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1 Empirical likelihood

For n i.i.d one dimensional observations x1, . . . , xn the empirical likelihood
(Owen, 1988) can be defined as

f(x) =

n∏
i=1

pi, (1)

where we assign each observation a weight pi, and constrain these such that∑n
i=1 pi = 1, ∀i, 0 ≤ pi ≤ 1. Focussing on the empirical likelihood for the mean

µ of our observations xi, we simply require that

n∑
i=1

pixi = µ. (2)

Then we have three constraints, and aim to find the the pi that maximise
the empirical likelihood f(x) under these constraints. Fortunately by using
Lagrange multipliers we can find the optimal pi by solving a one dimensional
root finding problem. Defining

G =

n∑
i=1

log(npi)− nλ
n∑

i=1

pi(xi − µ) + γ

(
n∑

i=1

pi − 1

)
, (3)

and taking the partial derivative with respect to pi, applying the method of
Lagrange multipliers (Owen, 2001) we have

∂G

∂pi
=

1

pi
− nλ(xi − µ) + γ = 0, (4)

and we can solve for γ by considering

n∑
i=1

pi
∂G

∂pi
= 0 (5)

n∑
i=1

(1− nλpi(xi − µ) + piγ) = 0 (6)

n+ γ = 0, (7)
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since we know
∑n

i=1 pi(xi−µ) = 0. Then substituting γ = −n into equation
4 we have

1

pi
− nλ(xi − µ)− n = 0 (8)

pi =
1

nλ(xi − µ) + n
, (9)

and so pi depends only on solving equation 4 for λ. We know that

n∑
i=1

pi(xi − µ) = 0 (10)

n∑
i=1

(xi − µ)

nλ(xi − µ) + n
= 0, (11)

and so we can solve for λ for a given value of µ using a univariate root finding
algorithm. Then using equation 9 we can find the pi and calculate the empirical
likelihood in equation 1.

1.1 Euclidean likelihood

The Euclidean likelihood (Baggerly, 1998) defines the log likelihood as

log f(x|µ) = −1

2

n∑
i=1

(npi − 1)2, (12)

with the constraints
∑n

i=1 pi = 1 and
∑n

i=1 pixi − µ = 0. Again we apply
the method of Lagrange multipliers (Owen, 2001)

G = −1

2

n∑
i=1

(npi − 1)2 − nλ
n∑

i=1

pi(xi − µ) + γ

(
n∑

i=1

pi − 1

)
, (13)

and setting the partial derivative of G with respect to pi to zero we have

∂G

∂pi
= n(1− npi)− nλ(xi − µ) + γ = 0 (14)

1

n

n∑
i=1

(n(1− npi)− nλ(xi − µ) + γ) = 0 (15)

−nλ(x̄− µ) + γ = 0. (16)

Substituting γ = nλ(x̄− µ) back into equation 14

n(1− npi)− nλ(xi − µ) + nλ(x̄− µ) = 0 (17)

pi =
1

n
(1− λ(xi − x̄)) . (18)

Given that
∑n

i=1 pi(xi − µ) = 0, we can substitute equation 18 to give

2



Supplementary material REFERENCES

n∑
i=1

(xi − µ)

n
(1− λ(xi − x̄)) = 0 (19)

x̄− µ−
n∑

i=1

λ

n
(xi − µ)(xi − x̄) = 0 (20)

x̄− µ−
n∑

i=1

λ

n
(xi − x̄)(xi − x̄) = 0 (21)

x̄− µ− λs = 0, (22)

where s is defined as s = 1
n

∑n
i=1(xi−x̄)(xi−x̄). Substituting λ into equation

18 we have

pi =
1

n

(
1− 1

s
(x̄− µ)(xi − x̄)

)
, (23)

and substituting pi into equation 12 we arrive at

log f(x|µ) = −
n∑

i=1

(
1

s
(x̄− µ)(xi − x̄)

)2

(24)

= − 1

s2
(x̄− µ)2

(
n∑

i=1

(xi − x̄)2

)
(25)

= −1

s
n(x̄− µ)2, (26)
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