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A B S T R A C T

Knowledge of the vertical wind-speed profile in cities is important for the construction and insurance industries,
wind energy predictions, and simulations of pollutant and toxic gas release. Here, five methods to estimate the
spatially- and temporally-averaged wind-speed profile are compared in London: the logarithmic wind law (LOG);
the Deaves and Harris equilibrium (DHe) and non-equilibrium (DHv) models; an adaptation of the power law (PL)
and the Gryning et al. (GR) profile. Using measurements at 2.5 times the average building height, a source area
model is used to determine aerodynamic roughness parameters using two morphometric methods, which assume
homogeneous and variable roughness-element heights, respectively. Hourly-averaged wind speeds are extrapo-
lated to 200 m above the canopy during strong wind conditions, and compared to wind speeds observed with
Doppler lidar. Wind speeds are consistently underestimated if roughness-element height variability is not
considered during aerodynamic parameter determination. Considering height variability, the resulting estima-
tions with the DHe and GR profiles are marginally more similar to observations than the DHv profile, which is more
accurate than the LOG and PL methods. An exception is in directions with more homogeneous fetch and a gradual
reduction in upwind roughness, where the LOG and PL profiles are more appropriate.
1. Introduction

Modelling the wind-speed profile in the lowest few hundredmetres of
the urban boundary layer (UBL) is becoming increasingly important. The
rapid development of urban areas is resulting in taller buildings with
unique forms and arrangements which the construction and insurance
industries need to account for (Petrini and Ciampoli, 2012; Tanaka et al.,
2012; Taranath, 2016). The threat of pollutant and hazardous material
release (accidental and terror related) is increasingly being realized
(Belcher, 2005; Tominaga and Stathopoulos, 2016), and widespread city-
based renewable wind energy is being explored (Millward-Hopkins et al.,
2013; Ishugah et al., 2014; Emejeamara et al., 2015). Accurate vertical
profiles of wind-speed are essential boundary conditions to physical (i.e.
wind tunnel) and numerical (e.g. computational fluid dynamics) models,
as the final results are sensitive to these initial conditions (e.g. Schultz
et al., 2005; Ricci et al., 2016). Critical questions which remain include:
how well can the spatially- and temporally-averaged urban boundary
layer winds be estimated, what are theminimum input requirements, and
what are the associated uncertainties?
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Over flat, homogeneous terrain with extensive fetch, a dynamic
equilibrium between strong winds and the surface roughness is reached,
which is well understood and modelled quantitatively (Harris and
Deaves, 1980). However, flat homogeneous fetch is rare in urban areas.
There are often distinct changes in surface cover in close proximity,
characterised by different land cover types and roughness elements of
different form (e.g. height variability, density). The structure of the UBL
is therefore highly variable because of the numerous sources and sinks of
heat and momentum (Gryning et al., 2011), which means that modelling
the wind-speed profile is challenging.

The UBL is traditionally divided into several distinct layers (e.g.
Fernando, 2010; his Fig. 9), the location of which is determined by sur-
face morphology and mesoscale conditions (Barlow, 2014). The urban
canopy layer (UCL) is where surface roughness elements such as build-
ings are located (Oke, 2007) and is associated with highly variable flow.
The UCL is within the roughness sublayer (RSL) (Roth, 2000), the depth
of which is typically 2–5 times the average roughness-element height
(Hav) (Roth, 2000; Barlow, 2014), varying with the roughness-element
density (Raupach et al., 1991; Grimmond and Oke, 1999; Roth, 2000;
.S.B. Grimmond).
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Oke, 2007; Barlow, 2014), staggering (Cheng and Castro, 2002) and
height variability (Cheng and Castro, 2002). Between the RSL and
approximately 10% of the boundary layer depth is the inertial sublayer
(ISL), where the flow becomes free of the wakes associated with indi-
vidual roughness elements. If the airflow is fully adapted to upwind
roughness elements in the ISL, a horizontally homogeneous flow is
observed (Barlow, 2014) and it is therefore possible to determine a
spatially- and temporally-averaged wind-speed profile.

This paper assesses how well the wind-speed profile can be modelled
using surface observations at a reference site in central London, United
Kingdom. The aerodynamic roughness parameters of the zero-plane
displacement (zd) and aerodynamic roughness length (z0) are deter-
mined using two morphometric methods (i.e. from surface form). One
morphometric method assumes homogeneous roughness elements
(Macdonald et al., 1998;Mac), the other considers their height variability
(Kanda et al., 2013; Kan). Five different methods are then used to
extrapolate the wind speed to 200 m above the canopy. These wind
speeds are compared to those observed using Doppler lidar.

Specifically, the methods considered are: the logarithmic wind law
(Blackadar and Tennekes, 1968) (LOG); the Deaves and Harris equilib-
rium (DHe) and non-equilibrium (DHv) models (Deaves and Harris, 1978;
Harris and Deaves, 1980); an adapted power law which directly con-
siders surface roughness (Sedefian, 1980) (PL) and a profile proposed by
Gryning et al. (2007) (GR) (see Section 2 for the selection of methods).
Analysis is undertaken for neutral conditions, to allow the accuracy of
extrapolated profiles during ‘ideal’ conditions to be understood first,
without the additional uncertainties associated with thermal effects (e.g.
H€ogstr€om, 1996).

2. Describing the boundary layer wind speed using surface
observations

In addition to the models named above, other methods to describe the
spatially- and temporally-averaged wind-speed profile have been derived
(Wieringa, 1986; Etling, 2002; Wilson and Flesch, 2003, Emeis et al.,
2007; Pe~na et al., 2010; Yang et al., 2016). Wieringa's (1986) two-layer
model requires definition of the height above which the logarithmic wind
law (LOG) becomes inappropriate. Given that it is both difficult to
determine this height in the UBL (e.g. Roth, 2000; Barlow, 2014) and the
performance of the LOG method is assessed in this study, Wieringa's
(1986) method and the two-layer model of Wilson and Flesch (2003) are
not considered here. Emeis et al. (2007) developed Etling's (2002)
multi-layer model to incorporate the effects of atmospheric stability. As
with Wieringa's (1986) model, the applicable height range of LOG is
required. Additionally, the method requires the geostrophic wind speed
(as well as surface measurements) and is therefore not considered here.
For similar reasons the Yang et al. (2016) model is not considered. Pe~na
et al. (2010) use Gryning et al.'s (2007) mixing length model with a va-
riety of mixing length parameterisations. However, there is no conclusive
evidence that any of the assessed parameterisations provide improved
accuracy for wind-speed estimation, therefore only the original formu-
lation of Gryning et al. (2007) is used.

For simplicity, the following assumptions are typically made when
modelling the neutral wind-speed profile in the atmospheric boundary
layer (e.g. Garratt, 1992): (i) stationarity, (ii) horizontal homogeneity,
(iii) a barotropic atmosphere, where density is a function of pressure
only, and (iv) uniform roughness with an extensive fetch and no subsi-
dence, therefore there is no mean vertical component of the wind. These
assumptions are inherent in each of the five methods assessed here,
however DHv does not assume uniform upwind roughness (assump-
tion iv).

Observations of the vertical wind profile are becoming increasingly
available in urban areas (e.g. Tamura et al., 2001; Allwine et al., 2002;
Emeis, 2004; Frehlich et al., 2006; Emeis et al., 2007; Drew et al., 2013;
Tan et al., 2015; Liu et al., 2017). Especially because remote sensing
techniques, such as lidar and sodar, overcome the impracticalities
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associated with in-situ tower mounted (Al-Jiboori and Fei, 2005) or
tethersonde (Tsuang et al., 2003) observations. Lidar is often favoured to
sodar in urban areas, due to the noisiness of the latter. However, both
have been used to assess the structure of the UBL (Barlow et al., 2008,
2011) and associated wind flow (Drew et al., 2013; Lane et al., 2013;
Wood et al., 2013; Kent et al., 2017a). Specifically in London, wind
speeds observed with Doppler lidar have been used to assess how accu-
rately wind speeds can be: translated from a ‘rural’ airport site to central
London (Drew et al., 2013); and, estimated using the logarithmic wind
law extrapolated from observations at approximately 2.5 times the can-
opy height, using a range of methods to determine zd and z0 (Kent et al.,
2017a). Here this work is further developed by considering wind di-
rections with a more complex fetch, as well as different methods to
extrapolate the wind-speed profile. A source area footprint model is used
to estimate the upstream effective roughness.

2.1. The logarithmic wind law

The logarithmic wind law (LOG), may be derived through: (i)
matching a region where the velocity gradients determined from equa-
tions obeying the upper and lower boundary conditions of ABL flow are
the same (also termed asymptotic similarity theory); or (ii) eddy vis-
cosity, or k-theory. The derivation demonstrates that for a height, z, if the
flow is aligned to the wind direction, the mean wind speed UðzÞ during
neutral atmospheric stability can be determined by (Blackadar and
Tennekes, 1968; Tennekes, 1973):

UðzÞ ¼ u*
κ
ln
�
z � zd

z0

�
(1)

where u* is the friction velocity and κ is von Karman's constant. Following
full scale field observations which indicate κ ¼ 0.38–0.42 and scaled
experiments in wind tunnels indicating κ¼ 0.4 (Garratt, 1992), a value of
κ ¼ 0.4 is used in this work. The zero-plane displacement (zd) is the
vertical displacement of the wind-speed profile due to surface roughness
elements and has been demonstrated to correspond to the ‘drag centroid’
of the surface, or the height at which mean drag appears to act (Jackson,
1981). The aerodynamic roughness length (z0) is the height at which
wind speed becomes zero in the absence of zd. Theoretically, LOG applies
in the ISL, where flow is free from individual roughness-element wakes,
but still scales with surface length scales only (zd and z0). However, it has
been shown to be applicable both close to roughness elements (Cheng
and Castro, 2002) and for a considerable depth of the boundary layer
(Macdonald et al., 2000; Castro et al., 2006; Cheng et al., 2007; Kent
et al., 2017a).

2.2. Adapted power law profile

The power law provides a relation between mean wind speeds ðUðz1Þ,
Uðz2Þ) at two different heights (z1, z2), with a wind shear exponent (αPL)
describing fetch characteristics:

Uðz1Þ ¼ Uðz2Þ
�
z1 � zd
z2 � zd

�∝PL

(2)

The exponent, αPL (between 0 and 1), provides a best fit of wind
speeds between the two heights and is proportional to the vertical
gradient of wind speed with height. Typically, a single value of αPL is used
for different surfaces (e.g. Davenport, 1960), which does not allow the
exponent to vary with height, stability or directly consider surface
roughness (Irwin, 1979; Emeis, 2014). Sedefian's (1980) alteration of the
exponent addresses this, and is used here:

∝PL ¼ ϕm

�
z
L

�
h
ln
�

z
z0

�
� Ψm

�
z
L

�i (3)
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The z is the geometric mean of the height layer considered,
z ¼ ½ðz1 � zdÞðz2 � zdÞ�0:5. ϕm and Ψm are empirical stability functions
(which depend upon the Obukhov length, L). The formulation in Eq. (3)
allows the exponent to increase with surface roughness (z0), decrease
with increasing height (i.e. as z2 increases) and incorporate thermal ef-
fects upon the vertical wind-speed profile. However, Eq. (3) can only be
used where surface layer scaling (i.e. use of zd, z0 and L) is appropriate.
During the neutral conditions considered here, the ϕm and Ψm functions
equate to 1 and 0, respectively.

The mathematical simplicity of the PL and limited data requirements
are advantageous, given it is observed to provide reasonable estimates of
wind speeds between ~30 and 300 m (Counihan, 1975; Segal and Pielke,
1988; Zoumakis, 1993; Cook, 1997; Li et al., 2010), especially during
strong wind conditions (Emeis, 2014). It therefore provides the basis for
building codes in numerous countries (e.g. China, Japan, Canada, United
States) (Ge et al., 2013).
2.3. The Deaves and Harris profile

By considering the modulus of mean geostrophic wind speed and its
ageostrophic counterpart in the ABL, Deaves and Harris (1978) and
Harris and Deaves (1980) describe an adapted similarity theory from that
used to derive LOG. The ‘equilibrium model’ (DHe) is based upon an
extensive uniform fetch (Deaves and Harris, 1978). However, a
‘non-equilibrium model’ (DHv) is developed to include upwind fetch
variability (Deaves, 1981). Both methods are specifically designed for
strong wind conditions, defined by wind speeds greater than 10 m s�1

measured at 10 m.

2.3.1. Equilibrium model
For an extensive homogeneous fetch, DHe is described by (Deaves and

Harris, 1978; Harris and Deaves, 1980):

h ¼ 1
β

u*
f

(4)

UðzÞ ¼ u*
κ

2
66664
ln
�
z� zd
z0

�
þ 5:75

�
z� zd
h

�
� 1:88

�
z� zd
h

�2

�1:33
�
z� zd
h

�3

þ 0:25
�
z� zd
h

�4

3
77775 (5)

where h is the gradient height, defined as the height where atmospheric
flow is free from surface stresses and becomes geostrophic, f is the
Fig. 1. Operation of the Deaves and Harris non-equilibrium wind-speed profile method (DHv)
increments (height: zl m) above the reference site. The source area for each respective height (SA
are subsequently used to calculate local friction velocities (u�;r ; u�;1; u�;n). The effective wind
appropriate roughness transition correction (Kx,1, Kx,n) (ESDU, 2002). Subscripts are: ‘r’ refere
performed zl m above the reference site, and ‘n’ for the nth calculation (performed at n � zl m
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Coriolis parameter (f ¼ 2ΩsinΦ, with Ω the Earth's angular velocity,
7.29 � 10�5 rad s�1, and Φ the latitude) and β ¼ 6 is an empirically
determined constant from experimental profiles over sites with flat, ho-
mogeneous terrain. The values preceding the four latter terms in Eq. (5)
are also empirical constants, selected to give a parabolic velocity defect
law for a substantial portion of the ABL (i.e. the wind-speed gradient
increases with increasing height) (Deaves and Harris, 1978). The law
provides an empirically based polynomial extension of the vertical range
of LOG to a height where flow is free from surface stresses (i.e. at the
gradient height, h). For the lowest ~200 m of the boundary layer, Harris
and Deaves (1980) note that the last three terms of Eq. (5) can be
neglected, compromising only 1% accuracy. However, all terms are
considered during this analysis for completeness.

2.3.2. Non-equilibrium model
The non-equilibrium model (DHv) is based upon ‘step-changes’ in

upwind surface roughness (z0) (Harris and Deaves, 1980; Deaves, 1981).
An internal boundary layer (IBL) is assumed to form at each step-change
and the wind-speed profile directly above the site of concern (hereafter
the “reference” site) can be determined through combining the effective
equilibrium profiles for each IBL (according to the model in Section
2.3.1) at the appropriate heights (Harris and Deaves, 1980; Deaves, 1981;
ESDU, 2002).

The details given in Harris and Deaves (1980) are complemented with
recommendations for use (including calculation sheets) by the Engi-
neering Sciences Data Unit (ESDU) 82026 (ESDU, 2002). However,
treating roughness in a ‘step-change’ framework presents several chal-
lenges. Firstly, identification of discrete areas for which upwind aero-
dynamic roughness parameters should be determined is some-what
subjective. Second, the magnitude of roughness change which is suffi-
cient for distinct IBL formation is not well defined and therefore the fetch
(i.e. distance upwind) from a reference site where a ‘step-change’ takes
place is difficult to determine. For example, a clear new IBL may fail to
develop if there are not sharp changes in surface characteristics (Mahrt,
2000). Thirdly, if an IBL does form, there is uncertainty associated with
its growth and therefore expected depth of influence at a reference site
(Savelyev and Taylor, 2005).

To overcome such challenges, during this study DHv is applied using
surface observations and a source area footprint model. The source area
model is used to determine the probable upwind surface which would be
contributing to measurements at pre-defined vertical increments (zl)
above the reference site (Fig. 1). Weighted roughness parameters are
calculated for each source area (Kent et al., 2017a methodology) and
subsequently ESDU (2002) recommendations are used to estimate the
as applied in this work. A source area footprint model is applied at pre-defined vertical
r, SA1 and SAn) is used to determine representative roughness parameters (zd and z0), which
-speed profile for each ‘layer’ (depth zl m) is then calculated (using Eq. (5)) with the
nce (i.e. from the reference site observations), ‘1’ representative of the first calculations
above the reference height).
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wind-speed profile above the reference site considering multiple changes
in upwind roughness (see Fig. 1). Using DHv with the source area model
means that, rather than attempting to identify surface roughness changes
which may trigger IBL growth, an integrated representation of the up-
wind surface is considered. Definition of zl is some-what arbitrary, but its
value should provide a compromise between being large enough for
computational efficiency, but small enough to consider significant
changes in upwind surface characteristics. The effect of altering zl is
considered later (Section 5.2.2).

2.4. The Gryning profile

Using observations above rural, flat and urban surfaces for 10 m wind
speeds greater than 3 m s�1, Gryning et al. (2007) indicate wind-speed
profiles based upon surface layer scaling (i.e. the LOG method) are
only valid up to a height of approximately 80 m. Above this, Gryning
et al. (2007) argue that neutral wind speeds increase at a greater rate
than the LOG method predicts, as a consequence of the non-linearity of
the surface length scale. Therefore, in the Gryning et al. (2007) method
(hereafter GR) three component length scales are used to represent
different parts of the ABL. In addition, the friction velocity is assumed to
decrease linearly with height beyond the surface layer. During neutral
conditions, the surface length scale (LSL,N) is proportional to height, the
middle layer length scale (LMBL,N) is near constant, and the upper length
scale (LUBL,N) decreases linearly to the top of the ABL (LUBL,N ¼ h –

(z�zd)), therefore:

du
dz

¼ u*
κ

�
1� z� zd

h

��
1

z� zd
þ 1
LMBL;N

þ 1
h� ðz� zdÞ

�
(6)

Integrating Eq. (6) between a height, z, and where the wind speed
falls to zero (at height z0):

UðzÞ ¼ u*
κ

�
ln
�
z� zd
z0

�
þ z� zd
LMBL;N

� z� zd
h

�
z� zd
2LMBL;N

��
(7)

Through empirical fits to observed profiles, Gryning et al. (2007)
demonstrate LMBL,N can be determined using only surface measure-
ments by:

u*
fLMBL;N

¼ �2 ln
�

u*
fz0

�
þ 55 (8)

To determine h, Gryning et al. (2007) recommend using Eq. (4) with a
proportionality constant (β) of 10, 9 and 12 for rural (flat and homoge-
neous), residential and urban areas, respectively. The urban setting of
this work means β ¼ 12 is used here.

2.5. Vertical extrapolation of the surface wind speed

To extrapolate the neutral wind-speed profile from surface observa-
tions using pre-determined aerodynamic roughness parameters (zd and
z0), the LOG and PLmethods only require a reference surface wind speed
(Uref). The other methods require u* and h, which without observations
require an iterative procedure for their determination:

1) u*is calculated using the surface wind speed (Uref) and pre-determined
roughness parameters (zd and z0) by rearranging Eq. (1)

2) h is determined using Eq. (4)
3) The wind-speed profile is extrapolated using Eq. (5) for the DHe and

DHv methods or Eq. (7) for the GR method. Note when using the GR
method LMBL,N must be calculated prior to this using Eq. (8).

4) A revised u* is obtained for each respective method from rearranging
Eq. (5) or (7), using Uref and h

5) Return to step 2) until there is convergence of u* and h

Convergence is rapid, typically requiring only 2–3 iterations for less
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than 1% variability (which is the convergence criteria used here). From
step 1, the procedure is sensitive to the pre-determined zd and z0.

3. Aerodynamic roughness parameters

A pre-requisite to determining the wind-speed profile from surface
observations is accurately determining the aerodynamic roughness pa-
rameters, zd and z0. Morphometric methods describe zd and z0 based upon
surface form. The methods can be divided into two classes: (i) those
assuming homogenous roughness-element heights, represented by Hav,
and (ii) those considering roughness-element height variability. Collec-
tively the former are termed REav and the latter REvar (Kent et al., 2017a).
For the same study site as used here, Kent et al. (2017a) demonstrate that
wind speeds extrapolated using the REvar roughness parameters are most
similar to observations. The Kent et al. (2017a) results are developed
here by considering additional methods to extrapolate the wind-speed
profile, as well as more complex surface cover. Aerodynamic roughness
parameters are determined using the Macdonald et al. (1998) (Mac) and
Kanda et al. (2013) (Kan) morphometric methods (REav and REvar type,
respectively). The methods have been developed to include the effects of
vegetation (Kent et al., 2017b), which has been shown to improve
wind-speed estimation (Kent et al., 2018). However, during this winter
(i.e. leaf-off vegetation state), city centre (i.e. building dominated)
analysis, vegetation is not expected to critically influence roughness
parameters and the extrapolated wind speeds (e.g. Kent et al., 2017b),
and is therefore not considered.

The Mac method zero-plane displacement (Maczd ) and aerodynamic
roughness length (Macz0 ) are calculated by:

Maczd ¼
h
1þ αM

�λp
�
λp � 1

�i
Hav (9)

Macz0 ¼
��

1� zd
Hav

�
exp

�
�
	
0:5βM

CDb

k2

�
1� zd

Hav

�
λf

�0:5��

Hav

(10)

where CDb ¼ 1.2 is the drag coefficient for buildings, αM ¼ 4.43 and
βM ¼ 1.0 are empirical constants for staggered arrays fit to the wind
tunnel data of Hall et al. (1996) and λp and λf are the plan and frontal area
index of roughness elements, respectively.

The Kan method directly considers roughness-element height vari-
ability through use of the maximum (Hmax) and the standard deviation
(σH) of roughness-element heights and incorporates Macz0 , such that:

Kanzd ¼
h
c0X2 þ

�
a0 λpb0 � c0

�
X
i
Hmax ; X ¼ σH þ Hav

Hmax
(11)

Kanz0 ¼
�
b1Y2 þ c1Y þ a1

�
Macz0 ; Y ¼ λp σH

Hav
(12)

where 0� X� 1, 0� Y and a0, b0, c0, a1, b1 and c1, are constants 1.29,
0.36, �0.17, 0.71, 20.21 and �0.77, respectively. The Kan method in-
cludes the effect of individual tall buildings (i.e. Hmax) at the 1 km scale
(Kanda et al., 2013), but this is expected to become less important with
distance from a location. Therefore, when Hmax is more than 1 km from
the reference site, the height is weighted by the source area.

4. Observations

Observations using a Halo Photonics Streamline pulsed Doppler lidar
for an eight month period (October 2010–May 2011) are analysed. The
instrument was located on King's College London (KCL) Strand campus
rooftop, approximately 36 m above ground level (agl) (Fig. 2d, KSSW
position). For a detailed description of the site, see Kotthaus and Grim-
mond (2012, 2014a, 2014b) and Kent et al. (2017a). The lidar operated
in Doppler beam swinging (DBS) mode, whereby the measured Doppler



Fig. 2. Location of the King's College London (KCL) measurement sites in (a) Greater London (black outline), United Kingdom. (b) Ground height for the 20 km2 around KCL. Building
heights >2 m in the surrounding: (c) 4 km2 and (d) 500 m2. Sector divisions 1–5 in (b) and (c) are manually defined based upon upwind surface characteristics (see Section 5.2). Elevation
data source: Lindberg and Grimmond (2011).
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shift between transmitted and returned pulses provides horizontal wind
speed and direction in 30 m vertical gates above the instrument. Beams
are transmitted consecutively in three directions (first vertical, then tilted
east and north by 15�), with a 21 s scan cycle and theminimum permitted
interval between scans is 120 s (Lane et al., 2013). The lidar geometry
means only part of the return signal is detected from the lowest three
gates, which can therefore not be used. As the lower portion of boundary
layer is of interest, only the next three gates are analysed (mid-points
141, 171 and 201 m). Hourly-averages are used to reduce variability in
the mean wind speed whilst ensuring stationarity (Lane et al., 2013). To
ensure neutral conditions, profiles which have upper quartile wind
speeds in all three gates are considered. In addition, only daytime profiles
are used (0900–1700 h), to prevent nocturnal boundary layer features
(such as jets) influencing results (Mahrt, 1998). The 251 hourly-averaged
profiles meeting these criteria, were subdivided by upwind surface
characteristics (Section 5.2) into five directional sectors (Fig. 2b and c).
Data from a Vaisala CL31 ceilometer, located approximately 3 m
south-west of the Doppler lidar, is used to determine the mixing layer
height (HML) (Section 5.3).

A CSAT 3 sonic anemometer (Campbell Scientific, USA) mounted on
an Aluma T45-H triangular tower measured the 3-dimensional wind
velocity and sonic temperature (with a sampling frequency of 10 Hz)
approximately 45 m east of the KSSW site (Fig. 2d, KSS site). The
anemometer at the KSS site is 48.9 m agl (i.e. 2.5Hav in the surrounding
1 km) and 13.3 m above the roof hosting the tower. Minimal distortion of
turbulence data indicates measurements are free from local roughness-
element wakes and therefore taken within the inertial sublayer
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(Kotthaus and Grimmond, 2014b; Kent et al., 2017a). For each hourly
period, observations at the KSS site are used to apply the Kormann and
Meixner (2001) source area footprint model from the lidar position
(KSSW) to obtain the Kan and Mac aerodynamic roughness parameters
for wind profile extrapolation (Kent et al., 2017a methodology). For the
LOG, PL, DHe and GR methods only roughness parameters determined
from the source area calculations at 49 m height are used. For DHv, the
source area model is applied using surface observations at the specified
vertical increments (zl) to indicate the probable extent, and associated
aerodynamic roughness parameters, of the upwind surface contributing
to measurements at each height (e.g. Fig. 1).

5. Results

5.1. Controlled comparison of the wind-speed profile methods

Comparison of the assessed wind-speed profile methods during
similar conditions demonstrates their operation in the lower boundary
layer. Assuming a neutrally stratified boundary layer, with a reference
wind speed of 10 m s�1 (Uref) measured at 49 m, the wind-speed profile is
extrapolated for 200 m vertically and normalised by Uref (Fig. 3). The
aerodynamic roughness parameters (zd and z0) used during the extrap-
olation are the typical values reported by theMac and Kanmethods at the
KSSW site. The most obvious difference between these is that Kanzd is
twice Maczd (for a more detailed analysis of locally determined zd and z0
at KCL see Kent et al., 2017a). For the wind profile methods which do not
explicitly consider upwind changes in surface roughness (the PL, LOG,



Fig. 3. Controlled comparison of the wind-speed profile extrapolated from 50 m using the different methods assessed (Section 2), normalised by a reference wind speed (Uref) of 10 m s�1.
The profiles are extrapolated with roughness parameters characteristic of the study site determined by the (a) Kanda et al. (2013) and (b) Macdonald et al. (1998) morphometric methods.
Profile abbreviations: PL – power law; LOG – logarithmic wind law; DHe – Deaves and Harris equilibrium model; DHv – Deaves and Harris non-equilibrium model; GR – Gryning et al.
(2007). See text for the values used during the extrapolation.
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DHe and GR methods), the roughness parameters used are z0 ¼ 2 m and
zd ¼ 30 m (Fig. 3a, representative of Kanzd ) or zd ¼ 17.5 m (Fig. 3b,
representative of Maczd ). For the DHv method, zl is pre-defined as 50 m
and three changes in roughness are assumed to influence the profile. The
roughness parameters assumed at the bottom of the 50, 100 and 150 m
layers are: z0 ¼ 2, 1.5 and 1 m, respectively, with zd ¼ 30, 20 and 10 m
(Fig. 3a) or zd ¼ 17.5, 15 and 12.5 m (Fig. 3b). Note that if the surface zd
and z0 are used at each height (representing an extensive homogenous
fetch) DHv collapses to DHe. The Coriolis parameter (f) is determined
using the latitude of KCL, Φ ¼ 51.51�.

Wind speeds extrapolated using the DHe, DHv and GR methods are
similar to each other and all greater than the LOG and PL methods
(Fig. 3). Close to the surface (below 100 m) the methods are dominated
by surface-based length scales (i.e. zd and z0, only) and therefore indicate
similar wind speeds. Above this the wind speed gradients of the DHe, DHv
and GRmethods increase with height as they become influenced by other
length scales (e.g. h). The PL method has similar wind speeds to LOG,
tending towards lower wind speeds with increasing height.

Wind speeds using the GR profile are marginally greater than the DHe
method. The assumed upwind transition from a comparatively smooth to
rough surface means the DHv wind speeds are greater than both the DHe
and GR methods. However, the DHv wind speeds are only a maximum of
2% larger than the DHe method despite the approximate 50% decrease in
upwind zd and z0 which affects the DHv profile only.

All wind speeds extrapolated using the Kan roughness parameters
(Fig. 3a) are greater than using theMac parameters (Fig. 3b). For the LOG
and PL methods, this is because the smaller zd from the Mac method
produces less shear. For the other methods the parameters calculated
internally to the models (u* and h) take effect. Following rearrangement
of Eq. (1), a smaller zd generates a smaller u*, which in turn gives a
smaller h (Eq. (4)). The reduction of h ‘squeezes’ the wind-speed profile
into a smaller depth of ABL and therefore acts to increase the estimated
wind speed for any given height. However, this increase is countered by
the reduction in u*, which causes a larger decrease in wind speed
meaning the overall effect is a reduction of wind speed. In the GR
method, u* is also used to calculate the internal parameter LMBL,N. A
comparatively smaller zd (and associated reduction in u*) decreases
LMBL,N, which by the form of Eq. (7) acts to further decrease wind speed.
Further attention is given to the internally calculated u* and h later
(Section 5.3).
5.2. Upwind surface variability

5.2.1. Upwind surface variability at KCL
The use of just two aerodynamic roughness parameters (zd and z0) to

model the lower ABL wind speed, assumes these two length scales are
sufficient to describe the influence of the entire underlying surface at a
reference site. The extent to which this assumption is appropriate de-
pends upon upwind surface variability (Deaves, 1981) – the premise of
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the DHv method is that surface characteristics further upwind may be
more appropriate to describe the wind speed further from the surface
(e.g. Fig. 1). The variability of the upwind surface from the KSSW site is
assessed by comparing the roughness parameters determined from
source areas calculated at 25 m height increments (i.e. zl is 25 m in
Fig. 1), for each hourly period. Note that the roughness parameters will
vary with the morphometric method used and therefore so will the
modelled source area. For descriptive purposes the Kan method
is discussed.

As the size of the source area increases with height, both the extent
and location of the maximum influence vary. At a height of 200 m, the
upwind extent of the source area reaches 5 km, which is (on average)
three times larger than that calculated at 100 m (1.8 km upwind), and 30
times that calculated at 49 m (170 m upwind). The source area growth
with height means a wide range of building geometries are encountered.
This impacts the calculated roughness parameters, such that the vari-
ability cannot be generalised in all directions (Fig. 4a and b). The obvious
directional differences are used to classify observations into five direc-
tional sectors (Table 1, Fig. 2b and c).

In sector 1 (000� – 045� from the KSSW site), as the source area be-
comes larger with height (e.g. Fig. 1),Hav, λp and λf all decrease gradually.
However, taller buildings located approximately 600 m upwind from the
KSSW site (Fig. 2c) cause a discontinuous increase in Hmax and σH. The
dependency of zd on Hmax (Kanda et al., 2013, Eq. (11)) means an initial
upwind increase in zd (from 32 to 36 m) thereafter gradually decreases to
20 m (Fig. 4a). In comparison, z0 gradually decreases from as large as 3 m
closer to the site to between 1 and 2 m further afield (Fig. 4b). Sector 5
(280� – 360�) exhibits similar changes in upwind building geometry and
roughness parameters to sector 1. However, the topographic variability
(upwind vertical ascent of up to 135 m within approximately 6.5 km,
Fig. 2b) means the sectors are treated separately.

Sector 2 (045�
– 100�) has the greatest height heterogeneity, associ-

ated with the tallest buildings in London. High rise buildings, packed in
close proximity, generate λp and λf of 0.5. In addition,Hav,Hmax and σH all
increase with distance upwind creating an increasingly chaotic surface.
Sector 2 is therefore the only direction where surface roughness (both zd
and z0) increases with distance upwind (Fig. 4). Unfortunately, with only
six profiles available for this direction, further analysis is impossible.

The presence of the river in sector 3 (100� – 210�) creates a compli-
cated fetch. Sector 3 has the lowest λp and λf (0.25) because of the river
and comparatively sparse buildings on the far side of the river (Fig. 2c).
AsHav tends to decrease upwind, so do zd and z0, except for between 190�

– 210� where taller buildings cause an initial increase in zd and z0 (Fig. 4).
In sector 4 (210� – 280�), zd decreases from approximately 30 m close

to the KSSW site to 25 m further upwind. This is caused by an abrupt
reduction in Hav, which is also responsible for an initial decrease in z0.
However, beyond this Hav is unchanged and λf ranges between 0.2 and
0.4, near the peak roughness range (Kent et al., 2017a), therefore z0
becomes larger.



Fig. 5. Mean of extrapolated wind-speed profiles in sector 1 (n ¼ 36) using the DHe

method (black line) and DHv method with height increment (zl) ¼ 50 m (blue line) and
zl ¼ 25 m (red line). For the DHv method the extent of the upwind surface considered is
dictated by the source area calculated at 200 m, which is altered to 150 m for comparison
(green line). The 30 m wind gates used from lidar observations during this work are
shaded G1 – G3 (G1 ¼ 126–156 m, mid-point ¼ 141 m).

Fig. 4. (a) Zero-plane displacement (zd) and (b) aerodynamic roughness length (z0) (note log axis), determined from source areas calculated in 25 m vertical increments above the KSSW
site (colour indicates different heights). For the 251 hourly periods assessed, observations from the KSS site are used with the Kormann and Meixner (2001) footprint model from the KSSW
position (Fig. 2) at the heights indicated, with the Kanda et al. (2013) morphometric method to determine zd and z0 (Kent et al., 2017a methodology). The five directional sectors (dashed
lines, 1–5) for analysis (Table 1) are indicated.
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A reference-based approach to determine aerodynamic roughness
parameters is recommended in ESDU (2002, their Table 13.1), based on a
function of Hav. For cities, ESDU (2002) indicates zd is between 15 and
25 m and z0 is between 0.5 and 1.5 m. Such reference-based approaches
are limited by the subjectivity of application and the inability to model
the probable upwind surface contributing to measurements. Roughness
parameters determined with the Kanmethod tend to be larger than those
indicated in ESDU (2002). This is expected, as the Kan method directly
accounts for roughness-element height variability (Eqs. (11) and (12))
and the considerable increase in drag exerted by taller roughness ele-
ments (Xie et al., 2008; Hagishima et al., 2009; Zaki et al., 2011;
Mohammad et al., 2015). Whereas, the Mac parameters are closer to the
ESDU (2002) values as Mac incorporates Hav only (Eqs. (9) and (10)).

5.2.2. Influence of the upwind surface variability on the wind-speed profile
The DHvmethod is a development of DHe, allowing zd and z0 to vary as

a function of height in the wind-speed profile. Comparison of the DHe and
DHv profiles therefore demonstrates the implications of considering up-
wind roughness in this work. The mean of extrapolated wind-speed
profiles in sector 1 reveals wind speeds estimated by the DHv method
are greater than the DHe method throughout the profile, due to the
reduction in upwind roughness (Fig. 5). The maximum wind speed dif-
ference is largest (15%), as expected, at greater heights, where roughness
parameters have maximum difference from those determined at the
surface (Fig. 4).
Table 1
Directional sectors used for analysis with the number of hourly profiles. Upwind surface
characteristics around the KSSW site (see Fig. 2b and c and Fig. 4) are used for the clas-
sification, based on the wind direction observed in the first usable Doppler lidar gate (mid-
point ¼ 141 m).

Sector 1 2 3 4 5

Angle from
KSSW

000�
–045� 045�

–100� 100�
–210� 210�–280� 280�

–360�

Number of
profiles

36 6 91 98 20
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When using the DHv method, the recalculation of the wind-speed
profile at each zl height increment results in a corrective shift (Fig. 5)
which is not expected empirically. The size of each shift depends upon
the change in roughness of the upwind surface, as well as the height
increment (zl) at which re-calculations are performed. For example, the
magnitude of the correction is least where there is less variation in
roughness parameters towards the top of the profile (Fig. 4). In addition,
comparison between wind profiles using zl ¼ 25 m and 50 m (red and
blue line in Fig. 5, respectively) demonstrates how less frequent re-
calculation of the wind profile results in larger corrective shift, as the
difference between zd and z0 of each upwind surface increases. Reducing
zl from 50 m to 25 m creates a maximum difference of wind speed at any
given height of just 3%. Further reduction of zl results in an even smaller



Fig. 6. For each hourly period assessed in sector 1 (000�
– 045� wind direction from the KSSW site): (a) friction velocity calculated internally to the DHe model (u*;calc) and from

observations at the KSS site (u*;obs); and, (b) gradient height (h) determined internally to the DHe model and the mixing layer height determined from observations (HML, average of
two observation methods, see text). Subscripts K and M refer to use of the Kanda et al. (2013) and Macdonald et al. (1998) aerodynamic roughness parameters during calculations,
respectively.
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difference and considering the extra computational requirements,
zl ¼ 25 m is deemed sufficient.

Definition of the pertinent fetch for a reference site (i.e. upwind
distance of surfaces influencing the profile aloft) is problematic and not
addressed well in building codes (e.g. ESDU, 2002; Abdi and Bitsuamlak,
2014). Earlier work demonstrates that the fetch may be modelled
through consideration of flow parameters (Elliott, 1958) or upwind
roughness (Miyake, 1965; Wieringa, 1993) and that surfaces up to
200 km upwind from a reference site will still have some influence upon
the wind-speed profile (Cook, 1985). However, recent work indicates
only characteristics much closer to a site are of significance for a rough
surface (Tamura et al., 2001, Zhang and Zhang 2001, AS/NZS (1170.2)
2002, Wang and Stathopoulos 2007). This has been associated with more
rapid IBL development (Tamura et al., 2001) and contrasts with wind
tunnel experiments indicating IBL growth may be slower than classical
results suggest (Cheng and Castro, 2002).

The unclear definition of the pertinent fetch means that in this work,
the maximum upwind extent of the surface considered is limited by the
maximum height where source area calculations are performed, which is
200 m (red line, Fig. 5). Reducing this value to 150 m (green line, Fig. 5)
causes a variation in wind speed above 150 m because of the disregard
for upwind roughness contributing to the profile above this height.
However, wind speeds below 150 m remain similar. These results
exemplify that in the current application of DHv, considering roughness
contributing to the profile beyond a height of interest does not obviously
influence wind speeds below that height. Given the focus of this work on
the lower ABL, considering a maximum height of 200 m is therefore
deemed sufficient.
Fig. 7. Mean wind-speed profiles extrapolated using the Deaves and Harris equilibrium
model (DHe) for all hourly periods assessed in sector 1 (n ¼ 36). The profiles are
extrapolated using parameters calculated internally to the model (calc) and from obser-
vations (obs). Subscripts K and M indicate use of Kanda et al. (2013) and Macdonald et al.
(1998) aerodynamic roughness parameters, respectively. The mean observed wind speed
at 49 m by a sonic anemometer and 30 m wind gates of the lidar are shown with whiskers
to indicate the minimum and maximum observed wind speeds. The 30-m lidar gates are
shaded G1 – G3, with mid-points: G1 ¼ 141 m, G2 ¼ 171 m and G3 ¼ 201 m.
5.3. Internal parameters used in the wind-speed profile methods

When estimating the wind-speed profile, u* and h are calculated
internally by the respective wind profile models (Section 2.5). The
gradient height (h) determined by the models as the height where ABL
flowbecomes free fromsurface stresses, doesnot necessarily coincidewith
the mixing layer height (HML) determined using observations and various
methods (Emeis et al., 2008). Comparison of the internally calculated
parameters using the DHe method (u*;calc, hcalc) with those obtained from
meteorological instrumentation at KCL (u*;obs, HML) tests this argument.

For each hourly period, u*;calc and hcalc are determined using the method

outlined in Section 2.5, with the observed wind speed and roughness pa-
rameters determined from 49 m. The u*;obs is calculated using high
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frequency observations (Leclerc and Foken, 2014):

u*;obs ¼ ½ðu0w0Þ2 þ ðv0w0Þ2�1=4. Two independent methods are used to
obtainHML using theDoppler lidar and automated lidar/ceilometer (using
the methods described in Barlow et al., 2015; Kotthaus and Grimmond,
2017, respectively) and their average is used as an indication of HML.

For the 36 periods in sector 1 (000� – 045� from KSSW), u*;obs varies
between 0.4 and 1.0 m s-1 (Fig. 6a). These are typically expected mag-
nitudes for an urban area (e.g. Roth, 2000). Similarly, HML ranges be-
tween typically expected winter UBL heights (e.g. Seidel et al., 2010)
with an average depth of 930m (Fig. 6b). If the parameters are calculated
internally to the wind-speed profile methods, they are sensitive to the
morphometric method used and most similar to the observed values
when using the Mac roughness parameters (Fig. 6, u*;calc:M and hcalc,M).
Using the Kan roughness parameters, the friction velocity is on average
40% larger and h can be up to twice as large as HML.

To assess the suitability of the parameters, the mean of extrapolated
wind speeds in sector 1 are compared using the DHe method with: (i)
internally calculated parameters (u*;calc and hcalc); and (ii) observed u*;obs
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and HML (Fig. 7). Using the internally calculated parameters, the
modelled wind speeds at the extrapolation height (49 m) are equal to the
observed wind speed, by definition. Above this, following Section 5.1
wind-speed estimations are larger using the Kanmethod. When u*;obs and
HML are used, the estimated wind speeds are not constrained to a wind-
speed at any height. Additionally, wind-speed estimates throughout the
profile are larger when using the Mac roughness parameters because the
bias from the internally calculated u* and h no longer takes effect. The
variation from observed wind speeds is largest near the surface (at 49 m)
with an average difference of up to 30%. However, estimations are more
similar to observations aloft, especially when using the Mac roughness
parameters. The u*;obs and HML are rarely available during routine wind-
speed profile estimations, therefore the internally calculated parameters
are used during this work. However, the comparison indicates it is not
unreasonable to use an observed u* and HML when using the different
profile methods.

5.4. Variability of observed wind speeds

Wind speeds observed in the UBL are, amongst other controls, a
function of synoptic-scale forcing, topographical conditions, anthropo-
genic activity, and surface characteristics (e.g. Britter and Hanna, 2003;
Fernando, 2010; Barlow, 2014). Without additional measurements to
those at KCL it is difficult to identify the impact of each upon the
observed wind profile, however, comparison of wind speeds throughout
the profile provides useful insight.

The lowest mean wind speeds observed throughout the profile are to
the north and north-west (sectors 1 and 5), which are between 4.5 m s�1

and 5 m s�1 at the surface and 10.5 m s�1 and 11.5 m s�1 aloft (Fig. 8a).
Fig. 8. For all observations (n ¼ 245): (a) average (points) and minimum/maximum
(whiskers) observed wind speed at 49 m and 30 m gates of the Doppler lidar (shaded G1 –

G3). Wind speed observed at: (b) 49 m (U49) and the first gate of the lidar (UG1), and (c)
UG1 and the second (UG2, circles) and third (UG3, triangles) gates of the lidar, with a 1:1
relation (dashed line). Points circled in magenta are referred to in text. Data are selected
through the filtering process outlined in Section 4 and coloured by wind direction (see
Table 1 for sector definitions).
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The highest mean wind speeds occur in southerly directions (sectors 3
and 4). The directional variability of wind speeds is predominantly
dictated by synoptic-scale forcing, with frequent frontal passage across
the UK (typically from west to east) resulting in stronger winds from the
southwest and less frequent, lower wind speeds from the northeast.
However, it is also possible that the gradual reduction in upwind
roughness to the north of the sites may be contributing to the lower
observed wind speeds (e.g. Deaves, 1981) (Fig. 4). The linear
MS-micro/3 wind flow model (Walmsley et al., 1986, 1990) indicates
that the surrounding topography (including the gently sloping topog-
raphy to the north) does not obviously influence wind speed at the site.

The larger shear stress experienced closer to the surface is responsible
for the observed wind speed at 49 m (approximately 2.5 times the canopy
height) consistently being approximately half of that observed 200 m
above the canopy (Fig. 8a). However, wind speeds do not always behave
as expected throughout the profile. This is exemplified by two extreme
cases (circled in Fig. 8b): one where a wind speed of approximately
9 m s�1 is observed both at 49 m (U49) and the first gate of the lidar (UG1);
and another where U49 is just 3 m s�1 at the same time UG1 is 12.5 m s�1.
A likely source of this variability is that on occasion, the surface mea-
surements and those aloft are responding to different flow fields as a
consequence of longitudinal and transverse roughness heterogeneity
upwind. Measurements closer to the surface may be responding to local
obstacles, whilst flow aloft is a function of the integrated or blended
surface (Grimmond and Oke, 1999; Roth, 2000; Grimmond et al., 2004;
Barlow et al., 2008; Barlow, 2014). This is supported by the better
agreement of observed wind speeds aloft (between 126 and 216 m)
(Fig. 8c), where the effects of local surface roughness variability are less
pronounced. However, deviations from the idealised profiles still occur,
such as the grouping of observations where wind speed decreases with
height (circled in Fig. 8c). This demonstrates the uncertainties arising
when using idealised wind profile relations to estimate the wind-
speed profile.

5.5. Comparison of observed and estimated wind-speed profiles

The directional variability and range of upwind surface roughness,
wind speed, observational frequency and topographical variability,
means that a collective analysis of wind profiles results in a bias towards
more frequently observed wind directions or extremes. Hence a com-
parison of the observed (Uobs) and extrapolated wind speed by each of the
wind profile methods (Uext) is performed for each directional sector. For
each hourly period,Uext is calculated at 1m height intervals and averaged
over 30 m gates to correspond to the vertical resolution of the lidar. The
difference (Udiff) between Uext and Uobs for each 30 m gate is summarised
in Fig. 9.

For all wind profile methods, the aloft wind-speed estimates are
consistently most similar to Uobs (i.e. Udiff is closest to 0 m s�1 in
Fig. 9a–d) when the Kanmethod parameters are used. Whereas, using the
Mac roughness parameters means wind speeds are underestimated
(Fig. 9e–h). This is most obvious for the PL and LOG methods because of
their least steep gradients. Both predict similar wind speeds, under-
estimating wind speeds in over 95% of cases with a median of between
2.5 m s�1 and 4.5 m s�1 (Fig. 9e–h). In more extreme cases, the under-
estimation can be up to 9 m s�1 (Fig. 9h), corresponding to almost 90% of
the mean observed wind speed at the same height. The greater wind
speeds extrapolated using the DHe, DHv and GRmethods better resemble
observations, however the wind speed is still underestimated on over
80% of occasions, with median underestimation ranging between 1 and
3 m s�1. Wind speeds are most obviously underestimated in sector 5
(Fig. 9h), as the models have underestimated the large shear between
surface and upper winds for this direction (Fig. 8a, b).

The greater extrapolated wind speeds with the Kan roughness pa-
rameters are more similar to Uobs, with occasional overestimation,
especially further from the surface (Fig. 9a–d). The reduced shear of the
PL and LOG profiles cause wind speeds to be underestimated



Fig. 9. Distribution of hourly wind speed differences (Udiff) between observed (Uobs) and
extrapolated (Uext) wind speeds at heights corresponding to 30 m lidar gates (Gates shaded
G1 – G3) (Udiff ¼ Uext – Uobs). Points are the median and whiskers are the 5th, 25th, 75th
and 95th percentiles. The analysis is stratified into directional sectors, labelled S1, S3, S4,
S5 (see Table 1 for directions). Differences shown are using (a–d) Kanda et al. (2013) and
(e–h) Macdonald et al. (1998) roughness parameters. Profile abbreviations: PL – power
law; LOG – logarithmic wind law; DHe – Deaves and Harris equilibrium model, DHv –

Deaves and Harris non-equilibrium model; GR – Gryning et al. (2007).
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approximately 75% of the time (medians between 0.5 and 2 m s�1).
However, as the wind shear is smallest in sector 1, the PL and LOG
profiles best resemble Uobs, and the other methods overestimate (Fig. 9a).
Despite the LOG profile being consistently reported to be appropriate
only close to the surface (e.g. Roth, 2000), studies have shown its
applicability to up to 50% of the boundary layer depth (Macdonald et al.,
2000; Castro et al., 2006; Cheng et al., 2007). Therefore, the similarity of
the LOG method to Uobs at 200 m above the canopy is not unreasonable.

Using the Kan parameters from the remaining wind directions (sec-
tors 3, 4 and 5), the greater wind speeds of DHe, DHv and GR best
resemble observations (Fig. 9b–d). Of these, the DHe and GR profiles are
most consistently similar to Uobs, as the larger shear of the DHv profile
causes slight overestimation with height (i.e. second and third lidar
gates). This is more obvious in sectors 1 and 5, where a combination of
the lowest synoptically-driven winds and decreasing upwind roughness
causes the smallest observed wind shear (Fig. 8). The increased wind
shear indicated by the DHv profile is a response to the reduction in up-
wind roughness (Fig. 4). Although uncertainties arise from calculating
roughness parameters using the source area model and morphometric
methods, the DHv method overestimation is consistent with Drew et al.
(2013), indicating DHv may be oversensitive to reductions in up-
wind roughness.

Across all comparisons, jUdiffj is largest when the range of observed
109
wind speeds throughout the profile is greatest and most variable. This is
most obvious in sector 5, where the observed wind speed variability is
not well correlated throughout the profile (Fig. 8), producing the largest
range of Udiff (consistently ±5 m s�1 from the median), which is up to
50% of the mean wind speed. The range of observed wind speeds in-
creases with height in sectors 1, 3 and 4 and therefore so does the range
of Udiff. Despite the increasing mean wind speed with height, the differ-
ences relative to the mean wind speed also slightly increase in these di-
rections. For example, using the Kan method roughness parameters
maximum differences range from between 24%–45% for the lowest lidar
gate, to between 35%–53% for the upper gate.

Calculation of the Monin-Obukhov stability parameter (z’/L, where
z’ ¼ z – zd) indicates that the variability of estimates from observations is
not likely to be associated with stability effects. Using observations from
the KSS site and the zd value from the Kan method (which provides the
most accurate wind-speed estimations), over 97% of the hourly obser-
vations assessed have jz’/Lj � 0.1, a range which corresponds to near
neutral atmospheric stability (Roth, 2000). The remaining values are
within jz’/Lj � 0.2 and eliminating these periods from the analysis does
not obviously improve wind-speed estimations.

A more likely cause of the variability is that each wind-speed
profile method has its own inherent assumptions and is designed or
derived based upon a specific set of boundary conditions. Inherent
assumptions of the LOG, PL, GR and DHe methods are that there is an
extensive homogeneous fetch, which is rare in urban areas. In addi-
tion, the DHe and DHv methods are developed for wind speeds greater
than 10 m s�1 measured at 10 m in rural, open surface conditions
(Harris and Deaves, 1980) and the GR method is developed using wind
speeds greater than 3 m s�1 at 10 m (Gryning et al., 2007). A 10 m
measurement at the current study site would inappropriately be within
the canopy (and not the constant-flux layer), therefore the more
suitable height of 2.5 times the canopy height is used. In addition, the
wind speeds observed during the analysis were on average only half of
the minimum wind speeds used to develop the DHe and DHv methods
(Fig. 8). Variability is expected when using the wind profile methods
outside the conditions they were developed for, however, assessment
of their performance is valuable, especially for heterogeneous urban
surfaces, which have the greatest potential to breach the assumptions
inherent to each method.

6. Conclusions

Using wind speeds observed at approximately 2.5 times the canopy
height in a central business district (London, UK), wind-speed profiles
were extrapolated to 200 m above the canopy using five different
methods: the logarithmic wind law (Blackadar and Tennekes, 1968)
(LOG); the Deaves and Harris equilibrium (DHe) and non-equilibrium
(DHv) models (Deaves and Harris, 1978; Harris and Deaves, 1980); an
adaptation of the power law (Sedefian, 1980) (PL) and the Gryning et al.
(2007) (GR) profile. The profiles require aerodynamic roughness pa-
rameters (zd and z0), which were determined using the Kent et al. (2017a)
iterative methodology with the Kanda et al. (2013) (Kan) and Macdonald
et al. (1998) (Mac) morphometric methods. The extrapolated wind
speeds were compared to wind speeds observed with Doppler lidar
during strong wind conditions. Based upon surface layer scaling, all of
the observations have (or are very close to) neutral atmospheric stability.
Directional variations in the upwind surface characteristics warranted
separation into consistent sectors. The most appropriate wind-speed
profile method depended upon the morphometric method used, the
observed wind speed and upwind surface characteristics.

When using the DHe, DHv and GR profiles, the friction velocity and
gradient height are required, which are calculated internally to the
methods (using their respective equations). Use of the observed friction
velocity (at approximately 2.5 times the canopy height) and mixing layer
height determined from remote sensing meteorological instruments is
demonstrated to also lead to reasonable wind-speed estimates. However,



C.W. Kent et al. Journal of Wind Engineering & Industrial Aerodynamics 173 (2018) 100–111
these observed values are typically unavailable during routine wind-
speed estimation, therefore the internally calculated parameters are
used during this work.

Irrespective of the wind-speed profile method used, the estimated
wind speed is sensitive to the aerodynamic roughness parameters zd
and z0. For all of the wind-speed profile methods assessed, the greater
wind speeds estimated when using the Kan aerodynamic roughness
parameters most resembled observed wind speeds, whereas the Mac
parameters resulted in wind-speed underestimation. Direct consider-
ation of roughness-element height variability (as the Kan method
does) appears to be critical to the aerodynamic roughness parameters
and hence accurately estimating the wind-speed profile. Assuming the
Kan roughness parameters are appropriate, the central London com-
parison indicated that for most conditions the DHe and GR methods
were the most suitable to extrapolate the wind speed. However, wind-
speed estimations with the DHv profile are similar and closer to ob-
servations than the PL and LOG methods, which tend to underestimate
wind speeds. An exception was in directions with lower wind speeds
and gradual reduction in upwind roughness, where the resulting
reduced wind shear meant that the PL and LOG profiles were more
appropriate.

Selecting the most appropriate combination of morphometric and
wind-speed profile methods meant wind speeds up to 200 m above could
be consistently estimated with a median difference of 0 m s�1 from ob-
servations. However, variability of ±5 m s�1 (approximately 50% of the
meanwind speed) for hourly wind estimates was unavoidable, which was
attributed to using the profile methods outside of the conditions they
were developed for, as well as the actual observed variability of wind
speed throughout the vertical profile. The observed variability was
possibly caused by the longitudinal and transverse surface heterogeneity
upwind resulting in airflow throughout the profile being in equilibrium
with different upwind surfaces. However, using the DHv method which
accounts for upwind roughness variability did not notably improve wind-
speed estimation.

Few observations from directions with pronounced roughness-
element height heterogeneity meant these conditions were not
addressed. Consequently, the results pertain to a relatively homogeneous
European city centre. There is a requirement for comparisons between
extrapolated and observed wind speeds above other urban areas, to
inform the appropriateness of both the morphometric and wind-speed
profile methods assessed during this work and to inform current engi-
neering standards.
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