A model for stretch-bend interactions in molecular force fields

Full text not archived in this repository.

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Mills, I. (1963) A model for stretch-bend interactions in molecular force fields. Spectrochimica Acta, 19 (9). pp. 1585-1594. ISSN 0371-1951 doi: 10.1016/0371-1951(63)80017-X

Abstract/Summary

Interaction force constants between bond-stretching and angle-bending co-ordinates in polyatomic molecules have been attributed, by some authors, to changes of hybridization due to orbital-following of the bending co-ordinate, and consequent changes of bond length due to the change of hybridization. A method is described for using this model quantitatively to reduce the number of independent force constants in the potential function of a polyatomic molecule, by relating stretch-bend interaction constants to the corresponding diagonal stretching constants. It is proposed to call this model the Hybrid Orbital Force Field. The model is applied to the tetrahedral four co-ordinated carbon atom (as in methane) and to the trigonal planar three coordinated carbon atom (as in formaldehyde).

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/7334
Identification Number/DOI 10.1016/0371-1951(63)80017-X
Refereed Yes
Divisions Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry
Publisher Elsevier
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar