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Circulating vitamin D concentration and risk of seven cancers: 
Mendelian randomisation study
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Kawthar Al-Dabhani,3 Richard M Martin,4,6 Sarah J Lewis,4,5 Marc J Gunter,7 Alison  Mondul,8 
Irene M Shui,9 Evropi Theodoratou,10 Katharina Nimptsch,11 Sara Lindström,12  Demetrius 
Albanes,13 Tilman Kühn,14 Timothy J Key,15 Ruth C Travis,15 Karani Santhanakrishnan 
 Vimaleswaran,16 Peter Kraft,17 Brandon L Pierce,18,20 Joellen M Schildkraut21

ABSTRACT
OBJECTIVE
To determine if circulating concentrations of vitamin D 
are causally associated with risk of cancer.
DESIGN
Mendelian randomisation study.
SETTING
Large genetic epidemiology networks (the Genetic 
Associations and Mechanisms in Oncology (GAME-
ON), the Genetic and Epidemiology of Colorectal 
Cancer Consortium (GECCO), and the Prostate Cancer 
Association Group to Investigate Cancer Associated 
Alterations in the Genome (PRACTICAL) consortiums, 
and the MR-Base platform).
PARTICIPANTS
70 563 cases of cancer (22 898 prostate cancer, 
15 748 breast cancer, 12 537 lung cancer, 11 488 
colorectal cancer, 4369 ovarian cancer, 1896 
pancreatic cancer, and 1627 neuroblastoma) and 
84 418 controls.
EXPOSURES
Four single nucleotide polymorphisms (rs2282679, 
rs10741657, rs12785878 and rs6013897) associated 
with vitamin D were used to define a multi-
polymorphism score for circulating 25-hydroxyvitamin 
D (25(OH)D) concentrations.
MAIN OUTCOMES MEASURES
The primary outcomes were the risk of incident 
colorectal, breast, prostate, ovarian, lung, and 
pancreatic cancer and neuroblastoma, which was 
evaluated with an inverse variance weighted average 

of the associations with specific polymorphisms and 
a likelihood based approach. Secondary outcomes 
based on cancer subtypes by sex, anatomic location, 
stage, and histology were also examined.
RESULTS
There was little evidence that the multi-polymorphism 
score of 25(OH)D was associated with risk of any of 
the seven cancers or their subtypes. Specifically, the 
odds ratios per 25 nmol/L increase in genetically 
determined 25(OH)D concentrations were 0.92 
(95% confidence interval 0.76 to 1.10) for colorectal 
cancer, 1.05 (0.89 to 1.24) for breast cancer, 0.89 
(0.77 to 1.02) for prostate cancer, and 1.03 (0.87 
to 1.23) for lung cancer. The results were consistent 
with the two different analytical approaches, and the 
study was powered to detect relative effect sizes of 
moderate magnitude (for example, 1.20-1.50 per 25 
nmol/L decrease in 25(OH)D for most primary cancer 
outcomes. The Mendelian randomisation assumptions 
did not seem to be violated.
CONCLUSIONS
There is little evidence for a linear causal association 
between circulating vitamin D concentration and risk of 
various types of cancer, though the existence of causal 
clinically relevant effects of low magnitude cannot be 
ruled out. These results, in combination with previous 
literature, provide evidence that population-wide 
screening for vitamin D deficiency and subsequent 
widespread vitamin D supplementation should not 
currently be recommended as a strategy for primary 
cancer prevention.

Introduction
Evidence from in vitro and animal model studies 
supports an anti-neoplastic role of vitamin D.1 
Vitamin D functions by activating the nuclear vitamin 
D receptor, which is ubiquitously expressed and 
regulates the growth, differentiation, and apoptosis of 
normal and tumour cells.1

Epidemiological studies of circulating vitamin 
D concentrations and risk of various cancers have 
produced inconsistent results. Meta-analyses of 
observational studies have suggested that higher 
concentrations of 25-hydroxyvitamin D (25(OH)D), the 
primary circulating form, is associated with a lower 
risk of colorectal cancer.2 Epidemiological evidence for 
breast and prostate cancer is inconclusive, while data 
for other cancers are limited.3-5 Previous observational 
associations between circulating 25(OH)D and cancer 
are limited by relatively small study specific sample 

WhAT IS AlReAdy knoWn on ThIS TopIC
There is debate about whether vitamin D status is linked with disease or is just a 
correlate marker of overall health
Evidence from in vitro and animal model studies supports an anti-neoplastic role 
of vitamin D, but epidemiological studies and randomised controlled trials have 
yielded mixed results

WhAT ThIS STudy AddS
This Mendelian randomisation study provides little evidence of a linear causal 
association between circulating vitamin D concentration and risk of colorectal, 
breast, prostate, ovarian, lung, and pancreatic cancer and neuroblastoma, but 
the existence of causal clinically relevant effects of low magnitude cannot be 
ruled out
Population-wide screening for vitamin D deficiency and subsequent widespread 
vitamin D supplementation cannot currently be recommended as a strategy for 
primary cancer prevention 
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sizes (for example, 3000-5000 cases in meta-analyses 
of breast, prostate, and colorectal cancer) and by 
several potential methodological issues. Specifically, 
reverse causation could exist if 25(OH)D is measured 
at or close to cancer diagnosis, residual confounding 
might be present because of inadequate control for 
common causes of cancer, and errors in measurement 
of exposure to 25(OH)D could result from single 
measurements.

Definitive data from randomised controlled trials 
are lacking as few adequately powered trials have 
examined vitamin D supplementation and risk of 
cancer. The Women’s Health Initiative,6 a randomised 
placebo controlled trial of 400 IU of vitamin D plus 
1000 mg of calcium per day in 36 282 postmenopausal 
women, failed to support a protective role of vitamin 
D over a period of seven years for colorectal cancer 
(n=332 cases), breast cancer (n=1074 cases), or 
total cancer (n=2639 cases). The dose of vitamin D, 
however, was probably inadequate and the follow-up 
was too short to yield a substantial contrast. A meta-
analysis of four vitamin D supplementation trials 
found no association with total cancer incidence.7 
Another meta-analysis of 18 trials found a decrease in 
total cancer mortality, but the possibility of type I error 
and attrition bias was reported as few participants 
were examined and there was substantial dropout.8 
A previous Mendelian randomisation study reported 
that genetically low 25(OH)D concentrations were 
associated with increased cancer mortality, but this 
study included only about 2800 deaths from cancer 
and could not perform analyses by cancer site.9

To overcome limitations of conventional 
observational research and randomised trials and shed 
light on whether vitamin D status is a cause of disease 
or just a correlate marker of overall health, we used 
a Mendelian randomisation approach and estimated 
associations between single nucleotide polymorphisms 
associated with vitamin D and risk of colorectal, breast, 
prostate, ovarian, lung, and pancreatic cancer and 
neuroblastoma using summary data from the Genetic 
Associations and Mechanisms in Oncology (GAME-
ON), the Genetic and Epidemiology of Colorectal 
Cancer Consortium (GECCO), and the Prostate Cancer 
Association Group to Investigate Cancer Associated 
Alterations in the Genome (PRACTICAL) consortiums, 
and the MR-Base platform. Mendelian randomisation 
aims to improve causal inference by assessing risk 
associations of the genetically determined component 
of environmental exposures and biomarkers.10 11

Methods
Data for genetic epidemiology of cancer
We retrieved summary data for the association 
between single nucleotide polymorphisms associated 
with vitamin D and cancer from three large genetic 
epidemiology networks. The GAME-ON initiative 
is a network of five cancer specific consortiums: 
CORECT (ColoRectal Transdisciplinary Study); DRIVE 
(Discovery, Biology, and Risk of Inherited Variants in 
Breast Cancer); ELLIPSE (Elucidating Loci Involved in 

Prostate Cancer Susceptibility); FOCI-OCAC (Follow-
up of Ovarian Cancer Genetic Association and 
Interaction Studies of the Ovarian Cancer Association 
Consortium); and TRICL-ILCCO (Transdisciplinary 
Research in Cancer of the Lung of the International 
Lung Cancer Consortium). Larger scale summary data 
on the genetic epidemiology of colorectal and prostate 
cancer were retrieved from the GECCO and PRACTICAL 
consortiums. Further details on these networks can be 
found elsewhere.12-14 Data for the genetic epidemiology 
of pancreatic cancer and neuroblastoma were retrieved 
from PanScan1 (Pancreatic Cancer Cohort Consortium 
Genome-Wide Association Study) and from a genome-
wide association study of neuroblastoma through the 
MR-Base platform.15-18

Results from individual genome-wide association 
studies for each cancer type were combined by using 
standard fixed effects meta-analysis methods. We used 
Illumina or Affymetrix arrays for genotyping and either 
MACH19 or IMPUTE20 for imputation with the 1000 
Genomes reference panel. We incorporated principal 
components as covariates in the single nucleotide 
polymorphism and cancer logistic regression models to 
adjust for population stratification. Further information 
regarding the statistical analysis, imputation, and 
quality control steps in the genome-wide association 
studies have been previously reported.16 17 21-24

Data for genetic epidemiology of circulating 25(OH)
D concentrations
We conducted a search of published genome-wide 
association studies in PubMed and the relevant 
catalogue and identified four single nucleotide 
polymorphisms as robustly associated at P<5×10−8 
with circulating 25(OH)D concentration in two 
genome-wide association studies.25 26 These were 
rs2282679 in the group specific component (GC) on 
chromosome 4p12 that encodes the vitamin D binding 
protein; rs10741657 in CYP2R1 on chromosome 
11p15 that is involved in the hydroxylation of vitamin 
D3 to 25(OH)D; rs12785878 located near DHCR7 on 
chromosome 11q12 that catalyses the conversion of 
7-dehydrocholesterol to cholesterol; and rs6013897 
near CYP24A1 on chromosome 20q13 that encodes an 
enzyme that initiates the degradation of 1,25(OH)2D. All 
four single nucleotide polymorphisms were identified 
among individuals of European ancestry. Each 
explained about 1% of the 25(OH)D variability, and up 
to 5% for combinations of the four polymorphisms.25-27 
More precise estimates of the associations between 
the polymorphisms with circulating 25(OH)D were 
obtained from a recent large Mendelian randomisation 
study.28 That study analysed the association between 
the aforementioned polymorphisms with circulating 
25(OH)D concentrations as per unit change (nmol/L) 
in the natural (untransformed) scale.

Statistical analysis
We conducted Mendelian randomisation analyses 
to test the potential causal associations between 
circulating 25(OH)D and the risk of seven cancers 
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(colorectal, breast, prostate, ovarian, lung, pancreatic, 
and neuroblastoma) using summary data from GAME-
ON, GECCO, PRACTICAL, MR-Base, and genome-wide 
association studies of 25(OH)D concentration. We also 
performed analyses for cancer subtypes: colorectal 
cancer in men and women, colon cancer, rectal cancer, 
proximal colon cancer, distal colon cancer, oestrogen 
receptor negative breast cancer; aggressive prostate 
cancer24 29; clear cell, endometrioid, and serous 
ovarian cancer; and adenocarcinoma and squamous 
cell carcinoma of lung. We formulated a weighted 
multi-polymorphism score, which has been previously 
shown to be linearly associated with circulating 
25(OH)D concentration.28 We used two Mendelian 
randomisation methods using summary genetic data: 
an inverse variance weighted average of associations 
for specific polymorphisms and a likelihood based 
method.30 31 More information on these methods is 
provided in appendix 1.

For the Mendelian randomisation analyses to 
have a valid interpretation, it is necessary that the 
following three instrumental variable assumptions 
hold32 33: the genetic markers are strongly associated 
with circulating vitamin D concentration; the markers 
affect cancer only through their effect on circulating 
vitamin D; and markers are independent of any 

confounders of the association between circulating 
vitamin D and cancer. To assess potential violation 
of these assumptions we performed several statistical 
tests (MR-Egger,34 weighted median approach,35 and 
over-identification tests36) and sensitivity analyses 
(Mendelian randomisation analyses with two separate 
allelic scores: a vitamin D synthesis allele score 
(rs10741657 and rs12785878) and a metabolism 
allele score (rs2282679 and rs6013897)), more 
information about which is provided in appendix 1.

Results
Descriptives and statistical power
Table 1 lists the samples sizes used in the current 
study for each cancer type. The number of cancer 
cases ranged from 1627 for neuroblastoma to 22 898 
for prostate cancer. Our Mendelian randomisation 
analyses had 80% power, assuming that 3% of the 
25(OH)D variance was explained by the four single 
nucleotide polymorphisms, to detect effect sizes of 
moderate magnitude, ranging from odds ratios of 
0.58 per SD (for instance, 25 nmol/L or 10 ng/mL) 
increase in circulating 25(OH)D concentration for 
neuroblastoma to 0.86 for prostate cancer (table 1), 
which are comparable with effect sizes that have been 
observed in observational studies relating circulating 

Table 1 | Number of cancer cases and controls and statistical power in Mendelian randomisation study of circulating vitamin D concentration and risk 
of seven cancers

Cancer type Study Cases Controls
Minimum detectable  
OR* (R2=0.03)

Minimum detectable  
OR* (R2=0.05)

OR (95% CI) in published  
meta-analyses†

Colorectal
All GAME-ON 5100 4831 0.72/1.39 0.78/1.28 0.74 (0.63 to 0.89)37

All GECCO 11 488 11 679 0.81/1.23 0.85/1.18
All (women) GECCO 6132 6380 0.75/1.33 0.80/1.25 NR
All (men) GECCO 5356 5297 0.73/1.37 0.78/1.28 NR
Colon GECCO 7678 11 679 0.78/1.28 0.83/1.20 NR
Rectal GECCO 2783 11 679 0.68/1.47 0.75/1.33 NR
Distal colon GECCO 3354 11 679 0.70/1.43 0.77/1.30 NR
Proximal colon GECCO 4185 11 679 0.73/1.37 0.79/1.27 NR
Breast
All DRIVE 15 748 18 084 0.84/1.19 0.87/1.15 0.89 (0.81 to 0.98)38

ER− DRIVE 4939 13 128 0.75/1.29 0.80/1.22 NR
Prostate
All PRACTICAL 22 898 23 054 0.86/1.16 0.89/1.12 1.04 (0.99 to 1.10)39

All GAME-ON 14 159 12 712 0.82/1.22 0.86/1.17
Aggressive GAME-ON 4445 12 724 0.74/1.30 0.79/1.23 0.98 (0.84 to 1.15)39

Ovarian
All FOCI 4369 9123 0.73/1.33 0.79/1.25 0.91 (0.79 to 1.04)40

Clear-cell FOCI 356 9123 0.19/1.86 0.36/1.67 NR
Endometrioid FOCI 715 9123 0.43/1.62 0.55/1.48 NR
Serous FOCI 2556 9123 0.67/1.39 0.74/1.30 NR
Lung
All TRICL-ILCCO 12 537 17 285 0.82/1.20 0.86/1.16 0.98 (0.96 to 0.99)41

Adenocarcinoma TRICL-ILCCO 3804 16 289 0.73/1.30 0.78/1.23 NR
Squamous TRICL-ILCCO 3546 16 434 0.72/1.31 0.78/1.24 NR
Pancreatic
All PanScan1‡ 1896 1939 0.59/1.67 0.67/1.49 NR
Neuroblastoma
All Capasso, et al17‡ 1627 3254 0.58/1.57 0.66/1.43 NR
NR=not reported; ER−=oestrogen receptor negative.
*Minimum detectable odds ratio per 1 SD increase/decrease in 25(OH)D concentration; assume 80% power, 5% alpha level, and that 3% or 5% of 25(OH)D variance is explained by four single 
nucleotide polymorphisms (rs2282679, rs10741657, rs12785878, rs6013897) used in this paper. 1 SD in 25(OH)D corresponds to about 25 nmol/L (10 ng/mL).
†Summary random effects odds ratio and 95% confidence intervals for association of continuous 25(OH)D concentration (per 25 nmol/L) and risk of cancer in most recent published meta-analysis 
that reported dose-response summary result.
‡Obtained through MR-base platform.
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25(OH)D concentration to risk of cancer. Similar 
minimum detectable effect sizes were estimated for 
cancer subtypes, except for clear cell and endometrioid 
ovarian carcinomas, for which there was adequate 
power to detect only large effects (for example, odds 
ratios 0.19-0.43). The power was larger if we assumed 
that 5% of the 25(OH)D variance was explained by the 
single nucleotide polymorphisms (table 1). Table 2 
shows information on the associations of rs2282679, 
rs10741657, rs12785878 and rs6013897 with 25(OH)
D concentration.

Association between individual single nucleotide 
polymorphisms and cancer
Appendix 2 shows the association between each 
single nucleotide polymorphism related to vitamin 
D and risk of colorectal, breast, prostate, ovarian, 

lung, and pancreatic cancer and neuroblastoma and 
their subtypes with data from GAME-ON, GECCO, 
PRACTICAL, and the MR-Base platform. None of the 
four polymorphisms was significantly associated with 
any cancer risk, except for rs6013897 with prostate 
cancer in the GAME-ON data (odds ratio per effect 
allele 1.06, 95% confidence interval 1.01 to 1.10; 
P=0.02), but this association was not observed in the 
larger PRACTICAL data (1.00, 0.97 to 1.04; P=0.81). 
The rs6013897 polymorphism was also associated 
with risk of colon cancer in the GECCO data (0.94, 0.89 
to 0.99; P=0.03).

Mendelian randomisation estimates for multi-
polymorphism scores
Based on Mendelian randomisation analyses with 
either the inverse variance weighted method or the 

Table 2 | Characteristics of genetic variants associated with 25(OH)D concentration in published genome-wide 
association studies* 
Single nucleotide polymorphism Chromosome Locus Risk allele β estimate† P value
rs2282679 4 GC G −4.67 <3.4×10−302

rs10741657 11 CYP2R1 G −1.72 6.5×10−81

rs12785878 11 DHCR7/NADSYN1 G −2.11 6.4×10−129

rs6013897 20 CYP24A1 A −0.98 3.4×10−17

*Source: Vimaleswaran, et al, 2013.28

†Reported per unit change in nmol/L in natural scale per effect allele.

Table 3 | Mendelian randomisation estimates between multi-single nucleotide polymorphism risk scores of 
continuous 25(OH)D and risk of cancer calculated with inverse variance weighted method and likelihood method

Cancer type Study
OR* (95% CI); P value
Inverse variance weighted Likelihood

Colorectal
All GAME-ON 1.04 (0.78 to 1.38); 0.81 1.04 (0.78 to 1.38); 0.81
All GECCO 0.92 (0.76 to 1.10); 0.36 0.92 (0.76 to 1.10); 0.36
All (women) GECCO 0.92 (0.71 to 1.18); 0.52 0.92 (0.71 to 1.18); 0.52
All (men) GECCO 0.91 (0.70 to 1.20); 0.52 0.91 (0.70 to 1.20); 0.52
Colon GECCO 0.90 (0.73 to 1.11); 0.33 0.90 (0.73 to 1.11); 0.33
Rectal GECCO 0.93 (0.68 to 1.26); 0.64 0.93 (0.68 to 1.26); 0.64
Distal colon GECCO 0.97 (0.73 to 1.28); 0.83 0.97 (0.73 to 1.28); 0.83
Proximal colon GECCO 0.83 (0.64 to 1.07); 0.14 0.82 (0.64 to 1.07); 0.14
Breast
All DRIVE 1.05 (0.89 to 1.24); 0.59 1.05 (0.89 to 1.24); 0.59
ER− DRIVE 1.15 (0.88 to 1.50); 0.30 1.15 (0.88 to 1.50); 0.30
Prostate
All PRACTICAL 0.89 (0.77 to 1.02); 0.08 0.89 (0.77 to 1.02); 0.08
All GAME-ON 1.08 (0.88 to 1.33); 0.47 1.08 (0.88 to 1.33); 0.46
Aggressive GAME-ON 1.14 (0.85 to 1.54); 0.38 1.15 (0.85 to 1.54); 0.38
Ovarian
All FOCI 1.12 (0.86 to 1.47); 0.40 1.12 (0.86 to 1.47); 0.40
Clear-cell FOCI 0.99 (0.46 to 2.11); 0.98 0.99 (0.46 to 2.11); 0.98
Endometrioid FOCI 0.83 (0.48 to 1.43); 0.51 0.83 (0.48 to 1.43); 0.51
Serous FOCI 1.26 (0.91 to 1.76); 0.17 1.26 (0.91 to 1.76); 0.17
Lung
All TRICL-ILCCO 1.03 (0.87 to 1.23); 0.72 1.03 (0.87 to 1.23); 0.72
Adenocarcinoma TRICL-ILCCO 1.03 (0.79 to 1.35); 0.84 1.03 (0.79 to 1.35); 0.84
Squamous TRICL-ILCCO 0.95 (0.72 to 1.25); 0.74 0.95 (0.72 to 1.25); 0.74
Pancreatic
All PanScan1† 1.36 (0.81 to 2.27); 0.25 1.36 (0.80 to 2.27); 0.25
Neuroblastoma
All Capasso, et al17† 0.76 (0.47 to 1.21); 0.24 0.76 (0.47 to 1.21); 0.24
ER−=oestrogen receptor negative.
*Represents increase/decrease of risk per 25 nmol/L increase in nmol/L in natural scale of 25(OH)D. All four single nucleotide polymorphisms were used 
for all cancers, except for pancreatic cancer and neuroblastoma, for which only two polymorphisms (rs10741657, rs2282679) were available.
†Obtained through MR-base platform.



RESEARCH

the bmj | BMJ 2017;359:j4761 | doi: 10.1136/bmj.j4761 5

likelihood based method, we found little evidence that 
the multi-polymorphism scores for continuous 25(OH)
D concentration were associated with risk of colorectal, 
breast, prostate, ovarian, lung, or pancreatic cancer 
and neuroblastoma or their subtypes (table 3). 
Figures 1-6 show scatter plots of associations between 
vitamin D polymorphism and risk of various types of 
cancer. Plots are overlaid by Mendelian randomisation 
estimate (slope of solid line) and its 95% confidence 
interval (dotted lines) of multi-polymorphism score of 
continuous circulating 25(OH)D on risk of the seven 
cancers and their subtypes. We found a marginally 

significant association for total prostate cancer, for 
which a genetically determined 25 nmol/L increase in 
25(OH)D concentration yielded an odds ratio of 0.89 
(95% confidence interval 0.77 to 1.02; P=0.08; fig 3). 

Assessment of Mendelian randomisation 
assumptions
Mendelian randomisation estimates have a causal 
interpretation only if the instrumental variable 
assumptions of the method are valid. To satisfy 
the first assumption, we selected single nucleotide 
polymorphisms with a genome-wide significant 
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Fig 1 | Association between single nucleotide polymorphisms associated with vitamin D and risk of colorectal cancer and circulating 25(OH)
D concentration. Per allele associations with risk plotted against per allele associations with continuous circulating 25(OH)D concentration 
(vertical and horizontal black lines around points show 95% confidence interval for each polymorphism)
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association with 25(OH)D concentrations. We 
obtained estimates of association with continuous 
25(OH)D concentration for each polymorphism from a 
previous large Mendelian randomisation study, which 
estimated that the F statistic was 230 (n=35 873) 
and 489 (n=38 191) for the vitamin D synthesis and 
metabolism allele scores, respectively.28

We carried out statistical tests and sensitivity 
analyses to evaluate the potential violation of the 
second and third assumptions. The goodness of fit 
tests indicated absence of horizontal pleiotropic 
effects of the four polymorphisms on cancer that 
are unrelated to the effect of each polymorphism on 
circulating 25(OH)D (table A in appendix 3). Over-
identification tests also suggested that the effect 
estimates with different genetic variants were similar 
for all cancers. When we further evaluated presence 
of horizontal pleiotropy by performing the Mendelian 
randomisation analysis using two separate allelic 
scores (that is, vitamin D synthesis and metabolism), 
the results were identical and non-significant for all 
cancers (tables B and C in appendix 3). The MR-Egger 
regression method also did not show any evidence for 
the presence of horizontal pleiotropy for any of the 
reported associations (table D in appendix 3), as the 
P values for the intercept were large and the estimates 
adjusted for pleiotropy suggested null effects, 
although this method is expected to have low power 
to detect violation of assumptions when only four 
genetic instruments are used. The weighted median 
method also yielded no significant estimates (table D 
in appendix 3). We found no evidence in published 
genome-wide association studies that the four single 
nucleotide polymorphisms associated with vitamin 
D were genome-wide significantly associated with 
any other phenotype except 25(OH)D concentrations, 
which means that the third Mendelian randomisation 
assumption is probably not violated. Additionally, 
previous Mendelian randomisation studies using 
individual level data found no evidence for association 
between the vitamin D polymorphisms and potential 
environmental confounders.9 42 43
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discussion
Main findings and comparisons with the literature
In this large Mendelian randomisation study, we 
observed little evidence that a multi-single nucleotide 
polymorphism score for circulating 25(OH)D 
concentration was associated with risk of several 
cancers, including colorectal, breast, prostate, ovarian, 
lung, and pancreatic cancer and neuroblastoma or 
some of their subtypes. This was the first study with 
sufficient sample size under Mendelian randomisation 
assumptions to show a lack of causal effect for a linear 
association between 25(OH)D concentration and risk 
of these cancers.

Colorectal cancer
The overall evidence for an association between 
vitamin D and risk of specific cancers is mixed. 
Higher circulating 25(OH)D concentration has been 
associated with a lower risk of colorectal cancer. A 
systematic review of eight prospective studies that 
included 2690 cases of colorectal cancer observed 
a 34% (odds ratio 0.66, 95% confidence interval 
0.54 to 0.81) lower risk of colorectal cancer for the 
top compared with the bottom quartile of 25(OH)
D concentration.2 Another meta-analysis found that 
a 25 nmol/L increment in circulating 25(OH)D was 
associated with a relative risk of 0.74 (0.63 to 0.89).37 
Although the current Mendelian randomisation study 
was powered for minimum detectable odds ratios up 
to 0.85 per 25 nmol/L in circulating 25(OH)D, it did 
not support such an association. In agreement with 
our findings, a previous Mendelian randomisation 
analysis of a Scottish case-control study of 2001 cases 

and 2237 controls did not find an association between 
genetically determined vitamin D concentrations and 
risk of colorectal cancer.42 The GECCO consortium 
found no association between the four single 
nucleotide polymorphisms associated with vitamin D 
and risk of colorectal cancer.44

Breast cancer
The prospective epidemiological evidence for 
an association between circulating 25(OH)
D concentrations and risk of breast cancer is 
inconclusive. A meta-analysis by Gandini and 
colleagues reported that a 25 nmol/L increment in 
circulating 25(OH)D concentration was associated with 
a relative risk of 0.89 (95% confidence interval 0.81 
to 0.98).38 Two subsequent meta-analyses observed 
no association between 25(OH)D concentration and 
risk of premenopausal breast cancer, whereas an 
inverse association was suggested for postmenopausal 
breast cancer.45 46 Specifically, Bauer and colleagues 
suggested a borderline significant inverse association 
for postmenopausal women with a relative risk per 12.5 
nmol/Lof circulating 25(OH)D of 0.97 (0.93 to 1.00).45 
We did not find an association between genetically 
determined 25(OH)D concentrations and risk of breast 
cancer, and our study was powered to find minimum 
detectable odds ratios ranging from 0.84 to 0.87 per 
25 nmol/L in 25(OH)D. Information on menopausal 
status was not available in the large genetic networks 
that we used, but most women in our sample had 
postmenopausal breast cancer. In agreement with our 
findings, the Women’s Health Initiative trial of vitamin 
D plus calcium supplementation in postmenopausal 
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women did not support a protective association with 
breast cancer (hazard ratio 0.96, 95% confidence 
interval 0.85 to 1.09).47 A large cohort consortium 
of 9456 cases and 10 816 controls also found no 
association between the four single nucleotide 
polymorphisms associated with vitamin D and risk of 
breast cancer.48

Prostate cancer
A meta-analysis of 14 prospective studies published 
in 2011 provided little evidence that 25(OH)D 
concentration was associated with risk of total (odds 
ratio per 25 nmol/L), 1.04, 95% confidence interval 
0.99 to 1.10) or aggressive (0.98, 0.84 to 1.15) 
prostate cancer.39 More recent prospective studies have 
reported null associations between circulating 25(OH)
D concentration and risk of total prostate cancer, but 
inverse associations for aggressive or lethal disease.49 50  

Other prospective studies have reported positive 
associations for total disease and null associations 
for lethal disease,51 52 or a significant U shaped 
association for total and aggressive disease53; whereas, 
a meta-analysis of 17 prospective studies published in 
2014 observed a significantly increased risk of total 
prostate cancer (relative risk 1.18, 95% confidence 
interval 1.07 to 1.30) for the highest compared with 
the lowest concentrations of circulating 25(OH)
D.54 A large cohort consortium of 10 018 cases of 
total prostate cancer and 11 052 controls found a 
significant association between a genetic risk score of 
the four single nucleotide polymorphisms associated 
with vitamin D and the risk of aggressive, but not 
total, prostate cancer.55 Our Mendelian randomisation 
analysis of 22 898 cases and 23 054 controls found no 
strong evidence for an association between genetically 
determined circulating 25(OH)D concentrations and 
risk of total or aggressive prostate cancer.

Ovarian cancer
Few prospective epidemiological studies have 
examined the association between circulating 25(OH)
D concentrations and risk of ovarian cancer, and most 
have yielded null results.40 56 A recent Mendelian 
randomisation study by Ong and colleagues observed a 
significant decrease (odds ratio 0.988, 95% confidence 
interval 0.979 to 0.997) in risk of ovarian cancer per 1 
nmol/L increase in 25(OH)D concentrations,57 which 
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translates to an odds ratio of 1.27 (1.06 to 1.51) per 
20 nmol/L decrease in 25(OH)D. This study was twice 
the size of our Mendelian randomisation study for the 
gene-outcome associations but used three instead of 
four single nucleotide polymorphisms.57 Additionally, 
the authors used a published estimate for the association 
between rs2282679 and 25(OH)D concentrations 
from a small cohort of 2347 participants,43 whereas 
our analysis used published estimates from a large 
meta-analysis of about 38 000 participants.28 We did 
not find a significant association (odds ratio per unit 
increase in 25(OH)D, 1.005, 0.994 to 1.016). When 
we re-ran the Mendelian randomisation study using 
three (rs2282679, rs10741657, rs12785878) instead 
of four polymorphisms or using the same estimate for 
the association between rs2282679 with 25(OH)D 
concentrations as in the paper by Ong and colleagues, 
we observed almost identical non-significant results. 
Therefore, the small difference between the two 
Mendelian randomisation studies is plausible and can 
be explained by the larger statistical power of the gene-
outcome association in the previous study.

Lung and pancreatic cancer and neuroblastoma
There is limited epidemiological evidence for a role of 
vitamin D in risk of lung and pancreatic cancer and 
neuroblastoma. A meta-analysis of 10 prospective 
studies reported a significant reduction (relative risk 
0.95, 95% confidence interval 0.91 to 0.99) in risk of 
lung cancer for each 10 nmol/L increment in 25(OH)
D concentration, but the heterogeneity between 
studies was large and a potential non-linear relation 
was suggested.41 We did not observe a significant 
association between genetically determined 25(OH)
D concentrations and risk of lung or pancreatic 
cancer or neuroblastoma in the current Mendelian 
randomisation study, but our study was not powered to 
detect the small effect sizes suggested by the published 
meta-analysis for lung cancer.

Strengths and limitations of this study
The main benefit of Mendelian randomisation studies 
is that they avoid biases that are commonly present 
in conventional observational literature. Resulting 
estimates have a causal interpretation only if the 
assumptions of the method hold. Though it is not 
possible to prove the validity of the assumptions, 
we performed sensitivity analyses and used several 
statistical tests to look for potential violations. We 
found no evidence of violation, though some of the 
statistical tests have low power to detect this when 
few genetic instruments are used (for example, MR-
Egger).34 Previous Mendelian randomisation studies 
on vitamin D and risk of cancer or death that used 
individual level data, however, also did not suggest any 
violation of assumptions.9 42 We used summary data 
for seven cancers and several of their subtypes, using 
thousands of cases of cancer and controls from several 
large genetic consortiums and published genome-wide 
association studies. We were powered to detect effect 
sizes of moderate magnitude for most primary cancer 

outcomes, but we cannot exclude the existence of 
causal clinically relevant effects of low magnitude.

Several limitations should be also considered in 
interpreting our findings. The summary level data 
that we used did not allow for stratified analyses by 
covariates of interest, such as age, sex, menopausal 
status, smoking, body mass index (BMI), and use of 
hormone replacement therapy or by other related genes 
or according to whether populations were vitamin 
D deficient or not. In addition, we could not explore 
potential non-linear associations between 25(OH)D 
concentrations and risk of cancer, which have been 
suggested by some studies. Furthermore, the currently 
known single nucleotide polymorphisms associated 
with vitamin D account for only a small amount of 
the variance observed in 25(OH)D concentration, 
but previous Mendelian randomisation studies have 
identified significant associations between vitamin 
D and several outcomes.9 43 57 58 In addition, these 
single nucleotide polymorphisms do not predict 
concentrations of 1,25-dihydroxyvitamin D, which 
is the most biologically active metabolite of vitamin 
D, and also cannot predict vitamin D concentrations 
at the cellular level. Therefore, our results cannot be 
considered definitive. Future large pooling consortiums, 
larger genome-wide association studies of 25(OH)D 
concentration, and Mendelian randomisation studies 
with individual level data could deal with the latter 
issues. Moreover, large scale, general population, 
high dose vitamin D supplementation trials designed 
to overcome many of the limitations of previous trials 
(such as modest size, inadequate dose, relatively short 
duration, and small number of cancers) are ongoing59 60 
and might provide an improved understanding on the 
role of supplementation for development and death 
from non-skeletal outcomes.

Conclusion
In summary, using a comprehensive Mendelian 
randomisation study, we found little evidence for linear 
causal associations between genetic determinants 
of circulating vitamin D concentration and risk 
of colorectal, breast, prostate, ovarian, lung, and 
pancreatic cancer and neuroblastoma, but we cannot 
rule out the existence of causal clinically relevant 
effects of low magnitude. Our results, in combination 
with previous literature, provide evidence that 
population-wide screening for vitamin D deficiency and 
subsequent widespread vitamin D supplementation 
should not currently be recommended as a strategy for 
primary cancer prevention.
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