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Abstract 

We investigated the role of spatial dependency in the technical efficiency estimates of rice farmers 

using panel data from the Central Visayan island of Bohol in the Philippines. Household-level data 

were collected from irrigated and rainfed agroecosystems. In each ecosystem, the geographical 

information on residential and farm-plot neighborhood structures was recorded to compare 

household-level spatial dependency among four types of neighborhoods. A Bayesian stochastic 

frontier approach that integrates spatial dependency was used to address the effects of neighborhood 

structures on farmers’ performance. Incorporating the spatial dimension into the neighborhood 

structures allowed for identification of the relationships between spatial dependency and technical 

efficiency through comparison with non-spatial models. The neighborhood structure at the residence 

and plot levels were defined with a spatial weight matrix where cut-off distances ranged from 100m 

to 1,000m. We found that spatial dependency exists at the residential and plot levels and is stronger 

for irrigated farms than rainfed farms. We also found that technical inefficiency levels decrease as 

spatial effects are more taken into account. Because the spatial effects increase with a shorter 

network distance, the decreasing technical inefficiency implies that the unobserved inefficiencies can 

be explained better by considering small networks of relatively close farmers over large networks of 

distant farmers.  
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1. Introduction 

Numerous attempts have been made to measure technical efficiency (TE) and other efficiency estimates in 

farming (Idiong, 2007; Michler and Shively, 2014; Karagiannis and Tzouvelekas, 2009; Alvarez, 

2004; Balde et al., 2014; Hossain and Rahman, 2012; Coelli and Battese, 1996); to this end, one of the 

common econometric approaches is the stochastic frontier analysis (Aigner et al.,1977; Meeusen and van 

Den Broeck, 1977). Previous studies have contributed to the understanding of how large TE is; how 

different TE levels are among individual farmers; and what are the factors that underlie the 

differences. These studies generated useful policy implications for efficient farming, especially in 

developing countries where wide productivity variations have been observed. Despite the 

aforementioned research, spatial dependency among farmers has yet to be adequately analyzed. 

Farrell (1957) expressed concerns about spatial factors such as how climate and location influence 

efficiency. Although the concerns existed at the time, the econometric techniques required to 

complete such an analysis were not available during the time of Farrell’s research. The importance 

of making use of spatial information in agricultural economics, and in particular the little attention 

payed to spatial autocorrelation in land use data has still been highlighted in more recent times 

(Bockstael, 1996). 

Recent developments in spatial econometrics have made it possible to observe the spatial 

effects in the stochastic frontier analysis (Areal et al., 2012; Glass et al., 2014; Glass et al., 2015; 

Tsionas and Michaelides, 2015). Furthermore, Druska and Horrace (2004) extended the estimator 

presented by Kelejian and Prucha (1999) and applied it to a stochastic frontier model for the panel 

data of 171 Indonesian rice farmers. Another innovation in this area was the adoption of the 

Bayesian paradigm in the estimation procedure (Schmidt et al., 2008). With this approach, Koop and 

Steel (2001) and Kumbhakar and Tsionas (2005) investigated geographical variations of outputs and 
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farm productivity for 370 municipalities in Brazil. Similarly, Areal et al. (2012) also investigated the 

spatial dependence of 215 dairy farms in England at a 10 km grid-square level using the Bayesian 

paradigm. All these studies have used a meso-level data to measure the spatial distribution of 

farmers. 

Although these meso-level studies are valuable in recognizing the importance of spatial 

dependency in agriculture, important questions surrounding this topic remain unanswered. To 

illustrate, one unanswered question is how and through what kinds of networks the spatial 

dependency of TE shows up at the farm level. There are several reasons why spatial dependency 

may differ by type of farm-level networks. First, despite the presence of agricultural extension 

agents, it is still expected that farmers rely on their social networks for information on input 

allocation, management practices, etc. (Ward and Pede 2014). Additionally, the intensity of 

information sharing may differ between residential and plot neighbors. Second, farmers who belong 

to the same agro-ecological system and share a common resource pool depend on the regulations set 

within the resource pool for their farming management. For farmers in irrigated areas who share 

water within a water users group, this kind of dependency may emerge more strongly among them as 

compared to the rainfed farmers who farm more independently. Lastly, farmers who belong to the 

same water users group in irrigated areas may face similar institutional shocks and regulations. 

Notably, they may have formed similar social preferences through collective irrigation management 

(Tsusaka et al. 2015). In this manner, farm-level spatial dependency may arise though socio-

economic, agro-climatic, or institutional similarities.  

The purpose of this paper is to investigate the role of spatial dependency in TE, using unique 

micro-level farm panel data from individual rice farmers in Bohol, Philippines. We aim to identify 

the types of networks in which spatial dependency arises in TE. Our empirical study is unique in two 
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ways. First, we use farm-specific micro-level data, whereas previous studies were aggregated to sub-

municipalities (Koop and Steel 2001; Kumbhakar and Tsionas 2005). In this way, micro-level 

studies are highly relevant in investigating spatial effects for smallholder farmers that occur on a 

small scale in meters. To the best of our knowledge, this has not been investigated in previous 

efficiency work. Furthermore, to the extent that previous studies have used spatial information at 

aggregated levels, this was not possible to be investigated. At aggregated levels, this type of small-

scale spatial dependence may be unfeasible to detect, i.e., the area studied is larger than the area at 

which spatial dependence occurs, and consequently may be overlooked. This oversight could lead to 

either accepting that spatial dependency in smaller areas may be present, but cannot be observed, or 

that there are no small-scale spatial processes present. The advantage of focusing on farm-specific 

micro-level data in small areas for TE analysis is that some interesting spatial characteristics can be 

incorporated that may include those from nature, e.g., climatic condition, but also techno-

sociological, e.g., cooperation, information sharing, and resource sharing. Since the area of study is 

relatively small we are confident that those aspects are controlled for and we are left with variation 

on the techno-sociological aspects. Analysis at micro level also presents the opportunity of better 

targeting agricultural development policies towards local conditions. The second way in which this 

study is unique is that we compare spatial dependency among two separate neighborhood structures 

(residential neighborhood and farm plot neighborhood) in two different agro-ecosystems (irrigated 

and rainfed ecosystems), and explore the panel nature of our dataset which covers four growing 

seasons (two years). 

The data were collected for four consecutive rice growing seasons from 2009 to 2011, coupled 

with detailed geographical information to capture different kinds of networks among sample farmers. 

This data set allowed us to compare spatial dependency among two separate neighborhood structures 
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(residential neighborhood and farm plot neighborhood) in two different agro-ecosystem (irrigated 

and rainfed ecosystems). Taking advantage of the panel data structure, analyses were performed 

following a one-step procedure as described in Areal et al. (2012), which integrates spatial 

dependency into the stochastic frontier analysis with a Bayesian estimation approach. The rest of the 

article is organized as follows. The next section provides some background information about the 

major characteristics of the two rice farming systems in Bohol. Section 3 presents the empirical 

model used to estimate the technical efficiency and the endogenous spatial effect of rice farming 

technical efficiency. Section 4 describes the data-set used in this study. Section 5 presents the 

estimation results and discussions. Section 6 concludes and derives policy implications for rice 

farming productivity in Philippines. 

 

Rice Farming in Bohol 

Rice production in Bohol consists of two agroecosystems: irrigated and rainfed farming. The 

Bohol Irrigation System (BIS) started its operation in 2009, currently spans 14 villages in three 

municipalities, and is expected to service as many as 4,104 hectares in the future (JICA, 2012). The 

BIS works through a gravity irrigation system composed of a reservoir dam, a main canal, secondary 

canals and laterals, turnouts, and farm ditches. Most of the farmers in the project site converted their 

rainfed plots to irrigated plots as long as their plots were accessible to the irrigation facilities. Our 

sample famers were randomly taken from these irrigated famers. The rainfed sample farmers were 

randomly taken from adjacent villages that have similar cultural and climatic background (Figure 1). 

Rainfed rice farming is conducted in a traditonal manner with moderate use of modern inputs and 

little use of machineries. The same scenario applied to the irrigated area until the start of irrigation in 

2009. 
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Fig. 1. Location of study sites designated by ecosystem. 

 

Farmers in the irrigated area must form a water users group. A group consisting of 20 

individual farmers on average and its members rely on the same intake gate on a canal and thus share 

irrigation water with each other. Since the location and the water supply capacity of each intake gate 

is determined by the capacity of the canal and the topography of the area, the size and composition 

of the water users group is basically determined exogenously. In addition, our field observation tells 

us that no farmer exchanged their plots in order to move to a particular water user group. This means 

that there is no self-selection behavior in the formation of the water user group.  
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Member farmers are expected to pay an irrigation service fee equivalent to 150 kg of paddy 

per hectare per season to the National Irriagtion Administration (NIA)1. The members of the water 

users group are expected to manage local irrigation facilities collectively. Since they share irrigation 

water, the synchronization of farming practices is needed among them. Meanwhile, rice farming 

under rainfed conditions is conducted more independently. In this regard, the opportunities for 

networking are more frequent, and the demand for strict coordination is higher among irrigated 

farmers than rainfed farmers.  

In the study site, rice is the dominant crop and is cultivated twice a year. The Bohol Island 

belongs to a climatic area characterized by even rainfall distribution throughout the year. During our 

survey period of four agricultural seasons in two years (2009–2011), our study site experienced two 

weather shocks: severe drought in the second season and flood in the fourth season. Furthermore, 

rainfed areas suffered directly from these variations. Meanwhile, the water supply condition among 

irrigated farmers was mitigated by the irrigation system, to some extent. Hence, the irrigated farmers 

suffered fewer water shortages in the second season than the rainfed farmers. Since the BIS has no 

drainage system, all the famers suffered flood in the fourth season.  

A notable feature of the study site, which is important in network analyses, is that the places 

of residence are relatively scattered over a wide geographical area; although we can still find the 

center of a village where residences and small businesses are concentrated. Hence, the data presented 

in this study has wide geographical variations in residential networks, which is different from 

another type of common residential pattern in which residents are highly concentrated in a particular 

place.  

                                                 
1 With a market price of Php 14-20 per kg, the 150 kg of paddy is equivalent to about Php 2,500-3,000. As of February 

2017 1USD=49.7 Php.  
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2. Modeling 

Since the seminal works of Aigner et al. (1977) and Meeusen and van Den Broeck (1977), 

the stochastic frontier approach (SFA) has become the most commonly used method of modeling the 

production and measure efficiency of farm-level data. The SFA approach estimates the parametric 

form of a production function and recognizes the presence of two random error terms in the data. 

One component of the error term reflects the inefficiency in production while the other component 

represents the random effects outside of the producer’s control. The production frontier itself is 

stochastic since it varies randomly across farms due to the presence of the random error component. 

Following the model proposed by Areal et al. (2012), the stochastic frontier production function for 

a balanced panel data assuming efficiency is constant over time2 is defined as3: 

 

    (1) 

 

                                                 
2 This is not an uncommon assumption to make especially when the time series is relatively short as in this case (2 

years).  

3 A specification including time and its interactions was estimated but no significant time effects were found. A referee 

has noted that the model does not include heteroscedasticity terms. This is an area that has not been explored within 

this context. We have run the non-spatial model and extracted the errors and the inefficiency terms. However, there is 

not a prior reason to believe that allowing for heteroscedasticity would make it necessarily a better model. We have 

conducted a Levene’s test on the errors to test whether the variance changes through the periods. We found that the 

variance for year 2 is actually different (p-value<0.05), but the standard deviations for the years are not very different 

in absolute values: Year 1: 0.246; year 2: 0.306; year 3: 0.230; year 4: 0.239 
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where  denotes the production of farm   at season   with ;  

represents a  matrix of inputs of production;   is a  matrix of non-stochastic 

environmental variables (farmer’s level of education, household size, household head, being a 

female, remittance), associated with the th farm at the th observation (farm-specific variables);  

is a  matrix of dummy variables for periods 2 to 4; ,  and  are a  and a  

vectors of unknown parameters to be estimated;  is the random error, and  represents the 

inefficiency of the th farm. Stacking all variables into matrices we obtain: 

 

              (2) 

 

where the inefficiency term in the standard efficiency analysis usually assume  to follow an 

exponential of half-Normal distribution. However,  can be made spatially dependent by defining it 

as: 

 

            (3) 

 

where  is a weight matrix;  is the spatial coefficient, which is assumed to be between 0 and 1; 

and  and  are latent variables whose distributional form is unknown. In the context of farming, 
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 captures the effects of shocks spreading among neighboring farmers through similarity in 

socio-economic, agro-ecological, and institutional backgrounds of the group defined by W.  

 

Estimation of spatial models requires specification for the spatial structure of observation 

units considered in the study. As such, a distance-based weight matrix, W, of a Boolean type with 

elements wij was defined as follows4: 

            (4) 

 

where  is the distance in km between the residence/farm location  and the residence/farm location 

;  is the distance from the residence/farm where spatial dependence may be relevant, i.e., the cut-

off point of spatial dependence. Finding the appropriate cut-off distance is an empirical issue (Roe et 

al., 2002) that is commonly dealt with by estimating the spatial model using different cutoff 

distances (Bell and Bockstael, 2000; Roe et al., 2002; Kim et al., 2003; Areal et al., 2012; Areal and 

Riesgo, 2014). 

Therefore, we use two types of Bayesian models, one standard SFA (non-spatial) and spatial 

models (with cut-off distance ranging from 100m to 1,000m), which allow for an investigation of the 

relationship between spatial dependency and efficiency under different farm environments. Results 

from the non-spatial model and the spatial model with the highest spatial dependency are compared 

as follows. Once the farm efficiency estimates from both models are obtained, the efficiency 

percentage change between the spatial and non-spatial model is calculated per household and farm 

                                                 

4 The weight matrix W is of dimension N x N and has 0 as diagonal elements. 
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environment (residential or farm plot). This allows us to explore how much accounting for spatial 

dependency can help in explaining efficiency. If the area used to determine the neighborhood is 

relatively large, we may find spatial dependence; however this may not help in explaining efficiency. 

The same would occur if certain spatial effects that were accounted for are not relevant in explaining 

inefficiency, i.e., the spatial models in this case would be underperforming compared with the non-

spatial models. Having found spatial dependency, a farm with a positive percentage change in their 

efficiency level would indicate that such farm’s efficiency level would have been underestimated 

under the non-spatial approach (i.e. positive aspects such as sharing information that make farms 

more efficient were not taken into account). We would expect this to be the case of farms that work 

closely and share knowledge under similar environment. On the other hand, we may expect farms 

that work more independently to show lower levels of spatial dependence; and no or small 

percentage changes in cases where the spatial model matches the performance of the non-spatial 

model or even negative percentage change in cases where the non-spatial model outperforms the 

spatial models.   

A translog functional form was chosen for the stochastic frontier production analysis. To 

explain, the translog is a flexible functional form that can be viewed as a second-order Taylor 

expansion in logarithms of any function of unknown form. Unlike the Cobb-Douglas function, it 

imposes no restriction a priori on the elasticities of substitution between inputs and outputs. As 

mentioned above, some non-stochastic environmental variables were incorporated directly into the 

non-stochastic component of the production frontier accounting for changes in the production level. 5 

                                                 
5 There are two general approaches to incorporate non-stochastic environmental variables into technical efficiency 

analysis (Coelli et al., 2005). The first, the one used here, is to incorporate them in the non-stochastic part of the 

frontier model whereas the second approach incorporates them into the stochastic component of the production frontier 
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Thus, the variable, Education, was included and consists of the years of formal schooling of 

the primary decision-maker of the household; the variable Size, which is the total number of people 

living in the household; Gender, a binary variable taking a value of one when the household head is 

female; and Remittance consisting of the ratio of remittance as it relates to total household income. 

The first three variables capture the human capital endowment of the sample farmer: education for 

quality, size for amount, and the gender for advantage or disadvantage of female head. Educated 

farmers are generally assumed to have better farming capacity and access to information; therefore, 

they are more productive (Battese and Coelli, 1995). The amount of remittance indicates that farmers 

have alternative income sources other than rice farming. Hence, we hypothesize that remittance, 

which captures an unimportance of rice farming, has a negative effect on production levels. 

The data for all inputs and outputs are normalized by their respective geometric means prior 

to estimation. This makes the model’s parameter estimates directly interpretable as elasticities that 

are evaluated at the geometric mean of the data. To cope with the great number of zero observations 

for fertilizer inputs, the procedure proposed by Battese (1997) was followed. The original variable 

for fertilizer was replaced with , where  is a dummy variable defined by 

                                                                                                                                                                 
(Kumbhakar, Ghosh and McGukin, 1991). We decided to use the first approach to distinguish between observed 

information, which is included in the production side and non-observed information (spatial aspects) into the stochastic 

part of the frontier. However, following the suggestion of a reviewer we also conducted the second approach in which 

Education, Size, Gender and Remittance are removed from the non-stochastic part and are used in a second stage as 

explanatory variables for the estimated efficiency. The coefficient estimates of the non-stochastic part are similar. 

Regarding the explanatory variables for efficiency, Education was found to be associated with higher levels of 

efficiency in all cases whereas Remittance was found to be associated with lower levels of efficiency (i.e. farmers 

recipients of relatively larger amounts of remittances were found to be less efficient than those receiving lower 

amounts of remittances). Results are available in Appendix. 
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 if  and  if . Thus, the final estimable form of the translog stochastic 

production function becomes: 

 

(5) 

Where  is the output,  is a time index ,  and  are the inputs, and , , , , , 

 are the parameters to be estimated. The symmetry property was imposed by 

restricting . The  are farm specific inefficiency terms as defined above. The estimation 

was conducted using a Bayesian approach that integrates the latent distributions of  and  into the 

estimation process as defined in Equation 3 (Areal et al. 2012). Thus, a standard form for the 

conditional likelihood function was assumed in efficiency analysis with a spatial component added 

to: 

   (6) 

By re-parameterizing , the expression for the conditional 

likelihood function was obtained: 

  (7) 
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The prior distribution for the parameters  are an independent Normal-Gamma prior for 

 and ; the prior for  is assumed to be Gamma with parameters 2 and , where  is the 

median of the prior distribution, and the conditional distribution for  is:  

  (8) 

where  is the Gamma function with parameter , which is commonly used in the literature. 

The prior for  is assumed to have a positive impact on the efficiency and is defined as an indicator 

function  if , or otherwise . 

The following conditional posteriors are obtained from the joint posterior 

distribution : the conditional posterior for  and are a Normal distribution and 

Gamma distribution as in Koop (2003). The conditional posterior distribution for  is 

where  and . Furthermore, the 

conditional posterior distribution for  is 

     (9) 
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where  and  and the conditional posterior for the spatial dependence 

parameter  is . Finally, the conditional posterior 

distributions for and  each requires a posterior Metropolis-Hastings algorithm step (Metropolis 

et al. 1953; Hastings 1970)6.  

 

3. Data 

The data for this study was collected by the International Rice Research Institute (IRRI) from 

2009 to 2011 to conduct an impact assessment of the Bohol Irrigation Development Project in the 

Philippines. There were 496 observations per season from two different ecosystems; 205 and 291 

observations from rainfed and irrigated ecosystems, respectively. Therefore, the panel used for the 

stochastic frontier analysis has a size of 820 and 1,164 for rainfed and irrigated, respectively. Data 

on household characteristics, inputs, and output for rice farming were collected with a structured 

questionnaire. Additionally, the data set also contains geographical coordinates at both the farm plot 

and farmer residences.  

Descriptive statistics for the variables used in the efficiency analysis are available in Table 1. 

Capital is defined as the sum of the current values of agricultural machineries such as tractors, 

                                                 
6 We use a random walk chain Metropolis-Hastings algorithm, which takes draws proportionately in different regions 

of the posterior making sure that the chain moves in the appropriate direction (Koop, 2003), where a new set of  is 

proposed using a Metropolis based on . On 

the other hand, to draw  the Metropolis is based on . 
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sprayers, and other farming devices. Since the level of mechanization in the area is low, the capital 

value is not very large in either area. Notably, it is apparent from Table 1 that farmers in the irrigated 

areas perform more intensified rice farming (high inputs and high output), particularly with regard to 

the level of fertilizer and labor. For comparison’s sake, we report the yield at the bottom of Table 1, 

which supports the notion of higher productivity in the irrigated areas. Additionally, education 

attainment is nearly the same for farmers from the two ecosystems. Moreover, socio-economic 

characteristics such as household size, female-led households, and remittances as a percent of total 

income were not found to be significantly different between rainfed and irrigated systems.  
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Table 1:  Summary statistics of production inputs and socio-economic characteristics. 

 

Rainfed Irrigated Difference 

 

(n=820) (n=1164) 

 Output (kg) 724.430 1364.897 640.467*** 

 (636.956) (1107.032)  

Seed (kg) 30.996 37.773 6.777*** 

 (23.123) (26.179)  

Fertilizer (kg) 27.674 43.023 15.349*** 

 (35.886) (34.791)  

Labor (Mandays) 32.868 43.685 10.817*** 

 (18.363) (25.570)  

Plot Size (Ha) 0.573 0.619 0.045*** 

 (0.409) (0.412)  

Capital (PHP) 1028.623 1151.318 122.695*** 

 (860.518) (923.425)  

Education (Yrs.) 6.080 5.728 0.352 

 (3.468) (3.011)  

Household size 5.606 5.601 0.005 

 

(2.322) (2.582) 

 Female Household Head (%) 7.44% 4.90% 2.54% 

Remittance†(%) 7.35% 4.69% 2.66% 

Yield (Ton/ha) 1.436 2.352 0.916*** 

 (0.949) (1.172)  

Note: ‘***’, ‘**’, and ‘*’ mean the difference is statistically significant at the 1, 5, and 10 percent levels, respectively  

†: Calculated as remittance as a portion of total income 
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4. Results 

We estimated both spatial and non-spatial models for each ecosystem (rainfed and irrigated) 

by considering residential and plot neighborhood structures. We also estimated the spatial models by 

considering various definitions of the weight matrix based on 10 cut-off distances from 100m to 

1,000m by 100m.7. We found no significant differences in the estimated coefficients of the non-

spatial models in comparison to the spatial counterparts. Coefficient estimates associated with 

production inputs were consistent with what we would expect, which was that inputs have a positive 

relationship with outputs. 

Table 2 shows the summary results obtained for the spatial dependence parameter rho  

with cut-off distance (100m to 1,000m). The spatial dependence parameter rapidly decreases as the 

cut-off distance increases, reaching its highest average value at a 100m cut-off distance. This is an 

expected finding that means non-observables explain efficiency at distances equal or below 100m. 

Moreover, this finding is also in accordance with Tobler's First Law of Geography which says that 

near things tend to be more related than distant things. Another interesting result is that spatial 

dependence was stronger for irrigated farms than for rainfed farms (Table 2). Thus, for the 100m 

 

                                                 
7 We find no significant differences among 10 different cut-off distance models in the coefficients associated to the 

production inputs and the environmental factors. Estimated parameters for spatial (all distance cut-off) and non-spatial 

models are available in Online appendix Tables A1 and A2. 
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Table 2: Spatial dependence at different cut-off distances. 

Distance 

(metres) 

Spatial parameter rho 

Residence Plot 

Irrigated Rainfed Irrigated  Rainfed 

100 0.218 (0.014,0.565) 0.153 (0.010,0.375) 0.195 (0.015,0.478) 0.086 (0.006,0.209) 

200 0.095 (0.006,0.237) 0.067 (0.004,0.160) 0.076 (0.004,0.185) 0.055 (0.003,0.130) 

300 0.057 (0.003,0.134) 0.041 (0.002,0.099) 0.045 (0.002,0.107) 0.041 (0.002,0.097) 

400 0.042 (0.003,0.096) 0.026 (0.001,0.065) 0.032 (0.001,0.076) 0.029 (0.006,0.209) 

500 0.033 (0.002,0.071) 0.019 (0.009,0.381) 0.026 (0.001,0.060) 0.023 (0.001,0.057) 

600 0.028 (0.002,0.058) 0.014 (0.001,0.036) 0.022 (0.015,0.048) 0.018 (0.001,0.045) 

700 0.022 (0.002,0.047) 0.012 (0.001,0.032) 0.018 (0.001,0.040) 0.015 (0.001,0.037) 

800 0.020 (0.002,0.039) 0.010 (0.001,0.027) 0.016 (0.001,0.035) 0.012 (0.001,0.031) 

900 0.016 (0.001,0.033) 0.009 (0.001,0.022) 0.014 (0.001,0.030) 0.011 (4E-4,0.027) 

1,000 0.015 (0.002,0.028) 0.008 (5E-4,0.019) 0.012 (0.001,0.026) 0.009 (4E-4,0.022) 

Note: The interpretation of the Bayesian 95% coverage posterior (a,b) is that according to our data and model the 

parameter is between a and b with a 0.95 probability 

 

model, the probability that the spatial dependence parameter is greater in irrigated farms than rainfed 

farms is 63% and 78%, respectively, for the residence and plot neighborhoods8. For irrigated farms,  

the probability that the spatial effect is greater under the residential neighborhood structure than 

under the plot neighborhood structure is 54%, whereas for the rainfed farms this probability is 71%.  

                                                 

8 These were obtained comparing the conditional posterior distributions obtained for  for rainfed farms for residence 

and plot neighborhoods after 25,000 draws from the conditional distributions with 5,000 draws discarded and 20,000 

retained. The comparison was done between each of the 20,000 values of the conditional posterior distributions for . 

When the spatial dependence of on type of farm (1) is greater than another (2) a value of 1 is given, and 0 otherwise.  
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Lastly, as the spatial dependence increases with shorter distances, the mean efficiency also 

increases, suggesting that the more unobservable aspects (e.g. cooperation, information sharing) are 

explained with the spatial models the more “inefficiency” from the non-spatial models is controlled 

for. Thus, the estimated mean efficiency for the irrigated farms models with residence spatial 

dependence at 100m, 400m, 700m, and 1,000m are 0.91, 0.90, 0.88, and 0.87, respectively. 

Additionally, the estimated mean efficiency for the rainfed farms models with residence spatial 

dependence at 100m, 400m, 700m, and 1,000m are 0.88, 0.87, are 0.86, and 0.86, respectively. As 

for the plot spatial dependence, the results are consistent with what we found in the residence spatial 

models. The estimated mean efficiency for the irrigated farms models with plot spatial dependence 

at 100m, 400m, 700m, and 1,000m are 0.91, 0.90, 0.89, and 0.88, respectively. The estimated mean 

efficiency for the rainfed farms models with residence spatial dependence at 100m, 400m, 700m, 

and 1,000m are 0.88, 0.87, 0.86, 0.86, respectively. However, although spatial dependency increases 

with shorter distances, this does not mean that spatial models always explain efficiency better than a 

non-spatial model. The use of non-spatial models may be able to explain efficiency as well as or 

even better than spatial models when cut-off distances are relatively large. Notably, the average 

efficiency levels of non-spatial models for irrigated and rainfed farms is 0.89 and 0.85 respectively 

for both residence and plot coordinates models, which suggests that for irrigated farms, only spatial 

models with cut-off distances at 100m and 400m explain efficiency better than the non-spatial 

model. For the case of rainfed farms all spatial models outperform the non-spatial model. This result 

suggests that spatial effects at relatively small distances (< 400 m) (e.g. sharing information, use of 

common resources) are important determinants for irrigated rice production. For datasets that cover 

relatively large areas, accounting for spatial dependency in this way helps control for some of the 

unobserved heterogeneity in the sample, e.g., climatic and topographical conditions. However, the 
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source and processes behind the spatial dependence cannot be explained due to the variety of 

heterogeneous possible reasons. In this study, the fact that the sample is relatively homogeneous 

works as an advantage in explaining such spatial dependence. Since the observed spatial dependence 

exists at such small cut-off distances (100m), it cannot be a result of any climatic condition.  

Figures 2a shows the distribution of efficiency for irrigated and rainfed farms using non-spatial 

model and spatial models (at 100m, 400m, 700m and 1,000m) in the case of residential 

neighborhood. Interestingly, in all four scenarios, the distribution is skewed towards the right and 

has a relatively long left tale. Very few farmers have efficiency levels less than 0.5. The distribution 

of efficiency varies not only by ecosystem, but also by type of neighborhood. In every case, the 

distribution of the non-spatial model is very distinct from the spatial models. This finding exposes 

the biases in efficiency levels that arise when spatial considerations are ignored, i.e., cases where the 

efficiency distribution from spatial models is located to the right of the non-spatial efficiency 

distribution. More specifically, for the case using residential neighborhood, models for irrigated 

farms where spatial effects were found to be relatively high (100m and 400m) have a narrow 

distribution to the right of the non-spatial efficiency distribution. This suggests that part of the farm 

inefficiency not captured under the non-spatial model can be explained by these spatial models. 

Also, the fact that the distribution shape is narrower indicates that differences between farm 

efficiency levels have been reduced once spatial effects have been taken into account.  

Hence, although we find that the shorter the distance, the greater the spatial dependence in 

both cases of irrigated and rainfed, we can see in Figure 2a (bottom) that for rainfed farms the effect 

of such increase in spatial dependence with distance is relatively small in explaining efficiency 

(efficiency distributions are closer to each other than for Figure 2a (top)). Additionally, considering 

the non-spatial efficiency distribution as a reference, we found that the efficiency distribution using 
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the spatial model (100m, 400m) for irrigated farms is situated to the right of the non-spatial case 

(Figure 2a). This means that for irrigated farms, spatial dependence may help explaining 

inefficiency, i.e., irrigated farmers working more closely, but for rainfed farms, which work more 

independently, spatial dependence does not contribute as much in explaining efficiency as the case 

for irrigated farms.  

This information is not surprising since spatial effects related to rainfed farmer’s residence 

should be relatively less important in explaining efficiency, as compared to irrigated farms. For 

instance, for irrigated farms, information sharing about technology among residential neighbors may 

determine production levels. This may not be the case for rainfed farms whose practices may be 

determined more independently, and the level of production may be more dependent on the plot’s 

location, i.e., specific agronomic conditions rather than sharing knowledge. The same argument can 

be used when comparing spatial models that use large neighborhood areas and their contributions to 

explaining inefficiency, e.g., comparing efficiency distributions using the spatial dependence model 

(cut-off distance 1,000m) vs. non-spatial dependence model (cut-off distance 100m) for irrigated 

farms. We found small spatial dependence in our longer distance spatial model.  
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Figure 2a: Distribution of efficiency in irrigated farms (top) and rainfed farms (bottom) using 

residence coordinates. 

 

Figures 2b shows the distribution of efficiency for irrigated (top) and rainfed (bottom) farms, 

using a non-spatial model and spatial models (at 100m, 400m, 700m and 1,000m) in the case of plot 

neighborhood structure. For the models on irrigated farms, the same findings were produced as in 

the case of residence neighborhood, suggesting that both natural conditions of the spatial area and 

communication between farmers with neighbor plots plays a role in explaining part of the 
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inefficiency detected by the non-spatial models. As in the residence coordinates case, the efficiency 

distribution for rainfed farms when spatial effects are taken into account are different from the 

efficiency distribution obtained by the non-spatial model.  

This aforementioned finding suggests that natural conditions are likely playing a role in 

explaining the estimated inefficiency levels gathered by the non-spatial model.  

 

 

 

 

Figure 2b: Distribution of efficiency in irrigated farms (top) and rainfed farms (bottom) using plot 

coordinates. 
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Spatial dependence can explain why the level of connectedness, i.e., working together and 

sharing information, is important in explaining efficiency levels. We found that different 

neighborhood (residential and plot) explain different spatial processes, and there are two types of 

processes that are captured by residential neighborhood and plot neighborhood. While social 

conditions are captured for farmers’ residence location, both social and environmental conditions are 

captured by the geographical location of the plot. Using residential neighborhood, Figure 3a shows 

the map of percentage change in farm efficiency levels for both irrigated and rainfed farms in this 

study area. Rainfed farms tend to have greater increases in efficiency levels once the spatial 

dependency is incorporated into the analysis. Irrigated farms have relatively less increase in 

efficiency levels once spatial dependency is incorporated.  

The finding above needs some clarification because we found stronger spatial dependency in 

irrigated area. Irrigated farms being more spatially dependent means that the efficiency levels of 

neighboring irrigated farms are more similar between them than the efficiency levels of neighboring 

rainfed farms. This is possibly due to conditions and practices under irrigation being more similar 

between neighboring irrigated farms than the conditions and practices under rainfed between 

neighboring rainfed farms. The fact that we can capture this with the spatial models helps us identify 

better farm efficiency levels (i.e. avoiding attributing unobservable environmental conditions to 

inefficiency). The nature of the spatial dependency is what determines its effect of spatial 

dependency on the farm efficiency estimation. Thus, for irrigated farms the nature of spatial 

dependency may come from similar environmental conditions and practices (e.g. through sharing 

information) whereas for rainfed farms it may come from more variable conditions (e.g. climatic and 

topographical   conditions)”. Being able to capture unobservable variable conditions was found to be 

relatively more important in explaining efficiency levels for rainfed farms than capturing 
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unobservable environmental conditions and practices for explaining farm efficiency levels for 

irrigated farms (i.e. accounting for more variable conditions such as weather conditions are more 

determinant than more “controlled” conditions in explaining efficiency levels).  

Figure 3b shows the map of percentage change in farm efficiency levels for both irrigated and 

rainfed farms in the study area using plot neighborhood. In this case, we found similar results as in 

the residential neighborhood. We found a higher efficiency increase on the rainfed area than on the 

irrigated area. Again, we expected this result since natural conditions are expected to be more 

important in explaining efficiency for rainfed farms than for irrigated farms. Still, we find increase in 

efficiency levels for irrigated farms. This finding may be a result of the plot neighborhood, or it may 

be a result of partially capturing the social aspect.  

The percentage average increase in efficiency is, on average, higher for rainfed farms (3.4% 

and 3.3% for residential and plot neighborhood) than for irrigated farms (2.9% and 2.6% for 

residential and plot neighborhood), in light of the average efficiency levels mentioned above for the 

spatial model using the 100m cut-off distance for irrigated and rainfed farm (0.91 and 0.88), and the 

efficiency levels obtained from the equivalent non-spatial models (0.89 and 0.85). Hence, we found 

that although the spatial dependence parameter tells us the strength of the spatial dependence, 

which is generally greater for irrigated than for rainfed farms, such strength, i.e., incorporating 

spatial dependency into the analysis, follows a non-linear relationship with how well the spatial 

model performs compared with the non-spatial model in terms of percentage change in efficiency 

between spatial and non-spatial models. To explain, using the plot neighborhood structure, the 

spatial dependence parameter at 100m for irrigated and rainfed farms is 0.195 and 0.086, 

respectively, and the percent efficiency increase is 2.6% and 3.3% for irrigated and rainfed farms, 

respectively.  
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Figure 3a: Percentage change in efficiency score between spatial model (100m) and non spatial 

(residence coordinates). 

 

 

 

Figure 3b: Percentage change in efficiency score between spatial model (100m) and non spatial (plot 

coordinates). 
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The estimated models also show noteworthy results. Education has a positive and significant 

effect in irrigated as well as rainfed environments. Even though the rainfed farmers are more 

educated by about 0.4 years than irrigated farmers, there was no significant difference in means 

between the two ecosystems (see Table 1). In the irrigated area, the rice farming is more 

modernized in the sense that farmers use new and improved varieties and chemical inputs, as 

well as following standardized agronomic practices under controlled irrigation. Formal 

education for literacy as well as basic scientific knowledge is important to understand these 

types of practices. The fact that education significantly contributed to improve output in the 

rainfed environment also makes sense because even though farming is less intensified in the 

rainfed environment; formal education is still useful to the rainfed farmers.  In fact, the results 

in Appendix A1 & A2 show the largest educational impact in the rainfed farmers’ plot neighbor 

model (0.013). Additionally, Household size was found to be insignificant in all estimated 

models. This finding was expected because more farmers reach out to hired labor for farm 

operations. Finally, regarding the dummy variables for the studied periods we found that results 

corroborate the expected effects where rice production in periods 2 and 4 levels was lower than 

the first period (i.e. the benchmark period) due to the severe drought in the second season and 

flood in the fourth season mentioned above.   

 

Conclusions and Policy Implications  

This paper investigates the role of spatial dependency in technical efficiency for different 

ecosystems and neighborhood structures focusing on rice farmers in Bohol, Philippines. A spatial 

econometrics Bayesian approach was used to estimate the stochastic production parameters, as well 

as the spatial dependency parameters. The results were compared with non-spatial Bayesian 
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stochastic frontier approach. We found that spatial dependency exists at the residential and plot 

levels, maintaining more strength for irrigated than rainfed farms. We also found that technical 

inefficiency levels decrease as spatial effects are more taken into account. Since the spatial effects 

increases with a shorter network distance, the decreasing technical inefficiency means that the 

unobserved inefficiencies can be explained better by considering small networks of relatively close 

farmers over large networks of distant farmers, reflecting the location-specific nature of farming.  

Two policy implications can be drawn from this study. First, a stronger spatial dependency in 

the irrigated area indicates the existence of stronger externalities; a positive shock on one farmer’s 

TE improves the TE of the nearby farmers. The existence of externalities may justify public 

interventions. However, it is important to note that we also found that the size of the spatially 

dependent network is small. Hence, such an externality may be easily internalized through collective 

actions within the small group. In irrigated area, the water users group may serve as an appropriate 

unit for this purpose. Although this is an important practical issue, it is beyond the scope of this 

paper and requires future study. Additionally, since the rainfed farming is more individualistic, 

policies which are targeted to individual farmers are relatively more important, in comparison to the 

case of irrigated area. Having observed a strong impact of schooling years, educational support or 

extension may work effectively in improving rainfed farmers’ technical efficiency, which is 

currently lower than the irrigated farmers. 

Although our analysis focuses on technical efficiency for rice production technology change 

and scale effect are also relevant aspects to be considered in long-term studies. Our data covers only 

two years which did not allow for TFP growth and technological progress estimation as done in 

studies like Singbo and Larue (2016), Umetsu et al. (2003), Nin et al. (2003) and Coelli et al. (2005). 

In addition, evidence of spatial dependency in technological progress has been largely demonstrated 
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in the economic literature. The role of spatial dependence in technological progress has mainly been 

stressed in the context of regional productivity (see Nelson and Phelps, 1966; Benhabib and Spiegel, 

1994). Similar to the endogenous growth theory in economic literature, technological progress varies 

across farmers and it depends on farmers’ ability to innovate or use the improved technologies. As 

we highlighted above, farmers use the technology differently with human capital or the level of 

education being commonly cited as drivers of technological progress. In addition, farmers located 

below the frontier require sufficient social capabilities to allow them to successfully exploiting the 

technologies employed by the most efficient farmers.   
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