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Abstract
Southern Ocean sea-ice cover exerts critical control on local albedo and Antarctic precipitation,
but simulated Antarctic sea-ice concentration commonly disagrees with observations. Here we
show that the radiative effects of precipitating ice (falling snow) contribute substantially to this
discrepancy. Many models exclude these radiative effects, so they underestimate both shortwave
albedo and downward longwave radiation. Using two simulations with the climate model
CESM1, we show that including falling-snow radiative effects improves the simulations relative
to cloud properties from CloudSat-CALIPSO, radiation from CERES-EBAF and sea-ice
concentration from passive microwave sensors. From 50–70°S, the simulated sea-ice-area bias
is reduced by 2.12� 106 km2 (55%) in winter and by 1.17� 106 km2 (39%) in summer, mainly
because increased wintertime longwave heating restricts sea-ice growth and so reduces summer
albedo. Improved Antarctic sea-ice simulations will increase confidence in projected Antarctic sea
level contributions and changes in global warming driven by long-term changes in Southern
Ocean feedbacks.
1. Introduction

The Southern Ocean and Antarctica are climatically
important due to Antarctic ice-sheet melt contributing
to sea-level rise, changes in sea-ice cover contributing
to albedo feedbacks, and the importance of oceanic
heat uptake in this region for global energy balance
and heat transport. The area of sea-ice in the Southern
Ocean changes hugely with the seasons [van den
Broeke 2004, Simmonds 2015] and is currently poorly
represented in current climate models. Recent studies
have shown that the Coupled Model Intercomparison
Project, phase 5 (CMIP5) global climate models
(GCMs) do not show an overall improvement in the
simulation of Antarctic sea-ice compared to those in
the older Coupled Model Intercomparison Project,
phase 3 (CMIP3) [Turner et al 2013, 2014, Mahlstein
et al 2013, Lefebvre and Goosse 2007, Simmonds 2015,
© 2017 The Author(s). Published by IOP Publishing Ltd
Zunz et al 2013]. We focus on the mean state here,
although we note that most CMIP5 models simulated
retreating Antarctic sea-ice over 1979–2005, in
contrast to the observed statistically significant
increase in most months [Simmonds 2015]. Some
studies have shown that these changes are within the
natural variability simulated by CMIP5 [Meehl et al
2016, Polvani and Smith 2013, Gagné et al 2015], and
the observed increase is now less robust in many
months following reductions in 2016 and 2017. We
provide a further discussion on trends in supplemen-
tary information but otherwise do not address them.

Sea-ice cover strongly affects surface energy
budgets through its high albedo and by restricting
heat and moisture exchange between the ocean and
atmosphere and simulations indicate an important
role for this region in future climate change. For
example, Armour et al [2013] found that strong
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amplifying feedbacks in the Southern Ocean over
centennial timescales contribute to an increase of
apparent climate sensitivity with time i.e. increased
global warming in response to a given forcing. If this is
accurate then calculations using current observational
records likely underestimate equilibrium climate
response, meaning that the carbon budget for any
given temperature target is smaller than inferred from
these calculations. Given that this is a modelled result
relying heavily on Southern Ocean changes, improved
simulation of the regional sea-ice and energy budget in
the present day is necessary to increase confidence.

Partial collapse of the West Antarctic ice-sheet is a
major climate risk [Joughin and Alley 2011, Joughin
et al 2014, Bamber et al 2009] but relevant thresholds
and timescales have not been precisely identified
despite extensive research on recent Antarctic mass
balance [Shepherd et al 2012, McMillan et al 2014,
Zwally et al 2015, Holland et al 2017]. Confounding
factors include extreme storms causing large short-
term mass increases [Boening et al 2012, Lenaerts et al
2016], and uncertainties in how long-term warming is
expected to increase snowfall as well as melt and
dynamical loss [Winkelmann et al 2012]. Changes in
modelled precipitation over Antarctica are linked to
sea-ice cover [Palerme et al 2016], so improved
representations of sea-ice conditions in models is
therefore important to help determine the credibility
of projections of Antarctic changes.

Antarctica’s relative isolation thanks to the
strength of the Antarctic Circumpolar Current
(ACC), its surrounding belt of westerlies and
upwelling cool water [Armour et al 2016] mean that
its forced response to climate change is weak relative to
internal variability. The Southern Hemisphere dom-
inates recent ocean heat storage [Stephens et al 2016]
but otherwise this delayed Southern-Hemisphere
response to forced changes makes it difficult to
observationally constrain factors important for future
climate change and sea-level rise. Holland et al [2017]
shows that models simulate a two-timescale response
to positive Southern Annular Mode (SAM) anomalies,
with an initial increase in ice followed by an eventual
sea-ice decline, further complicating the interpretation
of short-term sea-ice records.

Local radiation contributes to sea-ice changes, and
one challenge for GCMs is the correct radiative
representation of clouds. Cloud properties in fully
coupled GCMs often disagree with observations [Li
et al 2013, Lenaerts et al 2017]. Here we focus on
examining the radiative effects of considering precipi-
tating ice clouds (i.e. snow) as 26 out of 40 CMIP5
GCMs do not consider these effects [Li et al 2012,
Waliser et al 2009] (see supplementary table 1 available
at stacks.iop.org/ERL/12/084010/mmedia).

A number of physical processes have been shown
to contribute to differences in GCM representations of
energy budgets and sea-ice in the Southern Ocean,
including the abundance and brightness of clouds
2

[Trenberth and Fasullo 2010], the representation of
supercooled liquid droplets [Cesana et al 2012, McCoy
et al 2015, Kay et al 2016] and the importance of
regional topography and bathymetry [Nghiem et al
2016]. Here we quantify the contribution of precipi-
tating-ice radiative effects and show that it is another
important factor in modelled Antarctic sea-ice biases.

A series of studies has demonstrated the impor-
tance of precipitating-ice radiative effects for explain-
ing model biases in radiation fields that are well
correlated with biases in other simulated properties
such as near-surface temperatures [Li et al 2013, Li
et al 2014, Li et al 2015, Li et al 2016]. We use
specialized simulations where we turn on or off the
precipitating-ice radiative effects and compare these
with observation-based products. Here we begin by
summarizing the regional importance of precipitating-
ice radiative effects for reducing the model-observa-
tion discrepancy in cloud and radiation properties. We
then extend this analysis to the simulation of Antarctic
sea-ice and show that including these radiative effects
substantially reduces the discrepancy between simu-
lated and observed sea-ice area. Our inclusion of
snow radiative effects also reduces model-observation
discrepancy of Arctic sea-ice concentration, but differ-
ences in geography between the Arctic and Antarctic
complicate a joint analysis. Therefore, we restrict our
discussion here to Antarctic sea-ice.
2. Methods
2.1. Climate Model Simulations
As historical simulations end in 2005 and satellite sea-
ice series begin in the late 1970s, we select output from
1980–2005 and for each grid-cell take the mean of the
CMIP5 simulations for a given month and given
property. There is little difference in the average
properties between the CMIP3 and CMIP5 ensembles
so we only report CMIP5 results here (supplementary
figure 1). All CMIP5 models together are reported the
Multi-Model Mean (CMIP5 M MM, Taylor et al
2012), and we separately present the mean for those
models both with and without falling-snow radiative
effects (CMIP5-S and CMIP5 NoS respectively, see
supplementary table 1).

For our intervention ‘snow radiative effects on’ (S)
and ‘snow radiative effects off ’ (NoS) simulations we
use the Community Earth System Model version 1
(CESM1) managed by National Center for Atmo-
spheric Research (NCAR) and Department of Energy
(DOE) which is composed of four separate models
that simultaneously simulate Earth’s atmosphere,
ocean, land surface, and sea-ice. Model code and
documentation are available from www.cesm.ucar.
edu/models/cesm1.0/. The atmospheric model is the
Community Atmosphere Model version 5 (CAM5),
and snow in this model represents large ice crystals
diagnosed from the falling ice mass flux at each model
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level and time step [Morrison and Gettelman 2008,
Neale et al 2012]. The model uses two-moment,
stratiform cloud microphysics scheme described by
Morrison and Gettelman (2008) which accounts for
diagnosed snow mass. Snow is included in the
radiation code [Gettelman et al 2010], using the
diagnosed mass and effective radius of falling snow
crystals [Morrison and Gettelman 2008]. The simu-
lated prognostic ice and diagnostic snow are
comparable against CloudSat-CALIPSO retrieved
products [Gettelman et al 2010]. More detailed
descriptions and related references are in supplemen-
tary information section 2.

We conduct sensitivity experiments using a fully
coupled setup with two simulations over 1850–2005:
one excludes the precipitating ice radiative effect
(NoS); and the other includes the effect (S). Each
simulation otherwise follows the CMIP5 historical
protocol, including initialization from the same
CESM1 C AM5 CMIP5 300 year preindustrial control
(piControl) run.

The global area-weighted mean of the net radiative
flux at top of atmosphere (TOA) over the full
simulation is �0.17 W m�2 and 0.12 W m�2 for the
NoS and S cases, respectively. The reflected SW TOA
flux is �1.6 Wm�2 for NoS and 0.6 Wm�2 for S and
the outgoing LW at TOA is 0.6 W m�2 for NoS and
�1.9 W m�2 for S.

Changes in model-observation discrepancy be-
tween the S and NoS cases are determined from:

Dx ¼ jxNoS � xobsj � jxS � xobsj ð1Þ

where x is some property, the subscriptNoS represents
the value from the NoS simulation, S is from the snow
simulation and obs denotes the observation-based
value. We use this metric in figures 5(c) and (f), and it
is defined such that a positive value represents a
decrease in the magnitude of the model-observation
discrepancy when snow-radiative effects are included.
2.2. Comparison with observation-based cloud- and
radiation properties
We begin by highlighting the importance of including
falling snow to cloud properties by considering biases
over Antarctica and the Southern Oceans in the
CMIP5 NoS ensemble average. We first compare
modelled cloud properties with those determined over
2007–2010 from CloudSat-CALIPSO measurements.
CloudSat and CALIPSO are satellites in the After-
noon-Train (A-train) constellation that fly along the
same reference ground track on a Sun-synchronous
orbit with an ascending (northward) local equatorial
crossing time near 13:36. CALIPSO and CloudSat are
separated by less than a minute, allowing reliable
collocation between the CALIPSO-mounted CALIOP
LIDAR and the CloudSat-mounted Cloud-Profiling
Radar. We use the CALIPSO-CloudSat 2 C-ICE
product [Deng et al 2010, 2013] over the region
3

40–82 °S where the poleward edge is limited by the
satellites’ orbit. Cloud ice water path (CIWP) is
identified using the FLAG method [Li et al 2012]
which separates cloud-only (floating or suspended
cloud ice) and precipitating þ convective clouds, and
we use both in our comparison. Because of negligible
sampling biases of cloud water, cloud formation etc [Li
et al 2012, Guan et al 2013], the uncertainties related to
the diurnal cycle and sampling issues are not
specifically considered in the model-observation
comparisons in this study.

For an observation-based estimate of surface
radiation we use the satellite-based Clouds and the
Earth’s Radiant Energy System-Energy Balanced and
Filled (CERES-EBAF) Surface products over 2000–
2010, which are widely used and have been validated
with surface measurements, with a monthly-grid-
mean uncertainty of ± 10 W m−2 for shortwave and
±14 Wm�2 for longwave [Kato et al 2011, Kato et al
2012, 2013]. We select the same 40–82 °S region and
use each of the radiative energy-budget components:
longwave up and down plus shortwave up and down.

2.3. Comparison with observation-based sea-ice
concentration
We take gridded monthly-averaged sea-ice concen-
tration data from the National Snow and Ice Data
Center (NSIDC) over 1980–2005 derived from the
NASA Team Algorithm [Cavalieri et al 2012, 1999].
These are based on measurements from passive
microwave sensors beginning with the Scanning
Multichannel Microwave Radiometer (SMMR)
aboard the Nimbus-7 satellite and proceeding with
the Special Sensor Microwave/Imager (SSMI) instru-
ments aboard the Defense Meteorological Satellite
Program (DMSP) F8, F11, F13, and F17 platforms.
The data’s native resolution of 25 km is remapped
onto a 1°�1° latitude-longitude grid and we use data
from 50–70°S, excluding areas closer to Antarctica to
avoid discrepancies in mapping of the Antarctic coast
and its ice shelves. 82% of the magnitude of the
annual cycle of sea-ice area is captured within this
area, so our results apply to the majority of the sea-ice
area.
3. Results
3.1. CMIP5 Biases in cloud- and radiation properties
Figure 1 shows that the CMIP5 NoS models have little
bias in a like-with-like comparison with CloudSat-
CALIPSO Cloud Ice-Water Path (CIWP; cloud ice
only) in both Austral winter (figure 1(a): June-July-
August, JJA) and Austral summer (figure 1(e):
December-January-February, DJF). However, the
CMIP5 NoS substantially underestimates total IWP
(TIWP) over and near Antarctica once precipitating
clouds are included (figure 1(b): JJA; figure 1(f): DJF).
This contributes to a multi-model mean (MMM) bias
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in total ice water path of −90.7 g m−2 with relative bias
of �72% averaged over the region 40–82°S, relative to
the CloudSat-CALIPSO 2 C-ICE product [Deng et al
2010, 2013]. The spatial patterns and magnitudes of
TIWP biases between CMIP3 and CMIP5 are similar
with an absolute bias larger than 110 g m�2 over the
Southern Ocean, implying a zeroth-order deficiency
embedded in both NoS CMIP3 and NoS CMIP5
GCMs (see supplementary figure 1). Figure 1 also
shows cloud and net surface radiation biases between
CMIP5 NoS and CERES-EBAF (figure 1(c): JJA; figure
1(g): DJF) and sea-ice concentration biases (figure 1
(d): JJA; figure 1(h): DJF) between CMIP5 NoS and
NSIDC.

Given the correlation between patterns of bias in
TIWP, surface fluxes and sea-ice concentration, we
propose a causal link as follows: models without
falling-snow radiative effects underestimate TIWP,
reducing surface downward longwave and increasing
surface downward shortwave fluxes, which drive
changes in sea-ice concentration (see supplementary
figures 2 and 3 for the radiation budget split into its
components). We support our hypothesis using
specialized simulations to isolate and quantify the
contribution of falling-snow radiative effects. These
specialized simulations are necessary as the compari-
son in figure 1 includes all potential biases in simulated
physical processes between CMIP5 NoS and the real-
world state.

3.2. Falling-snow radiative effects and the annual
cycle of modelled energy budgets and sea-ice
concentration
For our quantification of the precipitating-ice radiative
effects, we present results from our CESM1 simu-
lations both with (S) and without (NoS) the radiative
effects of falling snow. Figure 2 shows the model minus
observed monthly values of surface radiation budget
4

components and sea-ice concentration, presented for
two different latitude bands. This illustrates that the S
simulation is consistently closer than the NoS
simulation to the observed energy-budget compo-
nents (figures 2(a), (b), (d) and (e) and sea-ice
concentration (figures 2(c) and (f), CMIP5 M MM
also shown). The largest remaining bias in the S
simulations is in shortwave fluxes during austral
summer, which may be related to other cloud-
simulation biases such as underestimated supercooled
liquid fraction in mixed-phase clouds [Tan et al 2016,
Kay et al 2016] and large-scale atmospheric conditions
[Simmonds 2015, Holland et al 2017]. Snow radiative
effects reduce the size of the JJA longwave bias from
58–70°S relative to CERES-EBAF, from �30 W m�2

down to �10 W m�2 (figure 2(d), and the DJF
shortwave bias over the same region from approxi-
matelyþ55Wm−2 toþ35Wm−2. We do not present a
formal uncertainty estimate in these fluxes as there is a
lack of CERES validation over this region. However,
the reported monthly zonal mean uncertainty over
oceans for the CERES data are ±10 W m�2 in
downward LW and SW [Kato et al 2012]. Our
averaging over 10 year s would favor a smaller error,
but the large uncertainties associated with surface
albedo would favor a larger value. Taking the reported
±10 W m�2 as an approximation of the error, the
radiative effects of falling snow are similar in size to the
observational error, and the NoS simulations are
indeed in disagreement with the CERES-EBAF data
over much of the year. Of the changes we see,
improved model representation of downwelling long-
wave radiation restricts winter sea-ice growth leading
to a decrease of 2.11� 106 km2 in the September peak
sea-ice area, whose lower level is maintained by
increased shortwave absorption during the summer.
This substantially reduces the bias relative to
observations.
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Figure 3 shows a spatial anti-correlation in the NoS
minus S (NoS-S) change in JJA. When snow radiative
effects are excluded, the underestimated IWP results in
increased net surface shortwave flux (RSDS-RSUS:
figures 3(a), (b)) and decreased surface downward
longwave flux (RLDS: figure 3(c)). Longwave dom-
inates in austral winter, meaning smaller net radiation
(figure 3(e)), cooler surface temperature (see supple-
mentary figures 4 and 5) and increased sea-ice
concentration (figure 3(f)).

Figure 4 shows that during austral summer the
situation is more complex. In some regions, such as off
the coast of Dronning-Maud land, there is a net
decrease in downward radiation (figure 4(e)) along
with a net decrease in sea-ice concentration (figure 4
(f)). This is counterintuitive, but can be understood
from the seasonal cycles in figure 2. In these regions,
the increased winter longwave heating restricts sea-ice
growth and leads to a reduced surface albedo.
Although less sunlight reaches the surface due to
atmospheric reflection by falling snow, the surface is
darker due to reduced winter sea-ice growth caused by
increased wintertime longwave heating. This increases
absorption by enough to offset the reduction in
downward shortwave radiation at the surface, helping
to prevent summertime sea-ice growth in these
regions.

We consider these effects in more detail and
determine their robustness in figure 5, which maps
changes in the bias in sea-ice concentration during JJA
and DJF for the S and NoS simulations and the relative
difference in bias from equation (1). In this case,
positive means a reduction in bias magnitude. The
5

inclusion of snow radiative effects leads to a
widespread decrease in sea-ice concentration that
brings the simulated sea-ice case closer to observations
in most regions, with the exception of a band centered
near 45°E in JJA.

From 50–70 °S the NoS simulations of sea-ice area
have a relative bias of 3.01� 106 km2 inDJF and 3.88�
106 km2 in JJA, which is reduced in the S simulations to
1.84� 106km2 (by 39%) inDJF and1.75� 106 km2 (by
55%) in JJA. The greatest absolute change is in March-
April-May (MAM)where the discrepancy is reducedby
65%. September-October-November (SON) shows a
reduction of 54%. Using t-tests applied to the monthly
simulated time series, the differences are statistically
robust with, for example, sea-ice concentration
changes significant at p < 0.01 over much of the
Southern Ocean (supplementary figures 6 and 7). The
surface radiation budget and surface or near-surface
temperature biases are also reduced in most regions
(supplementary figures 8 and 9).

Figure 6 shows mean SIC seasonal cycles from a
range of sources. Figures 6 (a), (d) and (g) show the
40 m ember full CMIP5 ensemble along with the
multi-model mean (MMM) and standard deviation.
Figures 6(b), (e) and (h) show where the observations
and CESM-1 S and NoS simulations fall within the
CMIP5 distribution. Figures 6(c), (f) and (i) show
the CMIP5 MMM versus observations along with the
mean for CMIP5 NoS models (N= 14) and CMIP5-S
models (N= 26). The CMIP5 mean annual cycle is
similar to observations, with slight underestimates
in maximum extent, as reported elsewhere [Zunz et al
2013, Lenaerts et al 2016, Boucher et al 2013,
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IPCC 2013]. Consistent with our CESM1 results, the
CMIP5-S models show less sea-ice than the CMIP5
NoS models. The CMIP5-S underestimate of sea-ice
extent indicates that other aspects of the model design
likely overcompensate for the inclusion of snow
radiative effects.
4. Discussion and conclusions

We have investigated CMIP5 biases relative to
observations over the Antarctic sea-ice region and
6

attributed some of these biases to the exclusion of
falling-ice radiative effects in most models. We showed
that for the 26 out of 40 CMIP5 models that do not
simulate precipitating ice radiative effects, the multi-
model mean cloud ice water path agrees well with the
non-precipitating cloud ice water path identified from
CloudSat-CALIPSO observations. However, there is a
substantial bias in total cloud ice-water path due to the
exclusion of model falling-snow radiative effects. Total
ice-water path is underestimated by about 100 g m�2

over much of the Southern Ocean, contributing to an
underestimate in downward longwave radiation and
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an overestimate in downward shortwave radiation at
the surface.

Through controlled simulations using the CESM1
in which we activated or deactivated the snow radiative
effects, we demonstrated that this radiation reduces
the model-observed discrepancy in sea-ice area at 50–
70°S by 39–66%, depending on the season. The
geographical pattern of SIC and radiation fields
changes largely matches the CMIP5-S multi-model
mean bias. From inspection of the annual cycle, it
appears that the improvements in representation of
sea-ice are driven by an increase in downward
longwave radiation due to increased ice-water path
with inclusion of precipitating ice during winter (JJA).
This restricts the growth of sea ice, leading to a lower
7

mean sea-ice area of 2.11� 106 km2 in 1980–2005
during September, the month of peak sea-ice cover.
During austral summer, increased reflection by cloud
ice reduces the shortwave radiation arriving at the
surface, in some regions by an amount greater than the
increased downwelling longwave due to this ice.
However, this does not increase sea-ice concentration
because during the previous winter, cloud-ice radiative
effects restricted sea-ice growth and reduced surface
albedo. This memory effect from the previous winter
more than offsets the reduced amount of sunlight
reaching the surface during summer.

Falling-snow radiative effects are therefore impor-
tant for simulating radiative balance and sea-ice
concentration over the Southern Ocean and this has
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not been previously quantified. Studies have shown
that multiple factors contribute to model Southern-
Ocean sea-ice biases, and we only argue that the
evidence shows that radiative effects of falling snow are
an additional candidate, but one with substantial
effects on simulated energy budgets and sea ice. Such a
physics-based improvement, if applied across models,
would increase confidence in projections of regional
changes affecting climate feedbacks. In addition, better
representation of sea-ice should improve water flux
and therefore simulated Antarctic bottom water
(AABW) and Southern Ocean temperature profiles,
which are currently poorly simulated (e.g. Rhein et al
2013, IPCC AR5 report). We do not argue that
precipitating-ice radiative effects are the only domi-
nant factor in model biases related to sea ice. However,
given the reduction in model-observation discrepancy
of 39–66% when including falling-snow radiative
effects, we conclude that the exclusion of precipitating
snow particles is a critical shortcoming of 26 of the 40
8

state-of-the-art GCMs used to project the future state
of Antarctic sea ice. Given that falling-snow radiative
effects are already included in some models, this is an
opportunity to address an easily understood, physi-
cally based deficiency that may introduce notable
biases in climate simulations. Including falling-snow
radiative effects is an obvious opportunity for
improvement across the majority of climate models
used in the widely referenced reports of the
Intergovernmental Panel on Climate Change (IPCC).
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the NASA Making Earth System Data Records for Use
in Research Environments (MEaSUREs) programs.

The most up-to-date Radiative Longwave Down-
ward flux at Surface (RLDS) and Radiative Shortwave
Downward flux at Surface (RSDS) are available from
EBAF-Surface and ISCCP derived products. This
surface flux radiation product is constrained by TOA
CERES-derived flux with Energy Balanced and Filled
(EBAF) adjustments [39–41]. The data used in this
study is the monthly mean product, collected from
January 2000 to December 2010. The CERES data can
be found at http://ceres.larc.nasa.gov/order_data.php.

The land surface temperature is monthly compos-
ite and average of the MODIS Level-3 LST product
(MOD11C3) at 0.05 degree grid resolution (2002 to
2012). Further details regarding the MODIS land
product validation for the LST/E products is available
from the following URL: http://landval.gsfc.nasa.gov/
ProductStatus.php?ProductID=MOD11. The surface
air temperature climatology used in this study is based
on the period of 1961–1990 from HADCRUT2V data.
The data can be accessed at www.esrl.noaa.gov/psd/
data/gridded/data.hadcru3.html. The monthly mean
UDel land-only SAT data span from 1900 to 2010 can
be accessed at http://climate.geog.udel.edu/∼climate/
html_pages/download.html and references can be
found at the http://climate.geog.udel.edu/∼climate/.

For sea-ice observations, we utilize sea-ice
concentration from the National Snow and Ice Data
Center (NSIDC), where it provides the longest sea-ice
9

record [Cavalieri et al 2012]. Here, we use the monthly
mean sea-ice concentration data from 1978 to 2014
derived from NASA Team algorithm. The monthly
mean sea-ice concentration data is available at 25 km
Polar Stereographic Projections in both north and
south polar regions (https://nsidc.org/data/seaice/
data_summaries.html). These data are then re-gridded
to global 1° longitude by 1° latitude.

The filtered cloud ice, ice water path and cloud
fraction data span from 2007 to 2010 are available by
email request (jli@jpl.nasa.gov).
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