The effect of passive measures on thermal comfort and energy conservation. A case study of the Hot Summer and Cold Winter climate in the Yangtze River region

[thumbnail of 1-s2.0-S235271021730308X-main.pdf]
Preview
Text - Accepted Version
· Available under License Creative Commons Attribution Non-commercial No Derivatives.
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Yao, R. orcid id iconORCID: https://orcid.org/0000-0003-4269-7224, Costanzo, V., Li, X., Zhang, Q. and Li, B. (2018) The effect of passive measures on thermal comfort and energy conservation. A case study of the Hot Summer and Cold Winter climate in the Yangtze River region. Journal of Building Engineering, 15. pp. 298-310. ISSN 2352-7102 doi: 10.1016/j.jobe.2017.11.012

Abstract/Summary

The energy consumption for heating and cooling of buildings in the cities located within the boundaries of the Hot Summer and Cold Winter (HSCW) zone in China is rapidly increasing due to the increased comfort expectations from well-resourced occupants. Guidance on how and to what extent it is possible to improve energy efficiency of buildings is thus required by policy makers as well as designers and building managers. The aim of this study is to demonstrate how the use of climate-sensitive passive design solutions can help the improvement of indoor thermal conditions while reducing the energy needs and ultimately carbon emissions. An extensive parametric analysis of several passive strategies such as building orientation, thermal insulation, glazing area, shading devices, air tightness and natural ventilation, is carried out for a typical apartment block located in the cities of Chongqing, Changsha and Shanghai, which lays respectively in the upper, middle and downstream of the Yangtze River. Detailed hourly dynamic simulations show how it is possible to extend the non-heating/cooling period and reduce the peak loads, highlighting the potentialities of each strategy according to different climate constraints. The recommended strategies provides quantitative guidance to either design of new or retrofitting of existing buildings. This research contributes to the building energy conservation knowledge for policy-makers, developers and building designers with insight on the feasibilities of the application of passive measures for the residential buildings located in the Yangtze River region with hot summer and cold winter climates.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/74023
Identification Number/DOI 10.1016/j.jobe.2017.11.012
Refereed Yes
Divisions Science > School of the Built Environment > Energy and Environmental Engineering group
Publisher Elsevier
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar