromatin configuration 

affected by the presence of non-coding rSNPs (Mora et al., 2015). The 3D DNA chromatin 

conformation may enhance the spatial interactions or long range interactions between different 

cis-regulatory elements, such as enhancers and promoters, which dictate the gene transcription 

in cell-specific manner (Ernst et al., 2011). These interactions may involve chromatin state and 

histone modifications, and affect the binding affinity of various TFs, and so they are likely to 

regulate transcription of variety of genes (Schierding et al., 2014; van Steensel, 2011). 

Therefore, the presence of non-coding SNPs or loci from different enhancers and promoters 

might come together as a result of the 3D packing of chromatin, influencing differential gene 

transcription regulation (Ernst et al., 2011). 

As platelets contain only RNA, which are originated from the megakaryocytes cell types 

(Gieger et al., 2011; McRedmond et al., 2004), the chromatin states inside the megakaryocytes, 

might have possible effect on the genes transcription underlying the platelet functions (Weyrich 

et al., 2009). Hence, identifying and understanding the potential non-coding SNPs, which may 

associate chromatin states and histone modifications might be vital in understanding and 

predicting the differential gene transcription that is likely to affect the platelet functions. 

4.2.4 rSNPs in the RNA-binding protein sites (RBPS) or motifs 

RNA binding proteins (RBPs) form complexes with the RNA molecules in the cell to regulate 

their structures and interactions. RBPS are vital in mediating and altering various regulatory 

processes that are involved during post-transcription, such as alternative splicing, and 

polyadenylation (Glisovic et al., 2008). RBPS are specific binding sites whose main function 

is to give instructions to or control RBPs (Glisovic et al., 2008; Paz et al., 2014). It has been 
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found that these sites may contain SNPs in either exon or intron, which may affect the splicing 

events or differential gene expression, resulting in abnormal transcript levels (mRNA levels (Li 

et al., 2015; Zhao et al., 2013). In addition, several of these SNPs have been reported to be 

disease associated variants, including those in the non-coding RNAs (Fraser and Xie, 2009; 

Makrythanasis and Antonarakis, 2013). In theory, the presence of the rSNPs in the RBPS may 

lead to the abnormalities in the transcript abundance levels of the mRNAs among individuals 

and may help to explain differential responses to the particular complex trait/disease or 

treatment. However, identifying or predicting these variants and their sites of occurrence still 

remains a major problem (Li et al., 2015; Paz et al., 2014; Zhao et al., 2013).  

Therefore, the major aims of the designed bioinformatics pipeline is: - to identify the potential 

key SNPs (rSNPs) from RAPIDSNPs that are likely to i) contribute to the heritability of eQTLs, 

ii) be in TFBS of the genes and whether they are in the proximal or distal of the core regulatory 

regions, iii) be involved in the chromatin and histone modifications including long-range 

interactions, and iv) be occurring in RNA binding sites. In the latter aim, the approach intends 

to identify certain motifs, which are likely to be in the RBPS and that may contain rSNPs where 

the proteins bind. Thus, these regulatory roles predictions may further explain the underlying 

molecular mechanisms and perturbations leading to ADP platelet responses variability and 

provide improved strategies for targeted CVD therapeutics. 

4.3 Methods 

4.3.1 Inputs used: key SNPs from three subsets 

The major inputs to the developed bioinformatics pipeline are three different key SNPs sets, 

which were obtained from the RAPIDSNPs run on each of the three subsets of dataset named 

as dataset 1, dataset 2, and dataset 3 as described in the Chapter 2. In principle, these datasets 

came from the original sample cohort from the study by Jones et al (2009). The imputation 
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appraoch employed in Chapter 2 in dealing with large number of missing genotypes led to have 

the above three subsets. Further details are in Chapter 2. 

4.3.2 Bioinformatics pipeline for regulatory SNPs identification 

A bioinformatics pipeline was designed for analysis and identification of regulatory SNPs. 

Different regulatory roles were examined, including: eQTL, transcription factor binding sites 

in the cis-regulatory regions in the promoters or enhancers (proximal/distal) regulatory regions, 

RNA binding sites affinity, and chromatin and histone marks or modifications. Figure 4.3 

shows the flow of methods and data in the pipeline. 
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Figure 4.3 Bioinformatics analyses pipeline for investigating and identifying the potential rSNPs from the RAPIDSNPs 

that are likely to contribute to the differential ADP platelet responses. The input SNPs formats might be either in the 

dbSNP (i.e. with ‘rs’) or DNA sequence. The top layer after the input SNPs are the regulatory roles to be examined. The next 

layer contains selected methods, which are applied to the input SNPs. Different methods may commonly predict a SNP to have 

the same regulatory role(s). The SNPs, which have been predicted by many methods in the same role may indicate their 

increasing likelihood of being highly regulatory. The arrows colour legends indicate different regulatory roles, which were 

predicted by the different selected methods. The yellow, green, blue, and red arrows signify predictions of RNA binding sites, 

proximal and/or distal regulatory regions, chromatin and histone marks/modifications, and transcription factors binding 

sites/motifs binding affinity regulatory mechanisms respectively.  

4.3.3 Detail description of the pipeline 

For examining the involvement of the SNPs in the regulation of the differential eQTL and 

chromatin or histone marks, the rSNPBase (Guo et al., 2014), HaploReg (Ward and Kellis, 

2012b), RegulomeDB (Boyle et al., 2012), and GWAS3D (Li et al., 2013) methods were used. 

For predicting the likelihood of SNPs of co-localising and influencing the binding affinity of 

the TFs or regulatory motif and bound TF, a compendium of methods was used. These methods 

included HaploReg, RegulomeDB, GWAS3D, and rSNPBase in addition to TRAP (Thomas-

Chollier et al., 2011), GenomeMatix-SNPInspector (Cartharius et al., 2005), and rSNPMapper 
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(Riva, 2012). Moreover, for predicting proximal/distal regulatory regions the rSNPBase and 

GWAS3D methods were used. In addition, GWAS3D was used to identify rSNPs that were 

likely to be participating in the long range interactions with other loci or chromosomal regions. 

In this case, GWAS associated SNPs, in either of HapMap and 1000 Genomes LD were 

alternatively referenced. Hence, in predicting likely distal or long range interactions, there were 

likely to be two alternatively predicted rSNPs for FA or PA platelet responses. Moreover, the 

TRAP method was more appropriate, since the predicted binding sites where the SNP might be 

occurring was indicated in a sequence specific manner, which was useful when maping the 

actual genomic location of the SNP. 

Furthermore, in order to predict whether the SNP was within an RBPS, the rSNPBase method 

was used in addition to RBPmap (Paz et al., 2014), which also indicated the likely binding 

proteins. The stringency level for selecting the significant binding sites was set to medium (i.e. 

p-values <0.005 and <0.01). Both the rSNPBase and RBPmap methods use different public 

databases; the former uses ENCODE (Consortium, 2004) and the latter uses motifs and bound 

proteins derived from the literature and different in vivo experimental data (Akerman et al., 

2009; Paz et al., 2010). All of the above methods were selected based on their performance 

benchmarks, which were reported by Li et al. (Li et al., 2015).  

4.3.3.1 Statistical significance of the identified regulatory SNPs 

The underlying significance of the identified SNPs to be regulatory was determined by each of 

the individual method’s scoring measures. Generally, in determining the rSNPs significance 

for TFBS affinity, many methods used a position-weight matrix (PWM) scoring mechanism 

(Stormo and Fields, 1998). Furthermore, chi square with Fisher’s exact tests were used to 

determine the significance of the rSNPs identified by the TRAP method. For the GWAS3D 

method, the combined p-value (cp) is used. Cp includes the calculated p-values for the GWAS 
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signal, the binding affinity effect on TF, and the genomic evolutionary conservation, in order 

to determine the significance of overall regulatory role of each rSNP (Li et al., 2013). 

4.3.4 Identifying the target genes of the predicted TFs that are likely associated with 

rSNPs and ADP platelet responses 

Several approaches were taken in order to identify the likely target genes of the predicted TFs, 

which are associated with the identified rSNPs. Firstly, the PAZAR method (Portales-Casamar 

et al., 2009) was used with the downloadable file of the target genes (http://www.pazar.info/cgi-

bin/downloads_csv.pl), secondly, the enrichment analyses tool ‘Enrichr’ (Kuleshov et al., 

2016), thirdly the TRED (Jiang et al., 2007) method, and fourthly the FANTOM5 gene sets 

(Marbach et al., 2016) were used. Additionally, the R package ‘tftarget’ 

(https://github.com/slowkow/tftargets) was used to extract the likely related TF’s target genes 

from FANTOM5 gene sets. The related TF target genes were selected based on the genes’ 

likely association with the platelet functions from the literature. 

4.4 Results 

Several of the intronic, and other non-coding key SNPs, which were identified by the 

RAPIDSNPs method in all three datasets are likely to be regulatory (i.e. rSNPs). These 

predicted rSNPs are categorised in the follow sections based on their regulatory functions. 

4.4.1 Predicted rSNPs that are likely to be involved with eQTL  

Several PA and FA responses associated SNPs from RAPIDSNPs were identified to be 

associated with eQTL and hence, are likely to regulate expression levels of other related genes, 

which potentially, may lead to the variability of the ADP platelet responses. Table 4.1 shows 

the selected predicted rSNPs and their likely differential expressed genes (i.e. eQTL genes) 

from different datasets and their associated ADP platelet responses. 



251 

 

Data ADP 

platelet 

responses 

SNP ID Associat

ed locus 

/gene 

Method Related eQTL genes  

Dataset 1 PA rs6141803 COMMD

7 

rSNPBase CPNE1 

HaploReg COMMD7  

Dataset 2 PA rs6057638 
 

chr:20,31

339332 

rSNPBase CPNE1 

Dataset 3 rs246406 ITGA2 HaploReg ITGA2 

Dataset 1 FA rs1491978 P2RY12 P2RY12 

rs7034539 JAK2 INSL6, JAK2 

Dataset 2 FA rs12485738 ARHGEF

3 

rSNPBase CD226, ADCY3, ADCY6, 

ARHGEF12, PEAR1, 

ARHGAP21 TLN1, VCL 

,VWF 

Regulome

DB 

ADCY3, ADCY6, 

ARHGAP21, ARHGEF12, 

CD226,CD9,CETP,TLN1, 

VWF 

rs3729931 RAF1 HaploReg PPARG, RAF1 

Dataset 3 FA rs17204376 GPR87/

MED12L 

MED12L 

Table 4.1 The most interesting SNPs from the RAPIDSNPs method, which are associated with the ADP platelet 

responses and that have been identified to be likely regulatory (rSNPs) and involved with eQTL. Green highlighted cells 

contain SNPs, which have been predicted by more than one method and are likely to be regulating several differentially 

expressed genes. The yellow highlighted eQTL genes are those which are known to be associated with ADP platelet responses. 

The red highlighted are the eQTL genes, which are associated with CVD. In bold are the newly discovered significant SNPs, 

which were not previously identified in the study by Jones et al. (2009). 

From Table 4.1 some of the predicted eQTL genes such as PPARG are also transcription factors 

(next section) and have been associated with CVD as are discussed further in section 4.5. 

4.4.2 Predicted rSNPs involved with transcription factor binding sites (cis-regulatory 

elements) regulation 

Several SNPs are identified to be likely located in the TFBS or introns and potentially involved 

in the regulation of the transcription factors, or proteins that bind to the core transcription 

machinery of the various genes. In addition, several of these identified transcription factors are 

likely to be involved in the underlying regulation of ADP platelet responses. 
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Tables 4.2 and 4.3 show the selected identified interesting rSNPs that are likely to be involved 

with the regulation of the TFBS or cis-regulatory elements for PA and FA platelet responses 

respectively. 
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Dataset rSNP Gene/locus Method Identified TF 

or/and 

regulatory 

motifs 

Significance 

if 

applicable 

Dataset 1 rs3212391 ITGA2 SNPInspector GATA1 0.955, 0.900 

rSNPs Mapper PPARG 2.4 

TRAP PARP 0.00872 

GWAS3D 

(HapMap) 

STAT1 3.1665E-05 

rs6141803 COMMD7 RegulomeDB GATA1, 

GATA2, 

CEBPB, 

STAT1, 

STAT5A 

N/A 

HaploReg GATA2 N/A 

GWAS3D 

(1000 

Genomes) 

GATA-1,  5.7800E-03 

rs8033381 CSK RegulomeDB CREBBP N/A 

rSNPBase Pol2, 

STAT5A,  

N/A 

rs2300065 SKP1 SNPInspector PPARG,  0.862 

rSNPBase Pol2, GATA2  N/A 

rs3730051 AKT2 SNPInspector PAX5 0.807 

rs6442896 ITPR1 TRAP STAT5A 0.000691 

Dataset 2 rs1472122 P2Y12/GPR87 RegulomeDB CEBPB N/A 

rSNPBase Pol2, SP1, 

ELF1, STAT3 

N/A 

rs246406 ITGA2 GWAS3D STAT5A 2.2608E-05 

rs3788337 GNAZ rSNPBase Pol2, SP1, 

SP2, CEBPB 

N/A 

GWAS3D STAT5A 2.5912E-05 

rs6057638 20:32751526 RegulomeDB GATA2, 

GATA1 

N/A 

rs2228671 LDLR RegulomeDB POLR2A N/A 

rs2815805 MAPK14 RegulomeDB GATA1 N/A 

rs17229705 VAV3 GWAS3D STAT5A 2.5796E-05 

rs5277 PTGS2 rSNPBase Pol2 N/A 

Dataset 3 rs41305276 THBS1 rSNPBase Pol2 N/A 

rs2289171 PIKFYVE HaploReg MAFK N/A 

RegulomeDB MAFK N/A 

rs906766 MED12L RegulmeDB MAFK N/A 

Table 4.2 The most interesting identified rSNPs, which are associated with the PA response and are likely to be involved 

with the binding affinity of TFs and hence transcription regulation. The green highlighted SNPs are those which have 

been predicted by more than one method to be highly regulatory in TF binding. Several of these TFs were commonly predicted 

across methods. In bold are the newly discovered significant SNPs, which were not previously identified in the study by Jones 

et al. (2009). 



254 

 

 

Dataset rSNP Gene/locus Method Identified TF 

or/and 

regulatory 

motifs 

Significance 

if 

applicable 

Dataset 1 rs1491978 P2RY12 SNPInspector NFAT 0.954 

rs41282607 MAPK1 SNPInspector CEBPE 0.746 

RegulomeDB ELF1 N/A 

GWAS3D CEBPB 9.6400E-03 

rs3736101 MADD rSNPBase Pol2 N/A 

Dataset 2 rs12485738 ARHGEF3 RegulomeDB FOXA1 N/A 

rs6450105 ch5:52980479 SNPInspector PPARG, CEBPB 0.836, 0.951 

rs11264579 PEAR1 TRAP PAX6 0.00683 

rs7180408 GTF2A2 SNPInspector GATA1 0.973 

HaploReg FOXA1 N/A 

TRAP GATA1  0.00585 

rs3729931 RAF1 HaploReg POL2 N/A 

GWAS3D STAT1 4.9268E-05 

Dataset 3 rs17296289 10:32971771 HaploReg GATA1 N/A  

RegulomeDB GATA1,  

GATA2 

TRAP PPARG,  

PPAR,  

GATA2,  

0.000133, 

0.0024, 

0.00732, 

 rs2290159 RAF1 rSNPBase Pol2 N/A 

Table 4.3 The identified rSNPs, which are associated with the FA response and likely to be involved with the binding 

affinity of TFs and hence transcription regulation. The green highlighted SNPs are those which have been predicted by 

more than one method to be highly regulatory in TF binding. In bold are the newly discovered significant SNPs, which were 

not previously identified in the study by Jones et al. (2009). 

 

From Tables 4.2 and 4.3 the selected identified rSNPs are most likely to be involved with TF 

binding regulation in which the bound proteins are more likely to be associated with ADP 

platelet responses related genes and CVD diseases. (See Discussion section). Moreover, some 

of the predicted TFs such as GATA1 and PPARG are common across different methods and 

found to be related with different rSNPs. 
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4.4.2.1 Identified rSNPs that are in the binding sites based on the TRAP method 

In contrast to other methods, the TRAP method also provides the results in the sequence 

specific manner in which it is possible to further examine the SNPs that may likely to occur in 

the TFBS. Thus, several predicted SNPs, which appear to be occurring in the TFBS and that 

are associated with the PA and FA responses were closely examined as they are likely to 

regulate the TFs and potentially contribute to the variability of ADP platelet responses.  

The following are rSNPs, which were found to be likely to occur in the TFBS. Each SNP is 

shown with its corresponding sequence in FASTA format, which contains the SNP location, 

indicated in bold. This is followed up with the similar sequence from TRAP, which contains 

the predicted binding sites (coloured red and in bold). The SNP is shown in black bold font 

with an upper case letter where it is near the predicted binding site. The SNP is shown in bold 

red, if it is found within the predicted binding site. Each SNP ID is followed by its 

corresponding locus or gene name. The italicised SNPs are those which were previously 

identified by Jones et al. (Jones et al., 2009). 

Dataset 1-PA 

>rs8033381(CSK) 

CCCACCTGTCCATTTTCAGGGTGTC[A/G]TCTGTCCTGCACAAGGAAAGGTGGG 

cccaCCTGTCCAttttcagggtgtcGTCTGTCCTgcacaaggaaaggtggg 

>rs3212391(ITGA2) 

GAGGGAAAGAAAGCAGAGGTATGGA[A/T]AAAGGTACCTCCCATCCTCCAGAGT 

gagggaaagaaagcagaggtatGGATAAAggtacctcccatcctccagagt 
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Dataset 2-PA 

>rs3788337(GNAZ) 

GAAGGATTGGTGAGACAATCCAGGA[A/C/G]AGCAGGTGCCACTAGCCCCACTTTG 

gaaggattggtgagacaatccaggaGAGCAGGTgccactagccccactttg 

Dataset 3-PA 

>rs2289171(PIKFYVE) 

CACATCTAAAATGAAAAATAGTCTA[C/T]TTATATATTAATATTCACAGAGAAT 

caCATCTAAAATGAAAAATAGTCTATTTATATATTAATATTCACAGAgaat 

Dataset 2-FA 

>rs7180408(GTF2A2) 

AAAAGCATTTGTATTGGCTTTCCTA[A/T]CTGCCTGAATGCTCTTCCTGATATT 

aaaagcatttgtattgGCTTTCCTaActgcctgaatgCTCTTCCTgatatt 

>rs7739455(CD109) 

CAGCTGTAGACGGTTCATAAACAAA[A/T]GAGCATGGTTGTGTACCAGCAGAAC 

cagctgtagacggttcATAAACAAAAGAgcatggttgtgtaccagcagaac 

>rs11264579(PEAR1) 

GGCACCTGAACTAGACCTTGAAAGA[C/T]GGGAACTCCAGGTGAAGAATGAGAC 

ggcaccTGAACTAGACCTtgaaagaAgGGAACTccAGGTGAagaatgagac 
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>rs41305896(ITGA2) 

CCTACCTAGCATGAAGAAAGAACCA[C/T]TTCTTACCGCACAGGGTTCGAAAGT 

cctacctagcatgaagaaagAACCATTTCTtaccgcacagggttcgaaagt 

>rs41307142(GAS6) 

CCCAGATCTAACCTGGACAGGCTGG[C/G]GTTTCTGGTAGTGAATGCGGAAGAG 

cccagatctaacctggacaggctgGGGTTTCTGgtagtgaatgcggaagag 

Dataset 3-FA 

>rs17296289(chr10:32971771) 

ACCACAGAGATCAAAGGGCAAAAGA[A/G]TAAAAGCTAAGAGAAAAAACTAAAG 

ccacaGAGATCAAAGGGCAaaagaAtaaaagctaagagaaaaaactaaag 

>rs17204376(MED12L) 

TTACATTCTGCTTTGGGTGGATTAA[G/T]TATGTTACGGAAAAGTAGCTAGTCC 

ttacattctgctttgggtgGATTAATTatgttacggaaaagtagctagtcc 

4.4.2.2 Predicted rSNPs that are in the proximal and distal regulatory regions 

Several SNPs were predicted to be involved with the regulation of the proximal or distal regions 

related to several genes. Tables 4.4 and 4.5 show the identified rSNPs, which are associated 

with the PA and FA platelet responses and are likely to be located in the distal and proximal 

regions as detected by the rSNPBase method. 
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Dataset SNP Locus Proximal/Distal 

Regulation 

Related Genes 

Dataset 1 rs2300065 SKP1 Proximal SKP1 

Distal SKP1 

rs3730051 AKT2 Proximal AKT2 

Distal AKT2 

rs6141803 COMMD7 Distal COMMD7, DNMT3B 

rs8033381 CSK Proximal CSK 

Distal CSK 

Dataset 2 rs5277 PTGS2 Proximal PTGS2 

rs1472122 P2YR12 Proximal P2YR12 

rs2769668 VAV3 Proximal VAV3 

rs2815805 MAPK14 Distal MAPK14 

rs3788337 GNAZ Proximal GNAZ 

rs17229705 VAV3 Proximal VAV3 

Distal VAV3 

Dataset 3 rs906766 MED12L Distal MED12L 

rs41305276 THBS1 Proximal THBS1 

Distal THBS1 

Table 4.4 The identified rSNPs which are associated with the PA platelet response and are likely to be involved with 

proximal or distal regulation. The proximal and distal regulation might be involved with the chromatin/histone modifications 

in the enhancer or promoter regions. In bold are the newly discovered significant SNPs, which were not previously identified 

in the study by Jones et al. (2009). 

 

Dataset SNP Locus Proximal/Distal 

Regulation 

Related Genes 

Dataset 1 rs3736101 MADD Proximal MADD 

rs41282607 MAPK1 Proximal MAPK1 

  Distal MAPK1 

rs41305272 MAP2K5 Proximal MAP2K5 

Dataset 2 rs3729931 RAF1 Distal RAF1 

rs11264579 PEAR1 Proximal PEAR1 

Dataset 3 rs2290159 RAF1 Proximal RAF1 

  Distal RAF1 

rs4792219 MAP2K4 Proximal MAP2K4 

Table 4.5 The identified rSNPs which are associated with the FA platelet response and are likely to be involved with 

proximal or distal regulation. The new identified SNPs are in bold. 
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4.4.2.3 Predicted rSNPs associated with distal long range interactions and other 

transcription regulatory elements based on the GWAS3D method 

In contrast to other methods, the GWAS3D enables the researcher to closely analyse the rSNPs, 

which are likely to be involved in the long range interactions in a 3D manner using circos-like 

plot. Based on the method or tool, the plot displays variants in a genome-wide manner. Thus, 

the detected rSNPs from the RAPIDSNPs may be displayed with other genomic or 

chromosomal interactions related with other rSNPs from different LDs as per 1000 Genomes 

or HapMap data. In addition, the detailed results of other regulatory functions associated with 

the key SNPs are shown in the tabular manner with their significance. Therefore, a couple of 

the rSNPs in each dataset were predicted to be likely involved with distal and long-range 

interactions. These SNPs are represented using the circos-like graphs in Figures 4.4, 4.5, and 

4.6, which show the PA platelet response associated SNPs for the dataset 1, 2, and 3 

respectively. For the FA platelet response, the predicted rSNPs are shown in Figures 4.7, 4.8, 

and 4.9 with respect to the dataset 1, 2, and 3. In both ADP platelet responses, the predicted 

rSNPs are based on the selected HapMap GWAS LDs reference SNPs. 

For the 1000 Genomes GWAS LD reference SNPs, the predicted rSNPs, which are involved 

with distal and long range interactions and associated with PA platelet response are shown in 

the Figures 4.10, 4.11, and 4.12. For the FA platelet response, the predicted rSNPs are shown 

in the Figures 4.13, 4.14, and 4.15. In addition, each of the above mentioned figures are 

followed by tables indicating the detected significant rSNPs with the p-values and other 

associated regulatory functional elements. 
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Figure 4.4 The representation of the long range interactions involving the predicted rSNPs associated with PA response 

from dataset 1 or regulatory loci based on GWAS related HapMap LD SNPs. Top regulatory variants (rSNPs) and distal 

interaction regions are displayed in the outer circle. The loci or genomic locations connected to respective rSNPs are shown in 

the inner circle. The interesting significant rSNP from the key SNP, which is involved with distal long range interactions with 

other genomic regions is highlighted in yellow. The thicker the width of the red line, the higher the intensity of the interaction. 

Other detected significant rSNPs are not related to RAPIDSNPs, but they are in the same HapMap LD(s) and are shown to 

compare the significance of those from the RAPIDSNPs pipeline. 

 

From Figure 4.4, there is only one key SNP detected to be significant regulatory, which is 

rs3212391 and located in the region of ITGA2 in chromosome 5. This key variant has a long 

range interaction with LOC399744 and 5q11.2 loci in the chromosomes 10 and 5 respectively. 
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CHRPOS SNPID GENOTYPE LOCUS FINALP LeadSNP LEADSNP_P RSQUARE STATUS 

15:75095483 rs7085 T|C CSK 1.89E-04 rs8033381 1.00E+00 1 td, bda, enhancer  

5:133472102 rs249609 C|T TCF7 6.47E-04 rs2300065 1.00E+00 0.825 td, bda, enhancer 

5:52292405 rs3212391 A|T ITGA2 8.50E-04 rs3212391 1.00E+00 1 td, bda, enhancer   

19:40752023 rs8100018 C|G AKT2 2.82E-03 rs3730051 1.00E+00 0.861 td, bda, enhancer 

7:80303762 rs3211956 T|G CD36 1.61E-02 rs1527480 1.00E+00 0.869 td, bda 

20:31366243 rs6141813 A|G DNMT3B 2.29E-02 rs6141803 1.00E+00 0.89 td, bda, enhancer 

3:4694010 rs6442896 A|C ITPR1 8.21E-02 rs6442896 1.00E+00 1 bda, enhancer  

17:45357489 rs2292867 C|T ITGB3 8.80E-02 rs2292867 1.00E+00 1 bda, enhancer 

3:4809969 rs17041401 T|C ITPR1 9.09E-02 rs17041401 1.00E+00 1 td, bda, enhancer   

Table 4.6 The identified rSNPs from dataset 1 based on the HapMap GWAS related SNPs, which are used to compare 

with those identified by RAPIDSNPs as associated with the PA response. The CHRPOS shows the chromosomal position 

or co-ordinates of the HapMap/1000 Genomes variant, which is shown in the SNPID column. ‘GENOTYPE’ is the column 

with the SNPs alleles in genomic locus. The ‘LOCUS’ column shows the genomic position of the SNP. The ‘FINALP’ column 

shows the final p-values The ‘LeadSNP’ column shows the related submitted RAPIDSNPs key SNPs. The ‘LEADSNP_P’ 

column shows the LeadSNP’s p-value. The rSNP from RAPIDSNPs is regarded as significant if it has high p-value and appears 

in both the ‘LeadSNP’ and SNPID columns. The RSQUARE column shows the LD (linkage disequilibrium) strength between 

variants from HapMap/1000 Genomes and that of the RAPIDSNPs. The STATUS column shows the predicted regulatory 

functional elements such as td (distal regulation), bda (binding affinity to TF) or whether the SNP is located in enhancer. The 

significant rSNP, which is a key SNP from the RAPIDSNPs is highlighted in green. 

 

From Table 4.6, the only predicted significant rSNP from RAPIDSNPs is rs3212391 in ITGA2 

and is predicted to be involved with different regulatory functional elements. 
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Figure 4.5 The representation of the long range interactions involving the predicted rSNPs associated with PA 

associated from dataset 2 or regulatory loci based on GWAS related HapMap LD SNPs. The significant rSNPs from 

RAPIDSNPs, which are likely to be involved with distal long range interactions with other genomic regions are highlighted in 

yellow.   

 

From Figure 4.5, the most interacting SNP is rs2228671 in the LDLR locus in the chromosome 

19, which has been predicted to have three distal interactions that include loci VWF, TMIGD2, 

and 19p13.2 in the chromosome 12, 19, and 19 respectively. Another rSNP with several 
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potential distal and long range interactions is rs3788337 in the GNAZ locus, which is in the 

chromosome 22. This locus has several distal regulations with other loci within the same 

chromosome, which include RTDR1, 22q11.22, and ZNF280B. 

CHRPOS SNPID GENOTYPE LOCUS FINALP LeadSNP LEADSNP_P RSQUARE STATUS 

1:108138961 rs17229705 T|C VAV3 1.48E-05 rs17229705 1.00E+00 1 bda, 

enhancer 

15:68021280 rs9302246 A|G MAP2K5 3.42E-04 rs11631474 1.00E+00 0.961 bda, 

enhancer,   

5:52319076 rs246406 C|T ITGA2 6.47E-04 rs246406 1.00E+00 1 td, bda, 

enhancer   

22:23412017 rs3788337 G|A RTDR1 7.23E-04 rs3788337 1.00E+00 1 td, bda, 

enhancer   

3:151015872 rs9827619 T|C GPR87 8.07E-04 rs1472122 1.00E+00 1 bda, 

enhancer 

6:35987507 rs584884 C|A SLC26A8 1.11E-03 rs2815805 1.00E+00 1 td, bda, 

enhancer 

1:186648197 rs5277 C|G PTGS2 1.37E-03 rs5277 1.00E+00 1 td, bda, 

enhancer  

21:20203619 rs2212860 A|T 21q21.1 1.36E-02 rs950365 1.00E+00 0.959 td, bda 

20:31366243 rs6141813 A|G DNMT3B 2.29E-02 rs6057638 1.00E+00 0.89 td, bda, 
enhancer 

19:11210912 rs2228671 C|T LDLR 4.99E-02 rs2228671 1.00E+00 1 td, bda, 

enhancer   

3:4809969 rs17041401 T|C ITPR1 9.09E-02 rs17041401 1.00E+00 1 td, bda, 
enhancer   

1:108115145 rs2769668 T|C VAV3 1.23E-01 rs2769668 1.00E+00 1 bda, 

enhancer   

Table 4.7 The identified rSNPs from dataset 2 based on the HapMap GWAS related SNPs, which are used to compare 

with those submitted from the RAPIDSNPs and are associated with PA platelet response. Four key SNPs have been 

predicted to be highly significant and involved with several transcriptional regulatory elements and are green highlighted. 

These are rs17229705, rs246406, rs3788337, and rs5277.  

 

From Table 4.7 the top regulatory key SNP is rs17229705 in VAV3, which was not found to be 

involved with long range interactions in Figure 4.5 but, was predicted to be likely involved 

with other regulatory functional elements such as binding affinity to TF (likely STAT5A) and 

enhancer. 
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Figure 4.6 The representation of the long range interactions involving the predicted rSNPs associated with the PA 

response from dataset 3 or regulatory loci based on GWAS related HapMap LD SNPs. A significant rSNP from the 

RAPIDSNPs is highlighted in yellow and is likely to be involved with distal long range interactions with other genomic regions.  
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CHRPOS SNPID GENOTYPE LOCUS FINALP LeadSNP LEADSNP_P RSQUARE STATUS 

5:52319076 rs246406 C|T ITGA2 6.47E-04 rs246406 1.00E+00 1 td, bda, 

enhancer  

2:209167476 rs17698897 A|G PIKFYVE 1.27E-02 rs2289171 1.00E+00 0.819 td, bda 

15:39878578 rs41305276 C|T THBS1 2.68E-02 rs41305276 1.00E+00 1 bda, enhancer  

3:150811294 rs906766 C|T MED12L 8.11E-02 rs906766 1.00E+00 1 bda, enhancer   

3:4828674 rs2633717 T|C ITPR1 8.53E-02 rs2633717 1.00E+00 1 bda, enhancer   

Table 4.8 The identified rSNP from dataset 3 based on the HapMap GWAS related SNPs, which are used to compare 

with those submitted from the RAPIDSNPs and are associated with PA response. Only rs246406 key SNP was found to 

be involved with regulatory function. 

 

From Figure 4.6 and Table 4.8, there is only one predicted rSNP rs246406 in the ITGA2 locus, 

which is predicted to be likely involved with the long range interaction with EHMT1 

chromosomal region. 
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Figure 4.7 The representation of the long range interactions involving the predicted rSNPs associated with the FA 

response from dataset 1 or regulatory loci based on GWAS related HapMap LD SNPs. The SNPs from RAPIDSNPs, 

which are significant and likely to be involved with distal long range interactions with other genomic regions are yellow 

highlighted.   
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CHRPOS SNPID GENOTYPE LOCUS FINALP LeadSNP LEADSNP_P RSQUARE STATUS 

3:150881774 rs17290219 A|C MED12L 6.16E-04 rs17204437 1.00E+00 0.883 bda, enhancer   

3:151080070 rs1491978 C|T P2RY12 9.66E-04 rs1491978 1.00E+00 1 td, bda, enhancer   

7:80231793 rs1194181 G|A CD36 1.11E-03 rs1537593 1.00E+00 0.838 td, bda 

15:66612965 rs17851970 T|C DIS3L 1.65E-03 rs11637556 1.00E+00 1 bda, enhancer  

22:22118229 rs41282607 C|T MAPK1 2.06E-03 rs41282607 1.00E+00 1 td, bda, enhancer  

11:47370041 rs3729989 T|C MYBPC3 2.11E-03 rs3736101 1.00E+00 0.906 td, bda, enhancer   

14:61846130 rs10149384 C|A PRKCH 2.13E-03 rs3742633 1.00E+00 0.874 bda, enhancer 

9:5106023 rs2104685 A|T JAK2 2.23E-03 rs7034539 1.00E+00 1 td, bda 

7:80213056 rs11974777 T|G 7q21.11 2.82E-03 rs10499858 1.00E+00 0.801 td, bda 

17:45307928 rs9895150 A|G 17q21.32 1.27E-01 rs9895150 1.00E+00 1 td, bda, enhancer 

15:68099443 rs41305272 C|T MAP2K5 1.28E-01 rs41305272 1.00E+00 1 td, bda, enhancer 

Table 4.9 The identified rSNPs from dataset 1 based on the HapMap GWAS related SNPs, which are used to compare 

with those submitted from the RAPIDSNPs and are associated with FA response in the dataset 1. The significant rSNPs 

from the RAPIDSNPs are highlighted in green. 

 

From Figure 4.7 and Table 4.9, there are two predicted rSNPs, which seem to be involved with 

many interactions. These rSNPs are rs1491978 in P2YR12, which has 3 potential distal and 

long range interactions with the EPHA3, and rs41282607, which has 3 potential significant 

distal interactions with the RGPD1, ART1, and LRRC378 loci. 
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Figure 4.8 The representation of the long range interactions involving the predicted rSNPs associated with the FA 

response from dataset 2 or regulatory loci based on GWAS related HapMap LD SNPs. Two significant SNPs from 

RAPIDSNPs, which are likely to be involved with distal long range interactions with other genomic regions are yellow 

highlighted.   
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CHRPOS SNPID GENOTYPE LOCUS FINALP LeadSNP LEADSNP_P RSQUARE STATUS 

3:12626516 rs3729931 G|A RAF1 2.60E-05 rs3729931 1.00E+00 1 td, bda, 

enhancer  

15:59931131 rs4232 A|G GTF2A2 2.96E-05 rs7180408 1.00E+00 0.808 td, bda   

9:5000811 rs12347727 A|G JAK2 7.23E-04 rs10429491 1.00E+00 0.861 td, bda, 

enhancer 

1:156872149 rs2768744 G|A PEAR1 1.45E-03 rs11264579 1.00E+00 1 td, bda, 
enhancer 

15:66612965 rs17851970 T|C DIS3L 1.65E-03 rs11637556 1.00E+00 1 bda, enhancer   

5:52276309 rs6450105 T|C 5q11.2 1.53E-02 rs6450105 1.00E+00 1 td, bda, 

enhancer   

21:45763960 rs7409876 T|G 21q22.3 3.39E-02 rs7409876 1.00E+00 1 td, bda, 

enhancer   

3:12641425 rs5746223 T|C RAF1 4.15E-02 rs5746223 1.00E+00 1 td, bda, 

enhancer   

5:52275718 rs41305896 T|C 5q11.2 4.33E-02 rs41305896 1.00E+00 1 td, bda, 

enhancer   

6:74420628 rs7739455 A|T CD109 5.00E-02 rs7739455 1.00E+00 1 td, bda, 

enhancer   

19:4094775 rs350916 G|A MAP2K2 7.73E-02 rs350916 1.00E+00 1 td, bda   

3:56865776 rs12485738 A|G ARHGEF3 8.02E-02 rs12485738 1.00E+00 1 td, bda, 

enhancer   

13:114524843 rs41307142 C|G GAS6 8.43E-02 rs41307142 1.00E+00 1 td, bda, 
enhancer   

3:4828674 rs2633717 T|C ITPR1 8.53E-02 rs17786144 1.00E+00 0.933 bda, enhancer 

Table 4.10 The identified rSNPs from dataset 2 based on the HapMap GWAS related SNPs, which are used to compare 

with those submitted from the RAPIDSNPs key SNPs and are associated with FA in the dataset 2. The significant rSNPs 

are highlighted in green. 

From Figure 4.8 and Table 4.10, two rSNPs were predicted to be significantly involved with 

the long range interactions. These SNPs are rs3729931 in RAF1, and rs6450105 in 5q11.2 in 

chromosomes 3 and 5, which are predicted to have long range interactions with CCBP2 and 

11q14.3 respectively. 
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Figure 4.9 The representation of the long range interactions involving the predicted rSNPs associated with the FA 

response from dataset 3 or regulatory loci based on GWAS related HapMap LD SNPs. Two significant rSNPs from 

RAPIDSNPs, which are likely to be involved with distal long range interactions with other genomic regions are highlighted in 

yellow.   

From Figure 4.9, the intergenic SNP rs13135667 is the most significant rSNP and is likely to 

be involved with the distal regulation and long range interactions with three loci in the 

chromosomal regions of MXD4, 10p11.21, and 14q32.33 in the chromosome 4, 10, and 14 

respectively. 
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CHRPOS SNPID GENOTYPE LOCUS FINALP LeadSNP LEADSNP_P RSQUARE STATUS 

10:33252263 rs1935648 C|G 10p11.22 1.20E-04 rs17296289 1.00E+00 0.89 bda, enhancer   

3:12690855 rs6766666 G|T RAF1 2.59E-04 rs2290159 1.00E+00 0.879 bda, enhancer 

10:33260699 rs17296289 G|A 10p11.22 8.07E-04 rs722432 1.00E+00 0.89 td, bda, 

enhancer 

5:52362765 rs3212556 A|T ITGA2 4.90E-03 rs3212603 1.00E+00 1 td, bda 

17:12045905 rs4792219 G|A MAP2K4 6.60E-03 rs4792219 1.00E+00 1 td, bda  

4:1767067 rs13135667 C|G 4p16.3 3.28E-02 rs13135667 1.00E+00 1 td, bda, 

enhancer 

3:151035961 rs17204376 G|T MED12L 5.13E-02 rs17204376 1.00E+00 1 bda, enhancer   

3:150811294 rs906766 C|T MED12L 8.11E-02 rs906766 1.00E+00 1 bda, enhancer   

3:4828674 rs2633717 T|C ITPR1 8.53E-02 rs17786144 1.00E+00 0.933 bda, enhancer 

Table 4.11 The identified rSNP from dataset 3 based on the HapMap GWAS related SNPs, which are used to compare 

with those submitted from the RAPIDSNPs key SNPs and are associated with FA in the dataset 3.   

Furthermore, based on Table 4.11, the predicted rSNP rs4792219 in MAP2K4, is also 

significantly associated with the regulatory roles such as binding affinity with some 

transcription factors as predicted elsewhere above (Tables 4.3 and 4.5).  
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Figure 4.10 The representation of the long range interactions involving the predicted rSNPs associated with the PA 

response from dataset 1 or regulatory loci based on GWAS related 1000 Genomes LD SNPs. A significant SNP from 

RAPIDSNPs, which is likely to be involved with distal long range interactions with other genomic regions is highlighted in 

yellow.  
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CHRPOS SNPID GENOTYPE LOCUS FINALP LeadSNP LEADSNP_P RSQUARE STATUS 

20:31340356 rs6141803 T|C 20q11.21 3.84E-02 rs6141803 1.00E+00 1 td, bda, 
enhancer,   

Table 4.12 The identified rSNPs from dataset 1 based on the 1000 Genomes GWAS related SNPs, which are used to 

compare with those submitted from the RAPIDSNPs key SNPs and are associated with PA in the dataset 1. The SNPID 

column shows those from the similar LD within 1000 Genomes. The LeadSNP column shows the submitted RAPIDSNPs.  

From Figure 4.10 and 4.12, only rs6141803 in the ch20:32752550 locus was found to have 

distal and long range interactions with COMMD7 in the chromosome 20, 18q21.1, and 

DNMT3B loci. The selection of this rSNP reflects similar results when using HapMap GWAS 

SNPs. 
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Figure 4.11 The representation of the long range interactions involving the predicted rSNPs associated with the PA 

response from dataset 2 or regulatory loci based on GWAS related 1000 Genomes LD. Three significant rSNPs from 

RAPIDSNPs, which are likely to be involved with distal long range interactions with with other genomic regions are 

highlighted in yellow.  

From Figure 4.11, there are three predicted significant rSNPs from the RAPIDSNPs that are 

likely to be involved with distal regulation or interactions, and are associated with PA. These 

rSNPs are rs5277, rs246406 and rs3788337 in the PTGS2, ITGA2, RTDR1 in the chromosomes 

loci 1, 5 and 22.  
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CHRPOS SNPID GENOTYPE LOCUS FINALP LeadSNP LEADSNP_P RSQUARE STATUS 

1:108138961 rs17229705 T|C VAV3 1.48E-05 rs17229705 1.00E+00 1 bda, enhancer,  

15:68021280 rs9302246 A|G MAP2K5 3.42E-04 rs11631474 1.00E+00 0.933 bda, enhancer,   

19:11210314 rs17248783 G|A LDLR 5.36E-04 rs2228671 1.00E+00 0.9839 td, bda, 
enhancer 

5:52319076 rs246406 C|T ITGA2 6.47E-04 rs246406 1.00E+00 1 td, bda, 

enhancer,   

6:36000383 chr6:36000383 A|G 6p21.31 7.21E-04 rs2815805 1.00E+00 1 td, bda, 
enhancer 

22:23412017 rs3788337 G|A RTDR1 7.23E-04 rs3788337 1.00E+00 1 td, bda, 

enhancer,   

3:151015872 rs9827619 T|C GPR87 8.07E-04 rs1472122 1.00E+00 0.9222   bda, enhancer 

1:186648197 rs5277 C|G PTGS2 1.37E-03 rs5277 1.00E+00 1 td, bda, 

enhancer,  

21:20216800 rs56058251 A|G 21q21.1 3.38E-03 rs950365 1.00E+00 0.9945 td, bda 

20:31341267 rs34255848 T|A 20q11.21 1.43E-02 rs6057638 1.00E+00 0.9902 td, bda, 
enhancer 

3:4809969 rs17041401 T|C ITPR1 9.09E-02 rs17041401 1.00E+00 1 td, bda, 

enhancer,   

Table 4.13 The identified rSNPs from dataset 2 based on the 1000 Genomes GWAS related SNPs, which are used to 

compare with those submitted from the RAPIDSNPs key SNPs and are associated with PA in the dataset 2.  

From Table 4.13, the results appear to be similar to those obtained when using HapMap data in 

which the same rSNPs appear to significant. 

  



276 

 

 

 

Figure 4.12 The representation of the long range interactions involving the predicted rSNPs associated with the PA 

response from dataset 3 or regulatory loci based on GWAS related 1000 Genomes LD SNPs. One significant rSNP from 

RAPIDSNPs, which is likely to be involved with distal long range interactions with with other genomic regions is highlighted 

in yellow. 

From Figure 4.12, there is only one distal regulation, which involves rs246406 rSNP in the 

ITGA2 locus in the chromosome 5 that interact with EHMT1 in the chromosome 9. 
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CHRPOS SNPID GENOTYPE LOCUS FINALP LeadSNP LEADSNP_P RSQUARE STATUS 

3:150933944 chr3:150933944 A|T 3q25.1 2.59E-04 rs906766 1.00E+00 0.8738 bda, 
enhancer 

5:52319076 rs246406 C|T ITGA2 6.47E-04 rs246406 1.00E+00 1 td, bda, 

enhancer,   

15:39831248 chr15:39831248 C|T 15q14 9.66E-04 rs41305276 1.00E+00 0.8558 td, bda, 
enhancer 

3:4831904 rs73004818 G|A ITPR1 1.21E-03 rs2633717 1.00E+00 0.8697 bda, 

enhancer 

Table 4.14 The identified rSNPs from dataset 3 based on the 1000 Genomes GWAS related SNPs, which are used to 

compare with those submitted from the RAPIDSNPs key SNPs and are associated with PA response in the dataset 3.  

From Table 4.14, the similar rSNP rs246406, which was selected based on HapMap for the 

dataset 3 (Table 4.8) is also picked by using 1000 Genomes GWAS related SNPs. 
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Figure 4.13 The representation of the long range interactions involving the predicted rSNPs associated with FA 

response from dataset 1 or regulatory loci based on GWAS related 1000 Genomes LD SNPs. Two significant rSNPs from 

RAPIDSNPs, which are likely to be involved with distal long range interactions with other genomic regions are highlighted in 

yellow.  

From Figure 4.13, there are two predicted rSNPs, which are rs1491978 in P2RY12 interacting 

with EPHA3 in chromosome 3 and rs41282607 in MAPK1, which may involve RGDP in the 

chromosome 2, ART in the chromosome 11, and LRRC37B in the chromosomes 2, 11, and 17 

respectively. 
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CHRPOS SNPID GENOTYPE LOCUS FINALP LeadSNP LEADSNP_P RSQUARE STATUS 

7:80236603 rs2691198 A|C CD36 4.06E-05 rs1537593 1.00E+00 0.8936 td, bda, 

enhancer   

3:150950288 rs9868643 A|C P2RY14 7.21E-04 rs17204437 1.00E+00 0.8696 bda, 

enhancer 

15:66705043 chr15:66705043 G|A 15q22.31 8.07E-04 rs11637556 1.00E+00 0.8173 bda, 

enhancer 

3:151080070 rs1491978 C|T P2RY12 9.66E-04 rs1491978 1.00E+00 1 td, bda, 

enhancer  

9:5075255 rs10974948 C|G,T JAK2 9.66E-04 rs7034539 1.00E+00 0.9641 td, bda 

7:80254792 rs9641866 T|A CD36 1.64E-03 rs10499858 1.00E+00 0.9079 bda, 

enhancer 

22:22118229 rs41282607 C|T MAPK1 2.06E-03 rs41282607 1.00E+00 1 td, bda, 
enhancer  

14:61846130 rs10149384 C|A PRKCH 2.13E-03 rs3742633 1.00E+00 0.8492 bda, 

enhancer 

11:47303821 rs41301449 C|T MADD 2.48E-03 rs3736101 1.00E+00 0.9728 td, bda, 
enhancer 

15:68102425 rs72751450 C|T 15q23 2.82E-02 rs41305272 1.00E+00 1 td, bda, 

enhancer 

17:45307928 rs9895150 A|G 17q21.32 1.27E-01 rs9895150 1.00E+00 1 td, bda, 
enhancer   

Table 4.15 The identified rSNPs from dataset 1 based on the 1000 Genomes GWAS related SNPs, which are used to 

compare with those submitted from the RAPIDSNPs key SNPs and are associated with FA in the dataset 1.  
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Figure 4.14 The representation of the long range interactions involving the predicted rSNPs from dataset 2 or 

regulatory loci based on GWAS related 1000 Genomes LD SNPs A yellow highlighted rSNP is from RAPIDSNPs, which 

is significant and likely to be involved with distal long range interactions with other genomic regions.  

From Figure 4.14, it appears that there is one predicted rSNP with the distal interaction, which 

is rs3729931 in RAF1 locus interacting with the CCBP2 in the chromosome 3. The associated 

interacting genomic regions are more likely to be involved with the regulation of the FA 

response. 
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CHRPOS SNPID GENOTYPE LOCUS FINALP LeadSNP LEADSNP_P RSQUARE STATUS 

3:12626516 rs3729931 G|A RAF1 2.60E-05 rs3729931 1.00E+00 1 td, bda, 

enhancer

,  

15:59931131 rs4232 A|G GTF2A2 2.96E-05 rs7180408 1.00E+00 0.863 td, bda,   

9:5035586 rs11506661 A|T JAK2 2.59E-04 rs10429491 1.00E+00 0.8341 td, bda 

13:114519681 rs72670688 C|T FLJ41484 2.59E-04 rs41307142 1.00E+00 0.8866 td, bda, 

enhancer 

15:66705043 chr15:66705043 G|A 15q22.31 8.07E-04 rs11637556 1.00E+00 0.8173 bda, 
enhancer 

3:12662426 rs61147639 G|A RAF1 8.94E-04 rs5746223 1.00E+00 0.9497 td, bda, 

enhancer 

21:45765331 rs11701842 T|C 21q22.3 9.66E-04 rs7409876 1.00E+00 0.9563 td, bda, 
enhancer 

5:52239009 rs62357159 G|T ITGA1 9.66E-04 rs6450105 1.00E+00 0.8558 td, bda 

3:4831904 rs73004818 G|A ITPR1 1.21E-03 rs17786144 1.00E+00 0.8193 bda, 
enhancer 

1:156872149 rs2768744 G|A PEAR1 1.45E-03 rs11264579 1.00E+00 0.9829 td, bda, 

enhancer 

19:4094110 rs2289859 G|T MAP2K2 4.09E-02 rs350916 1.00E+00 0.9895 td, bda 

3:56865445 rs11925835 T|C ARHGEF3 4.28E-02 rs12485738 1.00E+00 0.8008 td, bda, 
enhancer 

6:74420628 rs7739455 A|T CD109 5.00E-02 rs7739455 1.00E+00 1 td, bda, 

enhancer  

5:52238579 chr5:52238579 G|A 5q11.2 8.55E-02 rs41305896 1.00E+00 0.8601 td, bda 

Table 4.16 The identified rSNPs from dataset 2 based on the 1000 Genomes GWAS related SNPs, which are used to 

compare with those submitted from the RAPIDSNPs key SNPs and are associated with FA in the dataset 2. 

From Table 4.16, there is one predicted rSNP with the distal interaction, which is rs3729931 in 

RAF1 locus interacting with the CCBP2 in the chromosome 3. 
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Figure 4.15 The representation of the long range interactions involving the predicted rSNPs from dataset 3 or 

regulatory loci based on GWAS related 1000 Genomes LD SNPs. A yellow highlighted rSNP is from RAPIDSNPs, which 

is significant and likely to be involved with distal long range interactions with other genomic regions.  

From Figure 4.15, it can be observed that once again the intergenic SNP rs13135667 in the 

ch4:1765340 locus appear to have likely distal regulations or interactions with 14q32.33, 

10p11.21, and EVC2 in the chromosomes 14, 10, and 4 respectively. 
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CHRPOS SNPID GENOTYPE LOCUS FINALP LeadSNP LEADSNP_P RSQUARE STATUS 

3:150933944 chr3:150933944 A|T 3q25.1 2.59E-
04 

rs906766 1.00E+00 0.8738 bda, 
enhancer 

10:33260699 rs17296289 G|A 10p11.22 8.07E-

04 

rs722432 1.00E+00 0.8726 td, bda, 

enhancer 

3:12633083 rs2290160 A|G RAF1 9.25E-
04 

rs2290159 1.00E+00 0.9637 bda, 
enhancer 

3:4831904 rs73004818 G|A ITPR1 1.21E-

03 

rs17786144 1.00E+00 0.8193 bda, 

enhancer 

5:52345035 rs2075614 T|G ITGA2 2.02E-
03 

rs3212603 1.00E+00 0.928 td, bda, 
enhancer 

17:12032944 rs1870583 A|G MAP2K4 4.36E-

03 

rs4792219 1.00E+00 0.9816 td, bda,   

4:1767067 rs13135667 C|G 4p16.3 3.28E-
02 

rs13135667 1.00E+00 1 td, bda, 
enhancer

,   

3:151035961 rs17204376 G|T MED12L 5.13E-
02 

rs17204376 1.00E+00 1 bda, 
enhancer

,   

Table 4.17 The identified rSNPs from dataset 3 based on the 1000 Genomes GWAS related SNPs, which are used to 

compare with those submitted from the RAPIDSNPs key SNPs and are associated with FA in the dataset 3.  

From Table 4.17, only the rs13135667 key SNP was identified to be significant  

4.4.2.3.1 Summary of predicted interesting rSNPs likely to be involved in long range 

interactions 

In examining all of the predicted rSNPs, which are likely to be involved in long range and distal 

interactions from GWAS3D, the significant and seems most interesting regulatory variant is 

rs2228671. This rSNP is a synonymous codon in the LDLR and newly identified by the 

RAPIDSNPs. The LDLR is known for its involvement in the cholesterol metabolism and hence 

is one of the determinants of the individuals’ CVD risk. The associated rSNP has been predicted 

to be interacting with VWF, which is ADP platelet response associated gene. 

4.4.3 The rSNPs that are predicted to be in the RNA binding sites and likely affecting the 

bound proteins 

Several of the SNPs across the three datasets were identified to be likely to localise and chnage 

the RNA binding sites. Thus, they are likely to be involved in regulating the binding sites 

affinity of the bound proteins (or their complexes) and affecting post-transcription regulation. 
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Tables 4.18 and 4.19 show the predicted RNA binding proteins (RBPs) and the associated 

rSNP(s) for PA and FA respectively based on the rSNPBase method. 

Data set Identified 

rSNP 

SNP Type Locus/genome 

location 

Possible 

Associated 

RBP 

Dataset 1 rs2300065 intron chr:5,133510384 SKP1 

rs8033381 Intron, downstream 500B chr:15,75080685 CSK 

Dataset 2 rs17229705 nc transcript, synonymous codon chr:1,108138961 VAV3 

rs1472122 intron, utr 5’ chr:3,151034602 P2RY12, 

GPR87 

rs2815805 intron, stop lost, synonymous codon chr:6,36068041 MAPK14 

rs5277 synonymous codon, upstream 2KB chr:1,186648197 PTGS2 

rs41307147 intron chr:6,74527043 CD109 

rs2769668 nc transcript variant, utr 3’ chr:1,108115145 VAV3 

rs3788337 intron, upstream 2KB, utr 5’ chr:22,23412017 RTDR1 

Dataset 3 rs906766 intron chr:3,150811294 MED12L 

rs41305276 intron chr:15,39878578 THBS1 

Table 4.18 The predicted rSNPs, which are likely to influence the binding affinity of the RNA binding proteins (RBPs) 

that are potentially associate with PA. These RBP are common in different cell-types using the ENCODE data. The 

previously identified SNPs by Jones et al. (2009) are italicised. 

 

Data set Identified 

rSNP 

SNP Type Locus/genome 

location 

Possible Associated RBP 

Dataset 1 rs1491978 intron chr:3,151080070 MED12L, P2RY12,  

rs17204437 intron, upstream 2KB chr:3,151067007 MED12L, P2RY12 

Dataset 2 rs12485738 intron chr:3,56865776 ARHGEF3 

rs41307142 intron chr:13,114524843 GAS6AS1, GAS6 

rs11637556 intron chr:15,66728951 MAP2K1, ELAVL1 

rs3729931 intron chr:3,12626516 RAF1 

Dataset 3 rs17204376 intron, upstream 2KB chr:3,151035961 MED12L 

rs4792219 utr 3 prime chr:17,12045905 MAP2K4 

rs2290159 intron chr:3,12628920 RAF1 

rs906766 intron chr:3,150811294 MED12L 

Table 4.19 The predicted rSNPs, which are likely to influence the binding affinity of the RNA binding proteins (RBPs) 

that potentially may associate with FA. The major observable difference with PA platelet response is that for the dataset 2, 

all of the predicted rSNPs are in the intronic regions. In bold are the newly discovered significant SNPs, which were not 

previously identified in the study by Jones et al. (2009). 

 

Furthermore, using the RBPmap method, several SNPs were identified to be significantly 

involved with the changing the binding affinity of the proteins. Each identified rSNP is mapped 
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with the significant possible motifs in which it may localise and the predicted binding site(s) or 

genomic position with its bound protein(s). Tables 4.20 and 4.21 show the selected identified 

rSNPs, which are associated with the PA and FA responses respectively, and are likely to be 

occurring to the binding positions and regulating or have affinity with respective RBPs. Most 

of these rSNPs have been also predicted to be involved with other regulatory functions above. 

In addition, several of these predicted rSNPs are likely to be occurring in the same position 

where the RNA proteins bind. 

Dataset SNP id Genomic 

coordinate 

Motif 

sequence 

(Binding 

site) 

Possible 

binding 

position  

Bound 

protein(s) 

(RBPs) 

Signific

ance (p-

value) 

Dataset 1 rs3730051 chr19:40238790 ugrwgvh chr19:40238791 SRSF1 3.14e-03 

rs6141803 chr20:32752550 ugrwgvh chr20:32752551 SRSF1 1.73e04 

Dataset 2 rs5277 chr1:186679065 kgugukk chr1:186679068 BRUNOL4 1.18e03 

ugugukk chr1:186679070 BRUNOL5 3.85e04 

ugugug chr1:186679068 TARDP 2.88e03 

aaguguu chr1:186679069 TRA2B 1.66e04 

rs1472122 chr3:151316814 guaguagu chr3:151316819 HNRNPA1 2.40e04 

rs1704140

1 

chr3:4768285 yywcwsg chr3:4768286 SRSF5 6.30e03 

rs4130714

7 

chr6:73817320 chuuuuu chr6:73817320 CPEB2 3.39e04 

uuuuuu chr6:73817320 CPEB4 2.29e04 

huuuuuk chr6:73817320 HNRNPC 1.02e04 

uukruuu chr6:73817320 HuR 7.75e04 

Dataset3 rs2289171 chr2:208339990 uguanaua chr2:208339990 PUM2 1.16e04 

Table 4.20 The identified significant rSNPs that are associated with the PA and binding affinity of the different RBP(s). 
Each SNP is shown with its genomic position or locus, the motif(s) and binding site (or genomic position) in which the RNA 

protein(s) are likely to bind, the predicted RNA binding protein(s) and the statistical significance of the binding site position.  

In bold are the newly discovered significant SNPs, which were not previously identified in the study by Jones et al. (2009). 

From Table 4.20, it can be seen clearly that most of these rSNPs are predicted to be in the 

vicinity or within the binding sites of RBPs, which may bind to different motif(s). The most 

significant rSNP is rs41307147 in the chr6:73817320 or intron of the CD109 locus. This SNP 

might be localising in many different motifs, which are likely to be bound with different RBPs 

with the same binding position. 



286 

 

 

Based on the Tables 4.18, 4.19, 4.20 and 4.21, several rSNPs have been predicted to occur in 

the same position as the RBPS. This indicates that these rSNPs are likely to be regulating or 

affecting the binding affinity with corresponding RBPs. In addition, some of these RBPs such 

as HuR or ELAVL1 are not cell-type specific and have been implicated in several biological 

processes and diseases. Thus, they might be interesting to examine their role in platelet 

activation and cardiovascular diseases. 

4.4.4 Predicted rSNP(s) that are involved with the chromatin state and histone 

modifications 

Only one intron key SNP was found to be likely involved with the underlying chromatin state 

and histone modifications in the bone marrow derived cells (megakaryocytes), which are 

platelets factory. Table 4.22 represents the chromatin state and histone modifications and their 

associated rSNP(s) for PA. 

Dataset SNP id Genomic 

coordinate 

Motif 

sequence 

(Binding 

site) 

Possible 

binding 

position  

Bound 

protein(s) 

(RBPs) 

Signific

ance 

(p-

value) 

Dataset 1 rs7034539 chr9:5081585 wuaauur chr9:5081585 A1CF 3.11e04 

rs1491978 chr3:151362282 ugrwgvh chr3:151362284 SRSF1 4.23e03 

Dataset 2 rs6450105 chr5:52980479 aaguguu chr5:52980476 TRA2B 5.77e03 

rs11637556 chr15:66436613 chuuuuu chr15:66436613 CPEB2 4.77e03 

gcuugc chr15:66436612 MBNL1 1.74e03 

rs12485738 chr3:56831748 rwucaag chr3:56831748 SNRNP70 1.03e03 

wcwwc chr3:56831747 SRSF3 8.82e03 

Dataset 3 rs2276829 chr3:42527208 kgugukk chr3:42527207 BRUNOL4 4.93e03 

ugugukk chr3:42527207 BRUNOL5 4.02e03 

ugugug chr3:42527207 TARDBP 1.52e03 

rs17296289 chr10:32971771 auaaaav chr10:32971771 KHDRBS1 5.42e04 

rauaaam chr10:32971770 KHDRBS2 9.87e04 

Table 4.21 The potential identified significant rSNPs that are associated with the FA platelet responses and binding 

affinity of different RBP(s). In bold are the newly discovered significant SNPs, which were not previously identified in the 

study by Jones et al. (2009). 
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Methods Identified 

rSNPs 

Gene locus Predicted 

Chromatin and 

Histone 

modifications 

Cell type 

Chromatin 

structure 

rSNPBase rs1472122 P2YR12 H3K4me1 bone_marrow_HS5 

Table 4.22 The identified rSNP associated with PA that is likely to be involved with the chromatin state and histone 

modifications in bone-marrow related tissue type. The predicted chromatin and histone modification is histone H3 lysine 4 

mono-methylation (H3K4me1) in distal enhancer.  

The identified SNP is rs1472122 in P2YR12, which is likely to be involved with H3K4me1 

histone modification in the distal enhancer of the gene potentially P2RY12. This is in line with 

the predictions given by GWAS3D related to the same SNP, which also shows to be likely to 

be involved with enhancer. This means the presence of the H3K4me1 mark may likely to 

indicate the underexpression of the related gene (Calo and Wysocka, 2013), which in this case 

is P2RY12. This result might tie with those from the RAPIDSNPs in chapter 2, which showed 

that the SNP is significantly associated with low response of PA. Moreover, it could be 

suggested that the potential presence of H3K4me1 in the enhancer of P2Y12 may likely to lead 

or contribute to the individuals decrease of the expression of P2RY12 that may likely to 

decrease the PA response and platelet aggregation. Intriguingly and in contrast, Jones et al. 

found that this SNP is associated with the high PA response (Jones et al., 2009). 

4.4.5 Summary of results for the most significantly predicted rSNPs out of those identified 

by the RAPIDSNPs pipeline 

Several of the key SNPs identified using the RAPIDSNPs pipeline across the three datasets are 

predicted to be significantly associated with several regulatory roles. The potential involvement 

of the SNPs in different regulatory roles indicates their underlying significance at the molecular 

level that is likely to contribute to the differential ADP platelet responses among individuals. 

Table 4.23 summarises the predicted rSNPs and their different regulatory roles. 
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Dataset FA/PA Identified rSNPs Locus/ Genomic 

Position 

Likely regulatory roles 

2 FA rs12485738 ARHGEF3 eQTL, TFBS regulation, 

regulation of RNA binding 

proteins 

2 PA rs6057638 ch20:32751526 eQTL, TFBS regulation, distal 

regulation, 

rs3788337 GNAZ TFBS regulation, proximal and 

distal regulation, regulation of 

RNA binding proteins, long range 

interactions. 

rs2815805 MAPK14 eQTL, TFBS regulation, proximal 

and distal regulation, regulation of 

RNA binding proteins 

rs1472122 P2RY12 TFBS regulation, proximal 

regulation, chromatin and histone 

modifications, regulation of RNA 

binding proteins 

3 rs906766 MED12L TFBS regulation, proximal 

regulation, regulation of RNA 

binding proteins 

rs246406 ITGA2 eQTL, TFBS regulation, distal 

regulation, long range interactions 

1 FA rs1491978 P2RY12 eQTL, TFBS regulation, 

regulation, regulation of RNA 

binding proteins, long range 

interactions 

rs3736101 MADD TFBS regulation, proximal 

regulation. 

rs7034539 JAK2 eQTL, TFBS regulation, 

regulation of RNA binding 

proteins 

rs3729931 RAF1 eQTL, TFBS regulation, distal 

regulation, regulation of RNA 

binding proteins. 

rs7180408 GTF2A2 TFBS regulation, distal regulation 

rs17296289 LOC101929475 TFBS regulation, regulation of 

RNA binding proteins 

rs17204376 GPR87 eQTL, TFBS regulation, proximal 

regulation, regulation of RNA 

binding proteins 

PA rs8033381 CSK TFBS regulation, proximal and 

distal regulation, regulation of 

RNA binding proteins 

rs2300065 SKP1 TFBS regulation, proximal and 

distal regulation, regulation of 

RNA binding proteins 

rs3730051 AKT2 TFBS regulation, proximal and 

distal regulation, regulation of 

RNA binding proteins 

Table 4.23 The key SNPs from the RAPIDSNPs, which have been predicted to be involved with many regulatory roles. 
These SNPs were selected based on their likely involvement in at least two regulatory mechanisms for PA and FA platelet 

responses. In bold are the newly discovered significant SNPs, which were not previously identified in the study by Jones et al. 

(2009). 
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4.4.5.1 Non-deleterious, synonymous key SNPs with highly regulatory roles 

From Figure 1.14 in Chapter 1, we identified SNPs, which are missense (non-deleterious), or 

synonymous and thus, were not further investigated for their effect on the encoded proteins’ 

structural/function in the previous chapter (Chapter 3). However, in this chapter, these SNPs 

were found to be involved with many regulatory roles (Table 4.24), and hence are likely to be 

contributing to the individuals’ ADP platelet variability. These include the non-deleterious 

missense SNP rs3736101 in MADD, stop gained synonymous SNP rs2228671 in LDLR and 

stop lost synonymous SNP rs2815805 in MAPK14.  

Furthermore, the identified deleterious nsSNPs (missense SNPs) in Chapter 3 are all unlikely to be 

involved with any of the regulatory functions, as none of them were predicted to be rSNP by the 

designed pipeline. This molecular feature may suggest that the damaging missense SNPs are unlikely 

to be perturbing regulatory mechanisms underpinning the complex trait (ADP platelet responses), 

though further investigation is needed. 

4.5 Discussion 

4.5.1 Predicted rSNPs that are involved with eQTL, and their likely association with ADP 

platelet responses and CVD 

From Table 4.23, it is clear that the identified intronic, non-coding, non-deleterious missense, 

and synonymous key SNPs from the RAPIDSNPs are likely to be involved with many 

regulatory mechanisms. These mechanisms are likely to be contributing to the underlying ADP 

platelet activation variability and potentially contribute to the genetic basis of CVD risk. For 

instance, in the eQTL, the most interesting rSNP is rs12485738 in the ARHGEF3 locus, which 

is significantly associated with the FA response and an increase of platelet aggregation. This 

rSNP has been found to be associated with many eQTL genes. Several of the related eQTL 
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genes are likely to be associated with the ADP platelet responses and CVD. Expression levels 

of one of the identified eQTL genes, MYL9 (myosin light chain 9), are predicted to be regulated 

by rs12485738. The proteomic analyses show that the protein encoded by MYL9 plays a critical 

role in the signalling of integrin αIIbβ3, which is the required receptor for fibrinogen binding 

during the ADP activated platelet response aggregation (Fröbel et al., 2013). Thus, the likely 

regulation of the expression level of MYL9 by rs12485738 may contribute to the upregulation 

of the platelet aggregation. Moreover, eQTL genes associated with rs12485738 may include 

ADCY3, CD226, ADCY6, ARHGEF12, ARHGAP21, TLN1, VWF, CD9, and CETP, which are 

discussed below.  

CD226 

CD226 encodes an adhesion molecule CD226, which mediates the binding of thrombin-activated 

platelets to endothelial cells and induces platelet adhesion (Kojima et al., 2003). The involvement of 

CD226 is likely to occur during the secondary platelet aggregation where ADP is involved (Jiang et 

al., 2013).  

ADCY3 and ADCY6 isoforms 

Two isoforms of adenylate cyclase, ADCY3 and ADCY6, which encode ADCY3 and ADCY6 

respectively, are known to be associated with the formation of cyclic adenosine monophosphate 

(cAMP). Both isoforms are known to be associated with the de-aggregation of the platelet and are 

inhibited by the G(i) protein coupled receptors (Katsel et al., 2003). The cAMP is used to inhibit ADP 

activated platelet aggregation under the absence of G protein-coupled receptors and hence downregulate 

aggregation (Woulfe et al., 2001). In addition, the inhibition of ADCY6 was previously reported to 

be associated with the decrease of cAMP levels under thrombin stimulation (Werthmann et al., 2009). 

Therefore, the likely regulation of the expression levels of the ADCY3 and ADCY6 by the rs12485738 
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SNP might result in the possible downregulation of the cAMP and hence increased platelet 

aggregation. In addition, the ADCY6 isoform has been also associated with CVD (Hodges et al., 

2010). 

ARHGEF12 

The proteins encoded by this gene are exchange proteins, which have been reported to form a 

complex with G-proteins and thus, it has been suggested that ARHGEF12 may be participating 

in the platelet activation and aggregation (Zou et al., 2014). The roles of G-proteins with respect 

to the ADP platelet responses are well characterised in several papers, where together with the 

G-protein coupled receptors, they are reported to mediate the ADP induced platelet responses 

and aggregation (Klages et al., 1999; Offermanns et al., 1997, 1994; Ohlmann et al., 1995; 

Woulfe et al., 2001). Additionally, rs12485738 is in ARHGEF3, which encodes another isoform 

of ARHGEF and has been elsewhere reported to have association with the MI and ischemic 

stroke (Meisinger et al., 2009). Therefore, the likely regulation of the expression levels of the 

ARHGEF12 by the rs12485738 SNP might have an effect on the underlying differential 

regulation of the ADP platelet aggregation and hence, could also be a marker for CVD risk. 

ARHGAP21 

The likely regulation of the expression levels of this gene by the rs12485738 SNP might be 

vital to the mechanisms underpinning the ADP platelet responses and CVD. This is because 

ARHGAP21 is a GTPase activating protein for Cdc42, which has been reported to be associated 

with the increase of ADP induced platelet activation and aggregation, and CVD (Pleines et al., 

2010; Sinha and Yang, 2008). 
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TLN1 

TLN1 (Talin 1) is another eQTL gene, the expression levels of which are likely to be regulated 

by the rs12485738 rSNP. The major function of TLN1 is to activate integrin αIIbβ3 for binding 

of key ligands, such as the fibrinogen required for the platelet aggregation in the inside-out 

signalling fashion (Petrich et al., 2007). The activation is achieved when the two subdomains, 

F2/F3, of the expressed TLN1 form a complex with αIIbβ3 (Provasi et al., 2014). Moreover, 

the activated integrin and binding to its ligand (fibrinogen) brings about outside-in signalling, 

which is crucial for further platelet responses, recruitment, spreading, adhesion and aggregation 

(Li et al., 2010). Thus, the likely regulation of the expression levels of TLN1 by the rs12485738 

rSNP might be critical for both inside-out and outside-in signalling. In addition, the mediation 

of the latter two processes was reported to be carried out by the G-proteins (Offermanns, 2006; 

Shen et al., 2012). It is well known that G-proteins are central to the ADP platelet responses 

and aggregation. Moreover, the deficiency or decrease in TLN1 expression is thought to be 

associated with decrease of platelet aggregation and blood related disease (Fröbel et al., 2013). 

Overall, the rSNP rs12485738 regulated TLN1 expression levels might be critical to the FA 

platelet response and CVD, and hence, warrants further investigation. 

VWF (von Willebrand Factor) 

VWF is another eQTL gene, which is predicted to be regulated by the rSNP rs12485738. VWF 

encodes an adhesive ligand, which forms large multimeric complexes and plays vital role in 

the increase of platelet aggregation mediated by the binding of fibrinogen to integrin αIIbβ3 

under flow condition (Ikeda et al., 1991; Schmugge et al., 2003). Elsewhere, it was reported 

that VWF mediates the ADP-enhanced platelet activation, aggregation and persistent thrombus 

formation through P2Y1 and P2Y12 under shear flow (Mazzucato et al., 2004). Thus, it is likely 

that upregulation of the expression level of VWF by rs12485738 may increase the FA and 
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platelet aggregation. Additionally, vWF, is a target for antithrombotic treatments (Ruggeri, 

1992), which might be potentially optimised for personalised CVD therapeutics based on its 

predicted regulation by rs12485738. 

CD9 

This is another eQTL gene, which is expressed in the platelet surface and its expression plays 

critical role in the platelet activation and adhesion likely in complex with other surface 

molecules (Lanza et al., 1991; Worthington et al., 1990). Furthermore, it was previously 

reported that the expressed CD9 would co-localise with glycoprotein GPIIb-IIIa (integrin 

αIIbβ3) and mediate the fibrinogen binding during platelets adhesion and aggregation (Brisson 

et al., 1997). As rs12485738 associates with the FA response, then this suggests that it might 

be playing a role in increasing the expression levels of CD9 and therefore platelet aggregation. 

CETP (cholesteryl ester transfer protein) 

The expression of CETP is associated with the regulation of cholesterol metabolisms and 

platelet counts (Hildebrand et al., 2010). Moreover, it has been linked with the risks of several 

CVD events such as MI, atherosclerosis, and coronary artery disease (CAD) and their related 

therapy (de Keyser et al., 2011; El Bouhassani et al., 2011; Kimura et al., 2011; Ridker et al., 

2009). Thus, the predicted regulation of its expression levels by rs12485738 might be crucial 

in enhancing the CVD individualised treatment. 

Moreover, the rs6141803 SNP in COMMD7 was also identified to be likely influencing the 

expression levels of many platelet-related genes including COMMD7. Thus, the expression 

level of this gene is likely to be associated with risk of Myocardial Infarction (MI) (since this 

SNP was also reported to be associated with the risk of MI (Goodall et al., 2010). In addition, 
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this SNP is associated with eQTL genes  CDK5RAP1 and CPNE1 (or CPN1), which are likely 

to be physiologically associated with platelet functioning and increased CVD risk (Matthews 

et al., 2004; Zimman et al., 2014). 

Taken together, the above discussed genes with their associated significant and likely biological 

interesting rSNPs such as rs12485738 are worth for experimental investigation, which may 

further illuminate our understanding of the molecular mechanism underpinning ADP platelet 

responses. 

4.5.2 Predicted rSNPs occurring in the TFBS and their likely association with ADP 

platelet responses and aggregation 

For transcription factor binding regulation, several rSNPs have been predicted to be occur 

within the TF binding sites or have binding affinity with several transcription factors. Thus, 

they are likely to be differentially regulating transcription of the involved genes and hence, 

potentially contribute to the ADP platelet response variability and CVD risks. Table 4.24 shows 

these rSNPs with their likely TFs and target genes.  
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rSNP PA/ 

FA 

Gene/Locus Predicted 

TF 

Selected potential 

target ADP platelet 

related genes 

Decrease/increase 

of platelet aggr. 

rs6057638 PA ch20:32751526 GATA2 GNB1 (Offermanns 

et al., 1994) 

GBP1(Lubeseder-

Martellato et al., 

2002) 

Increase 

rs3212391 ITGA2 STAT1, 

PARP 
APOE (Riddell et al., 

1997),  

GNAZ (Brass et al., 

1993), PARP (Alexy 

et al., 2004) 

Decrease 

rs6141803 COMMD7 CEBPB PTGS1 (Catella-

Lawson et al., 2001; 

Vane et al., 1994) 

Decrease 

GATA1/2 LRRFIP1 (Goodall et 

al., 2010) 

Increase 

rs3788337 GNAZ AR TLN1 (Nieswandt et 

al., 2007),  
MAPK14 (Navarro-

Núñez et al., 2010) 

Decrease 

STAT5A ESR2 (Jayachandran 

et al., 2010) 

Increase 

rs2289171 PIKFYVE MAFK PTK2B (Cipolla et 

al., 2013),  

Increase 

rs3730051 AKT2 PAX5 ESR1 (Jin et al., 

2006) 

Decrease 

rs1472122 P2YR12/ GPR87 STAT3, 

CEBPB 
JAK3(Tibbles et al., 

2001), PTGS1 

(Catella-Lawson et 

al., 2001; Vane et 

al., 1994), (Siess and 

Tigyi, 2004) 

Decrease 

rs5277  PTGS2 POL2 SP3(Meinders et al., 

2015) 

Increase (Potential)  

rs3729931 FA RAF1 STAT1, 

PPARG 
PPARG (Ray et al., 

2008) 

Decrease 

rs12485738 ARHGEF3 FOXA1 SP3(Meinders et al., 

2015), 

Increase 

Table 4.24 The most often predicted rSNPs, which are associated with several TFBS. These rSNPs are likely to be in the 

binding sites of the target gene(s). The predicted TFs is followed by selected potential gene(s) that they regulate. In bold are 

previously unidentified SNPs in the Jones et al. (2009) study. 
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4.5.3 Summary of rSNPs that are likely to be associated with different CVD risks 

There are numerous key SNPs identified using RAPIDSNPs that are predicted to be regulatory 

and involved with many of the molecular functions, as described above. Additionally, these 

SNPs are likely to be associated with different CVD risks, based on whether the involved genes 

or SNPs are predicted to increase or decrease platelet aggregation (Table 4.24). The association 

with CVD can be directly or indirectly inferred through the SNP itself or related eQTL 

genes/TFs from the literature. Thus, there are new SNPs in addition to those mentioned in the 

Chapter 2 that are likely to be associated with CVD, or have potential to be associated with 

CVD. Table 4.25 provides the summary of the predicted rSNPs, which are likely to be 

associated with CVD. 
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rSNP Gene/Locus ADP 

Platelet 

response 

Regulatory 

roles 

Involved 

gene(s) / TF(s) 

CVD risk type reference 

rs12485738 ARHGEF3 FA eQTL, 

TFB 

ADCY6, 

CETP, 

FOXA1 

Blood pressure, 

Potential for 

MI & ischemic 

stroke 

(Hodges et 

al., 2010), 

(Meisinger et 

al., 2009) 

rs6141803 COMMD7 PA eQTL, 

TFB 

CDK5RAP1, 

CPN1, 

GATA1/2, 

CEBPB 

MI (Goodall et 

al., 2010) 

rs1491978 P2RY12 FA eQTL, 

TFB 

P2RY12, 

NFAT 

Potential for 

MI & ischemic 

stroke 

(Simon et al., 

2009; Zee et 

al., 2008) 
rs3729931 RAF1 FA eQTL, 

TFB 

PPARG, 

STAT1 

Heart Failure/ 

Hypertension 

(Ray et al., 

2006)/ (Parsa 

et al., 2011) 

rs3212391 ITGA2 PA TFB, distal 

l. 

interactions 

PARP, 

PPARG 

Atherosclerosis 

(Stroke), 

Hypertension 

(Deng and 

Shen, 2007; 

Gardener et 

al., 2011), 

(Ray et al., 

2006) 
rs1472122 P2YR12 PA eQTL, 

TFB 

 CEBPB, Potential for 

Ischemic 

Stroke 

(Siess and 

Tigyi, 2004) 

rs5277 PTGS2 PA TFB POL2/SP3 Potential for 

Ischemic stroke 
(Kraus et al., 

2013; 

Maguire et 

al., 2011) 

Table 4.25 The predicted rSNPs, which are likely to be involved with CVD. In bold are previously unidentified SNPs in 

the Jones et al. (2009) study.  

4.6 Conclusion 

Based on Table 4.25, half of the identified SNPs, are new and were not previously identified in 

the Jones et al. study (Jones et al., 2009) implying that the RAPIDSNPs pipeline is capable of 

identifying, potentially crucial, novel rSNPs, which are likely to be associated with CVD. 

Moreover, not all of the SNPs that have been identified by RAPIDSNPs (Table 2.20 in Chapter 

2) and shown to have a likely association with CVD, have been identified to be regulatory. 

Taken together, the results may suggest that most of the identified key SNPs from the 

RAPIDSNPs are indeed likely to associate to several alternative mechanisms that may underlie 

ADP platelet responses variability. Additionally, the molecular mechanisms of the several 
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previously identified SNPs (Jones et al., 2009), have been further elucidated. These rSNPs also 

include rare variants, such as rs41305896 in the ITGA2 gene, which is likely to be associated 

with transcription factor binding regulation and increased FA platelet responses.  

Furthermore, most of the regulatory mechanisms that are likely to be involved with the 

predicted rSNPs are differential gene expression levels (eQTL), and gene transcription. This 

may suggest that the identified key SNPs are likely to down- or up-regulate expression levels 

depending on the individuals’ genotypes. Moreover, they are likely to occur in the transcription 

factor binding sites of several related genes. The likely presence of these rSNPs in the TFBS 

may have an effect on the binding affinity of the related TFs and hence lead to differential 

transcript variants of the targeted genes. Moreover, numerous rSNPs were predicted to be likely 

involved with many other regulatory mechanisms such as, RNA protein binding and proximal 

and distal regulations of the related TFBS. Each of these predicted regulatory roles may further 

underpin the genetic basis of the variability of ADP platelet responses and aggregation, which 

may contribute to differential CVD risk levels. 

The next chapter describes the development of a gene based prediction method for identifying 

individuals with extreme ADP platelet responses levels, based on the identified SNPs. The 

presumption is that some of the rSNPs identified in this chapter (along with the coding SNPs 

characterised in Chapter 3) may help to increase the predictive accuracy of the genetic models. 

Thus, the analysed SNPs in this and Chapter 3 are investigated their involvement in predicting 

high or low ADP platelet response levels in allelic specific manner, which may further explain 

genetic and molecular risk of CVD. 
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Chapter 5 - Predicting ADP platelet response levels using SNPs 

5.0 Abstract 

A major challenge in medicine is to understand and predict disease risk. Predicting disease risk 

could be achieved via elucidation of the intermediate phenotypes of the complex trait 

(biological system), such as its molecular mechanisms. The mechanistic combination of the 

complex trait prediction using genetics (or genotypic information) and prediction of 

intermediate phenotypes, may have profound impact on treatment outcomes. The last two 

chapters endeavoured in predicting the molecular mechanisms (intermediate phenotypes) due 

to the genetic variants identified in the Chapter 2. In this chapter, the genotypic information 

related to the SNPs, which were identified in the Chapter 2, are used to predict the ADP platelet 

responses levels of the individuals. It is postulated that combining this type of prediction with 

the predictive results from the last two chapters, may further illuminate the understanding of 

ADP activated platelet responses, CVD risk. In the long term, the results of these studies may 

add value to the current clinical strategies for CVD.  

We have designed a predictive approach based on a supervised machine learning method (using 

an artificial neural network or ANN), which predicts the individuals’ low or high ADP platelet 

response levels. Two underlying hypotheses are: 1) the specific SNPs genotypes among 

individuals are likely to contribute to varying individuals’ extreme high or low expressed ADP 

platelet response levels, 2) key SNPs from the RAPIDSNPs significantly contribute to 

increasing the accuracy of predicting the individuals’ low or high ADP platelet response levels. 

The main focus of the chapter is to find the specific individuals SNPs’ alleles, which predictably 

contribute to the extreme high or low ADP platelet response levels. This information will be 

important for inferring the extent of the involvement of the genetic factor (SNPs) and their 

predicted molecular mechanisms (intermediate phenotypes) in complex trait variability. 

Moreover, accurate predictions of the ADP platelet response levels might also allow for 
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inferences to be made regarding the individuals’ CVD risk levels, due to the combined genetic 

factors and molecular intermediate phenotypes. This could have potential to influence future 

CVD personalised healthcare settings and ‘omic driven health policy development. The major 

assumption in this work is that environmental factors such as non-genetic, epigenetics and other 

covariates are controlled in the input data set. 

Based on our approach, the key SNPs from the RAPIDSNPs have been found to be significant 

factors for predicting individuals with high or low ADP platelet response levels. The key SNPs 

were benchmarked against the SNPs identified from Jones et al. study (Jones et al., 2009). 

Additionally, we have identified the specific SNPs alleles/genotypes, which are likely to 

significantly contribute to the extreme individuals’ low or high ADP platelet response levels. 

These results may help to further our understanding of individualised CVD risks for application 

in future personalised medicine (PM) strategies. 

5.1 Introduction 

In understanding the genetic basis for human disease or complex traits, biomedical experts have 

two long standing goals: 1) the identification of the disease or trait associated SNPs (variants), 

and 2) the ability to predict the phenotype variations from the SNPs genotypes (Burga and 

Lehner, 2013). The former has been largely achieved due to advances in GASs including 

genome-wide association studies (Burton et al., 2007; Hirschhorn and Daly, 2005), and the 

latter has now become a mainstream interest (Makowsky et al., 2011; Wray et al., 2013). 

Predicting phenotypic variations from the genotype is now performed in plant and animal 

breeding, model systems, and the human population (Campos et al., 2013; Meuwissen et al., 

2001; Ober et al., 2012; Wray et al., 2013). For predicting disease or complex traits phenotype 

from genotype in the human population, the main interest lies in what and how this type of 

prediction may bring benefit to preventive and personalised medicine (Makowsky et al., 2011). 
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Most of the disease phenotype predictions are based on statistical models that attempt to relate 

the genetic variants such as SNPs with a particular phenotype (Burga and Lehner, 2013). In 

this case, early efforts involved building predictive models for the quantitative traits (Lynch et 

al., 1998). Nevertheless, there are several challenges/limitations that are to be addressed for the 

aim of achieving higher accuracy in these predictions (Burga and Lehner, 2013; Wray et al., 

2013), even though predicting 100 percent accuracy for PM is improbable (Burga and Lehner, 

2012). One of the fundamental challenges is that much of the complex trait or disease 

phenotype variations are still unexplained, or in other words, there are yet unknown SNPs or 

variants that might be influencing traits or diseases (Manolio et al., 2009). The RAPIDSNPs 

approach, which identified the novel (previously unidentified) significant SNPs, helps us 

further in bridging this gap. In addition, the identified key SNPs from RAPIDSNPs are 

postulated to help increase the accuracy of the genetic models, for predicting high or low ADP 

platelet response levels. Hence, the output from RAPIDSNPs may help us to address a major 

limitation of predicting complex traits with high accuracy - the inability to identify the key 

SNPs with high genetic effect (Janssens et al., 2006; Wray et al., 2013).  

Furthermore, other limitations to designing useful methods may include the consideration of 

all SNP’s with small effects contributing to the complex trait, which are likely to improve the 

prediction accuracy (de los Campos et al., 2010; Wray et al., 2013). With this regard, there are 

numerous designed statistical methods that are applied to the prediction of the complex trait 

phenotypes from genotypes (Campos et al., 2013). These methods could be classified into 

different types such as multivariate mixed models, Bayesian and penalised methods and other 

multivariate parametric based approaches (Campos et al., 2013; Stephan et al., 2015). However, 

most of these statistical methods have been reported elsewhere to be sub-optimal for genotype-

phenotype association or prediction (Moore et al., 2010).  
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Methods that incorporate machine learning (ML) for optimising the selection of useful genetic 

variants and improving phenotypic prediction have recently gained attention, and have been 

reported to complement these standard statistical approaches (Okser et al., 2014). The 

underlying mechanism of supervised ML approaches is to construct a learning genotype-

phenotype model using the training examples with useful genetic features and then testing the 

model with new examples. In doing genetic prediction, these methods might be focusing on 

predicting the genetic risks of both the continuous and non-continuous (binary or multi-class) 

complex trait phenotypes (Campos et al., 2013; Makowsky et al., 2011). One of the advantages 

of the ML methods is that they can maximise the individual model’s predictive accuracy and 

hence have greater potential to be successfully applied in personalised medicine (Ashley et al., 

2010; Kraft et al., 2009). Moreover, they can more efficiently deal with the genetic interactions 

(Lehner, 2007; Moore and Williams, 2009). 

In applying these methods for standard genetic prediction, the prediction procedure might 

follow two steps (Shi et al., 2011). Firstly, selecting the most significant SNPs from the large 

set of the SNPs, and secondly, use the selected significant SNPs for predicting the SNPs effect 

on the phenotypic trait (Powell and Zietsch, 2011). However, this strategy should be performed 

with care as it may result in overestimation of the prediction accuracy, particularly when using 

the same SNPs in the same sample data during the validation stage. The use of k-fold cross-

validation during the validation stage is always recommended to mitigate this problem (Powell 

and Zietsch, 2011; Purcell et al., 2009; Wray et al., 2013). Moreover, the overestimation might 

be further due to missing the predictive interactions across SNPs, which can lead to overfitting 

or reduced predictive accuracy (Abraham et al., 2013). The key SNPs from the RAPIDSNPs 

are postulated to be useful for predictive purposes, as described in the above stated two-way 

standard procedure for predicting the complex trait. In addition, the k-fold cross-validation (see 
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the Methods section) was applied in the underlying predictive approach described in this 

chapter to address overestimation. 

Therefore, the study hypothesises that most of the key significant SNPs identified using 

RAPIDSNPs are likely to contribute to enhanced accuracy in predicting the individuals’ low 

and high ADP platelet responses levels. Moreover, the study investigates combining 

information about the SNPs’ associated molecular mechanisms to further increase predictive 

accuracy. Such combination appears to be useful despite the fact that it is difficult to understand 

the underlying detail of the molecular mechanisms (intermediate phenotypes) and how they are 

involved in increasing the trait predictive accuracy (Burga and Lehner, 2013).  

In predicting the ADP platelet response levels, the underlying designed method employs a 

binary classifier for complex trait/disease risk prediction. This is because the high or low ADP 

platelet response levels phenotypes are categorical. 

The underlying predictive approach employs an artificial neural network (ANN). ANNs can 

deal with non-linearity and complex interactions of the data, which make it very suitable for 

genetic predictions (González-Camacho et al., 2012). To date, ANNs have not been widely 

used for genotype-phenotype complex trait predictions in human. Notable attempts have been 

made in the prediction of the phenotypic drug resistance (Pasomsub et al., 2010; Wang and 

Larder, 2003). However, for complex trait phenotypes in other model systems, particularly in 

plants and livestock, genetic prediction using ANNs has been extensively applied (González-

Camacho et al., 2016, 2012; Ornella et al., 2014).  

Thus, we evaluate the predictive accuracy of the generated ANN genetic models when they are 

alternatively run using the key SNPs identified by RAPIDSNPs and those identified in the 

original study (non-RAPIDSNPs) (Jones et al. SNPs). Based on the model evaluation, a 



304 

 

significant improvement of the model accuracy is observed when the key SNPs identified by 

RAPIDSNPs are used in the predictive models compared with those from Jones et al. (non-

RAPIDSNPs), in predicting individuals’ high or low ADP platelet response levels. 

5.1.1 Why it is important to predict ADP platelet response levels? 

One of the advantages of predicting ADP platelet response levels using SNPs genotypes is that 

it allows us to gauge the extent to which the key SNPs are involved in the individuals’ extreme 

low or high ADP platelet response levels. Furthermore it allows us to infer the likely 

involvement of the SNPs’ allele in the underlying particular molecular mechanisms 

contributing to the individuals’ low or high ADP levels and hence their CVD genetic risks 

(Burga and Lehner, 2013). For instance, the missense SNP rs2071676 in CA9 was found to be 

likely associated with structural/functional changes of the CA IX. The minor allele of this SNP 

(see Results & Discussion section) was found to be significant associated with low FA response 

levels. Then, based on Burga and Lehner, this allele could be attributed or inferred to the 

structural/functional changes of the CA IX protein. 

Moreover, predicting individuals’ high or low ADP platelet response levels could be of 

biomedical importance. It was observed in the Chapter 1 that there is an inter-individual 

variability in the FA/PA platelet responses with those who showed normal, very low or high 

platelet responses. These variations are likely to be due to the individual’s genetics in addition 

to non-genetic factors, as previously described. The RAPIDSNPs approach was developed in 

order to identify the most significant SNPs (key SNPs), which are associated with individuals’ 

variability of ADP platelet responses.  Genetically, it could be hypothesised that this variability 

might be due to variation of the individuals’ SNPs alleles/genotypes, which may contribute to 

the individuals’ differently expressed extreme high or low ADP platelet response levels. And 

thus, the individuals’ SNPs genotypic information, which are involved with high or low ADP 
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platelet response levels could have potential of predicting the CVD risk levels. This type of 

predictive tool is likely to be informative in future personalised healthcare settings and in policy 

development. 

Thus, the ANN was trained to learn predicting which individuals are likely to be associated 

with the extreme ADP platelet response levels, based on their SNPs genotypes. The next section 

describes the details of the underlying predictive approach. 

5.2 Methods 

The predictive approach is divided into three sub-methods based on the underlying SNPs 

groups, which are used as inputs. It should be stated that the major aim here is to genetically 

predict individuals with either high or low ADP platelet response levels from their SNPs 

genotypes/alleles (i.e. major, minor, or heterozygous). For details about the description of 

SNPs’ alleles, refer to the Chapter 1 (section 1.4.1.1). 

There are three types of SNPs groups that are going to be used: - 1) SNPs from Jones et al. 

findings that are associated with ADP platelet responses (Jones et al., 2009), 2) key SNPs from 

the RAPIDSNPs, and 3) the randomly selected SNPs from the entire SNPs dataset, including 

those from 1 & 2. 

Then, each of the above SNPs groups are used as inputs to predict high or low PA and FA 

platelet responses levels using an ANN. The diagram below illustrates a general predictive 

approach, which involves these SNPs sets. 
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Figure 5.1 The underlying approach for genetically predicting the individuals with high or low ADP platelet response 

levels. Three different SNPs groups (Jones et al. SNPs or SJ, key SNPs from RAPIDSNPs or SR, & randomly selected SNPs 

or SD) are used as inputs to the artificial neural network models. These SNPs groups are due to the subsets or datasets 1, or 2 

(i.e. the first inputs layer of SNPs dataset(s)). The performance scores of each method based on these groups, are compared to 

examine the significant and best performing group. Under null hypothesis the key SNPs are not significantly able to 

significantly predict with high accuracy the individual’s high or low ADP levels over Jones at al SNPs. 

From the flowchart diagram in Figure 5.1, the randomly selected SNPs group are randomly 

selected SNPs from either of the two datasets (dataset 1, or 2), which were derived as a result 
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of treating the missing values contained in the original cohort as explained in the Chapter 2. 

Moreover, the datasets were used for the SNPs selection based on the two major involved 

processes, which were either the RAPIDSNPs or Jones et al. stepwise forward approaches. The 

Jones et al SNPs were essentially taken from the previous study and alternatively used for 

predictions related to dataset 1 and 2. The binary levels are based on two stage prediction in 

which the first stage is predicting whether the individual is an extreme or normal ADP platelet 

responder. The second stage is related with only extreme individuals where the focus is to 

predict whether the individual is high or low ADP platelet responder. The major reason for this 

two stage binary prediction is to ensure the models are smoothly able to handle the normal 

individuals’ ADP platelet response levels. 

Furthermore, in comparing the performance scores from each SNPs group, 20 different ANN 

models were generated. The number of models for comparison could be higher than twenty, 

but twenty were presumed to be a reasonable size for statistically testing the significance of the 

performance scores. 

5.2.1 Transforming ADP platelet responses into two classes – Categorising phenotype into 

high or low FA/PA levels 

Each of the ADP platelet responses (PA and FA) cases were initially categorised into either of 

the three classes or levels (low, normal, high) based on the empirical distributions as described 

in the section 1.8 of Chapter 1. The levels were based on the 15 – 85% percentile of the PA or 

FA traits. In this case, the quantiles 𝑄0.15 and 𝑄0.85 were used to split each trait phenotype (𝑦𝑖) 

into three levels: 𝑦𝑖 ∈ high level, if 𝑦𝑖 > 𝑄0.85; 𝑦𝑖 ∈ normal level if 𝑄0.15 < 𝑦𝑖 < 𝑄0.85; 𝑦𝑖 ∈ 

low level if 𝑦𝑖 ≤ 𝑄0.15. Since the largest number of cases are ‘normal’ individuals, then it was 

assumed that the model accuracy or performance using a 3 – class problem would be relatively 

skewed toward the individuals with “normal” ADP levels, due to the cross-validation effect. 



308 

 

Besides, attempting a two-class prediction, by focusing only on high or low ADP levels, is 

more appropriate for the underlying biomedical purpose of the study, as the individuals of high 

or low ADP levels are more important for potentially determining CVD risk levels. Therefore, 

two class predictions were performed in two phases. The first phase involved predicting 

individuals whether they are likely to be of extreme or normal ADP platelet response levels. 

The second phase involved predicting extreme individuals whether are high or low ADP 

platelet response levels. Breaking the prediction into these two sub-tasks enabled to 

accommodate in the models the individuals with ‘normal’ cases. 

5.2.2 Model induction or fitting (Multilayer Perceptron Neural Network – MLP) 

In this study, the MLP was used to classify the individual ADP levels into 2 different disjoint 

classes S = (C1, C2). Each target class Ci was transformed into target vector of 0 or 1. Example 

C1 = (1,1) or C2 (0,0), which might imply high or low ADP levels respectively. The input 

vector of cases and SNPs were in the X matrix of n x p dimensions where n and p represented 

cases and SNPs respectively. When applying MLP, the method was trained without prior 

assumption about inputs and class outcomes distribution, which provided the parallel or extra 

advantage in capturing complex interactions (González-Camacho et al., 2016). The input 

features for the ANN are SNPs genotypes transformed into binary vectors where each neuron 

will be receiving one of the three genotype signals, i.e. (1,1), (0,0) or (1,0) representing major, 

minor, or heterozygous alleles from each SNP respectively. 

In this study, the underlying basis of the MLP was represented by the topology, which is shown 

in the diagram below, Figure 5.2: 
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Figure 5.2 The underlying MLP ANN topology used for predicting the high or low ADP platelet response levels. Two 

Hidden Layers were used for activating the weights when fitting the model using back-propagation algorithm. The input 

features are each SNP (Si) genotypes, which might take any of the binary values vectorised as {1,1}, {1,0} or {0,0} for the 

SNP’s major, heterozygous or minor alleles respectively. i.e. each SNP’s genotype is represented together by two rectangular 

shapes or boxes where each may contain and gives a signal of bit (1 or 0) to a neuron Thus, each neuron might take one of the 

above binary vectors from a single SNP (Si), which represents a particular genotype.  

For this study, the MLP is initially used for classifying binary class disjoint sets with levels, 

which are: 1) extreme, and normal, 2) low, and high individuals ADP platelet response levels. 

The MLP ANN topology contained two hidden layers. For all three SNPs group dataset (s),  

i.e. the randomly selected SNPs (SD), key SNPs from RAPIDSNPs (SR) and Jones et al. SNPs 

(SD), each hidden layer contains 5 neurons. The activation function for each hidden and output 

layers are governed by the equations below: 



310 

 

 

where: 

m is an individual input case for the total cases M, 𝑍 = (𝑍1, 𝑍2, … , 𝑍𝑀), and 𝑇 =

(𝑇1, 𝑇2, … , 𝑇𝐾), 𝑍𝑚 are activated weights (Wij) in the hidden layers derived from the linear 

combinations of input SNPs genotypes features, which are represented by dimensional matrix 

X. The sigma 𝜎(𝑣) is a sigmoid nonlinear function 1 1⁄ + 𝑒−𝑣, the vectorised class K represents 

the classes (ADP levels) to be modelled where kth unit is an output probability of class k. There 

are 2 target measurements 𝑌𝑘, 𝑘 =1,2, each is coded as 0 – 1 (one hot encoding) variable for the 

kth class. 𝑌𝑘 is an output function (𝑓𝑘(𝑋)), which is modelled as linear combinations of the 𝑍𝑚. 

There is additional bias unit, which captures the intercepts 𝛼0𝑚 and 𝛽0𝑘 in the model above. 

The output function 𝑔𝑘(𝑇) is softmax function for transforming the vector of outputs 𝑇 into 

probabilities K classes in which each kth class contains value in the interval [0,1]. The softmax 

function is given as follows: 

 

In fitting the ANN model with above architecture for genetic prediction of the ADP levels, the 

standard gradient descent back-propagation algorithm is used. Briefly, the theory underlying 

the algorithm is based on the error function that finds the summation of nodes’ weights, which 

will minimise error in predicting the classes. Hastie et al., (2005) has provided further details 

of the algorithm and theoretical underpinnings. 
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Furthermore, in fitting the ANN model, the seed was used for random initialisation of the 

weights and thresholds. In this case, the new random seed was being auto generated and 

changed in each time when the model was fitted. Each of these random seed numbers were 

being recorded so as to be reused in fitting the models using the Jones et al. SNPs group. 

Moreover, as the models were run or implemented using KNIME tool, in most cases, each of 

these random seed auto generated numbers was observed to be positive or negative large integer 

(See section 5.3.3).  

5.2.3 Model evaluation 

In predicting the individuals’ extreme and normal ADP response levels, the predictive accuracy 

of the models was assessed by dividing each subset into training and test cases based on the 

stratified samples by classes for each of the applied SNPs group (SR, SJ, or SD). This is because 

there was a sufficient number of individual cases, which were 462 for dataset 1. In this case, 

absolute partitioning was used in which the training cases contained 300 cases while the test 

cases contained 162 cases. However, for predicting the extreme cases alone (second stage 

prediction), i.e. predicting individuals’ high or low ADP platelet response levels, the predictive 

accuracy of the models was assessed through cross-validation procedure. In this case, 5- fold 

cross-validation based on the stratified samples by classes (ADP platelet response levels) for 

each SNPs feature group was applied. This is because there were few individual extreme cases 

with high or low ADP platelet response levels based on the set up quantiles (approximately 140 

individuals with high and low ADP platelet response levels). In this case, each cross-validation 

set for each SNP group contained 28 cases split evenly into high or low individuals. The number 

of SNPs for each of the SNP groups related to dataset 1 was 7, 10, & 10 for the SR, SJ, & SD 

groups respectively, which are associated with PA platelet response. For FA platelet response 

the number of SNPs was 7, 11, & 10 for the SR, SJ, & SD groups respectively. 
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Furthermore, the models’ performance scores were evaluated using the accuracy measure and 

Cohen’s kappa (Ornella et al., 2014). However, based on the assessment, using kappa score 

provides reasonable performance due its high sensitivity in predicting the true number of high 

or low ADP platelet response levels comparing to the accuracy measure (see section 5.3.2). In 

addition, in stratifying the data sets, random seed was initially set to be equal to 10 for 

reproducing the same results in the initial models. A confusion matrix was also used for 

evaluating the prediction performance of the models. The confusion matrix is given by the 

following Table 5.1. 

 Classifier predicted value Sum 

Observed  1 0  

1 TP FN TP + FN 

0 FP TN FP +TN 

Sum TP + FP FN + TN n 

Table 5.1 Confusion matrix for binary or two-class classification with observed values and classifier predicted values. 
In the context of this study, 1 and 0 represent high and low ADP platelet response levels respectively. TP true positive, FP 

false positive, FN false negative, TN true negative, n is total number of cases. 

All computations were performed using R language and KNIME 3.2.1 Analytics platform 

(Berthold et al., 2008). Figure 5.3 below shows the example of KNIME nodes workflow for 

ANN modelling. MLP neural network KNIME implementation illustration can be found here 

(https://www.knime.org/nodeguide/analytics/classification-and-predictive-

modelling/example-for-learning-a-neural-network), 
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Figure 5.3 The sample KNIME workflow for modelling individuals’ extreme or normal, and high or low ADP platelet 

response levels. The connected nodes show the flow of procedure in modelling the ADP levels. The SNPs data were loaded 

through the File Reader nodes. Then, the partitioning node was used to split the data into training and test cases. The partitioning 

of the data with 5-cross-validation was performed using X-Partitioner node, which was then applied to evaluate the trained 

model. The RProp MLP Learner node was used to train the data and build the ANN model. The MultiLayerPerceptron Predictor 

node tested or validated the trained model by using 5 cross-validated sets from the X-Partitioner node. The Scorer node 

evaluated the performance of the model using the Cohen’s kappa and Accuracy. 

5.2.4 KNIME implementation of ANN 

In implementing ANN with back propagation algorithm, two key nodes in KNIME were used, 

as shown in Figure 5.3. These are RProp MLP Learner and MultiLayerPerceptron Predictor 

nodes. The configurations of the two nodes, in which the first node is used to train the model 

while the second is used to test the models were as follows; for the RProp MLP Learner, the 

total number of iterations for the entire epoch was 100, two hidden layers were used and each 

contained a maximum of five neurons, the auto generated random seed number was used to 

initialise the weights. For the MultiLayerPerceptron node, the configuration for this node is 

optional, which involves changing the attribute name of the new column of the predicted values. 
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Additionally, in running the ANN models in KNIME, for each generated model, a new RProp 

MLP Learner node was reset with new auto generated random seed, thus, 20 auto generated 

random seeds were used for a total of 20 models (see section 5.3.4 in the Results). 

5.2.5 Statistical test of the model scores 

The driving hypothesis of the chapter is that the key SNPs from RAPIDSNPs contribute most 

to the increased performance accuracy of the genetic models in predicting high or low ADP 

platelet response levels. In this case, prediction performance scores from the key SNPs from 

RAPIDSNPs were benchmarked against those from the Jones et al. SNPs. To test the hypothesis 

and hence, the statistical significance of the models, a paired t-test was conducted to compare 

the model scores, which were generated by the key SNPs from RAPIDSNPs (SR) with those 

from Jones et al. SNPs (SJ) and randomly selected SNPs (SD), which were used as controls. In 

conducting a paired t-test, 20 models scores were generated for each of the key SNPs and Jones 

et al. SNPs based on the 20 different random seeds (1, 2, 3, …, 20), which were alternatively 

set during stratifying the SNPs data in the partitioning and cross-validation stages. Thus, each 

run of the model was based on these random seeds, which were set before building and running 

the ANN model (See sub section 5.3.4 of the Results section for further clarification). In 

addition, for performing this statistical comparison, 20 models with their scores were presumed 

to be reasonably and statistically sufficient as further indicated with the scores pattern (see 

section 5.3.4 of the Results). The cut off for models’ significance was set to be p-value of <= 

0.05. 

The kappa scores for 20 models were then noted for the three involved SNPs groups (key SNPs 

from RAPIDSNPs, randomly selected SNPs, and Jones et al. SNPs). Under null hypothesis, the 

key SNPs from RAPIDSNPs do not predict the individual’s high or low ADP levels with 

significantly higher accuracy than those from Jones at al. SNPs. Thus, if the null hypothesis is 
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accepted, then any observed increases in the predictive accuracy of the model using the key 

SNPs from RAPIDSNPs, might be due to chance. 

5.2.6 General prediction procedure 

The general genetic prediction procedure (pseudocode) is outlined beneath: 

Input:  

- A random selected SNPs with their genotypes and ADP platelet responses 

(phenotype)(SD). 

- Key SNPs with their genotypes and ADP platelet responses (phenotype) from the 

RAPIDSNPs (SR). 

- Previously obtained SNPs from Jones et al. with their genotypes and ADP platelet 

responses (phenotype) (SJ). 

1. Transform ADP platelet response phenotype into three classes (low, high, and normal 

individual levels) based on 15% - 85% percentiles. 

2. For each group (i) (SD, SR, and SJ), compute 20 different kappa scores 

a. Initialise total number of random seeds to 1 

b. While total number of random seeds are equal to 20 

i. Select a random seed. 

ii. Perform cross-validation with 5-fold using stratified sampling based on the 

individuals’ high and low ADP levels. 

iii. Predict using ANN and get the kappa score. 

iv. Increment number of random seeds. 
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3. Perform a paired t-test on the scores for SR and SJ. 

4. If the p-value is small (<= 0.05), then it may suggest that the model based on SR 

significantly outperforms that based on SJ for high and low ADP platelet response levels. 

5. Use the Chi-square to test the significance of each SNP(s) and their genotypes in the model 

related to SR, which significantly predict individuals’ high or low ADP levels. 

 

5.2.7 Testing if the SNPs’ alleles (genotypes) significantly contribute to high or low ADP 

platelet response levels. 

For the SNPs sets, which significantly predicted, with high accuracy, the individuals with high 

or low ADP platelet response levels, a Chi-square test was applied to test which of the SNPs 

genotypes are likely to significantly to contribute to high or low ADP platelet response levels. 

In addition, if each individual SNP was found to have a significant association with extreme 

ADP platelet response levels, then its genotypes were further examined to determine which 

allele (genotype), is significantly related to either a high or low ADP platelet response levels. 

Hence, this enabled us to determine the allele, which is more likely to be involved with extreme 

ADP cases. The cut off for significance of the SNP’s allele was a p-value of <= 0.01. 

5.3 Results and Discussion 

5.3.1 Prediction performance based on the dataset 1 – randomly selected SNPs, key SNPs 

from the RAPIDSNPs and Jones et al (2009). SNPs 

5.3.1.1 Predicting extreme/normal PA response levels 

In predicting individuals’ extreme or normal PA response levels, the following scores in Table 

5.2 that are related to the initial models were obtained.  
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Selected SNPs sets for ANN 

 

Model accuracy  Predicted true 

number of cases 

with extreme PA 

levels  

Predicted true 

number of cases 

with normal PA 

levels 

Accuracy 

(%) 

Kappa 

Random selected SNPs (SD) 64.815 -0.002 6/49 91/113 

Jones et al. SNPs (SJ) 64.815 0.098 14/49 91/113 

Key SNPs from RAPIDSNPs (SR) 66.049 -0.009 4/49 101/113 

Table 5.2 The model scores for predicting extreme/normal individuals’ PA response levels using three SNP sets 

stratified based on random seed equal to 10. The best models’ scores are in bold.  

From Table 5.2, the SR has high model score in accuracy measure while the SJ set has high 

model score in kappa indicating that it has an edge or is more sensitive in predicting extreme 

individuals. In addition, the SR set predicts well the normal individuals over other SNPs sets. 

However, SJ set outperform both SR and SD in predicting the extreme cases. Table 5.3 shows 

sample results of the predicted individuals’ extreme and normal PA response levels based on 

the above model from SR SNPs group.  

rs8033381_2PselectinADP_levelsP (PselectinADP_levels=Extreme)P (PselectinADP_levels=Normal) Prediction (PselectinADP_levels)

0 Normal 0.126353965 0.890868561 Normal

1 Normal 0.261744804 0.722601814 Normal

1 Extreme 0.373296344 0.580593067 Normal

0 Normal 0.99994434 5.38E-05 Extreme

1 Normal 0.378374509 0.569413398 Normal

1 Extreme 0.178877646 0.836124727 Normal

1 Extreme 0.382557878 0.564009465 Normal

0 Normal 0.210278386 0.789467889 Normal

0 Normal 0.105305403 0.913963774 Normal

 

Table 5.3 The sample results of predicted individuals’ extreme and normal PA response levels for the initial model 

fitted using key SNPs set related to dataset 1. 

Based on the Tables 5.2 and 5.3, it appears that all of the models do not perform well in 

predicting the individuals with extreme PA response levels. As there are differences in models’ 

scores, the statistical test is applied to examine the significance the models’ scores (section 

5.3.4).  
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5.3.1.2 Predicting high/low PA levels 

After applying the initial ANN models on the above SNPs sets (section 5.2.3), different 

prediction performance scores were examined. The results for predicting high/low PA platelet 

response levels that are related to dataset 1 are shown in the Table 5.4. 

Selected SNPs sets for ANN 

 

Model accuracy  Predicted true 

number of cases 

with high ADP 

levels  

Predicted true 

number of cases 

with low ADP 

levels 

Accuracy 

(%) 

Kappa 

Random selected SNPs (SD) 35.714 -0.286 5/14 5/14 

Jones et al. SNPs (SJ) 46.429 -0.071 4/14 9/14 

Key SNPs from RAPIDSNPs 

(SR) 
82.143 0.643 11/14 12/14 

Table 5.4 The model scores for predicting low/high individuals’ PA levels using three SNP sets stratified based on 

random seed equal to 10. The best model score is in bold and from the SR. 

Based on the Table 5.4, the model with the highest score appears to be from the SR. However, 

one score cannot judge the entirety or the significance of the SR in generalising other cases. 

Hence, section 5.3.4 determines the statistical significance of the differences in the performance 

of the models. Moreover, Table 5.5 shows sample results of the predicted individuals’ high and 

low PA response levels based on the above model from SR group. 

rs8033381_2PselectinADP_levelsP (PselectinADP_levels=Low) P (PselectinADP_levels=High)Prediction (PselectinADP_levels)

1 Low 0.991690386 0.004773324 Low

0 High 0.02773625 0.976900756 High

1 High 0.116541829 0.902427363 High

1 High 0.448345006 0.558916499 High

0 Low 0.667258715 0.275381419 Low

1 High 0.005604971 0.996510906 High

0 Low 0.069228772 0.945529057 High

0 Low 0.996472933 0.001743898 Low

1 High 0.192823008 0.830757008 High

 

Table 5.5 The sample results of predicted individuals’ extreme and normal PA response levels for the initial model 

fitted using key SNPs set related to dataset 1. 

 



319 

 

5.3.1.3 Predicting extreme/normal FA levels 

In determining the individuals with extreme or normal FA platelet response levels, Table 5.6 

shows scores for the initial models for the involved three SNPs groups. 

Selected SNPs sets for ANN 

 

Model accuracy 

when the SNP(s) in 

the model 

True predicted 

number of cases 

with extreme 

ADP levels  

True predicted 

number of cases 

with normal 

ADP levels Accuracy 

(%) 

Kappa 

Randomly selected SNPs (SD) 69.136 0.127 10/49 102/113 

Jones et al. SNPs (SJ) 53.086 -0.155 7/49 79/113 

Key SNPs from RAPIDSNPs (SR) 64.815 -0.092 8/49 92/113 

Table 5.6 The model scores for predicting individuals’ extreme/normal FA platelet response levels based on random 

seed equal to 10. 

From Table 5.6, the control SD SNPs group has higher score than other groups in predicting 

extreme or normal individuals’ FA response levels.  

5.3.1.4 Predicting high/low FA levels 

Table 5.7 shows the prediction scores of the initial ANN models for predicting high and low 

individual FA levels based on the above three SNPs sets related to dataset 1. 

Selected SNPs sets for ANN 

 

Model accuracy when 

the SNP(s) in the model 

True predicted 

number of 

cases with high 

ADP levels  

True predicted 

number of cases 

with low ADP 

levels Accuracy 

(%) 

Kappa 

Randomly selected SNPs (SD) 42.857 -0.143 4/14 8/14 

Jones et al. SNPs (SJ) 53.571 0.071 6/14 9/14 

Key SNPs from RAPIDSNPs 

(SR) 
67.857 0.357 11/14 8/14 

Table 5.7. The model scores for predicting individuals’ high/low FA platelet response levels based on random seed equal 

to 10. In this case, RAPIDSNPs has produced a high scoring model comparing to and Jones et al. and randomly SNPs. 

From the Table 5.7, the SR group appears to have higher score than other SNPs groups (SJ & 

SD) in predicting individuals with high or low FA response levels. Therefore, to determine 
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which of the two is more likely to significantly predict individual with high or low FA platelet 

response levels, see the statistical test results in section 5.3.6. 

5.3.2 Prediction performance based on the dataset 2 – randomly selected SNPs, key SNPs 

from the RAPIDSNPs and Jones et al (2009). SNPs 

5.3.2.1 Predicting extreme/normal PA levels 

In predicting the individuals with extreme or normal PA levels related to dataset 2, Table 5.8 

shows the initial models scores generated by three SNPs groups (SR, SJ, & SD). 

Selected SNPs sets for 

ANN 

 

Model accuracy when 

the SNP(s) in the model 

True predicted 

number of cases 

with extreme PA 

levels  

True predicted 

number of cases 

with normal PA 

levels 
Accuracy 

(%) 

Kappa 

Random SNPs (SD) 60.914 -0.06 8/59 112/138 

Jones et al. SNPs (SJ) 56.853 -0.004 19/59 93/138 

9 Key SNPs from 

RAPIDSNPs (SR) 
62.437 0.04 15/59 108/138 

Table 5.8 The initial model scores for predicting extreme/normal individual PA platelet response levels for dataset 2 

based on random seed equal to 10.  

From Table 5.8, the SR group has a slightly higher score in predicting the individuals with 

extreme or normal PA levels related to dataset 2 than other SJ and SD groups. 

5.3.2.2 Predicting high/low PA levels 

Based on the three above SNPs groups, three initial models with their scores were generated 

for predicting high/low PA levels, Table 5.9.  
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Selected SNPs sets for 

ANN 

 

Model accuracy when 

the SNP(s) in the model 

True predicted 

number of cases 

with high PA 

levels  

True predicted 

number of cases 

with low PA levels Accuracy 

(%) 

Kappa 

Randomly selected 

SNPs (SD) 

60 0.2 6/15 6/15 

Jones et al. SNPs (SJ) 56.667 0.133 9/15 8/15 

9 Key SNPs from 

RAPIDSNPs (SR) 
73 0.467 14/15 8/15 

Table 5.9 The model scores for predicting high/low individual PA platelet response levels for dataset 2 based on random 

seed equal to 10. The SR group appear to have an edge in predicting PA levels among other SNPs groups. 

From Table 5.9, the SR group are predicting with relatively higher accuracy, whether the 

individuals have high or low PA levels.  

5.3.2.3 Predicting extreme/normal FA levels 

Table 5.10 shows the initial models from three SR, SJ, and SD groups used in predicting the 

individuals’ extreme or normal FA response levels. 

Selected SNPs sets for ANN 

 

Model accuracy True 

predicted 

number of 

cases with 

extreme FA 

levels  

True 

predicted 

number of 

cases with 

normal FA 

levels 

Accuracy Kappa 

Randomly selected SNPs (SD) 63.452 0.025 12/59 113/138 

Jones et al. SNPs (SJ) 64.467 0.009 9/59 118/138 

11 Key SNPs from RAPIDSNPs (SR) 63.452 0.025 12/59 113/1138 

Table 5.10 The model scores for predicting extreme/normal individual FA platelet response levels for dataset 2 based 

on random seed equal to 10. 

From Table 5.10, the SR and SD groups have similar performance in predicting the individuals’ 

extreme or normal FA response levels though outperformed SJ. In addition, the SJ group has 

better performance in predicting normal individuals than SR and SD. Since, there is no 

difference in the performance accuracy between SR and control group (SD), and SJ has higher 
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score in predicting normal individuals than SR and SD, then the SR are not outperforming other 

SNPs groups in predicting particularly normal individuals’ FA response levels. 

5.3.2.4 Predicting high/low FA levels 

The initial model scores based on the above SNPs sets for predicting high or low FA levels 

related to dataset 2 are shown in the Table 5.11. 

Selected SNPs sets for ANN 

 

Model accuracy True 

predicted 

number of 

cases with 

high FA levels  

True 

predicted 

number of 

cases with 

low FA levels 

Accuracy Kappa 

Random selected SNPs (SD) 50 -0.067 10/15 4/15 

Jones et al. SNPs (SJ) 70 0.4 8/15 12/15 

11 Key SNPs from RAPIDSNPs (SR) 66.667 0.333 10/15 10/15 

Table 5.11 The model scores for predicting of the individuals’ FA platelet response levels for dataset 3 based on random 

seed equal to 10. The Jones et al., 2009 SNPs set (SJ) has the highest score. 

Based on the Table 5.11, the model with the highest score is achieved by the Jones et al. SNPs 

set but, as it has been found in other results, the accuracy score alone does not tell us how 

significant the differences in performance are. Hence, further statistical tests (section 5.3.5) was 

performed on other 20 scores to determine the significance of the differences in performance. 

5.3.3 Statistical significance of the models from the RAPIDSNPs (SR), randomly selected 

SNPs (SD), Jones et al (2009). SNPs (SJ) 

5.3.3.1 For predicting individuals with high or low PA platelet response levels related 

to dataset 1  

For determining the significance of the models in predicting individuals with high or low PA 

platelet response levels related to dataset 1, the involved three SNPs sets from SJ, SD and SR 

were statistically tested as described in the section 5.2.5. The performance scores for 20 

generated model scores from all three sets are shown in the Table 5.12.  



323 

 

 

Random 

seed 

Auto-generated 

random seed 

initialisation 

number 

key SNPs from 

the RAPIDSNPs 

(SR) 

random selected 

SNPs 

Jones et al. 

(10 SNPs) 

(SJ) 

Model scores 

(kappa) 

Model scores (kappa) Model 

scores 

(kappa) 

1 1,556,544,133 0.357 0.143 0.143 

2 789,320,481 0.429 0.071 -0.071 

3 1,725,422,828 0.429 0.143 0.071 

4 -2,139,474,743 0.643 0.357 0.286 

5 -1,656,849,783 0.429 0.286 0 

6 -1,279,092,758 0.286 0.071 -0.143 

7 -882,689,422 0.357 -0.143 0.071 

8 42,587,044 0.429 0.071 -0.429 

9 -704,996,954 0.571 -0.071 -0.143 

10 690,128,337 0.643 -0.286 -0.071 

11 -1,889,184,159 0.429 0.071 0.286 

12 1,449,888,884 0.143 0 0.143 

13 -747,333,527 0.214 -0.071 0.071 

14 -1,358,497,622 0.286 0 0.071 

15 -1,681,722,665 0.357 -0.071 -0.071 

16 -379,921,503 0.571 -0.143 -0.143 

17 1,920,482,382 0.429 -0.071 -0.143 

18 -1,683,843,630 0.143 0 0.143 

19 -2,028,404,516 0.071 0.286 0 

20 -1,840,315,556 0.571 0.143 0.214 

Table 5.12. The scores of 20 generated models involving three SNPs groups for predicting high and low individuals’ PA 

platelet response levels. The kappa score shows how confident is the model. The higher the kappa score the confident the 

model.  

The above scores from Table 5.12, are further visualised using a boxplot below in Figure 5.5. 
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Figure 5.4 The distribution of the kappa scores showing the performance between the key SNPs from RAPIDSNPs 

(SR_SNPs_group_PA), randomly selected SNPs (SD_SNPs_group_PA) and Jones et al. (2009) SNPs 

(SJ_SNPs_group_PA) in predicting individuals with high or low PA levels.  

In examining the above plot in Figure 5.4, there is an observable mean difference in scores with 

the highest scores appear to be from the models generated by the SR set. In addition, the range 

of scores from the SR is higher than other SNPs groups. Thus, the SNPs from SR are likely to 

have higher scores than the SD and SJ groups. Based on one tailed paired t-test, the models 

based on the SR are significantly outperforming those based on the SJ for predicting individuals 

with high or low PA platelet response levels related to dataset 1 at the 95% confidence level 

(p-value = 9.891e-07). In addition, the models from the SR group is significantly outperforming 
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those based on the SD controls group in predicting high or low PA response levels, (p-value = 

1.669e-06).  

5.3.3.2 For predicting individuals with extreme or normal FA levels related to dataset 

1 

Table 5.13 shows the scores of 20 generated models predicting individuals’ extreme or normal 

FA response levels. 

Random 

seed 

Auto-

generated 

random seed 

initialisation 

number  

key SNPs from the 

RAPIDSNPs (SR) 

Random selected 10 

SNPs (SD) 

Jones et al. 

(10 SNPs) 

(SJ) 

Model scores 

(kappa) 

Model scores (kappa) Model 

scores 

(kappa) 

1 1,938,763,782 -0.039 0.018 -0.022 

2 -95,873,046 0.008 0.099 -0.006 

3 468,293,175 -0.111 0.044 0.02 

4 -883,905,004 -0.029 -0.054 -0.081 

5 740,787,778 0.119 0.01 0.027 

6 2,037,902,520 -0.063 0.036 -0.106 

7 1,160,817,536 0.106 0.003 -0.024 

8 589,853,289 0.075 0.09 -0.074 

9 -119,798,776 -0.002 -0.026 0.049 

10 -924,605,920 -0.026 0.127 -0.155 

11 889,651,198 -0.009 -0.025 0.007 

12 1,418,251,353 -0.054 0.053 -0.117 

13 -237,240,713 0.028 0.015 -0.062 

14 823,731,052 -0.026 0.072 -0.091 

15 235,662,289 -0.002 0.011 -0.008 

16 -2,003,489,478 -0.102 0.02 -0.161 

17 -1,441,996,732 0.047 -0.005 0.041 

18 -475,782,606 -0.087 0.125 -0.072 

19 1,170,682,892 0.025 0.104 -0.099 

20 276,789,895 0.049 -0.009 0.055 

Table 5.13 The scores of 20 generated models involving three SNPs groups for predicting extreme and normal 

individuals’ FA platelet response levels. 
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From Table 5.13, the SD SNPs group appear to have higher scores that other groups in 

predicting the individuals’ FA platelet response levels. Figure 5.5 further examines the above 

scores in Table 5.13. 

 

Figure 5.5 The distribution of the kappa scores showing the performance between the key SNPs from RAPIDSNPs 

(SR_SNPs_group_fa), randomly selected SNPs (SD_SNPs_group_fa) and Jones et al. (2009) SNPs (SJ_SNPs_group_fa) 

in predicting individuals with extreme or normal FA levels. 

From Figure 5.5, the SD group appears to have higher mean score than other groups. However, 

the SR group appears to have a slight increase in the mean score than the SJ group in predicting 

individuals’ extreme or normal FA levels. Based on the one tailed paired t-test, the SR group 

is not significantly outperforming the SJ group in predicting individuals’ extreme or normal 
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FA levels (p-value = 0.234). Interestingly, the SD is significantly outperforming both SR (p-

value = 0.000147) and SJ (p-value = 0.001394) respectively.  

5.3.3.3 For predicting individuals with high or low FA levels related to dataset 1 

Furthermore, in predicting individuals’ high or low FA levels, the scores from three SNPs group 

i.e.  SD, SJ and SR are shown in Table 5.14. 

Random 

seed 

Auto-generated 

random seed 

initialisation 

number 

Key SNPs from 

the RAPIDSNPs 

(SR) 

Random selected 

SNPs (SD) 

Jones et al. 

SNPs (SJ) 

Model scores 

(kappa) 

Model scores (kappa) Model scores 

(kappa) 

1 -421,726,686 0.286 0.071 0 

2 1,398,968,928 0.214 0 -0.429 

3 -46,480,488 0.214 0.286 0.071 

4 856,319,280 -0.143 0.143 -0.357 

5 897,979,989 0.643 0 0.286 

6 -1,945,224,330 0.357 -0.143 0.214 

7 -797,115,398 0.429 0.286 0.214 

8 -67,878,017 0.071 0.071 -0.143 

9 -1,263,812,197 0.143 -0.071 0.071 

10 1,263,672,307 0.357 -143 0.071 

11 1,560,729,502 0.143 0.071 0 

12 996,268,964 0.429 -0.071 0.429 

13 -1,094,218,337 0.143 -0.143 -0.071 

14 -940,900,883 0.5 0 -0.214 

15 -93,667,453 0.357 -0.214 0 

16 -857,543,894 -0.214 -0.429 -0.071 

17 167,713,791 0.143 0.143 -0.214 

18 1,116,500,401 -0.143 0 -0.214 

19 -1,333,030,801 0.214 -0.429 -0.071 

20 188,915,709 0.429 0.071 -0.071 

Table 5.14. The scores of 20 generated models involving three SNP sets for predicting individuals with high or low FA 

levels related dataset 1.  

The boxplot below further illustrates the performance differences between the SR, SD and SJ 

in predicting individual high or low FA levels. 
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Figure 5.6 The distribution of the kappa scores showing the performance between the key SNPs from RAPIDSNPs 

(SR_SNPs_groupFA), Jones et al., (2009) SNPs (SJ_SNPs_ groupFA) and randomly selected SNPs (SD_SNPs_ 

groupFA) in predicting individuals with high or low FA platelet response levels related to dataset 1. Most of the high 

scores appear to have been achieved by the SR set. 

From the Figure 5.6, SR set appear to be performing well in predicting the individuals with 

high or low FA levels. Based on one tailed a paired t-test, the ANN models using the SR set 

significantly outperform those using the SJ and SD sets at the 99% confidence level (p-value = 

1.156e-05) and (p-value = 0.0002488) respectively. 
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5.3.3.4 For predicting individuals with extreme or normal PA levels related to dataset 

2 

In determining the significance of the model’s score from SR comparably to other groups, 

which were used in predicting the individuals with extreme or normal PA response levels that 

are related to dataset 2, 20 generated models’ scores are shown in the Table 5.15. 

Random 

seed 

Auto-generated 

random seed 

initialisation 

number 

key SNPs from the 

RAPIDSNPs (SR) 

Randomly 

selected SNPs 

(SD) 

Jones et al. 

SNPs (SJ) 

Model scores (kappa) Model scores 

(kappa) 

Model scores 

(kappa) 

1 2,069,119,248 -0.05 -0.006 -0.133 

2 623,544,118 -0.005 -0.096 0.133 

3 159,738,235 -0.098 -0.051 0 

4 1,436,454,075 0.076 -0.075 0.133 

5 179,624,322 -0.14 0.007 0.333 

6 -15,041,337 0.075 -0.026 0.2 

7 -1,069,357,275 0.048 0.037 0 

8 -707,736,224 0.128 -0.017 0.133 

9 -442,226,650 0.16 -0.029 0.133 

10 -2,080,497,923 0.04 -0.06 0 

11 1,729,448,743 0.075 0.039 0 

12 314,586,795 0.069 -0.044 0.2 

13 181,773,638 0.06 -0.055 0.133 

14 709,931,303 -0.002 -0.104 -0.2 

15 1,872,043,444 0.018 -0.009 0.2 

16 -949,821,970 -0.02 0.108 -0.2 

17 -2,028,132,021 0.065 0.066 -0.067 

18 1,941,732,180 -0.026 -0.083 0.133 

19 700,486,429 0.075 -0.076 0.067 

20 1,713,533,898 0.178 -0.037 0.067 

Table 5.15 The scores of 20 generated models involving three SNP sets for predicting individuals with extreme or 

normal FA levels related dataset 2. 

From Table 5.15, many ANN models from the SJ SNPs group have relatively higher scores 

than other groups (SR & SD). However, based on paired t-test (one sided & two sided), which 

compared SJ and SR scores, there is no significance high accuracy in predicting individuals 

with extreme or normal PA response levels (p-value = 0.3148 for SJ > SR, and p-value = 0.6295 
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for SR = SJ or two sided). Moreover, in comparing with the SD group using one tailed paired 

t-test, both SR and SJ groups are significantly outperforming SD group, p-values: 0.001934 

and 0.01576 respectively. 

5.3.3.5 For predicting individuals with high or low PA levels related to dataset 2  

Table 5.16 shows 20 generated model scores based on all three SNPs sets (SR, SJ, & SD), 

which were used to predict the individuals with high or low PA levels related to dataset 2. 

Random 

seed 

Auto-generated 

random seed 

initialisation 

number 

key SNPs from 

the RAPIDSNPs 

(SR) 

Random selected 

SNPs(SD) 

Jones et al. 

SNPs (SJ) 

Model scores 

(kappa) 

Model scores (kappa) Model scores 

(kappa) 

1 139,824,644 0.4 -0.2 0.067 

2 -1,252,124,782 0.4 -0.133 0.267 

3 -621,316,962 0.53 -0.267 0.133 

4 1,004,258,364 0.333 -0.467 0.133 

5 1,131,094,984 0.333 0.2 0.53 

6 833,896,622 0.2 0.333 0.133 

7 1,953,698,203 0.067 0 0 

8 1,250,020,917 0.133 -0.067 0 

9 -749,088,494 0.133 0.333 0.067 

10 -1,245,268,760 0.467 0.2 0.133 

11 1,151,016,445 0.067 0 0.067 

12 -1,310,363,528 0.467 0.267 0.267 

13 -77,163,649 0.333 -0.067 0.4 

14 625,866,709 0.6 -0.2 0.267 

15 -1,848,196,768 0.267 0.133 0.2 

16 -2,123,498,527 0.267 -0.133 0.067 

17 158,803,932 0.467 -0.267 0.133 

18 1,842,726,089 0.467 0 0.4 

19 710,805,618 0.4 0 0.267 

20 1,571,695,510 0.4 0.067 0.2 

Table 5.16 The scores of 20 generated models involving three SNP sets for predicting individuals with high or low PA 

levels related dataset 2.  
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In examining Table 5.16, it also appears that the ANN models based on the SR set are predicting 

the individuals with low or high PA platelet response levels with higher performance than those 

based on the SJ and SD sets. A one tailed paired t-test shows that the ANN models based on 

the SR significantly outperform those based on the Jones et al. SNPs and SD at the 95% 

confidence interval (p-values: 0.003838 and 0.0001095 respectively). 

5.3.3.6 For predicting individuals with high or low FA levels related to dataset 2 

Table 5.17 shows the generated 20 model scores from the three SNPs sets (SR, SJ, & SD). 

Random 

seed 

Auto-generated 

random seed 

initialisation 

number 

11 key SNPs from 

the RAPIDSNPs 

(SR) 

Random selected 

10 SNPs (SD) 

Jones et al. (10 

SNPs) (SJ) 

Model scores 

(kappa) 

Model scores 

(kappa) 

Model scores 

(kappa) 

1 -2,121,331,986 0.4 -0.067 0 

2 -344,902,931 0.6 -0.067 0 

3 2,125,676,383 0.533 -0.267 0.267 

4 607,475,327 0.533 -0.333 0.267 

5 825,393,109 0.267 0 0.2 

6 -202,623,379 0.133 0 0 

7 -2,121,868,076 0.4 -0.133 0.267 

8 947,198,504 0.4 -0.133 0.667 

9 -1,459,234,751 0.467 -0.067 0.4 

10 1,771,975,301 0.333 -0.067 0.4 

11 -1,588,285,366 0.667 0.067 0.2 

12 -1,101,656,008 0.667 -0.4 0.533 

13 -1,446,700,401 0.2 -0.2 0.133 

14 1,841,546,502 0.4 0 0.067 

15 968,230,868 0.467 -0.2 -0.067 

16 -543,957,020 0.667 0 0 

17 1,648,053,797 0.333 -0.4 0.133 

18 348,280,606 0.867 -0.2 0.333 

19 -892,795,992 0.4 -0.2 0.267 

20 -1,714,724,683 0.533 -0.333 0.2 

Table 5.17 The scores of 20 generated models involving three SNP sets for predicting individuals with high or low FA 

platelet response levels related dataset 2. 
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The above scores in Table 5.17 can be further illustrated using a plot in Figure 5.7, which 

explores the performance scores between the key SNPs and Jones et al. SNPs. 

 

Figure 5.7 The distribution of the kappa scores showing the performance between the key SNPs from RAPIDSNPs 

(SR_SNPs_group_FA), Jones et al., (2009). SNPs (SJ_SNPs_group_FA) and SD_SNPs_group_FA in predicting 

individuals with high or low FA levels related to dataset 2.  

From Figure 5.7, the SR appears to have the highest significant scores comparing to the other 

two groups (SJ & SD) in predicting individuals with high or low FA response level. A one 

tailed paired t-test shows that the ANN models based on the SR significantly outperform those 

based on the SJ and SD at the 95% confidence interval (p-value = 7.482e-05 and 3.705e-10) 

respectively. 
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The results summary for testing of the significance of predictions, which involved models from 

both SR, SJ and SD groups in two datasets are shown in the Tables 5.18 and 5.19 for 

extreme/normal and high/low predictions respectively. 

Datasets ADP platelet 

response & p-

values 

Which SNPs 

group is 

significant? 

ADP platelet 

response & p-

values 

Which SNPs group is 

significant? 

FA RAPIDSNPs’ key 

SNPs (SR) / Jones 

et al. SNPs (SJ) / 

Randomly selected 

SNPs (SD) 

PA SR / SJ / SD 

Dataset 1 0.000147 SD 0.05032 SR 

Dataset 2 N/A No difference in 

prediction scores 
0.001934 and 

0.01576 

SR & SJ respectively 

Table 5.18 The summary of the significance of the models in predicting the individuals normal ADP platelet response 

levels. Bolded are p-values, which show the models’ significance in predicting either normal PA/FA platelet response levels. 

 

From Table 5.18, the SR have overall significant predictions over SJ and the control SD in 

predicting the normal PA platelet response levels. In addition, both SR & SJ are less significant 

than SD, which was used as control in predicting normal individuals FA response levels related 

to dataset 1. 

Datasets ADP platelet 

response & p-

values 

Which SNPs 

group is 

significant? 

ADP platelet 

response & p-

values 

Which SNPs group is 

significant? 

FA RAPIDSNPs’ key 

SNPs (SR) / Jones 

et al. SNPs (SJ) / 

Randomly selected 

SNPs (SD) 

PA SR / SJ / SD 

Dataset 1 1.156e-05 SR 9.891e-07 SR 

Dataset 2 7.482e-05 SR  0.00383 SR 

Table 5.19 The summary of the significance of the models in predicting the individuals low or high ADP platelet 

response levels. Bolded are p-values, which show the models’ significance in predicting either low or high PA/FA platelet 

response levels. 
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Moreover, based on the summary in Table 5.19, the SR have overall significant predictions 

over SJ and SD groups in predicting the high/low ADP platelet response levels. Hence, these 

results may suggest that the SNPs, which are selected from the RAPIDSNPs pipeline are likely 

to have higher performance in predicting the individuals with high or low ADP platelet 

response levels.  

5.3.4 The significance of the SNPs genotypes in predicting individuals with high or low 

responses  

In the previous sections, it was observed that in most cases, the key SNPs from RAPIDSNPs 

appeared to be performing significantly better at predicting the individuals with high or low PA 

and FA platelet response levels. Thus, the test for significance mainly involved alleles from the 

key selected SNPs. 

5.3.4.1 Dataset 1 – SR set involved with high or low PA levels 

In testing the significance of the SNPs’ alleles of the individual SR set from the dataset 1 

(rs6141803, rs6442896, rs3730051, rs1527480, rs8033381, rs6442895, rs3212391), which 

significantly predicted individuals’ high or low PA levels over the Jones et al. SNPs, Table 5.20 

was created. The Table examines the significance of each SNP from the model and its 

genotypes used in predicting individuals high or low PA levels. 
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SNP ID Allele type Frequency Overall SNP’s significance (p-

value) High Low 

rs6141803 Major 55 40 0.02512 

Minor 1 2 

Hetero 14 28 

rs6442896 Major 55 40 0.0123 

Minor 0 3 

Hetero 15 27 

rs3730051 Major 30 48 0.009099 

Minor 6 3 

Hetero 34 19 

rs1527480 Major 59 49 0.1034 

Minor 0 1 

Hetero 11 20 

rs8033381 Major 43 39 0.05439 

Minor 1 8 

Hetero 26 23 

rs6442895 Major 55 40 0.0123 

Minor 0 3 

Hetero 15 27 

rs3212391 Major 30 15 0.0008449 

Minor 9 27 

Hetero 31 28 

Table 5.20 The relationship between each SNP’s genotypes and an individual’s high or low PA platelet response levels 

related to dataset 1. 

 

From Table 5.20, the Chi-square test, shows that only four SNPs’ alleles from the model, which 

significantly predicted individuals with high or low PA levels, have significant relationship 

with high or low PA levels. These SNPs are rs6442896 in ITPR1, rs3730051 in AKT2, 

rs6442895 in ITPR1, and rs3212391 in ITGA2. The latter SNP rs3212391 appears to be the 

most significant among the four with the minor allele being significantly associated with low 

PA levels (p-value = 0.0027). Moreover, the closest significant allele, which is likely to be 

associated with high PA levels is rs3730051 heterozygous (p-value = 0.03936). These results 

may suggest that for high PA level the most involved SNP is the rs3730051 heterozygous allele 

in AKT2, and for low PA level the most involved SNP is the rs3212391 minor allele. 
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5.3.4.2 Dataset 1 – SR set involved with high or low FA levels 

The Chi-square test was performed to test the individual SR alleles, which may significantly 

contribute to the individuals with high or low FA platelet response levels, using dataset 1. The 

involved key SNPs in the model used in predicting individuals’ high or low FA platelet 

response levels are: - rs11637556, rs1491978, rs1388622, rs1038639, rs2071676, rs10499858, 

rs10974955. Table 5.21 shows the relationship between each SNPs’ genotypes from the model 

and their frequencies related to the individuals high or low FA platelet response levels. 

SNP ID Allele type Frequency Overall SNP’s significance 

(p-value) High Low 

rs11637556 Major 34 46 0.09633 

Minor 7 3 

Hetero 29 21 

rs1491978 Major 19 36 0.01202 

Minor 11 6 

Hetero 40 28 

rs1388622 Major 20 36 0.01104 

Minor 11 4 

Hetero 39 40 

rs1038639 Major 16 32 0.01208 

Minor 14 13 

Hetero 40 25 

rs2071676 Major 37 29 0.009777 

Minor 3 15 

Hetero 30 26 

rs10499858 Major 67 57 0.01681 

Minor 0 0 

Hetero 3 13 

rs10974955 Major 37 48 0.1428 

Minor 3 3 

Hetero 30 19 

Table 5.21 The significance of each SNP with its genotypes’ occurrences for the individuals’ high or low FA platelet 

response levels related to dataset 1, 
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From Table 5.21, a Chi-square test shows that only four SNPs (rs1388622, rs1491978, 

rs1038639, and rs2071676) have significant relationship with the high or low FA levels. SNPs 

rs1388622 and rs1491978 are both in P2YR12, while SNPs rs1038639 and rs2071676 are in 

ITPR1 and CA9 respectively. The rs2071676 minor allele has a significant relationship with 

low FA levels (p-value = 0.004678). For rs1388622 and rs1491978, no observable significance 

for both alleles, however, the major allele is more likely to be associated with high FA levels, 

since it is more significant than other alleles (p-value = 0.03251). The rs1038639 major allele 

is more likely to have an effect on the low FA levels (p-value = 0.02092). Taken together, these 

results suggest that the most significant SNPs associated with high FA level are the rs1388622 

and rs1491978 major alleles in P2RY12 and the most significant SNP, which is involved with 

low FA level, is the rs2071676 minor allele in CA9. 

5.3.4.3 Dataset 2 – SR set involved with high or low PA levels 

According to the dataset 2 results, the ANN models based on key SNPs from RAPIDSNPs 

significantly outperform those based on the Jones et al. SNPs, for predicting individual cases 

with high or low PA platelet response levels. The key SNPs were individually tested to examine 

which of the alleles significantly associate with individuals with low or high PA levels. The 

involved SNPs, which significantly predict the PA levels related to dataset 2 are: - rs17229705, 

rs246406, rs11631474, rs5277, rs1472122, rs2633717, rs2815805, rs17041401, and 

rs2825207. Table 5.22 shows the significance of each SNP and its genotypes’ frequencies of 

the individuals’ high or low PA platelet response levels related to dataset 2. 
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SNP ID Allele type Frequency Overall SNP’s 

significance (p-value) High Low 

rs17229705 Major 60 70 0.03064 

Minor 0 0 

Hetero 15 5 

rs246406 Major 30 24 0.003646 

Minor 2 15 

Hetero 43 36 

rs11631474 Major 19 28 0.01102 

Minor 32 15 

Hetero 24 32 

rs5277 Major 46 58 0.04642 

Minor 0 1 

Hetero 29 16 

rs1472122 Major 23 11 0.003769 

Minor 24 9 

Hetero 43 40 

rs2633717 Major 47 65 0.003309 

Minor 3 1 

Hetero 25 9 

rs2815805 Major 66 74 0.02195 

Minor 0 0 

Hetero 9 1 

rs17041401 Major 18 36 0.008767 

Minor 13 10 

Hetero 44 29 

rs2825207 Major 19 28 0.05836 

Minor 21 10 

Hetero 35 37 

Table 5.22 The significance of each SNP with its genotypes’ occurrences for the individuals’ high or low PA platelet 

response levels related to dataset 2. 

 

The Chi-square test conducted on each individual SNP revealed that only five SNPs are 

significantly associated with either high or low PA platelet response levels, Table 5.22. These 

SNPs are rs246406, rs11631474, rs1472122, rs2633717, and rs17041401, which are associated 

low, high, low, high, and low PA platelet response respectively with their p-values of 0.003646, 

0.01102, 0.003769, 0.003309, and 0.008767 respectively. Moreover, in examining the 

significance of their individual alleles, it was found that: the rs246406, minor allele is 
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significantly involved with low PA level (p=0.001616), the rs11631474 minor allele is 

significantly involved with high PA levels (p=0.01315), the rs1472122 minor allele is 

significantly involved with low PA levels (p=0.009023), the rs2633717 heterozygous allele is 

significantly involved with high PA levels (p=0.00607), and the rs17041401 major allele is 

significantly involved with low PA levels (p=0.01431) respectively. 

5.3.4.4 Dataset 2 – SR set involved with high or low FA levels 

Based on the genetic models, the SR group, which are related to dataset 2, are: - rs10429491, 

rs11264579, rs11637556, rs17786144, rs350916, rs41307142, rs6450105, rs7180408, 

rs7409876, and rs822442. Table 5.23 shows the significance of each of these SNPs that are 

associated with high or low FA response levels. 
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SNP ID Allele type Frequency Overall SNP’s 

significance (p-value) High Low 

rs10429491 Major 42 29 0.005526 

Minor 3 15 

Hetero 30 31 

rs11264579 Major 54 43 0.01968 

Minor 1 9 

Hetero 20 23 

rs11637556 Major 38 45 0.122 

Minor 8 2 

Hetero 29 28 

rs17786144 Major 47 56 0.2744 

Minor 1 1 

Hetero 27 18 

rs350916 Major 12 25 0.01823 

Minor 20 10 

Hetero 43 40 

rs41307142 Major 73 64 0.02025 

Minor 0 0 

Hetero 2 11 

rs6450105 Major 66 74 0.02195 

Minor 0 0 

Hetero 9 1 

rs7180408 Major 31 46 0.01838 

Minor 5 7 

Hetero 39 22 

rs7409876 Major 16 31 0.02273 

Minor 16 9 

Hetero 43 35 

rs822442 Major 54 66 0.03385 

Minor 2 0 

Hetero 19 9 

Table 5.23 The significance of each SNP with its genotypes’ occurrences for the individuals’ high or low FA platelet 

response levels related to dataset 2. 

A Chi-square test indicated that only two SNPs, rs10429491 and rs7180408, are significantly 

associated with the individuals’ high and low FA levels respectively, with p-values of 0.005526 

and 0.01838 respectively, Table 5.23. Moreover, the rs10429491 minor allele and rs7180408 
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heterozygous allele are significantly associated with low and high FA levels respectively, with 

p-values of 0.0047, and 0.02951 respectively. 

5.3.5 Summary of the most significant SNPs and their genotypes for predicting low or 

high ADP platelet response levels. 

Taken together, from the above results, the following SNPs were found to be significantly 

involved in predicting individuals with high or low ADP platelet response levels, Table 5.24.  

Datasets SNP Gene/loci Allele/genotype p-value  PA/FA High/low 

1 rs3212391 ITGA2 minor 0.0027 PA Low 

rs2071676 CA9 minor 0. 004678 FA Low 

2 rs246406 ITGA2 minor 0.00162 PA Low 

rs11631474 MAP2K5 minor 0.01315 PA High 

rs1472122 P2YR12 minor 0.00902 PA Low 

rs2633717 ITPR1 heterozygous 0.00607 PA High 

rs17041401 ITPR1 major 0.01431 PA Low 

rs10429491 JAK2 minor 0.0047 FA Low 

Table 5.24 The most significant SNPs associated with individuals’ high or low ADP levels and their related 

genotypes/alleles. In bold are previously unidentified SNPs.  

 

5.3.6 Discussion 

Based on the prediction results, it appears that the key SNPs from RAPIDSNPs (SR group) 

confer an improvement in performance on the ANN models than those from the Jones et al. 

study (SJ group) and the randomly selected SNPs (SD group) used as controls. The scores from 

the models, which were generated by the SR group show significant performance increase over 

those from models using the SJ and SD groups. This has been shown to be the case for 

predicting individuals with both high or low ADP platelet response levels for both FA and PA 

platelet responses. Nevertheless, in few occasions, it was observed that the SD group 

outperformed the SR group indicating that there could be other uncaptured SNPs, which could 

further improve the accuracy in predicting high or low ADP levels. In particular, the SD group 
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outperforms both SR and SJ groups in predicting individuals with ‘normal’ FA levels related 

to dataset 1 and that might be interesting from the methodological and biological aspects.  

Moreover, in predicting the individuals with normal PA response level, the performances of 

the SR & SJ are significantly close particularly when using dataset 2. The exception is during 

applying the models to the dataset 1 in which the SR slightly outperforms the SJ set.  

It might be noted that the dataset 3 was not entirely included in the modelling and analyses. 

The major reason for excluding this subset from the analyses is that it has relative very small 

number of cases, which would be relatively insufficient to train NN (Lawrence et al., 1998). 

Therefore, based on the results, the ANN models can be used to predict human phenotype, and 

that this requires good SNP detection for which RAPIDSNPs is better. 

5.3.6.1 The most significant SNPs allele(s) contributed to high/low ADP levels and 

their associated CVDs 

We have identified the most significant SNPs that are likely to be involved with an individual’s 

high or low ADP levels. And therefore, we have answered one of the major underlying 

questions of the study: determining the genetic variants that are more likely to underpin 

individuals with extreme high or low ADP platelet response levels (Figures 1.8, 1.9, and 1.10 

in Chapter 1). The rs246406 minor allele in ITGA2 appears to be the most significant SNP for 

low PA platelet response levels. Moreover, the rs2071676 SNP in CA9 and rs10429491 in 

JAK2, are the most significant minor alleles associated with low FA platelet response levels. 

Additionally, for high FA level, both SNPs rs1388622 and rs1491978 in P2YR12 appear to be 

the most significant major alleles. For other alleles, the rs2633717 in ITPR1, which is a newly 

identified, is the most significant heterozygous allele for high PA platelet response levels. 
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Thus, these results further support our initial and underlying argument that bioinformatics 

based approaches may complement and add value to the mainstream standard biostatistical 

approaches, such as stepwise forward, which are used in genetic association studies. It is clear 

that some of these SNPs, such as the common SNP rs246406, and rs10429491 were indeed 

previously identified to be associated with PA (Jones et al., 2009). However, our approaches 

have also identified which of these SNPs alleles are significantly associated with extreme 

responders i.e. individuals with high or low ADP platelet responses levels.  

Moreover, our methods have predicted additional SNPs, which significantly associate with 

extreme low or high ADP platelet response levels that were previously unidentified using the 

purely biostatical approach (forward stepwise). 

Additionally, the SNPs alleles related to the individuals with normal ADP response levels were 

not further investigated as the focus of the study is to find the alleles that are likely to contribute 

to the individuals’ extreme (high/low) ADP levels. Nevertheless, the individuals with normal 

ADP levels were accounted in the genetic models as they could be of the biomedical interest to 

predict whether an individual may respond ‘normally’ to ADP if is not extreme. 

Finally, the SNPs identified in this chapter that significantly associate with extreme levels of 

platelet response activation were also predicted to be involved with molecular mechanisms such 

as structural or functional changes in the related proteins, and regulatory roles. The involved 

regulatory roles include transcription binding sites (TFBS), expression quantitative loci 

(eQTL), and others (see Chapter 3 and 4). Thus, these newly identified SNPs such as rs2071676 

in CA9 and rs3212391 in ITGA2 warrant further experimental investigation, for a deeper 

understanding of the associated molecular mechanisms that may be underpinning ADP platelet 

responses. In addition, these SNPs might be used as markers to guide future CVD personalised 

medicine decisions. 
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5.4 Conclusion 

Taken together, the above results overwhelmingly suggest that the accuracy of the predictive 

genetic models, which are based on supervised learning approaches (such as ANNs) are more 

likely to be enhanced when the key SNPs obtained from the RAPIDSNPs are used as input 

parameters. The majority of the generated scores from models based on the key SNPs from 

RAPIDSNPs were statistically significant, and predicted high or low ADP platelet response 

levels within individuals with the highest accuracy. In addition, a handful of these SNPs’ alleles 

were found to be significantly associated with individuals extreme high or low ADP platelet 

response levels, which could have clinical or therapeutic implications in future CVD 

personalised medicine applications (see Chapter 6). 

The results in this Chapter further validate the RAPIDSNPs approach, which appears to be 

robust in selecting the SNPs that are good predictors of the disease/trait states. The 

RAPIDSNPs approach might be generically utilised for optimising the selection of SNPs to 

improve predictive genetic models involving binary phenotypic traits, in data where non-

genetic factors are controlled.  
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Chapter 6 - Synthesis and next direction 

6.0 Aims of the Project 

The initial aim of this project was to develop computational predictive methods for rapidly 

identifying and analysing key SNPs, which are associated with ADP platelet responses 

variability and may likely to be missed when using standard biostatistical methods. The ADP 

platelet response was chosen as a suitable case study, due to its wide used as one of the major 

treatment targets for common CVD problems. CVD continues to be one of the leading causes 

of  death in both developed and developing countries (Stanner, 2008; “WHO | Cardiovascular 

diseases (CVDs),” 2016). Therefore, it is envisaged that the newly identified SNPs will have 

potential uses in the future implementation of CVD personalised medicine applications or for 

informing genomic based medicine / health decisions. In Chapter 2, the main hypothesis was 

that the designed computational method (RAPIDSNPs) was more likely to rapidly identify the 

most significant SNPs, which are associated with ADP platelet responses, than standard 

biostatistical methods.  

Furthermore, the newly identified SNPs, using RAPIDSNPs, were hypothesised to be involved 

with the various molecular mechanisms that underpin the ADP platelet responses variability, 

and hence, we developed molecular bioinformatics predictive analytics protocols to explore 

these hypotheses further in Chapters 3 & 4. In addition, the identified key SNPs from the 

RAPIDSNPs method were investigated to examine their usefulness in predictive genetic 

models for identifying individuals with high/low ADP platelet responses. Thus, in Chapter 5, 

the underlying hypothesis was that these SNPs could be used to significantly improve 

predictions of individuals with high or low ADP platelet response levels. And hence, they are 

more likely to be potential candidates and have implications for future CVD genomic-based or 

personalised medicine applications.  
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This chapter provides a synthesis of the key findings, which focuses on a few of the key 

SNPs that were identified, predictively analysed and are thought to be more likely to have 

potential implications for future CVD research. The chapter further discusses how the results 

of the study may potentially impact on personalised CVD clinical decisions and therapeutics.  

6.1 An integrated pipeline for omic data analyses associated with ADP 

platelet responses for CVD research 

To investigate the variability of individuals ADP platelet responses, an integrated pipeline was 

designed to provide an analytical framework for investigating different omics data (section 

1.10). The fundamental objective was to design a computational method for rapidly identifying 

novel (previously unidentified) key genetic variants. Also by using this framework, a further 

objective was to develop predictive approaches for examining the molecular effects, which are 

likely to contribute to ADP variability. In addition, for potential application of the identified 

key SNPs to the CVD personalised clinical/therapeutic settings, further predictive approaches 

were developed to determine whether the identified key genetic variants could be useful in 

predicting individuals with high or low ADP response levels.  

6.2 Implementation of the integrated pipeline 

The implementation of the integrated pipeline was performed in logical sequential manner and 

Chapters are presented in chronological order. The key components of the framework are 

summarised below. 

6.2.1 RAPIDSNPS 

In Chapter 2, the RAPIDSNPs was developed for improving identification of the key SNPs, 

which are associated with the ADP platelet responses. It has been reported elsewhere that the 

identification of the disease associated genetic variants could be improved if biostatistical 
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methods are supplemented/complemented with the computational/bioinformatics based 

approaches (Eichler et al., 2010; Moore et al., 2010). Hence, the RAPIDSNPs method was 

designed to help further bridge the gap due to the data generated from the projects such as 

HapMap, 1000 Genomes and GWAS, and to provide an increased ability for identifying true 

disease/trait associated SNPs, which potentially could be missed using standard methods. The 

performance of this method in identifying trait associated SNPs that are unlikely to be identified 

by the standard biostatistical methods was benchmarked against the stepwise forward approach, 

which was previously used to find the SNPs associated with ADP platelet responses. 

The underlying functioning of the method is grounded on the random forests (RF) algorithm, 

which is a tree based methodology used in classification and regression for high dimensional 

and non-linear data. The RF is used as a base filtering for finding initial useful SNPs, which 

are further refined using an ensemble of other feature selection methods for eventual 

identification of the most significant SNPs associated with ADP platelet responses. The 

RAPIDSNPs method could also be generically applied to other continuous trait/disease 

phenotypes. Several new SNPs were identified by the RAPIDSNPs method, which are 

significantly associated with ADP platelet responses and which were previously unidentified. 

Furthermore, the majority of the genes were also found to have general associations with CVDs 

in other independent studies, indicating the robustness of the method in identifying crucial or 

potential disease associated variants.  

6.2.2 A structural bioinformatics approach for investigating missense SNPs associated 

with ADP platelet response 

The first key molecular investigation was into the effects of the identified missense SNP 

mutations on the related protein structures and functions. The aim was to determine how likely 

the missense SNPs were to damage or affect the structure and/or function of the proteins, which 
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may help to further explain the variability of ADP platelet responses. The missense SNPs lead 

to an amino acid substitution in the related proteins, which may cause changes to the associated 

proteins’ folding and/or binding.  

The structural bioinformatics approach was designed and applied to investigate the role of the 

missense SNPs that underpin extreme ADP platelet responses. The damaging level of the 

missense SNPs were initially investigated and subsequently several 3D models were then 

generated for the proteins associated with the identified harmful missense SNPs. The likely 

structural and/or functional effects on the proteins due to the identified damaging missense 

SNPs were then examined. 

6.2.3 A bioinformatics approach for investigating the regulatory SNPs associated with 

ADP platelet responses 

Another key molecular investigation involved the regulatory functional SNPs that are likely to 

be associated with the ADP platelet responses. For instance, the SNPs regulatory roles may 

lead to changes in the expression levels of the related gene transcripts, i.e. transcriptomic levels 

variation. This variation in the expressed genes may be caused by the presence of the SNPs in 

allelic specific manner, which may lead to the variation of the produced transcript levels among 

individuals. Thus, the variability of the ADP platelet responses was further hypothesised to be 

due these regulatory key SNPs, which were identified by the RAPIDSNPs. 

Therefore, an analytical pipeline, which incorporated state-of-art bioinformatics methods, was 

designed to investigate the likelihood of the involvement of the key SNPs in regulatory roles. 

Several alternative regulatory roles were investigated. 
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6.2.4 A genetic predictive approach for ADP platelet response levels 

The gene-based predictive approach was designed, using the SNPs from the RAPIDSNPs 

method and the SNPs identified from Jones et al study (Jones et al., 2009), in order to predict 

high or low ADP platelet response levels. The underlying hypothesis was that the SNPs from 

RAPIDSNPs key SNPs can be used to make significantly better predictions than those from 

the Jones et al study. This kind of prediction is potentially very useful for CVD personalised 

medicine. For instance, it would be of interest to identify the SNP’s allele, which could 

correctly guide the individualised dosage/treatment strategies. In addition, based on the 

prediction outcomes, an individual’s future CVD prognosis could be determined.  

The developed predictive approach employed supervised learning method using an artificial 

neural network (ANN). Several models were generated using the SNPs from RAPIDSNPs and 

Jones et al., which were then evaluated to compare their predictive performance. The individual 

SNPs alleles (genotypes), which were significantly linked with high or low ADP platelet 

response levels, were then examined. 

6.3 Summary of the key findings and conclusions 

6.3.1 RAPIDSNPs 

6.3.1.1 The key SNPs identified by RAPIDSNPs 

Using the RAPIDSNPs method, numerous (key) SNPs were identified, which are significantly 

associated with the ADP platelet responses. Among the key SNPs identified by RAPIDSNPs, 

many were previously unidentified, when the same data was analysed using the stepwise 

forward method. Furthermore, several of these were found in other studies to be generally 

associated with CVDs, suggesting the robustness of the approach in identifying crucial SNPs. 
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Moreover, the ability to identify key SNPs was further validated using simulated data with 

artificial SNPs, which also showed the same performance pattern as the real SNPs. 

The notable key SNPs, which were previously unidentified and found to be associated with the 

ADP platelet responses, as well as having independently identified associations with CVDs, 

are outlined in the Table 6.1 below. 

S/N Identified 

SNPs 

Gene/Locus Associated 

ADP platelet 

responses 

High 

response/ 

Increase 

Low 

response 

/Decrease 

Likely associated 

CVD type based on 

the discussion 

1 rs6141803 COMMD7 PA low Myocardial 

Infarction (MI) 

(Goodall et al.,2010)  

2 rs1491978 P2Y12 FA high Has a potential for 

atherothrombosis, 

stroke, or MI (Zee et 

al., 2008) 

3 rs1388622 P2Y12 FA high Has a potential for 

atherothrombosis, 

stroke, or MI(Zee et 

al., 2008; Ziegler et 

al., 2005) 

4 rs2071676 CA9 FA low Has a potential for 

hypertension 

(Reardon et al., 2009; 

Woodman et al., 

2010) 

5 rs12953 PECAM1 PA low Likely MI (Listì et 

al., 2004; Sahebkar et 

al., 2013) 

8 rs12485738 ARHGEF3 FA high MI & ischemic stroke 

(Meisinger et al., 

2009) 

Table 6.1 The key SNPs identified by the RAPIDSNPs pipeline that are associated with different ADP platelet response 

and were previously unidentified. Each of the SNPs corresponds to a particular ADP platelet response and whether is likely 

to increase or decrease to the platelet response and associate with a particular CVD. In bold are the newly discovered significant 

SNPs, which were not previously identified in the study by Jones et al. (2009). 

The identified SNP rs12485738 in the Table 6.1, has been associated with CVD in different 

independent unrelated studies. Other SNPs such as rs12953 and rs1491978 have potential 
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association with CVD, as their related genes or proximal SNPs have been reported to be 

associated with CVD and thus might be worth for further investigation. The most interesting 

among these SNPs is rs2071676 in the CA9 gene which was found to be significantly associated 

with FA platelet responses. To the author’s knowledge this SNP is not mentioned in the platelet 

literature, however, the related gene isoform CA2 was elsewhere reported to be associated with 

a decrease in the platelet aggregation and hypertension (Woodman et al., 2010). Thus, it might 

be of interest to investigate CA9, as the SNP’s minor allele is also found to significantly 

associated with the decrease in the ADP platelet response (FA). 

Furthermore, in our analyses using RAPIDSNPs we have found that two P2YR12 SNPs 

(rs1388622 and rs1491978), which were previously found to have an insignificant association 

with ADP platelet responses, are actually significantly associated with FA platelet responses. 

It is understood that the P2YR12 plays pivotal role in the ADP mediated platelet responses and 

aggregation, and is a subject of several anti-platelet drugs for CVD treatment, thus, these SNPs 

are also worthy of further investigation. 

6.3.2 Predicted structural/functional effects on the proteins related to ADP platelet 

response due to damage missense SNPs 

Two missense SNPs, rs2071676 and rs12953 (which correspond to the Val33Met and 

Ser563Asn mutations respectively) were likely to be deleterious to their related proteins (CA 

IX, and PECAM1 respectively). These mutations are worthy of future experimental work to 

further investigate their impact on the molecular mechanisms of ADP platelet responses. 

The Val33Met mutation was predicted to be in the HLH or EF-hand structural motifs within 

N-terminus region in the characterised PG domain of CA IX. To the best of our knowledge, to 

date, the characterisation of this mutation has not been mentioned in the literature. Further 
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examination of the potential functional impact revealed that the mutation may affect the binding 

affinity of the respective metal ion ligand (Mg2+ or Ca2+), which has a potential to affect the 

overall signal transduction of the protein. Future experiments could further focus on 

characterising and understanding the individuals’ differences in the structural and/or function 

of this putative HLH/EF hand motif and the effect on the FA platelet response levels, in an 

allele specific manner. The focus might be on individuals with minor allele, which appears to 

significantly associate with decrease in FA platelet response or low FA level (Chapter 5). This 

might be of interest in a clinical setting, for instance in predicting the individuals’ responses to 

treatment and prognosis, which may also influence dosage and monitoring. 

Furthermore, for the Ser563Asn mutation in PECAM1, it was found that the mutation is likely 

to cause a crucial change in the structure, where the Ig domain 6 of the protein appears to be 

changing from the C-type to V-type. This structural change is likely to have an effect on the 

binding activities of PECAM1 partners, leading to a decrease in PA platelet responses and 

aggregation. Thus, this mutation also has potential for future investigations in understanding 

its therapeutic and clinical implications in the context of personalised medicine. 

6.3.3 Predicted ADP platelet response associated regulatory SNPs 

Furthermore, several key SNPs were identified to be significantly associated with regulatory 

roles, i.e. they are more likely to be rSNPs. These regulatory roles appear to be affecting the 

individuals’ PA or FA platelet responses. Further investigation of their related genes or 

transcription factors suggested the possibility of the overall rSNPs involvement in CVD. The 

most significant rSNPs are shown in the Table 6.2, each of which are associated with high or 

low ADP levels and have potential association with CVD, thus worthy of further investigation. 
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Datas

ets 

SNP Gene/loci Predicted molecular 

regulatory roles 

PA/

FA 

High

/low 

Likely CVD type 

associated 

1 rs3212391 ITGA2 TFB, distal l. 

interactions 

PA Low Atherosclerosis 

(Stroke), 

Hypertension(Deng 

and Shen, 2007) 

rs12485738 ARHGEF3 eQTL, TFB, 

regulation of RNA 

binding proteins 

FA High Blood pressure, 

Potential for MI & 

ischemic stroke 

(Meisinger et al., 

2009) 

rs1388622/ 

rs1491978 

P2RY12 eQTL, TFB FA High Potential for MI & 

ischemic stroke (Zee 

et al., 2008; Ziegler 

et al., 2005) 
2 rs246406 ITGA2 eQTL, TFB PA Low Potential for 

Ischemic stroke 

(Wu et al., 2014) 
rs1472122 P2YR12 eQTL, TFB PA Low Potential for 

Ischemic Stroke 

(Zee et al., 2008; 

Ziegler et al., 2005) 

Table 6.2 The identified rSNPs found to be more likely to be related with regulatory roles. These rSNPs were also found 

in Chapter 5 (excluding rs12485738) to be significantly associated with high or low ADP levels and are likely to be associated 

with CVD. In bold are the newly discovered significant SNPs, which were not previously identified in the study by Jones et 

al. (2009). 

6.3.4 Genetic prediction of individuals’ high or low ADP platelet response levels 

Based on the designed predictive approach, it is clear that key SNPs from the RAPIDSNPs 

approach can be used to predict individuals with high or low ADP levels with significantly 

higher accuracy than those from the Jones et al. study. Moreover, we identified the most 

significant SNPs that are more likely to be involved with the high or low extreme ADP levels. 

Examples of these SNPs are rs1388622 and rs1491978 in P2RY12, which were identified to be 

associate with high FA platelet response levels. It was also found that the SNP rs2071676 in 

CA9 is most significantly associated with low FA levels. This reflects the previous findings, 

which reported that the related cytosolic CA II isoform is associated with ADP platelet 

responses and decreased platelet aggregation (Woodman et al., 2010). Moreover, it appears that 
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individuals with this mutation (minor alleles) are likely to have low platelet aggregation and 

are less-prone to hypertension, while those with other alleles are likely to have high platelet 

aggregation, and are prone to thrombosis and hypertension (Reardon et al., 2009; Woodman et 

al., 2010). The literature is silent on which individuals’ alleles are involved with the related 

structural changes of the SNP that was mentioned above. Hence, our findings may guide future 

investigations aimed at this mutation and protein for platelet aggregation and hypertension. 

Therefore, the identified SNPs involved with high or low extreme ADP platelet response levels 

are more likely to be of the higher interest for clinical and targeted therapeutic CVD 

applications for personalised medicine (PM). The next section is a further discussion of how 

these SNPs, and in general our computational predictive approaches, may potentially impact 

on future PM.  

6.4 Implications of the approaches and findings to personalised medicine 

(PM) for CVD and other diseases 

Based on the discussion of PM in Chapter 1, our computational predictive approaches have 

potential to be exploited in PM settings. They could be used to identify an individuals’ likely 

CVD risk and predict their specific ADP platelet responses, while pinpointing the key 

associated SNPs. 

The RAPIDSNPs method could be used to create the overall or initial genetic profile of 

individuals, based on the threshold SNPs’ confidence level, which was used in RAPIDSNPs to 

identify the key SNPs (section 2.2.2.1). The specific molecular effects of the SNPs such as 

whether a SNP is damaging to structure/function of the related protein, transcription regulation 

could then be predicted and used to extend upon the initial  genetic profile accordingly. Such 

predictive aspects could also include the SNPs alleles, which are significantly associated with 

the individuals’ high or low ADP platelet response levels. Moreover, the extended profile may 
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be useful for molecular diagnostics and providing an informed and targeted treatment strategy 

for specific individuals. 

For instance, for the individuals’ related to the FA platelet response, the overall view of genetic 

and molecular results for potential CVD application could be as follows, Table 6.3. 

RAPIDSNPS 

SNP ID Loci 

(gene) 

Confide

nce level 

Pheno

typic 

state 

(+ve/-

ve) 

Molecular state The 

significance 

in the 

phenotypic 

levels 

(Low/High 

FA levels): 

p-value 

Specific 

allele 

involved & 

significance 

(p-value), 

Low/High 

FA levels) 

Structural

/ 

functional 

Regulat

ory role 

rs1388622 P2YR12 0.563 +ve   0.011 High Major, 0.032, 

high 

rs1491978 P2YR12 0.438 +ve  eQTL, 

TFBS 

0.012 High Major, 0.022, 

low 

rs11637556 MAP2K1 1.000 +ve  TFBS, 

RBPS 

0.09633 

High 

 

rs1038639 ITPR1 0.375 -ve   0.012 Low Major, 0.021, 

low 

rs2071676 CA9 0.375 -ve Damaging  0.01 Low minor, 

0.0047, low 

rs10499858 CD36 0.688 -ve  RBPS 0.017 Low Minor, 

0.01242, low 

rs10974955 JAK2 0.563 +ve   0.1428 High  

Table 6.3 The genetic and molecular overview of individuals associated with FA platelet response extreme level based 

on the predictive information. The blue, green, yellow, and red indicate the SNPs alleles with higher, standard, medium, and 

poor significance respectively that are associated with extreme levels.  

Hence, from Table 6.3, for potential CVD PM applications, the generated genetic profile could 

be used to predict the disease state, or it could be used for targeted clinical investigation or 

treatment depending on the specific SNPs alleles and their molecular status. For example, it 

has been shown that the SNP rs1491978 is likely to be associated with myocardial infarction 

(MI). MI is triggered mainly due to the platelet hyperactivity, which is linked with increase in 

fibrinogen binding under ADP activation. Thus, under the PM settings, the minor/heterozygous 

alleles individuals would be the main focus of clinical investigation in determining the disease 

state, or response to drugs or dose monitoring.   
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Using a hypothetical example, suppose an individual whose two SNPs (rs1388622 and 

rs1491978 in P2YR12) with homozygous major genotypes, has been diagnosed with FA platelet 

hyperactivity. And we want to know CVD risk level for this particular individual. Based on the 

Table 6.3, the homozygous major alleles for the SNPs rs1388622 and rs1491978 in P2YR12 

are related to FA platelet hyperactivity (High FA response level). Based on Table 6.1, these 

SNPs are more likely to be associated with increased risk of myocardial infarction (MI) and/or 

ischemic stroke. Thus, further individual diagnosis for MI or/and ischemic stroke which would 

integrate omic (molecular) information of these SNPs (eQTL and TFBS) would be performed 

for better guiding clinical or dosage treatment focusing on individuals with major allele. 

Moreover, such genetic profiles are said to be promising in facilitating the enhancement of new 

diagnostic tests based on genes or proteins, and therapies, which target the consequences of 

specific genetic alterations or aberrations (President’s Council of Advisors on Science 

Technology, 2008). 

6.4.1 Could the methods be applicable to the developing countries? 

The main motive of the question is driven by the fact that the author is from Tanzania, which 

is one of the developing countries in the Sub-Saharan region. Based on the discussion in the 

Chapter 1, CVD and other non-communicable diseases are emerging as silent killers in the 

developing countries particularly in the Sub-Sahara. The stats showing the increased risks for 

the CVD are sharply rising (see Chapter 1, section 1.2). However, the omic data generation and 

analytical tools are not as advanced as in the developed countries. Based on the survey that the 

researcher conducted, most of the generated data from the omic based researches, including 

genetic association studies are partly analysed in-house but, largely are analysed either in 

Europe or South Africa where the tools are more advanced. Thus, the designed approaches have 
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potential of being implemented and applied for investigating CVD risks and for potential future 

personalised medicine applications even in the developing countries. 

6.5 Major contributions and new insights gained 

There are several major contributions from this study. The contributions might be divided into 

two major categories, which are computational and biological aspects. 

6.5.1 Contributions to the computational aspects of genetic association analyses 

The first major contribution is the RAPIDSNPs pipeline, which is a novel computational tool 

for rapidly analysing individuals’ genotyped SNPs, which are associated with a continuous 

phenotype. The tool is able to identify key and significant SNPs, which were previously 

unidentified or found to be insignificant associated with ADP platelet responses signifying the 

robustness of the tool in identifying the most significant genetic variants. Moreover, the 

pipeline was tested for simultaneously analysing covariates or non-genetic factors. Based on 

the tests, it was shown to be effective at identifying key SNPs in addition to the significance of 

covariates in further explaining the continuous phenotypic variation. Thus, the RAPIDSNPs 

has further bridged the gap of identifying other unknown genetic variants that may account for 

the remaining unexplained variation (‘missing heritability’ problem) The paper describing the 

pipeline has been published in the journal PLOS ONE (Salehe et al., 2017). 

The further computational contribution is the development of the computational predictive 

protocols for analysing the molecular aspects of the genetic variants associated with ADP 

platelet responses and CVD. In most cases, genetic association studies do not provide any 

details concerning the molecular effects of the causal SNPs associated with the trait/disease 

under investigation. 
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Finally, a supervised learning method based on ANN was developed for predicting the 

individual’s high or low ADP levels for potential prediction of CVD risk levels and PM 

applications. Based on the literature, ANNs are rarely used for this type of genetic prediction 

for human disease/traits. Each of these developed protocols and predictive supervised learning 

methods also have potential for being generically applied in other disease/trait cases.  

6.5.2 Contributions to the biological knowledge of ADP platelet responses and CVD. 

The major contribution in this area is on the molecular genetics of the ADP platelet responses 

and the link with CVD. Several SNPs, which were newly identified in this study and those 

previously identified, were studied to elucidate their possible molecular effects through 

computational predictive methods. Each of the SNPs have been identified to be significantly 

associated with ADP platelet responses (FA/PA). Therefore, further experimental investigation 

to verify their underlying molecular mechanisms would be justified. In particular, to highlight 

a few, SNPs such as rs12485738 in ARHGEF3 and rs2071676 in CA9, rs12953 in PECAM1, 

which are significantly associated with FA, rs1472122 in P2YR12, rs3212391 and rs246406 in 

ITGA2, which are significantly associated with PA. The bolded SNPs were previously 

unidentified and are likely to be associated with several molecular mechanisms. For instance, 

the SNP rs12485738 has been predicted to be associated with different regulatory functions 

such as eQTL where it has been associated with several ADP platelet responses related eQTL 

genes.  Moreover, this SNP is likely to be involved with the regulation of TFBS in which the 

rs3212391 SNP has been also associated with. With regard to the structural and/or functional 

aspect, both of the rs2071676 and rs12953 have been predicted to be affecting the structure or 

binding activity of their related proteins.  

Each of these bolded SNPs are worthy of future investigation as they have been independently 

associated with CVD, such as stroke and MI (Tables 6.1 and 6.2) and in this study, for the first 
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time, we have identified them to be significantly involved with specific individuals’ ADP 

platelet responses variation. In addition, the predicted molecular aspects of these SNPs could 

further be utilised for targeted pharmacogenomics or therapeutics purposes that might 

potentially benefit future CVD PM applications. 

6.6 Next directions 

6.6.1 ADP platelet responses (FA/PA) and CVD 

There are notable SNPs, which were found to be significantly associated with FA/PA platelet 

responses, and their underlying molecular mechanisms are worthy of further experimental 

investigation. For instance, rs2071676 in CA9, which lead to V33M substitution in the related 

CA IX protein would be interesting for experimental studies aimed to validate the link between 

this mutation, low FA responses and related CVD state (likely hypertension). The experimental 

work could focus on minor allele individuals, as they have been found to be significantly 

associated with low FA responses (Chapter 5). In this regard, a guided molecular dynamics 

simulation, for example, followed by other experimental work could be vital in understanding 

and characterising the effects of mutation on the protein’s binding and folding in the predicted 

putative HLH/EF hand motif, which is underpinning the low FA platelet response. 

In addition, the missense SNP rs12953, which causes Ser563Asn mutation in the extracellular 

domain 6 of PECAM1 might be also worthy of further investigation. Based on the analyses of 

the predicted structural 3D models and existing experimental data, this mutation is likely to 

reduce the binding affinity and ligand specificity of PECAM1 (Baldwin et al., 1994; 

Wollscheid et al., 2009). Thus, investigating this mutation to determine its potential for targeted 

CVD therapeutics for future CVD personalised treatment would be vital. 
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6.6.2 RAPIDSNPs improvement 

Furthermore, other future work could focus on improving the efficiency of the RAPIDSNPs 

method. Several highlighted areas have potential for improvement, many of which were also 

suggested by the reviewers of the paper. 

6.6.2.1 Short-term objectives 

6.6.2.1.1 Handling genome-wide genetic variants (SNPs) 

The most appealing area for RAPIDSNPs development is in the ability to handle genome-wide 

SNPs. This would address the exponential increases in the number of both curated 

(validated/RefSNP) and non-curated SNPs in the dbSNP databases (Sherry et al., 2001). For 

instance, the number of validated (rs#) SNP in the current dbSNP build 149 is estimated to be 

89,404,961. In addition, millions of SNPs are normally being genotyped in the genome-wide 

association studies. It is clear that further optimised computational methods for analysing this 

voluminous data would be indispensable. In its current version the RAPIDSNPs is able to 

handle small numbers of genotyped SNPs (~10,000), but in relatively high dimensional spaces 

(~500 cases and large number of SNPs). Since, the RAPIDSNPs method is an optimised tool 

for finding the most significant SNPs, then its potential improvement for handling the whole 

genome-wide data for association studies would likely benefit the scientific community. Thus, 

in the near future, the focus would be to improve the RAPIDSNPs for efficient handling of 

whole genome SNPs. 

6.6.2.1.2 Implementation of the complete pipeline as a web server/an R-package 

For wider adoption by the scientific community, a potential next endeavour would be to 

implement the RAPIDSNPs as a web server or an official R-package. The web-server approach 

may be the preferred implementation with potential to reach a wider audience, as it would offer 
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a graphical user interface (GUI) accessible to anyone with a web browser. Nevertheless, server 

maintenance would be more challenging comparing to an R-package, which would be 

deposited on the CRAN (Comprehensive R Archive Network) sites. As the R language has 

gained much more attention particularly amongst bioinformatics and biomedical science 

community, then an R-package implementation would also be a priority. 

6.6.2.2 Long-term objectives 

6.6.2.2.1 Inclusion of epigenetic and other variants 

The epigenetic or methylomic data have gained much more attention, as these type of variants 

occur frequently in the genome and are considered to be associated with complex diseases 

including CVD (Feinberg, 2010; Gerasimova et al., 2013; Keating et al., 2016). Therefore, in 

terms of the RAPIDSNPs, it would be interesting to consider how it could handle the epigenetic 

variants. Several new aspects would need to be considered, such as data structure 

(representation) issues, as epigenetic data might involve histone modification or DNA 

methylation, which may add on the inter-individuals’ phenotypic variability.  

Furthermore, a related consideration would be the extension of the ADP platelet responses and 

CVD research by incorporating these type of variations. For instance, it would be interesting to 

know the effects of any identified epigenetic variations and how they might explain the inter-

individual variability in the ADP platelet responses and CVD risks. This type of information 

could also be useful for potential future targeted clinical and therapeutic CVD applications. 
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