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Abstract

Land surface carbon uptake and its many components (e.g. its response to disturbance from fire,

felling and insect outbreak) constitute the most uncertain processes in the global carbon cycle. This

uncertainty arises from significant gaps in current direct observations and poor parameterisations

or missing processes in current modelled predictions. Data assimilation provides a methodology

for combining observations with modelled predictions to find the best estimate of the state and

parameter variables for a given system. In this thesis we implement four-dimensional variational

data assimilation to combine a simple model of forest carbon balance with observations from the

Alice Holt forest in Hampshire, UK.

The first aim of the thesis is concerned with understanding the information content in ob-

servations for data assimilation. It is important to understand which observations add most in-

formation to data assimilation schemes in order to better constrain future model predictions. We

show that the information content in carbon balance observations can vary with time and different

representations of error.

We next seek to improve the characterisation of uncertainties for prior model estimates and

observations. We propose including correlations between errors within ecosystem carbon balance

data assimilation schemes. We find including correlations allows us to retrieve a more physically

realistic set of parameter and initial state values for our model, leading to a 44% reduction in error

for our 14-year model forecast of forest carbon uptake.

Finally, we use the data assimilation techniques developed, with additional observations of

leaf area index and woody biomass, to investigate the effect on forest carbon dynamics of selective

felling at Alice Holt. We show selective felling had no significant effect on forest carbon uptake.

Our most confident estimate suggests this is possible due to reductions in ecosystem respiration

counteracting a predicted 337 g C m−2 reduction in gross primary productivity after felling.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 The global carbon cycle

Carbon is one of the most abundant elements, making up around half of all living dry mass on

Earth. The global carbon cycle describes the movement of carbon through the Earth system. In

the Earth system large amounts of carbon are present in the oceans, atmosphere, land surface

and crust. These stores of carbon are referred to as reservoirs or pools. The amount of carbon

in this system can be considered constant, given that nuclear transmutation is not common under

terrestrial conditions. Therefore terrestrial processes involving carbon can only transfer it between

the global carbon pools. This is referred to as a flux. In pre-industrial times, fluxes of carbon

between different pools have only varied over long time scales (∼100000 years) (Lüthi et al., 2008).

The greenhouse effect describes the process by which gases (CO2, water vapour, ozone, etc.)

in the Earth’s atmosphere contribute to the warming of the planet by absorbing long-wave ra-

diation emitted from the Earth’s surface and reradiating this absorbed energy in all directions,

causing more warming below (Mitchell, 1989). The natural greenhouse gas effect raises the global

mean surface temperature by 30K, making the Earth habitable for its many lifeforms. The increase

in atmospheric greenhouse gases due to anthropogenic activities since the industrial revolution,

has amplified the greenhouse effect and resulted in increased global warming. CO2 has been

found to be the most important human-contributed compound to this warming (Falkowski et al.,

2000). In figure 1.1 we show a simplified schematic of the global carbon cycle taken from the fifth
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Intergovernmental Panel on Climate Change (IPCC) report. In this schematic we can see the large

rise in atmospheric CO2 since the industrial revolution up to 2011, with an increase of 240 Pg C.

Figure 1.1: Global carbon cycle simplified schematic (Ciais et al., 2014). Black numbers and arrows
represent reservoir mass and exchange fluxes estimated for the time prior to the industrial era
(∼ 1750). Red numbers and arrows represent annual fluxes averaged over the 2000-2009 time
period. Red numbers in the reservoirs indicate the cumulative change of carbon over the industrial
period (1750-2011).

As atmospheric CO2 levels have risen, natural sinks of CO2 (fluxes out of the atmosphere)

have intensified with both the land surface and oceans absorbing more CO2 from the atmosphere

than in pre-industrial times. This can be seen in figure 1.1, with the net ocean flux of CO2 to the

atmosphere decreasing from an estimated +0.7 Pg C yr−1 to -2.3 Pg C yr−1, and the land surface

flux of CO2 to the atmosphere decreasing from -1.7 Pg C yr−1 to -2.6 Pg C yr−1. More recent

estimates from Le Quéré et al. (2015) indicate these sinks have further intensified with the ocean

sink estimated to be 2.9 ±0.5 Pg C yr−1 and the land surface sink 4.1 ±0.9 Pg C yr−1 for the year

2014. The intensification of the land carbon sink is thought to be partly due to a combination

of forest regrowth as well as rising CO2 and increased nitrogen deposition having a fertilisation
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effect (Ciais et al., 2014). It has also been shown that the land surface sink has been enhanced

by an increase in diffuse photosynthetically active radiation as a result of increased cloud cover

associated with increased anthropogenic emissions (Mercado et al., 2009).

The partitioning of global carbon fluxes between emissions and sinks is important to better

model the carbon cycle. However, current estimates are subject to high levels of uncertainty, which

are reflected by the errors shown in Figure 1.1. Current best estimates of global CO2 emissions and

their partitioning between atmospheric growth rate and sinks are shown in Figure 1.2. It is vitally

important to understand the future response of sinks of CO2 (land surface and oceans) to climate

change. If either the oceans or land surface were to stop absorbing the same percentage of CO2,

we would see even more dramatic increases in atmospheric CO2 levels and thus a much greater

rate of global warming. There is a high level of confidence that ocean carbon uptake will continue

under all future emission scenarios (Ciais et al., 2014). There is much less confidence for the land

surface and Booth et al. (2012) have shown that global warming is particularly sensitive to land

surface carbon cycle processes, highlighting the need to improve understanding of land surface

carbon uptake. Some estimates show the land surface changing from a sink of CO2 to a source

of CO2 under certain future emission scenarios (Sitch et al., 2008; Cox et al., 2000; Scholze et al.,

2006). In the latest IPCC report land surface carbon uptake is still considered the least understood

process in the global carbon cycle (Ciais et al., 2014).

Currently land surface carbon uptake is estimated by taking the residual of all other calculated

sources and sinks of carbon, so that

SLAND = EFF +ELUC− (GAT M +SOCEAN) (1.1)

where SLAND is the global residual land sink of CO2, EFF is the CO2 emissions from fossil fuels,

ELUC is the CO2 emissions from land use change (mainly deforestation), GAT M is the atmospheric

CO2 growth rate and SOCEAN is the mean ocean CO2 sink (Le Quéré et al., 2015). Figure 1.2 shows

the growth in the estimated residual land sink as emissions increase. Before 1959 the atmospheric

growth rate in Figure 1.2 is estimated from a spline fit to ice core observations and therefore dis-

plays much less variability. After 1959 the atmospheric growth rate is estimated from a synthesis

of direct measurements and thus captures the large interannual variability in atmospheric CO2.

The high variability shown in the residual land sink is partly due to the fact that it contains the

residual errors of the four other terms. However, the land sink also displays variability due to its
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Figure 1.2: Annual anthropogenic CO2 emissions and their partitioning among the atmosphere,
land and ocean from 1750 to 2011 (Ciais et al., 2014).

sensitivity to year to year variations in precipitation, surface temperature, radiation and volcanic

eruptions. Figure 1.2 shows that in 1986 and 1997 the land sink drops to zero, both of these years

were among the strongest El Niño’s in recent history. In 1997 tropical droughts, often associated

with El Niño, were particularly severe leading to wildfires that released vast amounts of stored

carbon from the land surface (Schimel, 2013). We can also see from Figure 1.2 that in the early

1990’s the residual land sink is of greatest magnitude. This corresponds to the time of the Mount

Pinatubo eruption in 1991, which loaded the stratosphere with increased aerosol, cooling the sur-

face. It has been suggested that this cooling reduced land surface respiration and also that the

increase in diffuse radiation led to heightened photosynthesis (Mercado et al., 2009), allowing the

residual land sink to be of greater magnitude.

Terrestrial ecosystems are made up of autotrophs (organisms capable of photosynthesis) and
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heterotrophs (organisms that feed on organic carbon). The Gross Primary Productivity (GPP) of

an ecosystem is the total amount of carbon removed from the atmosphere by photosynthesis. The

Total Ecosystem Respiration (TER) is made up of autotrophic respiration (e.g. from plants) and

heterotrophic respiration (e.g. from soil and litter organisms). The total carbon uptake or Net

Ecosystem Exchange (NEE) of CO2 is then equal to -GPP+TER. A representation of these fluxes

for a forest ecosystem is shown in Figure 1.3.

GPP RhRa

Figure 1.3: Fluxes of carbon through a forest ecosystem. Gross Primary Productivity (GPP) rep-
resents total photosynthesis, Ra is autotrophic respiration from foliage, wood and roots, Rh is
heterotrophic respiration from soil and litter. Total ecosystem respiration of carbon to the atmo-
sphere (TER) is equal to Ra + Rh. The Net Ecosystem Exchange (NEE) of CO2 is equal to -GPP +
TER.

Disturbance of terrestrial ecosystems from fire, felling and insect outbreak can have significant

impacts on carbon dynamics. Severe forest fires release carbon stored as plant biomass to the

atmosphere, turning ecosystems from sinks to sources of CO2, this can also be true when a forest is

clear felled. Other forms of disturbance can effect only a percentage of trees (e.g. selective felling

and insect outbreak), in these situations it has been shown that forest carbon uptake might not

change significantly (Wilkinson et al., 2016; Moore et al., 2013). This is possibly due to reductions

in GPP being mitigated by concurrent reductions in TER for less severe forms of disturbance, we

investigate post-disturbance carbon fluxes in chapter 6. Land use change is the second largest

anthropogenic source of CO2. However, it is not well understood how much CO2 is removed

from the atmosphere by regrowth of previously disturbed ecosystems (either by felling or fire),

although it is thought that regrowth of forests in particular could be stronger carbon sinks than
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their predecessors, due to more rapid biomass accumulation under succession (Pan et al., 2011).

Better understanding the response of the land surface to disturbance will help constrain future

carbon budgets.

1.1.2 Observations of terrestrial carbon balance

There are an increasing number of available observations relevant to understanding the carbon

balance of forests and the terrestrial biosphere. These observations include a range of variables,

perhaps two of the most common are the Net Ecosystem Exchange (NEE) of CO2 and Leaf Area

Index (LAI), which is the area of leaves per unit area ground. These variables can be directly

measured at site level and can also be estimated from satellite remote sensing. Both NEE and LAI

are important variables for understanding the carbon balance of ecosystems, with NEE giving us

a direct estimate of the carbon uptake of an ecosystem and LAI being a main driver for the amount

of GPP an ecosystem can perform.

At site level, flux towers measuring ecosystem-atmosphere fluxes of CO2, water and energy

using the micrometeorological technique of eddy covariance provide one of the most valuable

sources of information. Direct observations of ecosystem CO2 uptake are made at a fine temporal

resolution, with observations every half-hour. A global flux network (FLUXNET), was established

in 1997 (Baldocchi et al., 2001), to consolidate the information from a growing number of flux

tower sites. Currently there are 517 active FLUXNET sites which are shown in Figure 1.4, as

can be seen these sites are not uniformly distributed so it is not possible to use FLUXNET sites

alone to produce global estimates of terrestrial CO2 balance. However, these sites do provide

an invaluable resource for model and satellite calibration. In turn this can be used to produce

estimates on a global scale. At many flux tower sites and forest stands other diverse observations

relevant to terrestrial carbon budgets are also being made. These include observations of soil

and litter respiration, woody biomass and LAI. However, because they are labour intensive these

observations are made much less frequently.

The Moderate Resolution Imaging Spectroradiometer (MODIS) on the TERRA and AQUA

satellites produces global estimates of LAI and Gross Primary Productivity (GPP) for terrestrial

ecosystems (Running et al., 2004). However, MODIS actually measures reflected sunlight, this is

then converted to vegetation indices, such as the Normalised Difference Vegetation Index (NDVI).

These indices are correlated with the fraction of absorbed visible sunlight to estimate LAI or used
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Figure 1.4: FLUXNET sites and land cover (MODIS IGBP classification) (Oak Ridge National Lab-
oratory Distributed Active Archive Center ORNL DAAC, 2013).

in simple algorithms to estimate GPP (Yuan et al., 2007). It is therefore important to understand

the limitations when interpreting satellite products as they do not represent direct observations.

For LAI it has been shown that remotely sensed estimates saturate when measuring ecosystems

with a LAI above 3 (Myneni et al., 2002). Terrestrial fluxes of carbon estimated from satellite

measurements are subject to large errors in representativity, as satellites view a scene almost in-

stantaneously and then derive daily mean fluxes (Baldocchi, 2008).

1.1.3 The role of models

Observations can only tell us about the current and past state of a system. In order to produce

future predictions and better understand current terrestrial carbon dynamics we must use mathe-

matical models. Figure 1.5 show a comparison of the residual land sink (described in section 1.1.1)

with the global terrestrial CO2 sink estimated from different process based global carbon cycle

models. We see that although there is a high variability between modelled estimates there is good

agreement between the multi-model mean and the residual land sink.

Representative Concentration Pathways (RCPs) of CO2 concentrations and emissions have

been developed (Moss et al., 2010) to drive climate models to produce future predictions. Un-
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Figure 1.5: Comparison of the residual land sink (black line) with the global terrestrial CO2 sink es-
timated from different process based global carbon cycle models (Ciais et al., 2014). Grey shading
represents uncertainty in residual land sink.

der these pathways land surface carbon uptake is highly uncertain with little agreement between

different process based models. Some predict the land surface to become a source of CO2 and

others predict a further intensification of the residual land sink (Jones et al., 2013). This large

uncertainty for land surface models is partly due to poor model parameterisations and missing

processes within models. One of the main processes many current global models do not account

for is the effect of disturbance on terrestrial ecosystem carbon dynamics.

It has been shown that many terrestrial carbon cycle models simulating the seasonal cycle

of land-atmosphere CO2 exchange perform poorly when compared to FLUXNET sites in North

America (Schwalm et al., 2010). Here a difference between observations and model predictions

of 10 times the observational uncertainty was found, highlighting the need for continued model

development. In order to improve global models of terrestrial carbon balance it is important to

use site-level-research to hone the processes and parameterisations of the models where we have

diverse sets of direct observations with which to judge modified-model performance.
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1.1.4 Data assimilation

As discussed above, the level of uncertainty in terrestrial carbon balance predictions arise from

significant gaps in the direct observations available and from a lack of clarity and authoritative

parameterisation of the constituent processes in current models. The technique of data assim-

ilation provides a method for combining and comparing the output of predictive models with

incomplete observations to find the best estimate for the state and parameters of a system. Data

assimilation has had many successful applications. Perhaps the most important application has

been in numerical weather prediction where data assimilation has contributed to forecast accu-

racy being increased at longer lead times, with the result that the four day forecast in 2014 now

has the same level of accuracy as the one day forecast in 1979 (Bauer et al., 2015). Obviously, this

improved forecasting is not solely due to data assimilation but also increased quality and resolu-

tion of observations along with improvements in model structure, however the introduction and

evolution of data assimilation has been a key part of the improvement (Dee et al., 2011).

More recently data assimilation has been used to improve our knowledge of ecological sys-

tems. For the carbon balance of forests it has been used to combine many different observations

with functional ecology models (Zobitz et al., 2011; Fox et al., 2009; Richardson et al., 2010; Quaife

et al., 2008; Zobitz et al., 2014; Niu et al., 2014). Global land surface models have also been im-

plemented with data assimilation, mainly using data from satellite and atmospheric CO2 obser-

vations (Kaminski et al., 2013; Scholze et al., 2007). In a few cases site level data has also been

assimilated (Verbeeck et al., 2011; Bacour et al., 2015). In comparison with numerical weather pre-

diction, the use of data assimilation in these areas is relatively new and underdeveloped. The fur-

ther application of data assimilation to models of ecosystem carbon balance will help to improve

model parameterisations and future predictions. The development of improved data assimilation

techniques will also help to identify missing model processes and changes in model parameters

and behaviour over time. In particular, understanding the change in model parameters over time

will be of use in improving model predictions of the effect of disturbance in terrestrial ecosystems.

1.2 Thesis aims

The primary aim of this thesis is the development of data assimilation techniques for the terrestrial

carbon cycle. We focus on implementing novel data assimilation techniques with a simple model
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of ecosystem carbon balance in order to address three key areas:

1. Investigating the information content in distinct carbon balance observations

It is important to understand which observations provide most information to data assimila-

tion schemes. This will allow model processes subject to large errors to be better constrained.

We investigate the relative levels of information in ecosystem carbon observations through

novel applications of information content metrics.

2. Improving the representation of prior and observational errors in carbon cycle data assimilation

Currently the specification of both prior and observational errors for the carbon cycle have

been simplistic. We seek to improve this representation by investigating the role of cor-

relations between errors for both prior estimates and observations. We judge the effect of

including these error correlations on model forecasts.

3. Using data assimilation to understand the effect of disturbance on forest carbon dynamics

The effect of disturbance (e.g. fire, felling, insect outbreak) on ecosystem carbon dynamics is

one of the least understood components of the global carbon cycle. We investigate the effect

of selective felling on forest carbon uptake using novel data assimilation techniques.

1.3 Thesis outline

From this point onwards the thesis is structured as follows:

• Chapter 2 introduces the concept of data assimilation and relevant methods. In particular,

applications of data assimilation to the terrestrial carbon cycle are discussed. Some of the

current issues faced and areas for future development are highlighted.

• Chapter 3 provides an explanation of the Data Assimilation Linked Ecosystem Carbon mod-

els (DALEC1 and DALEC2) used throughout the thesis. The fieldwork campaign conducted

during this PhD project is outlined. The use and processing of flux tower data from the Alice

Holt research site (Hampshire, UK) is discussed.

• Chapter 4 explores the first aim of the thesis. The DALEC1 and DALEC2 model are used

in a set of information content experiments in order to better understand the relative levels
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of information from different observations. The way in which information content might

vary in time and with different characterisations of errors is investigated. Our new results

show that there is a strong temporal variation for the information content in observations of

NEE and that including a correlation in time between NEE observation errors decreases the

information content in the assimilated observations.

• Chapter 5 introduces a fully tested data assimilation scheme with the DALEC2 model and

uses this to address the second aim of the thesis. The role of prior and observation error

correlations are investigated in a set of data assimilation experiments to understand their

contribution to improving a model forecast of forest carbon uptake. We find that including

novel error correlation structures reduces the error in the 14 year model forecast by 44%. The

work in this chapter also appears in Pinnington et al. (2016) .

• Chapter 6 uses the techniques developed in chapter 5 along with supplementary observa-

tions from the fieldwork campaign outlined in chapter 3 to address the third aim of the the-

sis. Our most confident model estimate (when all available data is assimilated) show that a

selective felling event at the Alice Holt forest had no significant effect on the total ecosystem

carbon uptake. The work in this chapter is under review in JGR: Biogeosciences (Pinnington

et al., 2017).

• Chapter 7 summarises the results of the thesis and discusses opportunities for future work.
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Chapter 2

Data assimilation for the carbon cycle

2.1 Data assimilation methods

Data assimilation provides techniques for combining observations and prior knowledge of a sys-

tem in an optimal way to find an improved estimate of the system. The prior knowledge of a sys-

tem often takes the form of a numerical model and an initial guess of the model state/parameters.

Many statistical methods have been developed for data assimilation. These methods can largely

be categorised as either sequential or variational. Sequential algorithms solve the system of equa-

tions needed to find an optimal solution explicitly at each observation time. Variational methods

solve the equations needed for an optimal solution implicitly by minimising a cost function for all

available observations over some time window. This thesis is mainly concerned with the varia-

tional technique of four-dimensional variational data assimilation (4D-Var).

In numerical weather prediction data assimilation has been predominately used for state es-

timation whilst keeping parameters fixed. This is because numerical weather prediction is mainly

dependent on the initial state with model physics being well understood. Ecosystem carbon cycle

models are more dependent on finding the correct set of parameters to describe the ecosystem

of interest (Luo et al., 2015). We therefore discuss data assimilation for joint state and parameter

estimation. In the next sections (2.1.1 to 2.1.3) we give a general introduction to data assimilation,

then expand this to 4D-Var and finally we briefly discuss other data assimilation methods not

directly used in this thesis but applicable to subsequent discussion.
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2.1.1 Introduction to data assimilation

We consider a system that can be described by a numerical model with a true model state zt ∈ Rn

and true parameters pt ∈ Rq. We then define the true augmented state as

xt =

pt

zt

 ∈ Rq+n. (2.1)

The initial guess to this model augmented state xb ∈ Rq+n (often referred to as the prior or back-

ground) and observations of the system y ∈ Rm will only be approximations to the true system

state, such that

xb = xt +εb, (2.2)

y = h(xt)+εo, (2.3)

where εb and εo are the prior and observation errors respectively, and h : Rq+n→Rm is the observa-

tion operator (can be linear or non-linear) mapping the augmented state to observation space, for

example the nonlinear mapping of carbon pool state and parameters to eddy covariance derived

observations of NEE. The errors in the prior and observations are assumed to be unbiased and

mutually independent with known covariance matrices B = E[εb(εb)T ] and R = E[εo(εo)T ].

The best estimate to xt satisfying both equation (2.2) and (2.3) is often called the analysis or

the posterior estimate, here denoted xa. It is possible to derive this analysis by applying Bayesian

methods to probability density functions. Bayes’ theorem is first discussed in Bayes and Price

(1763) but formalised by Laplace (1781). Applied to probability density functions (pdf’s) Bayes

theorem can be expressed mathematically as

pa(x|y) ∝ pb(x)po(y|x), (2.4)

where pb(x) is the pdf for the prior, po(y|x) is the pdf of the observations given the augmented

state and pa(x|y) is the posterior pdf for the augmented state. Maximising the probability pa(x|y)

is then equivalent to finding the augmented state that best represents the observations.

If we make the assumption of Gaussian probability density functions with

pb(x) =
1√

2π|B|(q+n)
exp

(
− 1

2
(x−xb)T B−1(x−xb)

)
(2.5)
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and

po(y|x) = 1√
2π|R|m

exp
(
− 1

2
(y−h(x))T R−1(y−h(x))

)
. (2.6)

Then from Bayes’ theorem (equation (2.4)) the posterior probability density function for the aug-

mented state is

pa(x|y) ∝ exp
(
− 1

2
(x−xb)T B−1(x−xb)− 1

2
(y−h(x))T R−1(y−h(x))

)
, (2.7)

here we can ignore the constant multiplying the exponential function as it is independent of x.

We want to maximise the probability of the augmented state x given the observations y. From

equation (2.7) we can see that to maximise pa(x|y) we must maximise the terms in the exponent,

this is equivalent to minimising the quadratic cost function

J(x) =
1
2
(x−xb)T B−1(x−xb)+

1
2
(y−h(x))T R−1(y−h(x)). (2.8)

This is the cost function minimised in three-dimensional variational data assimilation (3D-Var),

where the minimum is found using a descent algorithm evaluating equation (2.8) and its gradient

(Courtier et al., 1998). We can approximate the minimum of (2.8) by finding its gradient and setting

it to zero to obtain the Best Linear Unbiased Estimate (BLUE) (Talagrand, 1997) where

xa = xb +K(y−h(xb)), (2.9)

K = BHT (HBHT +R)−1, (2.10)

where K is the Kalman gain matrix specifying the weight of the analysis increment and H = ∂h(x)
∂x

is the linearised observation operator (linearised around x = xb). We can also approximate the

analysis error covariance matrix as

A = (HT R−1H+B−1)−1. (2.11)

If h is linear then (2.9) and (2.11) are exact solutions.
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2.1.2 4D-Var

Four dimensional variational data assimilation (4D-Var) extends 3D-Var to allow for the assimi-

lation of observations distributed throughout some time interval t0 to tN . Sasaki (1970) proposed

a method for combining a time series of observations with a numerical model, which was then

further developed for use in numerical weather prediction (Le Dimet and Talagrand, 1986). In

4D-Var we minimise the cost function,

J(x0) = Jb(x0)+ Jo(x0)

=
1
2
(x0−xb)T B−1(x0−xb)+

1
2

N

∑
i=0

(yi−hi(xi))
T R−1

i,i (yi−hi(xi)),
(2.12)

to obtain the analysis xa
0, valid at the initial time t0, subject to the strong constraint that the model

states (x0, . . . ,xN) must satisfy the model equations,

xi = mi−1→i(xi−1), (2.13)

where xi is the model augmented state at time ti, mi−1→i is the possibly nonlinear augmented

system model evolving xi−1 from time ti−1 to time ti, yi is the vector of observations at time ti, hi

is the observation operator at time ti, and Ri,i is the observation error covariance matrix at time ti.

The time evolution model for the parameter components of the augmented system is just pi =pi−1,

so that the model parameters are constant in time. We can generalise equation (2.12) to avoid the

sum notation as

J(x0) =
1
2
(x0−xb)T B−1(x0−xb)+

1
2
(ŷ− ĥ(x0))

T R̂
−1
(ŷ− ĥ(x0)), (2.14)

where,

ŷ =



y0

y1
...

yN


, ĥ(x0) =



h0(x0)

h1(m0→1(x0))

...

hN(m0→N(x0))


, and R̂ =



R0,0 R0,1 . . . R0,N

R1,0 R1,1 . . . R1,N

...
...

. . .
...

RN,0 RN,1 . . . RN,N


, (2.15)
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with the off-diagonal blocks of R̂ corresponding to correlations in time between observation errors.

For 4D-Var we approximate the analysis error covariance matrix as

A = (Ĥ
T

R̂
−1

Ĥ+B−1)−1, (2.16)

where Ĥ is the observability matrix given by

Ĥ =



H0

H1M0

...

HNMN,0


(2.17)

with Hi =
∂hi(xi)

∂xi
the linearised observation operator and Mi,0 = Mi−1Mi−2 · · ·M0 the tangent linear

model with Mi =
∂mi−1→i(xi)

∂xi
. The tangent linear model can be difficult to implement, however

using techniques such as automatic differentiation (Renaud, 1997) can reduce the time taken to

implement the derivative of a model. These techniques are employed in this thesis.

2.1.3 Markov chain Monte Carlo and sequential approaches

Markov chain Monte Carlo (MCMC) methods refer to a suite of related algorithms (Metropolis-

Hastings, simulated annealing and Gibbs sampling), with one of the first MCMC methods being

the Metropolis algorithm (Metropolis et al., 1953). These methods sample the posterior pdf by

calculating a cost function measuring the model-data mismatch at different points, usually similar

to −Jo(x0) shown in equation (2.12). As these methods use −Jo(x0) they seek to find a global

maximum for this cost function, rather than a minimum. This is achieved by iteratively sampling

the cost function, with each iteration of the parameter and state values being uniquely determined

by the previously sampled parameter and state values. The output of the MCMC methods is a set

of accepted parameter and state values from which analysis or posterior error covariances can be

calculated. These methods are easy to implement and do not require the derivative of the model

code. However, they come with high computational cost as they often require in the order of 106

model evaluations even for a simple model of forest carbon balance (Zobitz et al., 2011; Ziehn et al.,

2012). These methods become infeasible for global implementations of more complex models.

Whereas variational and MCMC techniques assimilate all available observations over some

17



time window at once, sequential algorithms update the model trajectory at each observation time.

These algorithms approximate the BLUE formula in equation (2.9) to update the model parame-

ter and state values whenever an observation is available. This means that parameter values can

change over time and state and parameter analysis trajectories will become discontinuous (unless

using a sequential ‘smoother’ method). The first sequential method for linear systems was the

Kalman Filter (KF) (Kalman, 1960). The KF method requires the evolution of the error covariance

matrix B through the time window as observations are assimilated. This becomes infeasible for

large systems. The Ensemble Kalman Filter (EnKF) (Evensen, 2003) was developed to address this

problem and allow for the optimisation of nonlinear systems. Here the error covariance matrix for

the state/parameters is approximated using an ensemble of state/parameter vectors. Therefore

the evolution of the error covariance matrix B is avoided. These methods are also easy to im-

plement. However, dependent on the complexity of the model, the ensemble size can be limited

by computational cost, meaning that covariances can be subject to sampling errors. Ad hoc tech-

niques (localisation and inflation) have been employed to reduce these problems (Hamill et al.,

2001; Anderson and Anderson, 1999).

2.2 Applications to the carbon cycle

For numerical weather prediction DA is used predominantly for state estimation. However this

is not true for land surface carbon balance models where parameters are much less well under-

stood. Indeed these parameters can change over time within a developing ecosystem or when an

ecosystem is subject to a disturbance event. Therefore, the vast majority of current studies use DA

to estimate both parameter and state variables.

The use of DA for the estimation of parameter and state variables of ecosystem carbon mod-

els has either been at site-level, with flux tower observations and other ancillary data relevant to

ecosystem carbon balance, or for global implementations, where often the implied effect of the

land surface on atmospheric CO2 observations has been considered. It is important that we im-

prove DA techniques both at site-level and for global implementations.
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2.2.1 Site-level applications

2.2.1.1 Early efforts

Two of the first examples of combining site-level eddy covariance data with models of ecosystem

carbon balance were using the Data Assimilation Linked Ecosystem Carbon (DALEC) and SIm-

plified PhotosyNthesis and EvapoTranspiration (SIPNET) models by Williams et al. (2005) and

Braswell et al. (2005) respectively. These are both simple process based models of ecosystem car-

bon dynamics. In Braswell et al. (2005) MCMC techniques (based on the Metropolis algorithm)

are used to combine half-daily observations of NEE with the SIPNET model. The DA technique

is used to estimate initial model parameter and state values as well as the standard deviation in

NEE flux observation (found to be approximately 1 g C m−2). It is shown that NEE has limited

ability to constrain some model parameters as the model prediction of NEE is insensitive to these

parameters at the time-scales shown in the study (10 years). Williams et al. (2005) assimilated a

more diverse set of daily carbon flux and stock observations from the Metolius ponderosa pine site

(Oregon, USA) with the DALEC model. In this study, an EnKF is nested within a quasi-Newton

optimisation scheme to find the initial set of parameter and state values that require least correc-

tion by the EnKF. The use of variational or MCMC techniques is more common to estimate the

initial state and parameter values of a model. Williams et al. (2005) found large reductions in

model prediction error after assimilation. They noted that rare measurements of carbon stocks

had limited impact on assimilation results but suggested that longer time-series of these stock

measurements will be important to constrain carbon pool turnover rates. They also assimilated

modelled GPP from the more complex soil-plant-atmosphere (SPA) model (Williams et al., 1997)

and claimed that this was analogous to satellite derived GPP, as this more complex model was

already calibrated for the Metolius forest. They suggested that, based on their results assimilating

SPA modelled GPP, in future studies using satellite GPP products would be beneficial.

2.2.1.2 Data assimilation comparison projects

As data assimilation became more widespread with models and observations of ecosystem carbon

dynamics Trudinger et al. (2007) conducted the Optimisation InterComparison (OptIC) project to

better understand the benefits and issues of different DA implementations. In this study partic-

ipant researchers used a variety of distinct DA implementations to estimate the parameters of a
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highly simplified model of terrestrial carbon balance. No single DA method was found to per-

form better than others and the representation of the cost function was shown to be more impor-

tant than the method. In different optimisation experiments the representation of error added to

pseudo observations was varied (Gaussian, lognormal, temporally correlated distributions, etc.).

It was stated that the main criterion for success was accurate specification of errors. In particu-

lar, none of the participant researchers made an effort to account for temporally correlated error,

which resulted in biased results. Williams et al. (2009) comment that temporal error correlations

between flux measurements on the scale of a day and less are likely to be severe. They suggested

that these could be included in the observation error covariance matrix, although they comment

that this would be a difficult task. In section 5.3.6 we show how these correlations can be included.

The REgional Flux Estimation eXperiment (REFLEX) was a similar study conducted by Fox

et al. (2009) using the DALEC model. In this study, 9 participants were asked to combine both syn-

thetic and observed NEE and LAI data with the DALEC model. Again a variety of DA methods

were used (although no variational methods). No DA technique performed consistently better

than others. Across all methods, the parameters linked directly to GPP and TER were best con-

strained, while those linked to slower processes (allocation and turnover of fine root and wood

carbon pools) were poorly constrained. Fox et al. (2009) suggest that observations of slow large

carbon pools would add useful constraint to DA schemes and complement eddy covariance data.

It is also discussed that future studies should investigate the importance of prior error estimates

(we explore this in Chapter 5). The representation of prior and observational errors are still very

basic in the majority of current DA schemes for ecosystem carbon balance. Dietze et al. (2013) also

stress the need to improve the representation of uncertainty in DA schemes.

As data assimilation with ecological applications becomes more prevalent it is important that

tools for information management and data assimilation are made more accessible. The Predictive

Ecosystem Analyser (PEcAn) is an effort to achieve this. PEcAn also allows for easier comparison

of different implemented models (Dietze et al., 2013) with the aim of improving the standard and

reproducibility of experimental results.

2.2.1.3 Use of Earth observation data

Satellite observations of reflectance have also been used with these simple models to assess their

impact on modelled estimates. Quaife et al. (2008) used earth observation data from the MODIS
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instrument on NASA’s TERRA and AQUA satellites in an EnKF with the DALEC model at the

Metolius forest (Oregon, USA). They found that, after assimilation of MODIS data, modelled LAI

was over-predicted when compared to site-level estimates. Over-prediction of LAI led to an over-

estimate in both GPP and TER. Despite this, the modelled NEE was improved after assimilation

when compared to site flux tower observations and significant reductions in modelled flux uncer-

tainties were achieved.

Satellite data has also been used with the SIPNET model. Zobitz et al. (2014) assimilated

earth observation data with flux tower NEE on different timescales. Through a combination of

assimilation studies and use of the Bayesian information criterion (Schwarz et al., 1978) to mea-

sure information content, they show that the best combination of observations is remotely sensed

annually averaged fraction of absorbed photosynthetically active radiation with twice-daily ob-

servations of NEE.

2.2.1.4 Current challenges

The ecosystem carbon models of SIPNET and DALEC have both been used in many other experi-

ments combining a variety of observations relevant to the carbon balance of terrestrial ecosystems

(Zobitz et al., 2008; Moore et al., 2008; Sacks et al., 2007; Keenan et al., 2011). One problem fac-

ing studies working with NEE flux observations alongside other ancillary site-level data is the

overweighting of NEE flux data in the assimilation. In general, other site-level measurements are

made at longer time-scales. So, the number of NEE flux observations in any given assimilation can

outnumber other available observations by a factor of 10 to 1000 (dependent on the time-step of

the model). In order to reduce the problem of overweighting flux observations, Richardson et al.

(2010) used a cost function taking the product of the observation-model missmatches, rather than

the sum, to give an absolute, rather than relative, measure of the model fit to observations. This

study used MCMC techniques to combine a diverse set of observations from the Howland forest

flux site in Maine, USA with the DALEC model. They found in particular that woody biomass ac-

cumulation increment provided an orthogonal constraint to NEE data and reduced uncertainties

in parameter estimates. In Keenan et al. (2012), the problem of overweighting NEE in assimilation

results was addressed by calculating the model-observation mismatch and then dividing it by the

number of data points for each distinct data stream. This problem could also be addressed by bet-

ter specifying the observation error covariance matrix in the DA scheme. Keenan et al. (2012) used
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MCMC techniques and the Forest Biomass, Assimilation, Allocation and Respiration (FöBAAR)

model to study the impact of complementary datasets in addition to NEE. Keenan et al. (2013) fur-

ther investigated the information content in observations using a set of data denial experiments

at the Harvard Forest in Massachusetts, USA. They found that data relating to the turnover of

carbon pools provides the most information when combined with observations of NEE. Keenan

et al. (2013) used true observations to measure information content. It is important to develop

new twin experiments and other novel methods to better understand the impact that new unas-

similated observations could have on carbon cycle DA results. This will also allow for a more

considered approach when planning measurement campaigns. It has also been suggested that ef-

fort should be made to define improved observation operators and the specification of their errors

(Rayner, 2010; Williams et al., 2009), this forms part of the work in Chapter 6.

As ecosystem carbon cycle DA is predominantly a parameter estimation problem, equifinality

is an ever-present issue, with available data often not being able to constrain all of the optimised

model parameters. Wu et al. (2009) found that only 6 out of 16 model parameters were identifi-

able, using a conventional MCMC technique to assimilate observations of NEE with a flux-based

ecosystem model. In Bloom and Williams (2015) a set of ecological “common sense” dynamical

constraints are implemented in a MCMC DA scheme. These are constraints on things such as

carbon pool turnover rates and parameter inequalities. These additional constraints act to en-

sure the retrieved parameter and state values from DA are physically reasonable. Another option

for reducing the problem of equifinality would be to better specify the background and observa-

tion error covariance matrices so that there is more constraint on data assimilation results. This

would be particularly true for the background error covariance matrix where off-diagonal ele-

ments would act to enforce balances between different parameter/state values. This is demon-

strated in Chapter 5. Ziehn et al. (2011) show that the problem of equifinality can be reduced by

only optimising parameters for which the available observations provide information, they show

that this improves convergence times for data assimilation schemes. It is also important that we

continue to produce new distinct sets of observations in order to reduce equifinality further and

better understand where model structure can be improved (Carvalhais et al., 2010).
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2.2.2 Global implementations

At a similar time to site-level DA implementations with flux tower records, observations of atmo-

spheric CO2 concentration were being used with atmospheric transport models and variational

DA methods to perform global inversions and estimate parameters relating to land surface car-

bon dynamics. An example of this is in Rayner et al. (2005) where 4D-Var is implemented with

the Biosphere Energy Transport HYdrology (BETHY) model (Knorr and Heimann, 2001) in a Car-

bon Cycle Data Assimilation System (CCDAS) to assimilate both satellite observations and atmo-

spheric CO2 concentrations in a stepwise manner on a global scale. It has been shown that, if

possible, it is beneficial to assimilate all data streams concurrently rather than in series (MacBean

et al., 2016), but this may not be practical in some scenarios. In CCDAS, automatic differentia-

tion is used to find the Jacobian and Hessian of the cost function. The inverse Hessian of the cost

function is then used to find an estimate to posterior parameter errors (Rayner et al., 2005). They

found that uncertainty in long-term soil carbon storage is the largest contributor to uncertainty

in net CO2 flux. Scholze et al. (2007) show how this estimate to posterior parameter uncertainties

from the cost function Hessian can be propagated through time for future modelled predictions.

A review of the CCDAS implementation with BETHY can be found in Kaminski et al. (2013).

The ORganising Carbon and Hydrology In Dynamic Ecosystems Environment (ORCHIDEE)

model (Krinner et al., 2005) is a dynamic global vegetation model that has been used in many

data assimilation experiments. ORCHIDEE has been used with both sequential (Demarty et al.,

2007) and variational methods (Bacour et al., 2015). The 4D-Var data assimilation routine for

ORCHIDEE outlined in Kuppel et al. (2012) also uses automatic differentiation to find the adjoint

of the ORCHIDEE model used in the calculation of the derivative of the cost function. An adjoint

has also recently been developed for the Joint UK Land Environment Simulator (JULES) model

to allow for the implementation of variational data assimilation (Raoult et al., 2016). Variational

techniques have been preferred in these large scale applications due to computational efficiency,

with automatic differentiation techniques reducing the time it takes to implement the adjoint of a

model. Current variational methods have made the approximation of diagonal background and

observation error covariance matrices.

Although variational methods have been prevalent in these global implementations, due to

computational efficiency, Bloom et al. (2016) implemented an MCMC technique (with prior con-

straints from Bloom and Williams (2015)) to find a global 1o× 1o DALEC2 map. Using MCMC
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techniques in this global implementation is possible because DALEC2 is a simple model which

requires little computational effort to run. In this study, MODIS LAI and soil carbon observations

from the harmonised world soil database were assimilated. Using the ecological dynamical con-

straints from Bloom and Williams (2015) in this global implementation could be an issue. Not all

ecosystems will adhere to these constraints (especially if subjected to severe disturbances such as

fire or insect outbreak). Bloom et al. (2016) used the retrieved global DALEC2 map to gain insight

into ecosystem functioning. They suggested that conventional land cover maps cannot adequately

describe the spatial variability of carbon states and processes. The results from this study could

be used as a set of prior model estimates for variational methods, which may prove more feasible

in the long term.

2.3 Summary

Many efforts and much progress is being made in the field of carbon cycle DA. Currently there

are areas that need addressing; the specification of errors, the information content in available and

possible new data streams and continued application of DA to new problems involving the carbon

cycle are all important areas for progress. Here we discuss three major challenges:

• Equifinality: Many different combinations of parameters and state values are able to recre-

ate assimilated observations. As discussed, data assimilation for the carbon cycle is both a

parameter and state estimation problem. Available data does not allow for all parameters to

be identifiable (Luo et al., 2009). The majority of observations in many experiments are NEE

flux measurements. These measurements represent the difference between two large fluxes

(GPP and TER). Therefore both GPP and TER can be grossly misspecified by a model but

still achieve the observed NEE, contributing to the problem of equifinality. It is important

that new methods and observations are produced to reduce this issue.

• Understanding the Information content in current and potential observations: In order to

reduce the problem of equifinality, it is important to combine as many distinct data streams

as possible. It is of great importance that we understand the information content in potential

new data streams, so that we can focus efforts on campaigns that will add the most informa-

tion possible to DA schemes. In particular we need to understand what measurements best

complement eddy covariance data (Rayner, 2010; Williams et al., 2009).
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• Representation of prior and observational errors: Current DA schemes take a very simple

approach to defining errors. Many of the studies reviewed here comment on the need to bet-

ter characterise uncertainties. Improving the representation of prior errors in DA schemes

will also help reduce the problem of equifinality by adding extra constraint and imposing

balances on assimilation results. It is important that more efforts are made to fully charac-

terise all sources of uncertainty (Keenan et al., 2011; Raupach et al., 2005). Dietze et al. (2013)

comment that tools for information management and DA need to be more accessible and

reproducible. This could also aid the improved characterisation of uncertainties.

In this thesis, we choose to work with the 4D-Var data assimilation method. This allows us

to use measures of information content that require the derivative of the model code. It allows

us to specify different covariance structures in both the background and observation error covari-

ance matrices. Although this PhD is more concerned with site-level implementations, it is also

applicable to larger scale DA implementations for the carbon cycle.
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Chapter 3

Model and data

In this chapter we first present the ecosystem carbon models used throughout this thesis. We then

describe the fieldwork campaign conducted and the processing of eddy covariance flux tower

data from the Alice Holt forest.

3.1 Model

In this thesis the Data Assimilation Linked Ecosystem Carbon (DALEC) model is used in all data

assimilation experiments. The DALEC1 and DALEC2 models are introduced, along with the Ag-

gregated Canopy Model (ACM) used to calculate GPP in both DALEC models. Initially work

was undertaken with the DALEC1 model until the DALEC2 model was released in Bloom and

Williams (2015). The DALEC2 model was adopted as it can be parameterised for both evergreen

and deciduous forests, whereas DALEC1 is an evergreen only model.

3.1.1 The DALEC1 model

The DALEC1 model is a simple process-based model describing the carbon balance of an ev-

ergreen forest ecosystem (Williams et al., 2005). The model is constructed of five carbon pools

(foliage (C f ol), fine roots (Croo), woody stems and coarse roots (Cwoo), fresh leaf and fine root litter

(Clit) and soil organic matter and coarse woody debris (Csom)) linked via fluxes. A schematic of the

flow of carbon through the DALEC1 model is shown in Figure 3.1.
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Figure 3.1: Representation of the carbon fluxes in the DALEC carbon balance model. Green arrows
represent C allocation, dark red and black arrows represent litterfall and decomposition fluxes,
blue arrows represent respiration fluxes and the light red arrow represents the feedback of foliar
carbon to the GPP function. (Delahaies et al., 2013)

The model equations for the carbon pools at day i are as follows:

GPPi = ACM(Ci−1
f ol ,clma,ce f f ,Ψ) (3.1)

Ci
f ol =Ci−1

f ol +(1− fauto) f f olGPPi−θ f olCi−1
f ol , (3.2)

Ci
roo =Ci−1

roo +(1− fauto)(1− f f ol) frooGPPi−θrooCi−1
roo , (3.3)

Ci
woo =Ci−1

woo +(1− fauto)(1− f f ol)(1− froo)GPPi−θwooCi−1
woo, (3.4)

Ci
lit =Ci−1

lit +θrooCi−1
roo − (θlit +θmin)eΘT i−1

Ci−1
lit , (3.5)

Ci
som =Ci−1

som +θwooCi−1
woo +θmineΘT i−1

Ci−1
lit −θsomeΘT i−1

Ci−1
som, (3.6)

where T i−1 is the daily mean temperature and Ψ represents the meteorological driving data used

in the GPP function. Descriptions for each model parameter used in equations (3.1) to (3.6) are

shown in table 3.1. Further details of this version of DALEC can be found in Williams et al. (2005).

It is parameterised for data from a young pine stand in Ponderossa, Oregon. The equations used

to calculate GPP are included in section 3.1.2.
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Parameter Description Value Range

θmin Litter mineralisation rate (day−1) 4.41×10−6 10−6−10−2

fauto Autotrophic respiration fraction 0.47 0.3−0.7

f f ol Fraction of GPP allocated to foliage 0.31 0.01−0.5

froo Fraction of GPP allocated to fine roots 0.43 0.01−0.5

θ f ol Foliar carbon turnover rate (day−1) 2.7×10−3 10−4−10−1

θwoo Woody carbon turnover rate (day−1) 2.06×10−6 2.5×10−5−10−3

θroo Fine root carbon turnover rate (day−1) 2.48×10−3 10−4−10−2

θlit Litter carbon turnover rate (day−1) 2.28×10−2 10−4−10−1

θsom Soil and organic carbon turnover rate (day−1) 2.65×10−6 10−7−10−3

Θ Temperature dependance exponent factor 4.147×10−2 0.018−0.08

C f ol Foliar carbon pool (g C m−2) 58 10−1000

Croo Fine root carbon pool (g C m−2) 102 10−1000

Cwoo Above and below ground woody carbon pool (g C m−2) 770 100−105

Clit Litter carbon pool (g C m−2) 40 10−1000

Csom Soil and organic carbon pool (g C m−2) 9897 100−2×105

Table 3.1: Parameter and state values for DALEC1, optimised for Metolius forest, Oregon.

3.1.2 The Aggregated Canopy Model

The aggregated canopy model (ACM) is used in DALEC to calculate GPP. The ACM is a big-leaf,

daily time-step model estimating photosynthesis as a function of foliar carbon, leaf mass per area,

total daily irradiance, daily temperature values, day length and atmospheric CO2 concentration

using the following equations,

LAI =
C f

clma
(3.7)

gc =
|ψd |a10

1
2 Tr +a6 Rtot

, (3.8)

p =
ce f f LAI

gc
exp(Tmax a8), (3.9)

q = a3−a4, (3.10)

Ci =
1
2

[
Ca +q− p+

√
(Ca +q+ p)2−4(Ca q− p a3)

]
, (3.11)

E0 =
a7 LAI2

LAI2 +a9
, (3.12)

δ =−0.408arccos
(

360 (D+10)
365

π

180

)
, (3.13)

s = 24arccos(− tan(lat) tan(δ ))/π, (3.14)
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GPP =
E0 I gc (Ca−Ci)

E0 I +gc (Ca−Ci)
(a2 s+a5), (3.15)

where the symbol meanings are shown in table 3.2 with a2, . . . ,a10 being set parameters (values

shown in table 3.3). We use the values of the parameters given in Fox et al. (2009) as these param-

eters have been shown to accurately predict GPP for a number of temperate forest sites. The ACM

model performs well when tested against other more complex models of photosynthesis (Williams

et al., 1997). This model can also be driven with estimates of soil-leaf water potential difference

and hydraulic resistance; this adds a limit to GPP when the ecosystem is under drought-stress.

Alice Holt is a well watered forest so we assume no drought-stress and fix these parameters with

values, ψd =−2.5 and Rtot = 1 (Fox et al., 2009).

Symbol Description

gc Canopy conductance (g C m−2 day−1)

ψd Max soil-leaf water potential difference (MPa)

Tr Daily temperature range (oC)

Rtot Total plant-soil hydraulic resistance (MPa m2 s mmol−1)

clma Leaf mass per area (g C m−2)

LAI Leaf area index (m2 m−2)

ce f f canopy use efficiency parameter (g C m−2)

Tmax Maximum daily temperature (oC)

Ca Atmospheric CO2 concentration (µ mol mol−1)

Ci CO2 concentration at site of carboxylation (µ mol mol−1)

E0 Canopy level quantum yield (g C MJ−1 m−2 day−1)

δ Solar declination (radians)

D Day of year

s Day length (hrs)

lat Site latitude (o)

I Irradiance (MJ m−2 day−1)

Table 3.2: Symbols used in ACM.
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Parameter Value

a2 0.0155

a3 1.526

a4 324.1

a5 0.2017

a6 1.315

a7 2.595

a8 0.037

a9 0.2268

a10 0.9576

Table 3.3: Parameter values in ACM.

3.1.3 The DALEC2 model

The DALEC2 model is a new, slightly more complex version of the DALEC1 model describing the

carbon balance of a forest ecosystem (Bloom and Williams, 2015). The model is constructed of six

carbon pools (labile (Clab), foliage (C f ), fine roots (Cr), woody stems and coarse roots (Cw), fresh

leaf and fine root litter (Cl) and soil organic matter and coarse woody debris (Cs)) linked via fluxes.

The aggregated canopy model (ACM) (Williams et al., 1997) is again used to calculate daily gross

primary production (GPP) of the forest, taking meteorological driving data and the modelled leaf

area index (a function of C f ) as arguments. Figure 6.2 shows a schematic of how the carbon pools

are linked in DALEC2.

Figure 3.2: Representation of the fluxes in the DALEC2 carbon balance model. Green arrows
represent C allocation, purple arrows represent litter fall and decomposition fluxes, blue arrows
represent respiration fluxes and the red arrow represents the influence of leaf area index in the
GPP function.
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The model equations for the carbon pools at day i are as follows:

GPPi = ACM(Ci−1
f ol ,clma,ce f f ,Ψ) (3.16)

Ci
lab =Ci−1

lab +(1− fauto)(1− f f ol) flabGPPi−ΦonCi−1
lab , (3.17)

Ci
f ol =Ci−1

f ol +ΦonCi−1
lab +(1− fauto) f f olGPPi−Φo f fCi−1

f ol , (3.18)

Ci
roo =Ci−1

roo +(1− fauto)(1− f f ol)(1− flab) frooGPPi−θrooCi−1
roo , (3.19)

Ci
woo =Ci−1

woo +(1− fauto)(1− f f ol)(1− flab)(1− froo)GPPi−θwooCi−1
woo, (3.20)

Ci
lit =Ci−1

lit +θrooCi−1
roo +Φo f fCi−1

f ol − (θlit +θmin)eΘT i−1
Ci−1

lit , (3.21)

Ci
som =Ci−1

som +θwooCi−1
woo +θmineΘT i−1

Ci−1
lit −θsomeΘT i−1

Ci−1
som, (3.22)

where T i−1 is the daily mean temperature, Ψ represents the meteorological driving data used in

the GPP function and Φon/Φo f f are functions controlling leaf-on and leaf-off. Descriptions for

each model parameter used in equations (3.16) to (3.22) are included in table 3.4. From table 3.1

and 3.4 we can see that whereas DALEC1 has 10 parameters and 5 state variables, DALEC2 has

17 parameters and 6 state variables. DALEC2 differs from the original DALEC in that it can be

parameterised for both deciduous and evergreen sites with Φon and Φo f f being able to reproduce

the phenology of either type of site, with

Φon =
6.91
√

2√
πcronset

exp
(
−
(

sin
(

Di−donset −0.62cronset

116.26

)
116.26

√
2

cronset

)2)
(3.23)

Φo f f =

√
2√
π

(
log(clspan)− log(clspan−1)

cr f all

)
exp
(
−
(

sin
(

Di− cr f all +ξ

116.26

)
116.26

√
2

cr f all

)2)
, (3.24)

where ξ is the solution to a sixth order polynomial included in the DALEC2 code. In equations

(3.23) and (3.24), donset and d f all control the day of leaf on and off respectively and cronset and cr f all

control the labile release period and the leaf-fall period respectively, with Di being the day of year.

The model code and further details of this version of DALEC can be found in Bloom and Williams

(2015).
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Parameter Description Prior estimate (xb) Range
θmin Litter mineralisation rate (day−1) 9.810×10−4 10−5−10−2

fauto Autotrophic respiration fraction 5.190×10−1 0.3−0.7
f f ol Fraction of GPP allocated to foliage 1.086×10−1 0.01−0.5
froo Fraction of GPP allocated to fine

roots
4.844×10−1 0.01−0.5

clspan Determines annual leaf loss fraction 1.200×100 1.0001−10
θwoo Woody carbon turnover rate (day−1) 1.365×10−4 2.5×10−5−10−3

θroo Fine root carbon turnover rate
(day−1)

3.225×10−3 10−4−10−2

θlit Litter carbon turnover rate (day−1) 3.442×10−3 10−4−10−2

θsom Soil and organic carbon turnover
rate (day−1)

1.113×10−4 10−7−10−3

Θ Temperature dependance exponent
factor

4.147×10−2 0.018−0.08

ce f f Canopy efficiency parameter 7.144×101 10−100
donset Leaf onset day (day) 1.158×102 1−365
flab Fraction of GPP allocated to labile

carbon pool
3.204×10−1 0.01−0.5

cronset Labile carbon release period (days) 4.134×101 10−100
d f all Leaf fall day (day) 2.205×102 1−365
cr f all Leaf-fall period (days) 1.168×102 10−100
clma Leaf mass per area (g C m−2) 1.285×102 10−400
Clab Labile carbon pool (g C m−2) 1.365×102 10−1000
C f ol Foliar carbon pool (g C m−2) 6.864×101 10−1000
Croo Fine root carbon pool (g C m−2) 2.838×102 10−1000
Cwoo Above and below ground woody

carbon pool (g C m−2)
6.506×103 100−105

Clit Litter carbon pool (g C m−2) 5.988×102 10−1000
Csom Soil and organic carbon pool

(g C m−2)
1.936×103 100−2×105

Table 3.4: Parameter and state values for DALEC2.

3.2 Data

As part of this PhD an extended period of time has been spent at the Alice Holt Research Station

(Hampshire, UK) working with Forest Research (the research arm of the UK Forestry Commis-

sion). After initially completing one year of an ongoing field campaign to measure stem respira-

tion using an infra-red gas analyser, a measurement campaign was designed to produce a set of

observations for use in this PhD project. This involved the establishment and sampling of three

transects throughout the Straits Inclosure (part of the Alice Holt forest). The establishment of these

transects and measurements are outlined in section 3.2.2 to 3.2.4.

3.2.1 Alice Holt research site

The Alice Holt Forest is a research forest area managed by the UK Forestry Commission located

in Hampshire, SE England. Forest Research have been operating a CO2 flux measurement tower

in a portion of the forest, the Straits Inclosure, continuously since 1998. The Straits Inclosure is

a 90 ha area of deciduous broadleaved plantation woodland located on a surface water gley soil
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and was initially planted with oak in the 1820s (Schlich and Perrée, 1905) and then replanted in

the 1930s. The majority of the canopy trees are oak (Quercus robur L.), with an understory of hazel

(Corylus avellana L.) and hawthorn (Crataegus monogyna Jacq.) (Pitman and Broadmeadow, 2001),

but there is a small area of conifers (Pinus nigra ssp. laricio (Maire) and P. sylvestris L.) within the

tower measurement footprint area depending on wind direction. An aerial photograph of the

site is shown in Figure 3.3. The Straits Inclosure is a flat area at an altitude of approximately 80m,

surrounded by mixed lowland woods and both arable and pasture agricultural land. In Wilkinson

et al. (2012) an analysis of stand-scale 30 minute average net CO2 fluxes (NEE) from 1998-2011 for

the Straits Inclosure found a mean annual NEE of−486 g C m−2 yr−1 and demonstrated the forest

was a substantial sink of carbon. This study also includes further details about the research site.

As part of the management regime, the Straits Inclosure is subject to thinning, whereby a

proportion of trees are removed from the canopy in order to reduce competition and improve the

quality of the final tree crop. An intermediate thinning method is used with a portion of both

subdominant and dominant trees being removed from the stand (Kerr and Haufe, 2011). The

whole of the stand was thinned in 1995. Subsequently the eastern side of the Straits was thinned

in 2007 and then the western side in 2014. The flux tower at the site is situated on the boundary

between these two sides. This allows for the use of a footprint model to split the flux record and

thus analyse the effect of this disturbance on carbon fluxes at the site. In Wilkinson et al. (2015)

a statistical analysis of the eddy covariance flux record found that there was no significant effect

on the net carbon uptake of the eastern side after thinning in 2007. In Chapter 6 we focus on the

effect of disturbance on the western side after thinning in 2014. We therefore refer to the western

side as “thinned” forest and the eastern side as “unthinned” forest.

3.2.2 Establishment of sampling points

For this fieldwork transects were designed to join up existing mensuration plots where measure-

ments of woody biomass are made by Forest Research. This allowed for comparison with historic

observations. Sampling points were set at 10m intervals along the transect, giving 435 points in

total. These are shown in Figure 3.4. The GeoPy Python package was used to calculated the exact

latitude and longitude of each sampling point for the 3 transects. These locations were then en-

tered into a GPS unit. When establishing the transects, fluorescent spray paint was used to mark

trees closest to each sampling point as shown on the GPS (see Figure 3.5). As parts of the forest site

33



Figure 3.3: The Straits Inclosure research site in 2013. Source: Forest Research

were extremely dense with vegetation, a pair of loppers were used to clear a path in some areas to

allow for the establishment of relatively straight transects. Having all transect points numbered

(with corresponding latitude and longitude value) allowed for comparison between methods and

the splitting of observations between distinct sections of the forest site.

3.2.3 Leaf area index observations

Leaf Area Index (LAI) is an important variable in relation to the amount of CO2 an ecosystem can

remove from the atmosphere through photosynthesis. LAI is defined as the area of leaves per unit

area of ground. Three different methods were used to estimate peak LAI (July - September) for

the year 2015 along the three transects at different sampling intervals.

3.2.3.1 Ceptometer

A Decagon LP-80 ceptometer and an additional Photosynthetically Active Radiation (PAR) sensor

were used to measure LAI. Here we measure below canopy PAR using the ceptometer while log-

ging above canopy PAR using a PAR sensor and data logger positioned outside the canopy. We

can then calculate LAI using the above and below canopy readings. The ceptometer represents

the quickest method for estimating LAI, we therefore took readings with the ceptometer at every
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Figure 3.4: Sampling transects. Black crosses: sampling points at 10m intervals, pink diamonds:
Forest Research mensuration plots, black diamond: Forest Research flux tower.

sampling point over two walks of the transects, giving us 870 observations in total.

In order to be sure that the PAR readings from the ceptometer and external PAR sensor were

consistent, we calibrated the PAR sensor against the ceptometer. This was done by leaving both

the PAR sensor and ceptometer out logging next to each other every 10 seconds for a day in the

Alice Holt Research Station meteorological sampling square. We can then calibrate the output of

the PAR sensor with that of the ceptometer, as shown in Figure 3.6.

Once the PAR sensor was calibrated, measurements could be made along the transects. The

PAR sensor positioned outside of the canopy was logged every 5 seconds using a Delta-T DL2e

data logger, at the start of every set of measurements the clock on the data logger and ceptometer

were synchronised to ensure comparison of measurements made at the same time. After sampling

the transects we had a set of above canopy and below canopy PAR readings corresponding to each

sampling point for both walks of the transects. We use the same calculation for LAI as given in

the Decagon LP-80 manual. This is using a simple model of radiation transmission and scattering

successfully tested against the more complex model of Norman and Jarvis (1975). The equation
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Figure 3.5: Sampling point 291, showing fluorescent spray paint used to mark sampling points.

used to calculate LAI is,

LAI =
((1− 1

2K ) fb−1)lnτ

A(1−0.47 fb)
, (3.25)

where K is the extinction coefficient, fb is the beam fraction, τ =
below canopy PAR
above canopy PAR and A = 0.283+

0.785a− 0.159a2 (where a is the leaf absorptivity, assumed to be 0.9 by Decagon). We assume a

simple extinction coefficient of K = 1
2cosθ

, where θ is the solar zenith angle. We took the mean of

the two LAI observations at each point to give as an estimate to the peak LAI for the year 2015.

We can see the LAI estimate for the Straits Inclosure in Figure 3.7.

3.2.3.2 Hemispherical photographs

The second method used to measure LAI was hemispherical photography. Hemispherical pho-

tographs show a complete view of the sky in all directions. From these images we use the

HemiView software (Rich et al., 1999) which calculates the proportion of visible sky as a func-

tion of sky direction (gap fraction) which it then uses to calculate LAI (Jonckheere et al., 2004).

Hemispherical photographs were taken every 50m along the transects, giving a total of 89 images.

It is important to ensure that hemispherical photographs are taken in overcast conditions so that

the sun does not mask areas of leaf area. It is important to note that we did not remove tree trunks
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Figure 3.6: Calibration of above canopy Photosynthetically Active Radiation (PAR) sensor (mea-
suring in mV) with LP-80 ceptometer measured PAR (µmol m−2 s−1).

and branches from our calculation of LAI with HemiView so that we are actually calculating plant

area index. The impacts of this assumption are discussed in section 3.2.3.4. In Figure 3.8 we show

an example of two hemispherical photographs taken in different areas of the Straits Inclosure.

3.2.3.3 Litter traps

Finally, litter traps were used to find estimates of LAI and leaf mass per area. We placed litter traps

under the canopy to catch leaf litter into a bag attached to the bottom of the trap. The bags were

changed every week during the litter fall period and the litter sorted into species. Every week the

litter was dried in an oven at 70oC and weighed. This gave us the dry-weight of the leaf litter for

the 2015 season. Towards the end of the season we scanned 100 leaves for each species to find an

average leaf area, we then dried and weighed the leaves. We could then find the leaf mass per area

for each species and use this to infer the total LAI for each trap (once the whole seasons litter has

been collected). This was then normalised for the area of the trap. This method of LAI calculation

is the most time consuming.
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Figure 3.7: Ceptometer derived LAI for 2015, Alice Holt.

A total of six litter traps were established at points along the transects (positions shown in

Figure 3.9) allowing for comparison with the other methods. The 6 litter traps are not enough

to describe the LAI for the research site (Kimmins, 1973). We use these litter traps as a point of

comparison and validation for the ceptometer and hemispherical photograph estimates of LAI

made at the same locations and also for estimates to leaf mass per area. From our litter trap

observations we find a leaf mass per area of 29 g C m−2 free soluble carbohydrates for both sides

of the forest.

3.2.3.4 Comparison of methods

In Figures 3.10 and 3.11 we show a comparison of the different methods of estimating LAI for the

unthinned and thinned forest respectively. We can see that in all cases LAI derived from the litter

traps is always greater than LAI estimated from optical methods, this is expected from previous

comparisons (Bréda, 2003).

Although the ceptometer is the fastest method for measuring LAI it is also the most variable,

being extremely sensitive to the solar zenith angle and clear sky conditions. If the sun is low in

the sky the radiation will pass through much more photosynthetically active material than if the

sun is directly above head, causing spikes in the LAI value. We can see that the LAI estimates
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(a) Unthinned forest (b) Thinned forest

Figure 3.8: Hemispherical photographs from the Alice Holt flux site showing the difference be-
tween the thinned and unthinned sides of the forest.

from the hemispherical photographs are much less variable than the ceptometer. As discussed in

section 3.2.3.2 the hemispherical estimate is actually of plant area index, as we have not removed

trunks and branches from the gap fraction calculation. However, this does not appear to have a

great impact on results as hemispherical photograph derived LAI is still the lowest estimate of all

three.

3.2.4 Point-centred quarter observations

We used the method of Point-Centred Quarters (PCQ) (Dahdouh-Guebas and Koedam, 2006) to

determine an estimate of the woody biomass for both unthinned and thinned forest in the Straits

Inclosure. The PCQ method is conducted at each sampling point as follows:

• Using a compass, map 4 regions from the central sampling point

• Measure the distance from the central sampling point to the nearest tree in each quarter

• Measure the Diameter at Breast Height (DBH) for each tree (shown in Figure 3.12) and record

the species

There were 114 points sampled along the three transects, from these measurements we derived

estimates to tree density and mean DBH for both thinned and unthinned sides of the forest. We

then used allometric relationships between DBH and total above ground biomass and coarse root

biomass, found in work carried out by Forest Research and in McKay et al. (2003). These relation-

ships were:

above ground dry-mass = 0.0678×DBH
2.619

(3.26)
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Figure 3.9: Litter trap locations for Alice Holt.

and

below ground coarse root dry-mass = 0.149×DBH
2.12

. (3.27)

This gave us an estimate to the dry-mass in kilograms for the average tree in our sampling

area. Assuming that half of all dry-mass is carbon we can find an estimate of total woody and

coarse root carbon in g C m−2 using the equation,

total woody and coarse root carbon =

1000×0.5× (above ground dry-mass+below ground coarse root dry-mass)× tree density.

(3.28)

Forest Research have carried out their own mensuration studies at the site. These have been

conducted at the mensuration points shown in Figure 3.4. As these plots are included in our tran-

sects this means that our measurements should be comparable with those from Forest Research.

3.2.5 Flux tower observations and data processing

Forest Research provided half-hourly raw flux tower data for the Straits Inclosure from January

1999 to December 2015. These consist of the NEE fluxes and meteorological driving data of tem-
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Figure 3.10: LAI comparison for unthinned forest. Dots and solid line represent observations
made at different points along transects, dotted lines represent the mean of the observations.

perature, irradiance and atmospheric CO2 concentration for use in the DALEC model. The view

from the top of the flux tower in the Straits Inclosure can be seen in Figure 3.13. Forest Research

provided this data in the form of multiple excel spreadsheets corresponding to the flux tower mea-

surement record for each year. To prepare this data for use with data assimilation we first had to

convert these 16 excel files to one Python readable data file (here we chose NetCDF), this was then

further processed. To process the NEE data we first performed u∗ filtering, where any half-hourly

flux observation corresponding to a friction velocity of 0.2 m s−1 or less were removed from the

data set. This value represents the point at which Forest Research found flux measurements be-

come unreliable (Wilkinson et al., 2012). We then subjected the observations of NEE to quality

control procedures similar to those described by Papale et al. (2006b). For each year of the NEE

dataset we define two sub-datasets of the half-hourly observations, one containing all positive

values and the other all negative values. The standard deviation of both sub-datasets was then

calculated. Any values that were ±3 standard deviations away from the yearly sub-dataset mean

were removed. This was also repeated on a month by month basis. Gap-filling procedures were

not applied to the half-hourly NEE dataset so that only true observations were considered for as-

similation. To match the time-step of the DALEC model we computed daily NEE observations by

taking the mean over the 48 measurements made each day, selecting only days where there was

no missing data.
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Figure 3.11: LAI comparison for thinned forest. Dots and solid line represent observations made
at different points along transects, dotted lines represent the mean of the observations.

Figure 3.12: Taking diameter at breast height measurements at Alice Holt.
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Figure 3.13: At the top of the Alice Holt flux tower.
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Chapter 4

Information content in observations

relevant to forest carbon balance

4.1 Introduction

In data assimilation it is important to understand if the observations available to us provide us

with enough information to find a meaningful description of our studied system. Measurements

of forest carbon balance are now routinely made in forests across the world using micrometeoro-

logical techniques, with many other relevant observations such as leaf area index and standing

biomass also available (Baldocchi, 2008). Many efforts have been made to combine this data with

models of forest carbon balance using data assimilation techniques in order to improve modelled

estimates (Zobitz et al., 2011; Fox et al., 2009; Richardson et al., 2010; Quaife et al., 2008; Zobitz

et al., 2014; Niu et al., 2014). Currently, however, the relative levels of information from different

data types are not well understood.

In numerical weather prediction many measures of observation information content have

been defined (e.g. Cardinali et al. (2004); Rodgers et al. (2000); Fisher (2003)). These measures

can be used to identify how information content might vary both temporally and spatially, when

observations are made at different times or in different locations. It is not necessary to have made a

physical observation in order to estimate its information content. It is enough to have an accurate

estimate of the observation operator and observation error at the specified time and location. It

is therefore possible to use these measures to define target observations or design new observing
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systems (Palmer et al., 1998; Eyre, 1990). Often we are required to know the derivative of our

model in order to implement these measures. This can prove difficult to implement. However,

techniques such as automatic-differentiation (Renaud, 1997) can reduce the time taken to find the

derivative of a model.

In this chapter we aim to analyse the information content in the observations used for assim-

ilation with the Data Assimilation Linked Ecosystem Carbon (DALEC1 and DALEC2) models of

ecosystem carbon balance. For DALEC1 we consider the state estimation case. As the state vec-

tor for DALEC1 is small (5 elements) this allows us to calculate the adjoint of the model by hand

and consider analytical representations of information content. For DALEC2 we consider the joint

state and parameter estimation case, where the augmented state contains 23 members. The adjoint

is no longer feasible to calculate by hand and automatic differentiation techniques are employed.

For our experiments, we begin by considering the observability of our system given a set of

observations. Observability is a mathematical concept from control theory. In the context of data

assimilation a system is defined as observable if, for a given set of observations, we can uniquely

define the initial state of our model. This allows us to determine if, from current observations

used in carbon balance data assimilation, we have enough information to find a unique model

state. In practice, we include a background term in our assimilation (see chapter 2, section 2.1.1)

to ensure we can always find a locally unique solution. However, it is informative to understand

if observations alone provide us with enough information to find a unique solution.

We consider different information content measures applied to our system in order to show

how the information content varies for the different observation types available to us for DALEC1.

We then extend these results to the DALEC2 model and investigate how the same set of observa-

tions can have a different level of information depending on the type of ecosystem being observed.

Using these measures also allows us to consider the effect on the information content in the ob-

servations of including error correlations in our data assimilation algorithm (further explored in

chapter 5).

4.2 Observability

Observability is a mathematical concept from control theory. A system is said to be observable if it

is possible to determine the state by measuring only the output. The following definition is taken
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from Barnett and Cameron (1985): the linear time varying system defined as,

xi+1 = Mixi (4.1)

yi = Hixi (4.2)

where M is n×n and H is m×n is completely observable if for any t0 and any initial state x0 there exists

a finite time tN > t0 such that knowledge of yi for t0 ≤ ti ≤ tN is sufficient to uniquely determine x0.

In data assimilation our system is completely observable if knowledge of the observations yi allows

us to uniquely determine the initial state x0.

Theorem 1. When M and H are time-invariant the system is completely observable if and only if the nm×n

observability matrix

V =



H

HM

HM2

...

HMn−1


(4.3)

has rank n.

This result can be applied to the time varying data assimilation problem (Johnson et al., 2005),

where for 4D-Var the observability matrix corresponds to

Ĥ =



H0

H1M0

...

HNMN,0


(4.4)

as defined in chapter 2, section 2.1.2. In Appendix B of Zou et al. (1992) it is shown that for the

linear data assimilation problem it is possible to obtain a unique analysis state over a specific

assimilation window with no background term if the rank of Ĥ is equal to n, the size of x0. For

the non-linear data assimilation problem the rank of Ĥ being equal to n ensures a locally unique

analysis can be found without including a background term. In practice the cost function for 4D-

Var data assimilation typically contains a background term which regularises the problem and

means that we always have a unique solution.
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4.3 Information content measures

Information content measures have been used to quantify the different levels of information pro-

vided by observations in the development of satellite instruments (Stewart et al., 2008; Engelen

and Stephens, 2004) and in operational data assimilation schemes (Fisher, 2003; Singh et al., 2013).

According to Fowler and Van Leeuwen (2013) information content measures have been used for

• Removing observations with a lesser impact in order to improve the efficiency of the assim-

ilation process (Rabier et al., 2002; Singh et al., 2013; Rodgers, 1998).

• Diagnosing erroneous observations and assumed statistics (Desroziers et al., 2009).

• Improving data assimilation results by adding observations which theoretically have a high

impact. This can mean defining target observations (Palmer et al., 1998) or even designing

new observing systems (Wahba, 1985; Eyre, 1990).

For the following measures the data assimilation problem is assumed to be Gaussian with a

linear function mapping the state to observation space (H), from section 2.1.1 we have,

xa = xb +K(y−Hxb), (4.5)

where K is the Kalman gain matrix,

K = BHT (HBHT +R)−1. (4.6)

In order to consider observations over a 4D-Var time window we rewrite equation (4.5) as,

xa = xb + K̂(ŷ− Ĥxb), (4.7)

using the defined matrices in section 2.1.2, with K̂ = BĤ
T
(ĤBĤ

T
+ R̂)−1.

Making the assumption of a linear and Gaussian data assimilation problem is clearly a limi-

tation. These measures are therefore limited to a period where the forecast model remains reason-

ably linear. The implications of assuming Gaussian error statistics are discussed by Fowler and

Van Leeuwen (2013).
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4.3.1 Sensitivity of analysis to observations

The influence matrix measures the sensitivity of the analysis in observation space to the observa-

tions (Cardinali et al., 2004) and is defined by,

S =
∂Hxa

∂y
. (4.8)

From equation (4.5) we see that,

S =
∂H(xb +K(y−Hxb))

∂y

= KT HT .

(4.9)

Here S will be a m×m matrix, where m is the number of observations. The diagonal elements

of S are Si,i =
∂ (Hxa)i

∂yi
and represent the ‘self-sensitivity’ of the ith modelled observation to the ith

observation. The off-diagonal elements of S represent the ‘cross-sensitivity’ and are given by

Si, j =
∂ (Hxa)i

∂y j
. If we wish to consider the influence matrix for observations over a 4D-Var time

window we can re-write equation (4.8) as,

S =
∂Ĥxa

∂ ŷ
= K̂

T
Ĥ

T
. (4.10)

The Kalman gain matrix K̂ can be re-written as,

K̂ = AĤ
T

R̂
−1
, (4.11)

where A is the analysis error covariance,

A = (Ĥ
T

R̂
−1

Ĥ+B−1)−1. (4.12)

Inserting equation (4.11) into (4.10) we find,

S = R̂
−1

ĤAĤ
T
. (4.13)

We can therefore see the sensitivity of the analysis to observations is inversely proportional to the

observation error and proportional to the analysis error. This means that the most influential ob-

servations are those with the smallest error variance providing information about regions of state
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space with the largest prior error (Cardinali et al., 2004). It is possible to identify the observations

that have the greatest influence over the length of the window by summing the absolute values of

the columns of the influence matrix.

4.3.2 Degrees of freedom for signal

The degrees of freedom for signal (d f s) indicates the number of elements of the state that have

been measured by the available observations. If we consider a state vector x with n elements (or

n degrees of freedom) then the maximum value the d f s could obtain would be n, in this case all

elements of the state would have been measured. Conversely if d f s = 0 then no elements of the

state would have been measured by our observations (Fowler and Van Leeuwen, 2013).

For symmetric positive definite prior and posterior error covariance matrices B and A, we

can define the degrees of freedom for signal by means of a transform L that reduces the prior error

covariance matrix, B to the n× n identity (Fisher, 2003), such that LBLT = In×n. Each diagonal

element of the identity then corresponds to a single degree of freedom with the trace being equal

to n, the total degrees of freedom.

The transform L is not uniquely determined, since we can replace L by QT L, where Q is an

orthogonal matrix. As Q is an orthogonal matrix QT LBLT Q = QT Q = In×n. By defining Q to be

the matrix of the eigenvectors of LALT , we reduce LALT to the diagonal matrix of its eigenvalues,

Λ. The eigenvalues λi of LALT can be interpreted as the fractional reduction in uncertainty for the

n state members. If an eigenvalue of LALT is close to zero the corresponding state member has

been well observed, if it is close to one the corresponding state member has not been constrained

by the assimilated observations (Stewart et al., 2008). We then define the degrees of freedom for

signal as,

d f s = n−∑
i

λi, (4.14)

this can be re-written in terms of the matrices B and A with

d f s = n−∑
i

λi

= n− trace(LALT )

= n− trace(B−1A).

(4.15)

In Rodgers et al. (2000) it is shown that the d f s can also be calculated as the trace of the influence
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matrix S (defined in section 4.3.1) with,

d f s = trace(S) = ∑
i

λi, (4.16)

where λi is the ith eigenvalue of S.

4.3.3 Shannon information content

Shannon Information Content (SIC) is a measure of the reduction in entropy (uncertainty) given

a set of observations. When a measurement is made, the entropy or uncertainty in our state de-

creases. The SIC of an observation is a measure of the factor by which the uncertainty decreases

(Cover and Thomas, 1991). We can define this using the prior, p(x), and posterior, p(x|y), distri-

butions. From Rodgers et al. (2000), for the Gaussian case SIC unsurprisingly becomes a function

of the prior and posterior error covariance matrices with,

SIC =
1
2

ln
|B|
|A|

. (4.17)

The SIC can also be defined in terms of the eigenvalues of the influence matrix S with,

SIC =−1
2 ∑

i
ln|1−λi| (4.18)

where λi is the ith eigenvalue of S. In Eyre (1990) using SIC is shown to be beneficial over solely

measuring the change in error variances before and after assimilation as the SIC also uses infor-

mation about the change in error covariances. This is also true for the d f s.

4.4 Metolius forest site

In this chapter we use meteorological driving data taken from the Metolius forest site, a temperate

coniferous forest in Oregon, Northwestern US. The site has been studied extensively (Law et al.,

2001a), and has also been the subject of data assimilation studies (Williams et al., 2005; Quaife et al.,

2008). The site has a semi-arid climate with a dominant canopy of ponderosa pine (Pinus ponderosa)

and an understory of bitterbush (Purshia tridentata) and manzanita (Arctostaphylos patula) (Law

et al., 2001b). The forest stand was felled in 1978, having previously been a mature forest. It was
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then allowed to regrow naturally, with some areas of older growth forest still being left post-felling

(Williams et al., 2005).

4.5 Observability results

4.5.1 DALEC1 state estimation

DALEC1 is the original version of the DALEC2 model introduced in section 3.1.3. At the start of

the PhD project work was undertaken with DALEC1 before the DALEC2 model was released. The

version of DALEC1 used was an evergreen only model; further details of the model can be found

in section 3.1.1 and Williams et al. (2005).

We initially consider observability of the DALEC1 state estimation system. DALEC1 is a

smaller model and allows us to understand the concept of observability before moving onto work

with the more complicated DALEC2 joint state and parameter estimation system. DALEC1 was

implemented in a 4D-Var data assimilation scheme for state estimation, with the tangent linear

model being computed analytically. Using this analytic implementation of the tangent linear

model we can compute the observability of the model for differing sets of observations. We have

the tangent linear model,

Mi =
∂mi−1→i(xi)

∂xi
=

(1−θ f ol)+ f f ol(1− fauto)ζ
i 0 0 0 0

froo(1− f f ol)(1− fauto)ζ
i (1−θroo) 0 0 0

(1− froo)(1− f f ol)(1− fauto)ζ
i 0 (1−θwoo) 0 0

θ f ol θroo 0 (1− (θmin +θlit)χ
i−1) 0

0 0 θwoo θminχ i−1 (1−θsomχ i−1)


,

(4.19)

where xi = (Ci
f ol,C

i
roo,C

i
woo,C

i
lit ,C

i
som)

T , ζ i = ∂GPPi(Ci−1
f ol ,Ψ)/∂Ci−1

f ol and χ i−1 = eΘT i−1
with the pa-

rameters and symbols having the same meaning as in section 3.1.1. We can see that the DALEC1

model is almost linear with respect to the state xi, with the only nonlinear term being the function

calculating GPP which is dependent on C f ol , this allowed the computation of the tangent linear

model by hand.
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We can use the linearised model with the linearised observation operator Hi to form the ma-

trix in equation (4.4) and compute the observability for a specific set of observations over a finite

window. We will need at least 5 observations of any type for the system to be observable as the

state x0 is of size 5 in the DALEC1 state estimation case. We first consider the observability for 5

observations of LAI. For DALEC1 LAI takes the form

LAIi =
Ci

f ol

clma
. (4.20)

We then have the linearised observation operator

Hi =
∂LAIi

∂xi
=

(
1

clma
0 0 0 0

)
. (4.21)

Using the linearised observation operator and the linear model from equation (4.19) we can com-

pute Ĥ for 5 observations of LAI on consecutive time steps

Ĥ =



H0

H1M0

...

H4M3,0


=



1
clma

0 0 0 0

1
clma

((1−θ f ol)+ f f ol(1− fauto)ζ
0) 0 0 0 0

1
clma

∏
1
i=0((1−θ f ol)+ f f ol(1− fauto)ζ

i) 0 0 0 0

1
clma

∏
2
i=0((1−θ f ol)+ f f ol(1− fauto)ζ

i) 0 0 0 0

1
clma

∏
3
i=0((1−θ f ol)+ f f ol(1− fauto)ζ

i) 0 0 0 0


, (4.22)

so that no matter how many observations of LAI we add, our system will not be observable as

the rows of Ĥ are all linearly dependant, so that Ĥ in this case has rank 1. We can repeat this for

different observations to see for which observation types our system is observable.

In figure 4.1 we have shown results for the rank of Ĥ when we have 5 observations in each

case; this has also been tested with increasing numbers of observations being added to the system

with the results remaining unchanged. We can see that our system is observable for 5 observations

of the soil and organic matter carbon pool Csom.

The system is observable for observations of Csom. This physically makes sense as all the

carbon in the system, that is not respired to the atmosphere, eventually ends up in the soil and

organic matter carbon pool (Csom). In a similar way Ĥ is also full rank for observations of NEE and

ground respiration. We can see from the form of these observations in DALEC1 that they both
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 Ĥ

Figure 4.1: Rank of the observability matrix Ĥ for 5 observations of different types. The ranks
shown here are computed analytically using SymPy (Joyner et al., 2012).

contain indirect observations of Csom with NEE taking the form

NEE i =−(1− fauto)GPPi(Ci−1
f ol ,Ψ)+θlitCliteΘT i

+θsomCsomeΘT i
(4.23)

with a corresponding linearised observation operator

Hi =
∂NEE i

∂xi
=

(
−(1− fauto)ζ

i 0 0 θliteΘT i
θsomeΘT i

)
, (4.24)

and for ground respiration

Gi
resp =

1
3

fautoGPPi(Ci−1
f ol ,Ψ)+θlitCliteΘT i

+θsomCsomeΘT i
, (4.25)

with a corresponding linearised observation operator

Hi =
∂Gi

resp

∂xi
=

(
1
3 fautoζ i 0 0 θliteΘT i

θsomeΘT i

)
. (4.26)

Here we have assumed the fraction of total autotrophic respiration from below ground to be 1
3 .
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At flux tower sites, NEE is the most observed quantity. These results give us confidence that

we can construct a unique solution when working with flux tower data. We will further explore

the concept of observability for the joint parameter and state estimation case with DALEC2 in

section 4.5.2.

4.5.2 DALEC2 state and parameter estimation

For DALEC2 we perform joint parameter and state estimation and have an augmented state of

size n = 23. The augmented state is made up of the 6 carbon pool state members and 17 model

parameters as described in section 3.1.3. As we are also estimating the parameters of DALEC2 the

concept of observability for our system is closely linked to the concept of identifiability (Navon,

1998). A system is identifiable if given observations of the state variables and knowledge of the

model dynamics it is possible to obtain a unique deterministic set of model parameter values

(Ljung, 1998). If a model parameter is not observable it will not be identifiable (Jacquez and Greif,

1985). It is therefore useful to compute the observability of the DALEC2 joint parameter and state

estimation system.

We compute observability in the same way as in section 4.5.1 by finding the rank of Ĥ for

a given set of observations. For the state and parameter estimation case we cannot compute the

observability of the system analytically, it is therefore important to check that the numerical cal-

culation of the rank of Ĥ for DALEC1 is equal to the rank when calculated analytically. This will

give us confidence that our implementation of the numeric rank is correct for DALEC2 when ap-

plied to a well-conditioned problem as the implementation is the same in both cases. We have

tested our numeric implementation for the state estimation case with DALEC1 and find the same

results for the rank of Ĥ as for the analytic case, as shown in table 4.1. We calculate the rank of the

Ĥ matrix using a singular value decomposition (SVD). If the condition number of Ĥ is large this

calculation can become inaccurate (Paige, 1981). This is a problem we encounter in the DALEC2

case when trying to calculate the rank of Ĥ directly.

Figure 4.2 highlights the problems we have calculating the rank of the Ĥ matrix for the

DALEC2 joint parameter and state estimation case. In figure 4.2a we see that for 23 observa-

tions of NEE our system is unobservable as we have a rank deficient Ĥ. However, we cannot trust

the rank calculation of Ĥ in this case. Figure 4.2b shows that for 23 observations of NEE, Ĥ has a

condition number in the order of 1019. The condition number of a matrix corresponds to the ratio
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Observation Rank of Ĥ (numeric) Rank of Ĥ (analytic)
LAI 1 1
C f ol 1 1
Croo 2 2
Cwoo 2 2
Clit 3 3
Csom 5 5
NEE 5 5
Gresp 5 5

Table 4.1: Rank of Ĥ for 5 observations of different types for both numeric and analytic implemen-
tations with DALEC1.

of the largest to the smallest singular values. A condition number of this size means that we have

very small singular values. In the calculation of the rank of a matrix using an SVD we define the

rank to be the number of singular values greater than the threshold tol = max(S) * max(n,

m) * eps (Press et al., 2007), where S is the vector of singular values, n and m are the rows

and columns of the matrix whose rank we wish to calculate and eps is the machine accuracy for

the datatype of S (In this case a double-precision float with eps = 2.22e-16). For 23 observa-

tions of NEE, Ĥ is classed as being rank deficient as tol = 1.02e-10 and the three smallest

singular values of Ĥ are [1.39e-11, 7.84e-15, 1.46e-15] but here we are working past

the accuracy of the computer and so cannot have confidence that Ĥ is rank deficient in this case.

In order to address the problem of ill-conditioning of the Ĥ matrix we can instead calculate

the rank of a control variable transform (CVT) observability matrix, R̂
−1/2

ĤD1/2, where the sym-

bols have the same meaning as in section 2.1.2, with D = diag(B). The rank of R̂
−1/2

ĤD1/2 and

Ĥ are the same since R̂ and D are both full rank matrices. The results using this new better con-

ditioned matrix are shown in Figure 4.3. From Figure 4.3b we can see this matrix is much better

conditioned than Ĥ, and for 23 observations of NEE we now have an observable system. Although

the condition numbers here are still large we can have more confidence in these results as we are

working within the precision of the computer.

In the previous experiments we have considered increasing numbers of NEE observations

taken on adjacent days. It is also useful to consider the observability of the system when we

have a number of observations randomly distributed throughout a time window. This is more

consistent with what we expect from the real data we have to work with.

Figure 4.4 shows the observability for an increasing number of observations distributed
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Figure 4.2: Observability of DALEC2 for Ĥ with an increasing number of NEE observations dis-
played alongside the condition number for the Ĥ matrices.

through a 1 year assimilation window. In this case we are using the matrix Ĥ and not the trans-

formed observability matrix. In figure 4.4 we see that having the observations randomly dis-

tributed throughout a 1 year assimilation window has improved the conditioning of Ĥ in compar-

ison to figure 4.2. This is due to the observations being randomly distributed rather than adjacent.

The rows of Ĥ are more distinct when being evolved to different times in the year by the tangent

linear model rather than evolved to adjacent days only. However, we still have a rank deficient Ĥ

for the 23 NEE observation case. From figure 4.4b we see that this is the case where the condition

number peaks. As we add more randomly distributed observations the condition number of Ĥ is

reduced by an order of 102 and we have a full rank Ĥ.

In figure 4.5 we again see that using the CVT observability matrix has much improved the

conditioning of the problem in comparison to figure 4.4. We now see that the DALEC2 system

is observable when we have 23 observations of NEE randomly distributed throughout the 1 year

assimilation window. We have more confidence that this is the case as the condition numbers for

the CVT observability matrix are almost half the values of those for Ĥ. We again see a similar

pattern in figure 4.5 for the condition numbers with a peak for 23 NEE observations and then a

reduction of order 102 when more observations are added.

We have tested the observability of the system for observations of NEE when we have dif-
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Figure 4.3: Observability of the CVT DALEC2 for R̂
−1/2

ĤD1/2 with an increasing number of NEE

observations displayed alongside the condition number for the R̂
−1/2

ĤD1/2 matrices.

ferent driving data, linearising around different states and with different distributions of observa-

tions throughout our assimilation window and in every case we have an observable system given

an adequate number of NEE observations (at least 23). We can therefore have confidence that

for the available data, typically 60-80 observations of daily NEE for any year’s window, we can

construct a unique solution with the observations alone.

4.6 DALEC1 information content results

4.6.1 Information content for a single observation

For the DALEC1 state estimation we can calculate the analytic representation of the informa-

tion content measures discussed in section 4.3. This will allow us to understand how the in-

formation content changes for differing numbers of observations, different observation types and

the effect of including observation error correlations in the assimilation scheme, before moving

onto work with the larger DALEC2 joint parameter and state estimation case. For these ex-

periments the elements of the state vector have corresponding background standard deviations
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Figure 4.4: Observability of DALEC2 for a Ĥ with an increasing number of NEE observations
randomly distributed through a 1 year assimilation window (left). Condition number for the
Ĥ matrices (right). In this example we show results for one realisation of randomly distributed
observations.

σc f ol,b,σcroo,b,σcwoo,b,σclit,b,σcsom,b. We then have

B =



σ2
c f ol,b 0 0 0 0

0 σ2
croo,b 0 0 0

0 0 σ2
cwoo,b 0 0

0 0 0 σ2
clit,b 0

0 0 0 0 σ2
csom,b


. (4.27)

We begin by considering the Shannon Information Content (SIC) and degrees of freedom for

signal (d f s) for a single observation of LAI. We have the linearised observation operator

Hi =
∂LAIi

∂xi
=

∂

∂xi

(Ci
f ol

clma

)
=

(
1

clma
0 0 0 0

)
. (4.28)

As we have a single observation at one time, our observation error covariance matrix, R, is just

the variance of our observation of LAI at time t0 (σ2
LAI,o). Therefore,

Ri = σ
2
LAI,o. (4.29)
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Figure 4.5: Observability of the CVT DALEC2 system for R̂
−1/2

ĤD1/2 with an increasing number
of NEE observations randomly distributed through a 1 year assimilation window (left). Condition

number for the R̂
−1/2

ĤD1/2 matrices (right).

We then have from equation (2.16),

A = (J′′)−1

= (B−1 + ĤT R̂−1Ĥ)−1

= (B−1 +HT
0 R−1

0 H0)
−1

=



c2
lmaσ2

LAI,oσ2
c f ol,b

σ2
c f ol,b+c2

lmaσ2
LAI,o

0 0 0 0

0 σ2
croo,b 0 0 0

0 0 σ2
cwoo,b 0 0

0 0 0 σ2
clit,b 0

0 0 0 0 σ2
csom,b


.

(4.30)

We can now derive the SIC and d f s using equation (4.17) and (4.15) as,

SIC =
1
2

ln

∣∣∣∣B∣∣∣∣∣∣∣∣A∣∣∣∣ =
1
2

ln
(c2

lmaσ2
LAI,o +σ2

c f ol,b)

c2
lmaσ2

LAI,o
=

1
2

ln
(

1+
σ2

c f ol,b

c2
lmaσ2

LAI,o

)
(4.31)
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and

d f s = n− tr(B−1A) = 5−
( c2

lmaσ2
LAI,o

(c2
lmaσ2

LAI,o +σ2
c f ol,b)

+4
)
= 1−

c2
lmaσ2

LAI,o

(c2
lmaσ2

LAI,o +σ2
c f ol,b)

. (4.32)

We see that in general for a direct observation of any of the carbon pools C we have

SIC =
1
2

ln
(

1+
σ2

c,b

σ2
c,o

)
(4.33)

and

d f s = 1−
σ2

c,o

(σ2
c,o +σ2

c,b)
, (4.34)

where σc,o and σc,b are the observation and background standard deviations respectively, corre-

sponding to any of the 5 carbon pools. We see the SIC for a single observation of one of the carbon

pools is dependent on the ratio between the observation and background variances. The carbon

pool observation which will give us the highest SIC is the observation with the largest ratio
σ2

c,b
σ2

c,o
.

This is also the case for d f s. Assuming a fixed background standard deviation, the carbon pool

observation which will give us the highest information content is the pool which we can mea-

sure most accurately, as expected. From equations (4.31) and (4.32) for an observation of LAI the

information content is also dependent on clma the parameter describing leaf mass area.

Next we consider the information content in a single observation of NEE. We have

Hi =
∂NEE i

∂xi
=

(
−(1− fauto)ζ

i 0 0 θliteΘT i
θsomeΘT i

)
(4.35)

and

Ri = σ
2
NEE,o. (4.36)

We then find

SIC =
1
2

ln

(
1+

( fauto−1)2(ζ i)2σ2
c f ol,b +(eΘT i

)2(θ 2
somσ2

csom,b +θ 2
litσ

2
clit,b)

σ2
NEE,o

)
(4.37)

and

d f s = 1−
σ2

NEE,o

( fauto−1)2(ζ i)2σ2
c f ol,b +(eΘT i

)2(θ 2
somσ2

csom,b +θ 2
litσ

2
clit,b)+σ2

NEE,o
. (4.38)

We see that Equations (4.37) and (4.38) have a similar form to Equations (4.33) and (4.34). The in-

formation content is again dependent on the ratio between the observation and background vari-
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ances. The information content for the observations of NEE is also dependent on the magnitude

of the first derivative of GPP with respect to C f ol and the magnitude of the exponential function of

temperature controlling the rate of heterotrophic respiration, eΘT i
. Both the first derivative of GPP

and eΘT i
will be of greater magnitude when we have higher mean daily temperatures. This means

that observations of NEE made at times with higher temperatures will have higher information

content and more of an impact on data assimilation results.
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Figure 4.6: SIC for a single NEE observation changing throughout a year’s window using driving
data from a forest of ponderosa pine in Oregon taken in 2007 (left). Mean daily temperature for
the same site and period (right).

In Figure 4.6 we show how closely SIC is related to mean daily temperature for NEE obser-

vations throughout a year’s window using daily driving data from a forest of ponderosa pine in

Oregon (as described in section 4.4). Higher information content in summer observations of NEE

makes physical sense. In summertime fluxes of carbon through the forest ecosystem are of greater

magnitude than in winter, with more photosynthesis and respiration occurring. This gives us

more information about the fluxes of carbon through our system in summertime observations of

NEE. It is important to consider this result when planning for down time or routine maintenance

at flux tower sites measuring NEE. The temperature dependence of information content will also

hold true for other observations whose observation operators include the nonlinear temperature

term controlling heterotrophic respiration. These observations include ground respiration, mea-

sured using soil respiration chambers, and total ecosystem respiration, estimated from nighttime

NEE measurements.

In Figure 4.6a we have assumed constant prior and observation standard deviations. This

is an accurate assumption for our prior errors. However, it has been shown that NEE errors are

heteroscedastic (Richardson et al., 2008) and therefore scale with the magnitude of the flux. This
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would reduce the magnitude of the results shown in Figure 4.6a, as our standard deviation in

observations of summer NEE would be larger, reducing the information content.

For Figure 4.6a we have used a numerical implementation in Python to calculate the SIC

varying for 365 days of driving data. It is important to test our numerical implementation for cor-

rectness. In table 4.2 we show the SIC and d f s calculated both analytically and numerically. From

this table we can see that both analytic and numerical implementations give us the same result

to 15 or more significant figures. This gives us a degree of confidence that our implementation is

also correct for DALEC2. In this table we have assumed constant prior and observation standard

deviations for the carbon pools.

Obs. SIC analytic value SIC numeric value d f s analytic value d f s numeric value
NEE 0.0209343224569909 0.0209343224569913 0.0410042587324008 0.0410042587324008
C f ol 0.8047189562170501 0.8047189562170515 0.7999999999999998 0.7999999999999998
Croo 0.1838623900626585 0.1838623900626572 0.3076923076923075 0.3076923076923083
Cwoo 0.8047189562170501 0.8047189562170515 0.7999999999999998 0.7999999999999998
Clit 0.1838623900626585 0.1838623900626572 0.3076923076923075 0.3076923076923074
Csom 0.1838623900626585 0.1838623900626572 0.3076923076923075 0.3076923076923074

Table 4.2: Correctness tests showing numeric and analytic values of information content calculated
using 2007 driving data and parameter values from an Oregon ponderosa pine forest.

4.6.2 Information content for observations at a single time

We next consider the SIC when we have more than one observation at a single time. Here we will

investigate the representation of information content when assimilating an observation of NEE

with an observation of a carbon pool state member. We begin with a single observation of NEE

and an observation of C f ol . We have the linearised observation operator,

Hi =
∂

∂xi

(
NEE i,Ci

f ol
)
=

−(1− fauto)ζ
i 0 0 θliteΘT i

θsomeΘT i

1 0 0 0 0

 (4.39)

and observation error covariance matrix

Ri =

σ2
NEE,o 0

0 σ2
c f ol,o

 . (4.40)
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We then find,

SIC =
1
2

ln

(
1+

σ2
c f ol,b

σ2
c f ol,o

+
ξ i

σ2
NEE,o

+
σ2

c f ol,b(e
ΘT i

)2(θ 2
somσ2

csom,b +θ 2
litσ

2
clit,b)

σ2
NEE,oσ2

c f ol,o

)
(4.41)

where, ξ i = ( fauto−1)2(ζ i)2σ2
c f ol,b +(eΘT i

)2(θ 2
somσ2

csom,b +θ 2
litσ

2
clit,b). From equation (4.41) we can see

that we have the first order terms for both NEE and C f ol as in equations (4.33) and (4.37). We also

have a second order term for the combination of these observations. We can repeat this for the

other carbon pools and find for Hi =
∂

∂xi

(
NEE i,Ci

roo
)
,

SIC =
1
2

ln

(
1+

σ2
croo,b

σ2
croo,o

+
ξ i

σ2
NEE,o

+
σ2

croo,b

(
( fauto−1)2(ζ i)2σ2

c f ol,b +(eΘT i
)2(θ 2

somσ2
csom,b +θ 2

litσ
2
clit,b)

)
σ2

NEE,oσ2
croo,o

)
,

(4.42)

for Hi =
∂

∂xi

(
NEE i,Ci

woo
)
,

SIC =
1
2

ln

(
1+

σ2
cwoo,b

σ2
cwoo,o

+
ξ i

σ2
NEE,o

+
σ2

cwoo,b

(
( fauto−1)2(ζ i)2σ2

c f ol,b +(eΘT i
)2(θ 2

somσ2
csom,b +θ 2

litσ
2
clit,b)

)
σ2

NEE,oσ2
cwoo,o

)
,

(4.43)

for Hi =
∂

∂xi

(
NEE i,Ci

lit

)
,

SIC =
1
2

ln

(
1+

σ2
clit,b

σ2
clit,o

+
ξ i

σ2
NEE,o

+
σ2

clit,b

(
( fauto−1)2(ζ i)2σ2

c f ol,b +(eΘT i
)2θ 2

somσ2
csom,b

)
σ2

NEE,oσ2
clit,o

)
(4.44)

and for Hi =
∂

∂xi

(
NEE i,Ci

som
)
,

SIC =
1
2

ln

(
1+

σ2
csom,b

σ2
csom,o

+
ξ i

σ2
NEE,o

+
σ2

csom,b

(
( fauto−1)2(ζ i)2σ2

c f ol,b +(eΘT i
)2θ 2

litσ
2
clit,b

)
σ2

NEE,oσ2
csom,o

)
. (4.45)

Assuming constant prior and observation standard deviations across our carbon pool observa-

tions we see that the information content will be largest in equations (4.42) and (4.43). For both

Hi =
∂

∂xi

(
NEE i,Ci

roo
)

and Hi =
∂

∂xi

(
NEE i,Ci

woo
)

we have an extra term in the numerator for our

second order term corresponding to the combination of the two observations. If we consider the

linearised observation operator for both these cases,

Hi =
∂

∂xi

(
NEE i,Ci

roo
)
=

−(1− fauto)ζ
i 0 0 θliteΘT i

θsomeΘT i

0 1 0 0 0

 (4.46)
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and

Hi =
∂

∂xi

(
NEE i,Ci

woo
)
=

−(1− fauto)ζ
i 0 0 θliteΘT i

θsomeΘT i

0 0 1 0 0

 , (4.47)

we can see that these observations provide an orthogonal constraint to the observation of NEE.

Neither of these pools are observed with a single observation of NEE. We expect the information

content will be greater when assimilating Croo or Cwoo alongside NEE.

In practice we cannot assume constant prior and observation errors across the different car-

bon pools. Root carbon is hard to measure accurately (Brown, 2002). However, woody biomass

(Cwoo) is regularly measured using forest mensuration techniques such as the point-centred quarter

method (Dahdouh-Guebas and Koedam, 2006). Advancements in Light Detection And Ranging

(LiDAR) scanning (Lefsky et al., 1999) mean that we have increasingly more accurate observations

of woody biomass. The European Space Agency BIOMASS mission (Le Toan et al., 2011) will also

provide a much more abundant source of woody biomass measurements in the future. If we

consider NEE to be the main observation currently used in ecosystem data assimilation, then the

increasing number of available woody biomass measurements will benefit assimilation schemes

greatly.

4.6.3 Information content in successive observations

In section 4.6.1 we investigate the information in observation for DALEC1 at a single time. In

this section we will consider successive observations in time. It has been shown that the SIC in

observations is additive with successive observations in time. The proof for this can be found in

appendix A.1 of Fowler and Jan Van Leeuwen (2012). For DALEC1 we can see this if we calculate

the SIC for successive observations of foliar carbon, C f ol . We have the linearised observation

operator and observation error covariance matrix at time ti,

Hi =
∂Ci

f ol

∂xi
=

(
1 0 0 0 0

)
and Ri = σ

2
c f ol,o. (4.48)

For two successive observations of C f ol we have,

Ĥ =

 H0

H1M0

=

 1 0 0 0 0

(1−θ f ol)+ f f ol(1− fauto)ζ
0 0 0 0 0

 (4.49)
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and

R̂ =

R0 0

0 R1

=

σ2
c f ol,o 0

0 σ2
c f ol,o

 . (4.50)

We then have,

SIC =
1
2

ln
|B|
|A|

=
1
2

ln
(

1+
σ2

c f ol,b

σ2
c f ol,o

+
σ2

c f ol,bη2
0

σ2
c f ol,o

)
, (4.51)

where ηi = (1− θ f ol)+ f f ol(1− fauto)ζ
i. We see this is similar to equation (4.33) for the SIC of a

single carbon pool observation but with an added term evolved by the linearised model. Here the

second term is multiplied by η2
0 which is the square of the first element of the linearised model

M0. We can continue adding more observations at successive times. For three observations at

successive times we have,

SIC =
1
2

ln
(

1+
σ2

c f ol,b

σ2
c f ol,o

+
σ2

c f ol,bη2
0

σ2
c f ol,o

+
σ2

c f ol,bη2
0 η2

1

σ2
c f ol,o

)
, (4.52)

for four,

SIC =
1
2

ln
(

1+
σ2

c f ol,b

σ2
c f ol,o

+
σ2

c f ol,bη2
0

σ2
c f ol,o

+
σ2

c f ol,bη2
0 η2

1

σ2
c f ol,o

+
σ2

c f ol,bη2
0 η2

1 η2
2

σ2
c f ol,o

)
. (4.53)

Using a simple proof by induction we find that for n successive observations we have,

SIC for n successive observations of C f ol =
1
2

ln
(

1+
σ2

c f ol,b

σ2
c f ol,o

(
1+

n−2

∑
k=0

k

∏
i=0

η
2
i
))

. (4.54)

This demonstrates that SIC is additive for successive observations in time. In Figure 4.7 we have

plotted the SIC and d f s for increasing numbers of observations of C f ol , using a year of meteorolog-

ical driving data from a pine stand in Oregon. We see that as successive observations are added

the information content tends to a limit where we are adding no new information with extra ob-

servations of C f ol . For d f s this limit is one as we are only observing a single degree of freedom so

cannot constrain more than a single element of the state. For SIC we add a decreasing amount of

information as observations are made further away from the initial state. We find similar results

for all other carbon pools. This suggests making observations of any individual carbon pool for

a forest site too often is not cost effective as after just a few observations the information you are

adding to your system begins to decrease.

In section 4.6.1 it was shown that observations of NEE made during the summer had signifi-

cantly higher information content than those made during winter for an evergreen forest site. In

figure 4.8 we show that 27 days of successive winter NEE observations (made from January 1st
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(b) d f s for successive C f ol observations

Figure 4.7: SIC and d f s for as successive C f ol observations are added throughout a year’s window
using driving data from a pine stand in Oregon taken in 2007.

2007) are required to give the same information content as a single summer observation of NEE

(taken on 22nd June 2007).
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(b) d f s for successive NEE observations

Figure 4.8: Blue line: SIC and d f s for as successive NEE observations are added for 40 days from
the 1st January 2007 using driving data from a pine stand in Oregon, green dotted line: SIC and
d f s for a single summer observation of NEE made on 22nd June 2007.

4.6.4 Effect of time correlations between observation errors on information content

In this section we investigate the effect on the analytic representation of information content for

two successive observations of NEE when including an off-diagonal correlation term in the matrix

R̂. So that R̂ = D̂CD̂T, where D̂ is the diagonal matrix of observation standard deviations and C is

a correlation matrix of the same shape. We then have

R̂ = D̂CD̂T =

σnee,o 0

0 σnee,o


1 ρ

ρ 1


σnee,o 0

0 σnee,o

=

 σ2
nee,o ρσ2

nee,o

ρσ2
nee,o σ2

nee,o

 , (4.55)
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with 0≤ ρ < 1.

We have not shown the analytic representation for the SIC here as it is too large. We instead

use the symbolic Python package SymPy (Joyner et al., 2012) to plot the SIC for an increasing

value of ρ in figure 4.9. Figure 4.9 shows that as the size of time correlation ρ approaches 1
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Figure 4.9: Shannon information content for two successive observations of NEE when a varying
time correlation is included between observation errors.

the information content in the two observations of NEE decreases. This decrease in information

content makes sense as including the correlation in time is decreasing the amount of independent

information we are assimilating. This result is also seen in Järvinen et al. (1999) where including

a serial correlations between observation errors is shown to reduce the weight given to the mean

of the observations in the assimilation (equivalent to inflating the variance of the observations).

The effect of including correlations in time between NEE observation errors is further explored in

chapter 5.

4.7 DALEC2 information content results

4.7.1 Information content in observations for DALEC2

In this section we repeat and extend some of the results we have found for information content

with the DALEC1 state estimation case in section 4.6 to the DALEC2 joint parameter and state

estimation case. This means we now have an augmented state of 23 elements (17 parameters and

6 state variables) as opposed to just the 5 state members for DALEC1. For this reason we no longer

examine the analytic representations of information content but instead consider the information
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content calculated numerically for DALEC2.

In section 4.6.1 it was shown that for DALEC1 the information content for a single observation

of NEE was dependent on temperature. From Figure 4.10 we can see that this is still the case for

DALEC2. However the value of SIC is higher for DALEC2 in Figure 4.10 than for DALEC1 in

Figure 4.6 as the augmented state for the DALEC2 case also includes the parameters. This means

that a single observation of NEE is giving us information about more elements of the state than

for the DALEC1 state estimation case.
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(a) SIC for single NEE observation
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(b) Mean daily temperature for year’s data

Figure 4.10: SIC a single NEE observation changing throughout a year’s window using driving
data from a pine stand in Oregon taken in 2007 (left). Mean daily temperature for the same site
and period (right).

In figure 4.10 we have shown the information content varying for an evergreen forest site.

As DALEC2 can also be parameterised and run for deciduous sites (with much work in this the-

sis being undertaken at Forest Research’s deciduous study site, see section 3.2.1) it is important

to investigate the difference in information content between these cases. In order to visualise

this difference, in figure 4.11 we show the analysis sensitivity to observations or influence matrix

(Cardinali et al., 2004) as described in section 4.3.1, S = KT HT , for a year’s assimilation window

with 365 observations of NEE. The influence matrix will depend on the initial augmented state

we chose to linearise around, the driving data we use to run our model and the observations we

specify for assimilation. In figure 4.11 we use an initial augmented state optimised for the Alice

Holt deciduous forest and an initial augmented state optimised for an evergreen site in Oregon,

we then use the same yearly driving data for both states so that it is only the difference between

the initial augmented states of the sites effecting the difference between the influence matrices.

From figure 4.11 we can see that the influence of the assimilated observations of NEE is notice-

ably different between the deciduous and evergreen sites. However, in both cases at the beginning
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(a) Alice Holt deciduous site
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(b) Oregon evergreen site

Figure 4.11: Influence matrices and column absolute value sums as described in section 4.3.1,
showing the sensitivity of the modelled observations to the assimilated observations for a year’s
assimilation window starting at the beginning of January with 365 observations of NEE.

of the window there is a group of observations with similar influence. This makes sense as we are

predicting the initial augmented state for DALEC2, so that observations closer to this initial state

should have greater influence.

For the deciduous site in figure 4.11a we have groups of observations with high influence

from around day 125 to day 175 and from day 250 to day 300. We also have some high influence

observations between these two groups. High influence observations between these two groups

would be consistent with the results showing that NEE observations have higher information

content with higher temperatures, as the period between day 175 and 250 contains days with

higher mean temperatures. For the evergreen site in figure 4.11b, although we have a group of

observations at the beginning of the growing season with higher influence, we do not see a group

of with the same high influence between day 250 to day 300 as with the deciduous case. We still

see observations of high influence corresponding to times of higher temperatures for the evergreen

case.
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(a) Alice Holt deciduous site
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(b) Oregon evergreen site

Figure 4.12: Phenology of DALEC2 model for a deciduous and evergreen forest. Blue line: func-
tion controlling rate of leaf-on (φon), green line: function controlling rate of leaf-off (φo f f ).

In order to further investigate these groups of high influence observations we show the phe-

nology functions controlling the rate of leaf-on and leaf-off for the DALEC2 model in figure 4.12.

The description of phenology is the main difference between the more simplistic, evergreen only,

DALEC1 and DALEC2 which can be parameterised for both deciduous and evergreen sites. This

maybe what is causing the difference in information content between the models and between

the different sites. In figure 4.12 we see that the function controlling leaf-off for the deciduous

site has a far larger peak than that of the evergreen site. This is expected as the deciduous site

will drop all of its leaves at the end of the season. In both cases the forest puts most effort into

putting on new leaves at the start of the growing season. This highlights the fact that the NEE for

a deciduous site is highly controlled by phenology, as the forest cannot photosynthesise without

leaves. Therefore the observations of NEE that help to constrain the phenology of the site should

have a higher influence, as seen in figure 4.11a. Conversely for an evergreen site NEE is driven

less by phenology and more by the climatic driving data. Seeing a greater relationship between

temperature and information content for an evergreen site consequently makes sense and this can

be seen in figure 4.11b.

4.7.2 Effect of time correlations on observation information content

In section 4.6.3 it was shown that, for the analytic DALEC1 case, when assimilating two succes-

sive observations of NEE the SIC decreased when including a correlation in time between NEE

observation errors. It was noted that this was consistent with results found in Järvinen et al.

(1999) where including correlations between observation errors in time reduced the weight of the
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observations in the assimilation. In figure 4.13 we repeat the experiment in section 4.6.3 but for

the DALEC2 joint parameter and state estimation case with NEE observations for the year 1999

from the Alice Holt flux tower site, in order to verify that including a correlation in time reduces

the information content in assimilated observations. From figure 4.13 we see that we have sim-
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Figure 4.13: Shannon information content for 67 observations of NEE taken throughout a year’s
assimilation window when a varying time correlation is included between observation errors.

ilar results as in figure 4.9 where the information content in our observations decreases as we

increase the time correlation between the assimilated observation errors. However, in figure 4.13

we have a higher value of SIC as we are assimilating many more observations than in figure 4.9.

In figure 4.13 we have used the same correlation function as in section 5.3.6 to create a correlated

matrix R̂ and then varied the magnitude of the included correlation, ρ . The decreasing informa-

tion content with an increasing correlation between observation errors in time supports the results

in section 4.6.3. This is also consistent with the results of Järvinen et al. (1999) where including

correlations between observation errors in time is shown to reduce the weight given to the mean

of the observations in the assimilation (equivalent to inflating the variance of the observations).

The effect of these temporal error correlations is invertigated further in chapter 5.

4.8 Conclusions

In this chapter we have investigated both the observability and information content for observa-

tions relevant to forest carbon balance. In section 4.5.1 and section 4.5.2 we have shown that for

both DALEC1 and DALEC2 we do have an observable system with the available observations, in

this case NEE. An observable system here means that for data assimilation we can construct a so-

lution from the observational information alone. As we are dealing with a non-linear model here

71



we will only be able to find a locally unique solution from the observations, meaning that we may

find a solution at a local minima rather than the global minimum. This means that the solution

we are able to construct may still be subject to large errors and not represent some members of the

state correctly.

In section 4.6 we have seen that for the DALEC1 evergreen case the information content in

observations of NEE is largely dependent on temperature, with higher temperatures meaning

higher information content. This is important for informing planned maintenance or down time

at flux tower sites measuring NEE. This dependence of information content on temperature is also

seen for observations of ground respiration and total ecosystem respiration. When assimilated

at the same time as NEE we have found that most information is added when the additional

observation provides an orthogonal constraint to that of NEE. This is the case for root carbon

(Croo) and woody biomass carbon (Cwoo). The European Space Agency BIOMASS mission being

launched soon should add valuable information to current data assimilation schemes. When using

DALEC1 and assimilating successive observations in time it was shown that as observations are

added further away in time from the initial state their impact is decreased. For two successive

observations of NEE it was also shown that including a correlation in time between observation

errors decreases the information content in the assimilated observations. This is consistent with

results found in Järvinen et al. (1999) where including correlations between observation errors in

time is shown to reduce the weight given to the mean of the observations in the assimilation.

In section 4.7 we again see the temperature dependence of information content in observa-

tions of NEE for DALEC2. However, for DALEC2 we also have varying information content

based on the type of ecosystem we are observing. For a deciduous forest site, we see that the

information content in observations of NEE is also strongly dependent on the time of growing

season. Observations made at the time of leaf-on and leaf-off have higher influence on the results

of the assimilation. Obviously, a deciduous ecosystems NEE is highly controlled by phenology,

as the forest cannot photosynthesise without leaves. Therefore the observations of NEE that help

to constrain the phenology of the site should have a higher influence. For an evergreen forest site

we see much less dependence on phenology and have a greater relationship between temperature

and information content. When including correlations in time between observation errors, we

again see similar results as in section 4.6. An increasing correlation, ρ , reduces the information

content in the assimilated observations.
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The information content in observations for data assimilation is strongly dependent on both

the uncertainty in the observations and the uncertainty in prior model predictions. In order to fur-

ther improve our understanding of which observations carry most influence in data assimilation

schemes it is imperative that we improve current estimates and representations of observational

and prior model errors.
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Chapter 5

Investigating the role of prior and

observation error correlations

This chapter has been previously published as: Pinnington, E. M., E. Casella, S. L. Dance, A. S.

Lawless, J. I. Morison, N. K. Nichols, M. Wilkinson and T. L. Quaife, 2016: Investigating the role

of prior and observation error correlations in improving a model forecast of forest carbon balance

using four-dimensional variational data assimilation. Agricultural and Forest Meteorology, 228229,

299 – 314, doi: http://dx.doi.org/10.1016/j.agrformet.2016.07.006

5.1 Abstract

Efforts to implement variational data assimilation routines with functional ecology models and

land surface models have been limited, with sequential and Markov chain Monte Carlo data as-

similation methods being prevalent. When data assimilation has been used with models of carbon

balance, prior or “background” errors (in the initial state and parameter values) and observation

errors have largely been treated as independent and uncorrelated. Correlations between back-

ground errors have long been known to be a key aspect of data assimilation in numerical weather

prediction. More recently, it has been shown that accounting for correlated observation errors in

the assimilation algorithm can considerably improve data assimilation results and forecasts. In

this paper we implement a Four-Dimensional Variational data assimilation (4D-Var) scheme with

a simple model of forest carbon balance, for joint parameter and state estimation and assimilate

daily observations of Net Ecosystem CO2 Exchange (NEE) taken at the Alice Holt forest CO2 flux
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site in Hampshire, UK. We then investigate the effect of specifying correlations between param-

eter and state variables in background error statistics and the effect of specifying correlations in

time between observation errors. The idea of including these correlations in time is new and has

not been previously explored in carbon balance model data assimilation. In data assimilation,

background and observation error statistics are often described by the background error covari-

ance matrix and the observation error covariance matrix. We outline novel methods for creating

correlated versions of these matrices, using a set of previously postulated dynamical constraints

to include correlations in the background error statistics and a Gaussian correlation function to

include time correlations in the observation error statistics. The methods used in this paper will

allow the inclusion of time correlations between many different observation types in the assim-

ilation algorithm, meaning that previously neglected information can be accounted for. In our

experiments we assimilate a single year of NEE observations and then run a forecast for the next

14 years. We compare the results using our new correlated background and observation error

covariance matrices and those using diagonal covariance matrices. We find that using the new

correlated matrices reduces the root mean square error in the 14 year forecast of daily NEE by 44%

decreasing from 4.22 g C m−2day−1 to 2.38 g C m−2day−1.

5.2 Introduction

The land surface and oceans are responsible for removing around half of all human emitted

carbon-dioxide from the atmosphere and therefore mediate the effect of anthropogenic induced

climate change. Terrestrial ecosystem carbon uptake is the least understood process in the global

carbon cycle (Ciais et al., 2014). It is therefore vital that we improve understanding of the carbon

uptake of terrestrial ecosystems and their response to climate change in order to better constrain

predictions of future carbon budgets. Observations of the Net Ecosystem Exchange (NEE) of CO2

between terrestrial ecosystems and the atmosphere are now routinely made at flux tower sites

world-wide, at sub-hourly resolution and covering multiple years (Baldocchi, 2008), providing a

valuable resource for carbon balance model validation and data assimilation.

Data assimilation is the process of combining a mathematical model with observations in or-

der to improve the estimate of the state of a system. Data assimilation has successfully been used

in many applications to significantly improve model state and forecasts. Perhaps the most impor-

tant application has been in numerical weather prediction where data assimilation has contributed
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to the forecast accuracy being increased at longer lead times, with the four day forecast in 2014

having the same level of accuracy as the one day forecast in 1979 (Bauer et al., 2015). This increase

in forecast skill is obviously not solely due to data assimilation but also increased quality and res-

olution of observations along with improvements in model structure, however the introduction

and evolution of data assimilation has played a large part (Dee et al., 2011). The current method

implemented at many leading operational numerical weather prediction centres is known as Four-

Dimensional Variational data assimilation (4D-Var) (Bonavita et al., 2015; Clayton et al., 2013),

which has been shown to be a significant improvement over its predecessor three-dimensional

variational data assimilation (Lorenc and Rawlins, 2005). Variational assimilation techniques min-

imise a cost function to find the optimal state of a system given all available knowledge of errors

in the model and observations. The minimisation routine typically requires the derivative of the

model which can sometimes prove difficult to calculate. Using techniques such as automatic-

differentiation (Renaud, 1997) can reduce the time taken to implement the derivative of a model.

In numerical weather prediction data assimilation has been predominately used for state es-

timation whilst keeping parameters fixed. This is because numerical weather prediction is mainly

dependent on the initial state with model physics being well understood. Ecosystem carbon cycle

models are more dependent on finding the correct set of parameters to describe the ecosystem of

interest (Luo et al., 2015). This is possibly why Monte Carlo Markov chain (MCMC) data assim-

ilation methods have been used more with ecosystem carbon cycle models. Smaller ecosystem

models are much less computationally expensive to run than large numerical weather prediction

models, meaning that MCMC methods (requiring many more model runs than variational as-

similation methods) are more easily implemented. For larger scale and more complex ecosystem

models variational methods represent a much more computationally efficient option for data as-

similation. Variational data assimilation can be used for joint parameter and state estimation by

augmenting the state vector with the parameters (Navon, 1998). By including the parameters in

the state vector we must also specify error statistics and error correlations for them. Smith et al.

(2009) show that the prescription of these error statistics and their correlations can have a signifi-

cant impact on parameter-state estimates obtained from the assimilation.

Many different observations relevant to the carbon balance of forests have now been com-

bined with functional ecology models, using data assimilation, in order to improve our knowl-

edge of ecological systems (Zobitz et al., 2011; Fox et al., 2009; Richardson et al., 2010; Quaife et al.,

2008; Zobitz et al., 2014; Niu et al., 2014). Two such models that have been used extensively with
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data assimilation are the Data Assimilation Linked Ecosystem Carbon (DALEC) model (Williams

et al., 2005) and the Simplified Photosynthesis and Evapo-Transpiration (SIPNET) model (Braswell

et al., 2005). Nearly all data assimilation routines built with these models have used sequential and

Monte Carlo Markov chain (MCMC) data assimilation methods with the exception of a variational

routine being implemented for DALEC by Delahaies et al. (2013). There have been examples of

global land surface models being implemented with variational methods such as the ORganizing

Carbon and Hydrology In Dynamic EcosystEms model (ORCHIDEE) (Krinner et al., 2005) and

the Biosphere Energy Transfer HYdrology scheme (BETHY) in a Carbon Cycle Data Assimilation

System (CCDAS) (Kaminski et al., 2013). These examples have mainly been used to assimilate

data from satellite and atmospheric CO2 observations with only a few cases where site level data

has also been assimilated (Verbeeck et al., 2011; Bacour et al., 2015).

Forest carbon balance model parameters are often determined in advance of using the model

for forecasting by calibration of the model against observations (Richardson et al., 2010; Bloom and

Williams, 2015). Here we take the alternative approach of concurrent state-parameter estimation.

A key difference between the joint state-parameter estimation approach and a priori calibration is

the way that the observational data is used. Pre-calibration approaches train the model against his-

torical data and so become infeasible when there is a lack of sufficient observational information

prior to the model forecast period. Joint state-parameter estimation methods have the advantage

that observations could be used as they arrive in real time, by sequential assimilation cycling.

This approach also gives the possibility of adapting to changes in the forest (e.g., tree thinning,

fires etc.) that may change the parameter values over time.

Background errors (describing our knowledge of error in prior model estimates before data

assimilation) and observation errors have largely been treated as uncorrelated and independent

in ecosystem model data assimilation schemes. In 3D and 4DVar schemes background and ob-

servation errors are represented by the error covariance matrices B and R respectively. The off-

diagonal elements of these matrices indicate the correlations between errors in the parameter and

state variables for B and the correlations between observation errors for R. In the assimilation, the

off-diagonal terms in the B matrix act to spread information between the state and augmented pa-

rameter variables (Kalnay, 2003). This means that assimilating observations of one state variable

can act to update different state and parameter variables in the assimilation when correlations are

included in B. In 4D-Var the B matrix is propagated implicitly by the forecast model, so that even

a propagated diagonal B matrix can develop correlations throughout an assimilation window.
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These correlations will only be in the propagated B matrix, with the B matrix valid at the initial

time remaining unchanged. Including correlations in B has been shown to significantly improve

data assimilation results in numerical weather prediction (Bannister, 2008).

Including correlations between observation errors has only started to be explored recently in

numerical weather prediction, with R still often treated as diagonal (Stewart et al., 2013). Includ-

ing some correlation structure in R has been shown to improve forecast accuracy (Weston et al.,

2014). Currently the correlations included in R have been mainly between observations made

at the the same time rather than correlations between observations throughout time. When as-

similating observations, data streams with many more observations can have a greater impact on

the assimilation than those with fewer observations. In Richardson et al. (2010) this problem is

discussed when assimilating large numbers of NEE observations along with smaller numbers of

leaf area index and soil respiration observations. To address this problem Richardson et al. uses

a cost function that calculates the product of the departures from the observations rather than a

cost function which sums these departures, giving a relative rather than absolute measure of the

goodness-of-fit to the observations. This problem is also encountered in Bacour et al. (2015) when

assimilating daily eddy covariance data with weekly observations of the FrAction of Photosyn-

thetically Active Radiation (FAPAR). In Bacour et al. (2015) the error in observations of FAPAR is

divided by two in order to give these less frequent observations more weight in the assimilation

algorithm. Specifying serial time correlations between observations represents another way of ad-

dressing this problem, whilst also adding valuable information to the data assimilation routine.

Including serial correlations between observations of the same quantity decreases the impact of

these observations (Järvinen et al., 1999) therefore increasing the impact of less frequent observa-

tions.

In this paper we implement the new version of DALEC (DALEC2 (Bloom and Williams, 2015))

in a 4D-Var data assimilation scheme for joint state and parameter estimation, assimilating daily

NEE observations from the Alice Holt flux site in Hampshire, UK (Wilkinson et al., 2012). This

assimilation scheme is then subjected to rigorous testing to ensure correctness. A new method is

outlined for including parameter and state correlations in the background “prior” error covariance

matrix. Currently parameter and state errors are largely treated as independent and uncorrelated

when data assimilation has been used with models of carbon balance. We also introduce a novel

method for including serial time correlations in the observation error covariance matrix. The idea

of including time correlations between observation errors is new and has not been previously
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explored in carbon balance model data assimilation. These correlated matrices are then used in a

series of experiments in order to examine the effect that including correlations in the assimilation

scheme has on the results.

5.3 Model and Data Assimilation Methods

5.3.1 Alice Holt research forest

Alice Holt Forest is a research forest area managed by the UK Forestry Commission located in

Hampshire, SE England. Forest Research has been operating a CO2 flux measurement tower in a

portion of the forest, the Straits Inclosure, since 1998 so it is one of the longer forest site CO2 flux

records, globally. The Straits Inclosure is a 90ha area of managed deciduous broadleaved planta-

tion woodland, presently approximately 80 years old, on a surface water gley soil. The majority

of the canopy trees are oak (Quercus robur L.), with an understory of hazel (Corylus avellana L.)

and hawthorn (Crataegus monogyna Jacq.); but there is a small area of conifers (Pinus nigra J. F.

Arnold) within the tower measurement footprint area in some weather conditions. Further details

of the Straits Inclosure site and the measurement procedures are given in Wilkinson et al. (2012),

together with analysis of stand-scale 30 minute average net CO2 fluxes (NEE) measured by stan-

dard eddy covariance methods from 1998-2011. The data used here span from January 1999 to

December 2013, and consist of the NEE fluxes and meteorological driving data of temperatures,

irradiance and atmospheric CO2 concentration. The original NEE data were subjected to normal

quality control procedures, including u∗ filtering to remove unreliable data when there were low

turbulence night time conditions, as described in Wilkinson et al. (2012), but were not gap-filled.

To compute daily NEE observations we take the sum over the 48 measurements made each day.

We only select days where there is no missing data and over 90% of CO2 flux observations have a

quality control flag associated with the best observations and no observations associated with the

worst from the EddyPro flux processing software (LI-COR, Inc., 2015).

5.3.2 The DALEC2 model

The DALEC2 model is a simple process-based model describing the carbon balance of a forest

ecosystem (Bloom and Williams, 2015) and is the new version of the original DALEC (Williams
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et al., 2005). The model is constructed of six carbon pools (labile (Clab), foliage (C f ), fine roots (Cr),

woody stems and coarse roots (Cw), fresh leaf and fine root litter (Cl) and soil organic matter and

coarse woody debris (Cs)) linked via fluxes. The aggregated canopy model (ACM) (Williams et al.,

1997) is used to calculate daily gross primary production (GPP) of the forest, taking meteorological

driving data and the modelled leaf area index (a function of C f ) as arguments. Figure 5.1 shows a

schematic of how the carbon pools are linked in DALEC2.

Figure 5.1: Representation of the fluxes in the DALEC2 carbon balance model. Green arrows
represent C allocation, purple arrows represent litter fall and decomposition fluxes, blue arrows
represent respiration fluxes and the red arrow represents the influence of leaf area index in the
GPP function.

The model equations for the carbon pools at day i are as follows:

GPPi = ACM(Ci−1
f ol ,clma,ce f f ,Ψ) (5.1)

Ci
lab =Ci−1

lab +(1− fauto)(1− f f ol) flabGPPi−ΦonCi−1
lab , (5.2)

Ci
f ol =Ci−1

f ol +ΦonCi−1
lab +(1− fauto) f f olGPPi−Φo f fCi−1

f ol , (5.3)

Ci
roo =Ci−1

roo +(1− fauto)(1− f f ol)(1− flab) frooGPPi−θrooCi−1
roo , (5.4)

Ci
woo =Ci−1

woo +(1− fauto)(1− f f ol)(1− flab)(1− froo)GPPi−θwooCi−1
woo, (5.5)

Ci
lit =Ci−1

lit +θrooCi−1
roo +Φo f fCi−1

f ol − (θlit +θmin)eΘT i−1
Ci−1

lit , (5.6)

Ci
som =Ci−1

som +θwooCi−1
woo +θmineΘT i−1

Ci−1
lit −θsomeΘT i−1

Ci−1
som, (5.7)

where T i−1 is the daily mean temperature, Ψ represents the meteorological driving data used in

the GPP function and Φon/Φo f f are functions controlling leaf-on and leaf-off. Descriptions for

each model parameter used in equations (5.1) to (5.7) are included in the appendix in table 5.3.

DALEC2 differs from the original DALEC in that it can be parameterised for both deciduous and
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evergreen sites with Φon and Φo f f being able to reproduce the phenology of either type of site. The

full details of this version of DALEC can be found in Bloom and Williams (2015).

5.3.3 4D-Var

Following the approach of Smith et al. (2011) for joint state and parameter estimation, we consider

the discrete nonlinear dynamical system given by

zi = fi−1→i(zi−1,pi−1), (5.8)

where zi ∈ Rn is the state vector at time ti, fi−1→i is the nonlinear model operator propagating the

state at time ti−1 to time ti for i = 1,2, . . . ,N and pi−1 ∈ Rq is a vector of q model parameters at

time ti−1. For DALEC2 the state vector zi = (Ci
lab,C

i
f or,C

i
roo,C

i
woo,C

i
lit ,C

i
som)

T , with the parameters

shown in table 5.3. Given a set of fixed parameters, the value of the forecast at time ti is uniquely

determined by the initial value. The model parameters are not updated by the nonlinear model

operator, therefore the evolution of the parameters is given by,

pi = pi−1, (5.9)

for i = 1,2, . . . ,N. We define the new vector x by joining the parameter vector p with the model

state vector z, giving us the augmented state vector

x =

p

z

 ∈ Rq+n. (5.10)

We define the augmented system model by

xi = mi−1→i(xi−1), (5.11)

where

mi−1→i(xi−1) =

 pi−1

fi−1→i(zi−1,pi−1)

=

pi

zi

 ∈ Rq+n. (5.12)
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The available observations at time ti are represented by the vector yi ∈ Rri which are related to the

augmented state vector through the equation

yi = hi(xi)+ εi, (5.13)

where hi : Rq+n→Rri is the observation operator mapping the augmented state vector to observa-

tion space and εi ∈ Rri represents the observation errors. These errors are usually assumed to be

unbiased, Gaussian and serially uncorrelated with known covariance matrices Ri.

In the 4D-Var data assimilation detailed here we aim to find the parameter and initial state

values such that the model trajectory best fits the data over some time window, given some prior

information about the system. The output from 4D-Var is an updated set of parameters, and an

updated model state, valid at the beginning of the time window. The updated model state may be

used as initial conditions for a forecast using the full nonlinear DALEC2 model. We assume that

at time t0 we have an initial estimate to the augmented state, usually referred to as the background

vector denoted xb. This background is assumed to have unbiased, Gaussian errors with known

covariance matrix B. Adding the background term ensures that our problem is well posed and

that we can find a locally unique solution (Tremolet, 2006). In 4D-Var we aim to find the initial

state that minimises the weighted least squares distance to the background while minimising the

weighted least squares distance of the model trajectory to the observations over the time window

t0, . . . , tN (Lawless, 2013). We do this by finding the state xa
0 at time t0 that minimises the cost

function

J(x0) =
1
2
(x0−xb)T B−1(x0−xb)+

1
2

N

∑
i=0

(yi−hi(xi))
T R−1

i (yi−hi(xi)), (5.14)

subject to the augmented states xi satisfying the nonlinear dynamical model (5.11). The state

that minimises the cost function, xa
0, is commonly called the analysis. This state is found using a

minimisation routine that takes as its input arguments the cost function, the background vector

(xb) and also the gradient of the cost function given as,

∇J(x0) = B−1(x0−xb)−
N

∑
i=0

MT
i,0HT

i R−1
i (yi−hi(xi)) (5.15)

where Hi =
∂hi(xi)

∂xi
is the linearized observation operator and Mi,0 = Mi−1Mi−2 · · ·M0 is the tangent

linear model with Mi =
∂mi−1→i(xi)

∂xi
. In practice ∇J(x0) is calculated using the method of Lagrange

multipliers as shown in Lawless (2013). We can rewrite the cost function and its gradient to avoid
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the sum notation as,

J(x0) =
1
2
(x0−xb)T B−1(x0−xb)+

1
2
(ŷ− ĥ(x0))

T R̂
−1
(ŷ− ĥ(x0)) (5.16)

and

∇J(x0) = B−1(x0−xb)− ĤT R̂
−1
(ŷ− ĥ(x0)), (5.17)

where,

ŷ =



y0

y1
...

yN


, ĥ(x0) =



h0(x0)

h1(m0→1(x0))

...

hN(m0→N(x0))


, R̂ =



R0,0 R0,1 . . . R0,N

R1,0 R1,1 . . . R1,N

...
...

. . .
...

RN,0 RN,1 . . . RN,N


and Ĥ =



H0

H1M0

...

HNMN,0


.

(5.18)

Solving the cost function in this form also allows us to build serial time correlations into the

observation error covariance matrix R̂. The off-diagonal blocks of R̂ represent correlations in time

between assimilated observations and are usually taken to be zero. In section 5.3.6 we show how

these off-diagonal blocks can be specified. We can also calculate the posterior or analysis error

covariance matrix after assimilation as,

A = (B−1 + ĤT R̂
−1Ĥ)−1. (5.19)

We can use this matrix to estimate the uncertainty in our parameter and initial state variables after

assimilation.

5.3.4 Implementation and testing of 4D-Var system

In our DALEC2 4D-Var scheme we are performing joint parameter and state estimation. Typi-

cally MCMC techniques have been used for joint parameter and state estimation with functional

ecology models, such as DALEC2. However 4D-Var has been used for joint parameter and state

estimation with global carbon cycle models (Kaminski et al., 2013). The variational approach is

computationally efficient and robust, making it particularly suited to large problems with complex

models. The augmented state vector, x0, corresponds to the vector of the 17 model parameters and

6 initial carbon pool values, which can be found in the appendix in table 5.3. Here the nonlinear
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model (DALEC2) only updates the initial carbon pool values when evolving the augmented state

vector forward in time with the parameters being held constant. To find the background estimate,

xb, to the augmented state vector we can either use a previous DALEC2 model forecast estimate

of the state of the system for the site (when available) or use expert elicitation to define likely state

and parameter values and ranges for the site. The background vector (xb) and its corresponding

standard deviations (see table 5.3) used in this paper were provided from existing runs of the

the CARbon DAta-MOdel fraMework (CARDAMOM) (Exbrayat et al., 2015). The CARDAMOM

output is a dataset derived from satellite observations of leaf area index which provides a rea-

sonable first guess to DALEC2 state and parameter values for the Alice Holt research site. In

this paper we assimilate observations of daily NEE. From Richardson et al. (2008) the measure-

ment error in observations of daily NEE is between 0.2 to 0.8 g C m−2day−1. Richardson et al.

(2008) also shows that flux errors are heteroscedastic. We assume a constant standard deviation of

0.5 g C m−2day−1 in the assimilated observations of daily NEE as we found this standard devia-

tion gave the best weighting to the observations in the assimilation algorithm, producing the best

results for the forecast of NEE after assimilation. Assuming this constant standard deviation also

allows for correlations in time between observation errors to be included more easily. Ignoring

the heteroscedastic nature of NEE errors may influence results by giving observations of larger

magnitude a higher weight than would be realistic. Future work should try to incorporate the

heteroscedastic nature of NEE errors.

In order to find the tangent linear model (TLM) for DALEC2 it is necessary to find the deriva-

tive of the model at each time step with respect to the 17 model parameters and the 6 carbon pools.

We use the AlgoPy automatic differentiation package (Walter and Lehmann, 2013) in Python to

calculate the TLM at each time step. This package uses forward mode automatic differentia-

tion to calculate the derivative of the model. In the following tests we use a diagonal approx-

imation to the background and observation error covariance matrices so that, Bdiag = diag(σb)
2

and R̂diag = diag(σo)
2, where σb is the vector of background standard deviations found in ta-

ble 5.3 and σo is the vector of observational standard deviations, for a single observation of NEE

σo = 0.5 g C m−2day−1. To minimise the cost function we use the truncated Newton iteration

method (Nocedal and Wright, 1999) from the Python package Scipy.optimize (Jones et al., 2001).

This method uses a number of stopping criteria to ensure convergence to a minimum of our cost

function. In sections 5.3.4.1 to 5.3.4.3 we show tests of our scheme.
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5.3.4.1 Test of tangent linear model

The TLM is used in the calculation of the gradient of our cost function in 4D-Var. We can have

confidence that our implementation of the TLM for DALEC2 is correct as it passes the following

relevant tests (Li et al., 1994). In 4D-Var we assume the tangent linear hypothesis,

m0→i(x0 + γδx0)≈m0→i(x0)+ γMi,0δx0, (5.20)

where δx0 is a perturbation of the initial augmented state x0 and γ is a parameter controlling the

size of this perturbation. The validity of this assumption depends on how nonlinear the model is,

the length of the assimilation window and the size of the augmented state perturbation δx0. We

can test this by rearranging equation (5.20) to find,

||m0→i(x0 + γδx0)−m0→i(x0)− γMi,0δx0||
||γMi,0δx0||

→ 0, (5.21)

as γ → 0 (here we are using the Euclidean norm). Equation (5.21) should hold if our implementa-

tion of the TLM is correct, even for a weakly non-linear model. Figure 5.2 shows equation (5.21)

plotted for DALEC2 with i fixed at 731 days, a fixed 5% perturbation δx0 and values of γ approach-

ing zero . Figure 5.2 shows that the TLM behaves as expected for values of γ approaching 0. This

was also tested for different choices of x0 and sizes of perturbation with similar results.
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Figure 5.2: Plot of the tangent linear model test function (equation (5.21)) for DALEC2, for a fixed
TLM evolving the perturbed augmented state 731 days forward in time and a fixed 5% perturba-
tion, δx0.

It is also useful to show how the TLM behaves over a time window to see how the error in

the TLM grows as we evolve the augmented state further forward in time. We again rearrange
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equation (5.20) with an additional error term to find,

percentage error in TLM =
||m0→i(x0 + γδx0)−m0→i(x0)− γMi,0δx0||

||γMi,0δx0||
×100. (5.22)

Jan
 19

99

Apr
 19

99
Jul 

199
9

Oct
 19

99

Jan
 20

00

Apr
 20

00
Jul 

200
0

Oct
 20

00

Date

0

5

10

15

20

25

30

35

40

P
er
ce
nt
ag

e 
er
ro
r i
n 
TL

M

γ=6.00

γ=3.00

γ=1.00

Figure 5.3: Plot of the percentage error in the tangent linear model (equation (5.22)) for DALEC2
when evolving the model state forward over a period of two years with three different values of γ

and a fixed 5% perturbation δx0.

In figure 5.3 we plot the percentage error in the TLM tested throughout a two-year period as

DALEC2 is run forward. From figure 5.3 we can see that the TLM for DALEC2 performs well after

being run forward a year with less than a 7% error for all values of γ . By the second year we see

some peaks in the error in spring and autumn. This is due to leaf on and leaf off functions in the

TLM going out of phase with the nonlinear DALEC2. At these peaks the error reaches a maximum

at 35% then coming back to around 10% before growing again in the autumn. Although this level

of error is still acceptable we present results using a one year assimilation window in this paper as

in practice we could cycle assimilation windows to make use of multiple years of data (Moodey

et al., 2013).

5.3.4.2 Test of adjoint model

The adjoint model we have implemented for DALEC2 passes correctness tests. For the TLM Mi,0

and its adjoint MT
i,0 we have the identity

< Mi,0δx0,Mi,0δx0 >=< δx0,MT
i,0Mi,0δx0 > (5.23)
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for any inner product <,> and perturbation δx0. This is derived from the adjoint identity (Law-

less, 2013). Using the Euclidean inner product, equation (5.23) is equivalent to

(Mi,0δx0)
T (Mi,0δx0) = δxT

0 (M
T
i,0(Mi,0δx0)). (5.24)

We evaluated the left hand side and right hand side of this identity for differing values of x0 and

size of perturbation δx0 and showed that they were equal to machine precision.

5.3.4.3 Gradient test

The 4D-Var system we have developed passes tests for the gradient of the cost function (Navon

et al., 1992). In the implementation of the cost function and its gradient we regularise the problem

using a variable transform (Freitag et al., 2010). For the cost function J and its gradient ∇J we can

show that we have implemented ∇J correctly using the identity,

f (α) =
|J(x0 +αb)− J(x0)|

αbT
∇J(x0)

= 1+O(α), (5.25)

where b is a vector of unit length and α is a parameter controlling the size of the perturbation. For

small values of α not too close to machine precision we should have f (α) close to 1. Figure 5.4a

shows f (α) for a 365 day assimilation window with b = x0||x0||−1, we can see that f (α)→ 1 as

α → 0, as expected until f (α) gets too close to machine zero at order α = 10−11. This was also

tested with b in different directions and similar results obtained.

We can also plot | f (α)− 1|, where we expect | f (α)− 1| → 0 as α → 0. In figure 5.4b we

have plotted | f (α)−1| for the same conditions as in figure 5.4a, we can see that | f (α)−1| → 0 as

α→ 0, as expected. This gives us confidence that the gradient of the cost function is implemented

correctly.

5.3.5 Including correlations in the background error covariance matrix

As discussed in section 5.2, including correlations in B impacts how information from assimilated

observations is spread between different types of analysis variables (Bannister, 2008). We explored

a number of different methods in order to include parameter-state correlations in B. In this paper

we present a method using a set of ecological dynamical constraints, based on expert judgement,
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Figure 5.4: Tests of the gradient of the cost function for a 365 day assimilation window with b =
x0||x0||−1.

on model parameters and state variables from Bloom and Williams (2015). Bloom and Williams

(2015) show that implementing these constraints in a Metropolis Hastings MCMC data assimi-

lation routine improves results significantly. The constraints impose conditions on carbon pool

turnover and allocation ratios, steady state proximity and growth and the decay of model carbon

pools.

In order to create a correlated background error covariance matrix, Bcorr, using these con-

straints we create an ensemble of state vectors which we then take the covariance of to give us

Bcorr. To create this ensemble we use the following procedure:

1. Draw a random augmented state vector, xi, from the multivariate truncated normal distri-

bution described by

xi ∼N (xb,Bdiag), (5.26)

where Bdiag is the diagonal matrix described in section 5.3.4 and xi is bound by the parameter

and state ranges given in table 5.3 in the appendix.

2. Test this xi with the ecological dynamical constraints (requiring us to run the DALEC2 model

using this state).

3. If xi passes it is added to our ensemble, else it is discarded.

Once we have a full ensemble we then take the covariance of the ensemble to find Bcorr. We chose

an ensemble size of 1500 as a qualitative assessment using a larger ensemble showed little dif-

ference in correlations. In figure 5.5 we have plotted the correlation matrix or normalised error
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covariance matrix associated with Bcorr. This matrix includes both positive and negative correla-

tions between parameter and state variables, with correlations of 1 down the diagonal between

variables of the same quantity as expected. The largest positive off-diagonal correlation is 0.42

between flab and Clab. This makes physical sense as flab is the parameter controlling the amount

of GPP allocated to the labile carbon pool, Clab.
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Figure 5.5: Background error correlation matrix created using method in section 5.3.5. Here the
correlation scale for off-diagonal values ranges from −0.5 to 0.5 with the correlation along the
diagonal being 1. For explanation of parameter and state variable symbols see table 5.3.

5.3.6 Specifying serial correlations in the observation error covariance matrix

The observation error covariance matrix does not only represent the instrumentation error for an

observation but also the error in the observation operator (mapping the model state to the observa-

tion) and representativity error (error arising from the model being unable resolve the spatial and

temporal scales of the observations). These other sources of error represented in R̂ can also lead

to correlations between observation errors (Waller et al., 2014). Errors in NEE observations come

from different sources such as instrument errors, sampled ecosystem structure from the variable

footprint of the flux tower and turbulent conditions (when there is low turbulence and limited air

mixing the magnitude of NEE is underestimated). These errors due to turbulence can still have

effect even after u∗ filtering (Papale et al., 2006a). Due to this dependence on atmospheric con-

ditions we expect the errors in observations of NEE to be serially correlated, as the atmospheric

signal itself is serially correlated (Daley, 1992). If we were assimilating half hourly observations

of NEE we would expect stronger correlations between observation errors, as atmospheric con-
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ditions are more constant at this time scale, with correlations between observation errors getting

weaker with lower frequency observations. Although some studies suggest that the correlation

between NEE measurement errors on the scale of a day is negligible (Lasslop et al., 2008), it is also

likely that error in the observation operator and representativity error will lead to observation

error correlations for NEE (Waller et al., 2014).

In section 5.3.3 we have re-written the 4D-Var cost function in equation (5.16) in order to allow

the specification of serial observation error correlations in our assimilation scheme. These serial

correlations are represented by the off-diagonal blocks of R̂. In work carried out with spatial

correlations it has been shown that the structure of the correlation is not critical and that it is

better to include some estimate of error correlation structure in the observation error covariance

matrix than wrongly assume that errors are independent (Stewart et al., 2013; Healy and White,

2005). As a first attempt we try including temporal correlations on the scale of the observation

frequency. We adapt the simple Gaussian model found in Järvinen et al. (1999) (a second order

autoregressive correlation function was also tested but is not presented here). The correlation r

between 2 observations at times t1 and t2 is given as,

r =


aexp

[
−(t1−t2)2

τ2

]
+(1−a)δt1−t2 |t1− t2| ≤ η

0 η < |t1− t2|
, (5.27)

where τ is the e-folding time in days, a controls the strength of correlation, δ is the Kronecker delta

and η is the cut off time after which the correlation between two observation errors is zero. We

have incorporated a cut off for correlations between observation errors as the assumed correlation

length scale for the assimilated observations is short. This cut off along with the form of correlation

function using the Kronecker delta helps ensure R̂ is positive definite and therefore invertible, as

required in the assimilation process. The standard deviation assumed in the observations of NEE

is 0.5 g C m−2day−1 as described in section 5.3.4.

Figure 5.6 shows the correlation matrix for R̂ created using equation (5.27). Here observations

made on adjacent days will have an error correlation of 0.3; this will then decay exponentially for

observations farther apart in time. There are 67 NEE observations in this one year assimilation

window. These observations are not all on adjacent days and this is evident in the structure of R̂.

The effect of the short e-folding time chosen here (τ = 4) provides the desired structure.
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Figure 5.6: Observation error correlation matrix for the 67 observations used in assimilation cre-
ated using method in section 5.3.6 with τ = 4, a = 0.3 and η = 4.

5.4 Results

5.4.1 Experimental design

In the following sections we present the results of four experiments where we vary the representa-

tions of B and R̂ while assimilating the same NEE observations in the window from the beginning

of January 1999 to the end of December 1999. As shown in figure 5.3 the performance of the tan-

gent linear model deteriorates after the first year. We then forecast the NEE over the next 14 years

(Jan 2000 - Dec 2013) and compare with the observed data. Using this shorter analysis window

with a long forecast allows us to see the effect of including correlations in the error statistics more

clearly, as we have a longer time-series of data with which to judge our forecast after data assimi-

lation. These experiments are outlined in table 5.1 where Bdiag and R̂diag are the diagonal matrices

of the parameter and state variances and the observations variances respectively and Bcorr and

R̂corr are the matrices as specified in section 5.3.5 and section 5.3.6 respectively.

Experiment Bdiag R̂diag Bcorr R̂corr

A × ×
B × ×
C × ×
D × ×

Table 5.1: The combination of error covariance matrices used in each data assimilation experiment.
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5.4.2 Experiment A

In this experiment Bdiag and R̂diag were used in the assimilation as described in section 5.4.1. Be-

cause these contain no correlations this experiment forms the baseline by which the subsequent

results from assimilation experiments are judged.

Figure 5.7a shows assimilation and forecast results for NEE. We can see that assimilating the

observations of NEE has improved the background with the analysis trajectory (green line) fitting

well with the observations during the assimilation window (Jan 1999- Dec 1999). The analysis

trajectory then diverges in the forecast (Jan 2000 - Dec 2013). This can be seen more clearly in

figue 5.8a, where there is an over prediction of respiration in the winter and the seasonal cycle

does not match that of the observations. This is also shown in figure 5.9a where we have plotted

the model-data differences for a year’s period averaged over the 14 years in the forecast period.

Figure 5.9a shows that the largest errors in our posterior model forecast occur as a result of not

capturing the phenology of the site correctly, in particular the start of the season from April to

June.

To see how well the forecast performs after assimilation we show a scatter plot of mod-

elled NEE against observed NEE in figure 5.10b. From table 5.2 the predictions have a Root-

Mean-Square Error (RMSE) of 4.22 g C m−2day−1 and a bias of −0.3 g C m−2day−1 for the fore-

cast of NEE, whereas the analysis (Jan 1999 - Dec 1999) has a RMSE of 1.36 g C m−2day−1 and

a bias of −0.03 g C m−2day−1. The background trajectory is the model trajectory for DALEC2

when run using the prior estimate of the parameter and initial state values described in sec-

tion 5.3.4. The background or prior model trajectory has a RMSE of 3.86 g C m−2day−1 and a

bias of −1.60 g C m−2day−1 in the analysis window (Jan 1999 - Dec 1999) and the same RMSE of

3.86 g C m−2day−1 but a bias of −1.36 g C m−2day−1 during the forecast period (Jan 2000 - Dec

2013). Although using Bdiag and R̂diag in the assimilation has considerably reduced the RMSE in

the analysis period, it has also increased the RMSE in the forecast of NEE. However it has reduced

the bias in the model forecast considerably from −1.36 g C m−2day−1 to −0.3 g C m−2day−1. The

bias in the background is due to the background model predicting less negative values of NEE

than observed (i.e. above the 1:1 line shown in figure 5.10a). This leads to considerably worse

results for the background trajectory than the analysis and its forecast for total forest carbon up-

take. It is important to compare our results here with the background trajectory. The background

acts as our initial prior model estimate and is the starting point for our minimisation in 4D-Var.
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Comparing our assimilation results with our background trajectory give us confidence that our

4D-Var scheme is improving the results of our model after assimilation.

5.4.3 Experiment B

Here Bcorr (as defined in section 5.3.5) and R̂diag are used in the assimilation. Figure 5.7b shows

assimilation and forecast results for NEE. In figure 5.8b we can see that the forecast performs

considerably better than in experiment A, with the analysis trajectory no longer over predicting

winter respiration and matching the observed seasonal cycle of NEE more closely in the forecast

period (Jan 2000 - Dec 2013). This can be seen more clearly in figure 5.9b where the improvement

in the period April-June is considerable as we capture green-up at the site more closely. Even

though we have improved the representation of leaf-on in our model significantly here we can

see from figure 5.8b that this is still where we have the largest uncertainty for our model after

assimilation. From figure 5.10c and table 5.2 we see that the forecast RMSE has almost halved

(now 2.56 g C m−2day−1) with a reduction in bias also, now −0.2 g C m−2day−1. In comparison

using Bcorr in the assimilation very slightly degrades the fit for the analysis (Jan 1999 - Dec 1999),

with a RMSE of 1.42 g C m−2day−1 and a bias of −0.04 g C m−2day−1, as shown in table 5.2.

As discussed in section 5.2 previous work has shown the importance of specifying parameter-

state correlations when using variational data assimilation for joint parameter and state estimation

(Smith et al., 2009). In 4D-Var the initial correlation structure is evolved implicitly through time.

However, in order to make full use of the observations it is essential to specify an accurate estimate

to the initial correlation structure. Therefore by not specifying these correlations in experiment A

we allow the parameter and state variables to attain unrealistic values in order to find the best fit

to the observations in the analysis window (Jan 1999 - Dec 1999), leading to the divergence seen

in the forecast (1999-2014) in experiment A.

We can see the effect that including correlations in B has on the analysis update in figure 5.11.

For some variables including correlations in B has had a large impact on the analysis update after

assimilation. This is particularly clear for the flab parameter. The largest positive off-diagonal cor-

relation in Bcorr is between Clab and flab, with flab also having a large positive correlation with clma

as shown in section 5.3.5. The effect of these correlations has been to change the analysis increment

for flab from being slightly positive in experiment A to being strongly negative by following the

analysis update of its correlated variables Clab and clma. From figure 5.11 we can also see some of
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the possible reasons for the improved fit to the observations in experiment B. From figure 5.9a the

largest errors in our model forecast of NEE in experiment A stem from a misrepresentation of the

phenology of the site in the months April-June. We see that the parameter controlling day of leaf

on (donset) has been updated slightly differently in comparison to experiment A, with day of leaf on

now being slightly later in the year (day 124 instead of 119), again this is due to the included corre-

lations in B. Even this small change in donset appears to reduce the errors at the start of the season

for experiment B as seen from figure 5.9b. The forecast is also no longer over predicting winter

respiration to the same extent as in experiment A. From figure 5.11 we see that the main parame-

ters controlling ecosystem respiration in NEE ( fauto, θlit , θsom, Θ) have been reduced in comparison

with experiment A, which we believe have led to an improved fit to observations in experiment B.

In experiment A we also had an over prediction of peak carbon uptake in summer which has been

improved in this experiment. From figure 5.11 we see that one of the parameters controlling the

magnitude of gross primary productivity (ce f f ) has been decreased in comparison to experiment

A. This appears to lead to less extreme predictions of peak summer carbon uptake than in experi-

ment A. Two parameters with a significant change from experiment A are f f ol and Clit ; however in

Chuter (2013) the DALEC model prediction of NEE is shown to be largely insensitive to variations

in these parameters.

The added constraints provided by the correlations in Bcorr acts to regularise the data assim-

ilation problem and avoid overfitting to the assimilated data by limiting the parameter space of

the problem (Smith et al., 2009). These correlations have been diagnosed using the ecological dy-

namical constraints from Bloom and Williams (2015), as shown in section 5.3.5, and help to limit

unrealistic behaviour for a mature forest site. Although this has led to a slightly degraded fit to

the observations in the analysis window (Jan 1999 - Dec 1999) it has also significantly improved

the fit to observations for the forecast (Jan 2000 - Dec 2013).

5.4.4 Experiment C

Here we use Bdiag and R̂corr (as defined in section 5.3.6) in the assimilation. Results shown in

figure 5.7c, 5.8c and 5.9c appear similar to those in section 5.4.2 however there are some differ-

ences. From table 5.2 and figure 5.10d we see a slight reduction in RMSE for the forecast (now

4.09 g C m−2day−1) in comparison with experiment A. As in experiment B the fit to the observa-

tions in the analysis window (Jan 1999 - Dec 1999) is very slightly degraded as the added cor-
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relations in R̂corr act to reduce the weight of the observations in the assimilation (Järvinen et al.,

1999). The changes seen when using R̂corr in the assimilation are less than when using Bcorr as the

correlations specified in R̂corr are on a short timescale and much weaker than those in Bcorr. In

figure 5.11 we can see that the changes between experiment A and C in the analysis increment are

much less than when using Bcorr.

We also expect that specifying time correlations in R̂ will help when assimilating other less

frequently sampled data streams along with NEE as the serial correlations reduce the weight given

to the mean of the more frequently sampled observations (here NEE) and also reduce the infor-

mation content of these more frequently sampled observations (Järvinen et al., 1999; Daley, 1992),

meaning that less frequently sampled data streams can have more impact on the assimilation.

5.4.5 Experiment D

In the final experiment we use Bcorr and R̂corr in the assimilation. Figure 5.8d, figure 5.8b and

5.9a shows that using both correlated matrices gives similar results as experiment B when Bcorr

is used with R̂diag. However using R̂corr in addition to Bcorr provides similar improvements as

in experiment C. From table 5.2 and figure 5.10e we see the forecast RMSE is slightly reduced

from results in experiment B to 2.38 g C m−2day−1. Using both matrices appears to combine the

beneficial effects described in both section 5.4.3 and section 5.4.4. In figure 5.11 we can see that the

analysis increment is very similar to experiment B.

5.4.6 Summary

In our experiments we have shown that both Bcorr and R̂corr have the effect of improving the

model forecast of NEE. As it can be difficult to inspect the skill of a certain model by only plotting

model trajectories, in figure 5.12 we show Taylor diagrams displaying a statistical comparison

of the four experiment and background analysis (Jan 1999 - Dec 1999) and forecast (Jan 2000 -

Dec 2013) results with the observations of NEE. Here the radial distances from the origin to the

points are proportional to the standard deviations of the observations and modelled observations

and the azimuthal positions give the correlation coefficient between the modelled and observed

NEE (Taylor, 2001). If a model predicted the observations perfectly it would have a correlation

coefficient of 1 and a radial distance matching that of the observations (represented by the dotted
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Figure 5.7: One year assimilation and fourteen year forecast of Alice Holt NEE with DALEC2,
blue dotted line: background model trajectory, green line: analysis and forecast after assimilation,
grey shading: Error in model after assimilation (+/- 3 standard deviations), red dots: observations
from Alice Holt flux site with error bars.
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Figure 5.8: As figure 5.7 but only showing the first and final two years results from the one year
assimilation and fourteen year forecast of Alice Holt NEE with DALEC2, blue dotted line: back-
ground model trajectory, green line: analysis and forecast after assimilation, grey shading: Error
in model after assimilation (+/- 3 standard deviations), red dots: observations from Alice Holt
flux site with error bars.
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Figure 5.9: Net ecosystem exchange model-data differences for the four experiments. Here each
point corresponds to the mean model-data difference for that day of the year over the 14 year
model forecast (Jan 2000 - Dec 2013).
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Figure 5.10: Forecast scatter plot of modelled daily NEE vs. observations for Jan 2000 - Dec 2013
(green dots). Blue line represents the 1-1 line.
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Figure 5.11: Normalised analysis increment
( (xa−xb)

xb

)
for the four experiments. Explanation of

parameter and state variable symbols in table 5.3.

line). Figure 5.12a shows that all the experiments give very similar results in the analysis window

(Jan 1999 - Dec 1999) with all the experiment points closely grouped on top of each other, whereas

figure 5.12b shows the significant difference between the experiment results in the forecast (Jan

2000 - Dec 2013), with experiments B and D being closer to the dotted line. In all our experiments

we find that θmin, Clab and C f ol reach the bounds after assimilation. In the case of θmin this is most

likely due to the fact that we do not have enough information to recover this parameter when

only assimilating observations of NEE, as the DALEC model prediction of NEE is insensitive to

variations in this parameter (Chuter, 2013). Assimilating more distinct data streams could help

avoid this edge-hitting behaviour. For Clab and C f ol this could suggest a flaw in the model or

the fact that the prescribed bounds need to be relaxed slightly for the studied ecosystem. Our

hypothesis is that the mechanism by which Clab is distributed to the leaves is over simplified; we

intend to test this in future work. In table 5.4 we show the standard deviations for our parameter

and state variables after assimilation. We can see that we have improved our confidence for most

of these variables after assimilation when compared with the standard deviations in table 5.3.

5.5 Discussion

In this paper we have implemented the DALEC2 functional ecology model in a 4D-Var data as-

similation scheme, building an adjoint of the DALEC2 model and applying rigorous tests to our

scheme. Using 4D-Var can provide much faster assimilation results than MCMC techniques as

we have knowledge of the derivative of the model. For our experiments the 4D-Var routine has

taken in the order of 102 function evaluations to converge to a minimum, whereas MCMC tech-
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(a) Analysis (Jan 1999 - Dec 1999) (b) Forecast (Jan 2000 - Dec 2013)

Figure 5.12: Taylor diagrams displaying statistical comparison of the four experiment and back-
ground analysis (Jan 1999 - Dec 1999) and forecast (Jan 2000 - Dec 2013) results with observations
of NEE (g C m−2day−1). The dotted line represents the standard deviation of the observations and
the contours represent values of constant root mean square error between model and observations.

niques using the same model take in the order of 108 function evaluations (Bloom and Williams,

2015). However, we do assume that the statistics of the problem are Gaussian whereas MCMC

techniques do not. We have shown that 4D-Var is a valid tool for improving the DALEC2 model

estimate of NEE and that even when assimilating only a single year of NEE observations we can

improve the forecast significantly. If more than one year was required, this type of data assimila-

tion routine could be run in cycling mode, allowing for the assimilation of multiple years of data

(Moodey et al., 2013). This also avoids any possible unstable behaviour associated with much

longer single assimilation windows. However, here our aim is to investigate the effect of speci-

fying correlations in background and observation error statistics on the forecast of NEE. We have

therefore assimilated just one year of NEE observations and produced a long 14 year forecast in

order to see more clearly the effect of including these correlations on the forecast when judging

against observations. The observations of daily NEE from the Alice Holt flux site are quite vari-

able year to year, peak summer uptake varies from −14.35 g C m−2day−1 to −9.04 g C m−2day−1,

and therefore provide a reasonable test for the ability of the DALEC2 model forecast, especially

over a 14 year period.

We then considered the nature of background and observation errors. The effect of specifying

parameter-state correlations in the background information and serial correlations between the

observation errors was explored.
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Analysis (Jan 1999 - Dec 1999)
Experiment RMSE (g C m−2day−1) Bias (g C m−2day−1) Correlation coefficient
Background 3.86 −1.60 0.70
A 1.36 −0.03 0.96
B 1.42 −0.04 0.95
C 1.37 −0.09 0.96
D 1.43 −0.09 0.95

Forecast (Jan 2000 - Dec 2013)
Experiment RMSE (g C m−2day−1) Bias (g C m−2day−1) Correlation coefficient
Background 3.86 −1.36 0.66
A 4.22 −0.30 0.79
B 2.56 −0.20 0.87
C 4.09 −0.51 0.78
D 2.38 −0.33 0.88

Table 5.2: Analysis (Jan 1999 - Dec 1999) and forecast (Jan 2000 - Dec 2013) results for experiments
and background when judged against observed NEE.

The technique presented here to specify Bcorr has been shown to have significantly improved

forecasts of NEE over using a diagonal representation of B. In section 5.4.3 we discuss how the cor-

relations in Bcorr impact the analysis update for the parameter and state variables (see figure 5.11)

causing the seasonal cycle of carbon uptake and magnitude of fluxes to fit more closely with the

observations than when using a diagonal B in the assimilation algorithm. These results agree with

those of Smith et al. (2009) where the importance of specifying parameter-state correlations when

performing joint parameter and state estimation with variational data assimilation was shown.

The added constraint provided by including correlations in the prior error covariance matrix, B,

acts to regularise the assimilation problem. Hence, the parameter and initial state values we re-

trieve from our data assimilation are more likely to be realistic, leading to better insight into the

studied system. For example we see from figure 5.11 that when using Bcorr in our assimilation

we find a much longer labile release period (cronset) than when using Bdiag. This means that the

period of green-up in our study site is possibly much longer than we would have estimated had

we based our analysis on our assimilation results using a matrix B with no correlations. The

method for specifying Bcorr in this paper used a series of ecological dynamical constraints taken

from Bloom and Williams (2015). Implementing correlations in the prior error statistics in this

way may prove difficult for models where these type of constraints are not available; however

there are other methods to build correlations into B. One technique we also tested (not presented

here) to create a correlated B involved evolving an ensemble of state vectors over the length of

the chosen assimilation window using the model (DALEC2) and then taking the covariance of
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the evolved ensemble. This gave us a B with parameter-state and state-state correlations, but no

parameter-parameter correlations as the parameters are not updated by the model. Using the B

created with this method also improved assimilation results significantly over using a diagonal

B. A larger number of different tests were run using different background vectors and variances

and it was found that specifying some form of correlation structure in B always made an improve-

ment to the results of the assimilation. As this work has only considered a single deciduous site,

it would be useful to apply the techniques detailed here for an evergreen site. Evergreen ecosys-

tems usually have less extreme seasonal variation, it will therefore be of interest to see if a similar

improvement for evergreen ecosystem forecast results is found when using a Bcorr created using

the same method.

The purpose of this exercise was to see how well we could forecast NEE while also inves-

tigating the effect of including correlations between errors. It was not an attempt to recover all

the parameters and state variables with a high level of accuracy. However, it is still instructive

to look at these values and compare with data where available. In Meir et al. (2002) an observed

range is given for leaf mass per area (clma) for the Alice Holt flux site of between 40 to 80 g C m−2.

The background value for clma in our experiments is 128.5 g C m−2. When using diagonal error

covariance matrices in experiment A we find a value of 38.7 g C m−2 for clma after assimilation

which is almost within the range given by Meir et al. (2002). In experiment D when using error

covariance matrices including correlations clma has a value of 51.6 g C m−2 after assimilation, this

is well within the observed range given by Meir et al. (2002). From observations made by Forest

Research we also have estimates of the above and below ground woody carbon pool (Cwoo) at the

start of 1999, with an observed value of 14258 g C m−2. It is not clear how uncertain this estimate

is. The background value for Cwoo in our experiments is 6506 g C m−2. When using diagonal error

covariance matrices in experiment A we find a value of 7291 g C m−2 for Cwoo, an increase but

still far away from the observed estimate. In experiment D when using error covariance matrices

including correlations Cwoo has a value of 7262 g C m−2 a similar result as experiment A. Here the

assimilation has not been able to recover a value of Cwoo similar to that of the observed estimate.

This is not necessarily of concern as we are not able to quantify the error in this observation. Also

we are assimilating observations of daily NEE only; NEE is the difference between Gross Primary

Productivity (GPP) and Total ecosystem respiration (RT), (NEE = RT - GPP), with neither GPP nor

RT being direct functions of Cwoo. Therefore it is unlikely that we will recover an accurate value of

Cwoo, as the assimilated observations are not significantly impacted by large changes in this state
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variable; this result is also discussed in Fox et al. (2009). This may also explains why we are able

to recover a reasonable value of clma from the assimilation, as from equation (5.1) we can see that

clma is one of the input arguments taken by GPP. The function calculating NEE will therefore be

sensitive to variations in the clma parameter and so assimilating observations of NEE could help

to constrain this parameter.

In numerical weather prediction it has been shown that including correlations in R can help

improve data assimilation results (Weston et al., 2014; Stewart et al., 2013). However the speci-

fied correlations have most commonly been satellite interchannel correlations with observations

errors still being considered independent in time. In this paper we have shown that including

correlations between observation errors in time can also improve data assimilation results, here

providing a slight improvement for the DALEC2 model forecast of NEE. Here we only see a small

impact on our results when using R̂corr in the assimilation as the correlations we have included

are weak (especially in comparison to those included in Bcorr) and on a short time-scale. We ex-

pect including correlations in R̂ will have more of an impact on data assimilation results when

assimilating data with stronger error correlations (i.e. finer temporal-resolution observations). We

also expect including these serial correlations to have an even greater impact when assimilating

more than one data stream as discussed in section 5.2. Using the form of R̂ given in this paper

for specifying serial correlations will also allow us to specify serial correlations between differ-

ent observation types. When running the DALEC2 model with a day-night time step, instead

of the daily time step used for this paper, this will allow us to build in the type of correlations

investigated by Baldocchi et al. (2015) between ecosystem respiration and canopy photosynthe-

sis. More work is needed to investigate the effect of including correlations between observations

errors when assimilating multiple data streams.

The R̂corr presented in this paper has a weak correlation (a = 0.3 as shown in section 5.3.6) in

time between observations of NEE, this representation of R̂corr has slightly improved the model

forecast of NEE. However other choices of R̂corr (with much stronger correlations between obser-

vations) tested for this paper degraded the forecast. This is probably due to the specified corre-

lations being unrealistic and highlights the fact that a reasonable estimate of the true correlation

structure for R̂corr is needed to have a positive impact on results. The development of a more diag-

nostic approach for the calculation of serial correlations in R̂ would be useful. One option would

be to adapt the Desroziers et al. (2005) diagnostic, which has been used successfully in numeri-

cal weather prediction for diagnosing observation error correlations for observations taken at the
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same time (Weston et al., 2014), and extending this technique to diagnose serial correlations.

5.6 Conclusion

Functional ecology and land surface model data assimilation routines largely treat prior estimates

of parameter and state uncertainties and observation errors as independent and uncorrelated. In

this paper we have shown the importance of including estimates of such correlations, especially

between background parameter and state errors when performing joint parameter and state esti-

mation.

When performing joint parameter and state estimation including correlations in the back-

ground error covariance matrix significantly improves the forecast after assimilation, in compar-

ison to using a diagonal representation of B. Specifying serial time correlations between obser-

vation errors in R̂ also improves the forecast and we expect these correlations to have a greater

impact when assimilating more than one data stream. More work is needed to investigate the ef-

fect of including these correlations when assimilating multiple data streams. The development of

a more diagnostic tool for the calculation of the error correlation structure in R̂ is also important.

When including both parameter-state correlations in B and time correlations between obser-

vation errors in R̂ and assimilating only a single year of NEE observations we can forecast 14 years

of NEE observations with a root-mean square error of 2.38 g C m−2day−1 and a correlation coef-

ficient of 0.88. This is a significant 44% reduction in error from the results when using a B and R̂

with no specified correlations of 4.22 g C m−2day−1 and a correlation coefficient of 0.79.
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5.8 Appendix

Parameter Description Prior esti-
mate (xb)

Standard de-
viation

Range

θmin Litter mineralisation rate (day−1) 9.810×10−4 2.030×10−3 10−5−10−2

fauto Autotrophic respiration fraction 5.190×10−1 1.168×10−1 0.3−0.7
f f ol Fraction of GPP allocated to foliage 1.086×10−1 1.116×10−1 0.01−0.5
froo Fraction of GPP allocated to fine

roots
4.844×10−1 2.989×10−1 0.01−0.5

clspan Determines annual leaf loss fraction 1.200×100 1.161×10−1 1.0001−10
θwoo Woody carbon turnover rate (day−1) 1.013×10−4 1.365×10−4 2.5 × 10−5 −

10−3

θroo Fine root carbon turnover rate
(day−1)

3.225×10−3 2.930×10−3 10−4−10−2

θlit Litter carbon turnover rate (day−1) 3.442×10−3 3.117×10−3 10−4−10−2

θsom Soil and organic carbon turnover
rate (day−1)

1.113×10−4 1.181×10−4 10−7−10−3

Θ Temperature dependance exponent
factor

4.147×10−2 1.623×10−2 0.018−0.08

ce f f Canopy efficiency parameter 7.144×101 2.042×101 10−100
donset Leaf onset day (day) 1.158×102 6.257×100 1−365
flab Fraction of GPP allocated to labile

carbon pool
3.204×10−1 1.145×10−1 0.01−0.5

cronset Labile carbon release period (days) 4.134×101 1.405×101 10−100
d f all Leaf fall day (day) 2.205×102 3.724×101 1−365
cr f all Leaf-fall period (days) 1.168×102 2.259×101 10−100
clma Leaf mass per area (g C m−2) 1.285×102 6.410×101 10−400
Clab Labile carbon pool (g C m−2) 1.365×102 6.626×101 10−1000
C f ol Foliar carbon pool (g C m−2) 6.864×101 3.590×101 10−1000
Croo Fine root carbon pool (g C m−2) 2.838×102 2.193×102 10−1000
Cwoo Above and below ground woody

carbon pool (g C m−2)
6.506×103 7.143×103 100−105

Clit Litter carbon pool (g C m−2) 5.988×102 5.450×102 10−1000
Csom Soil and organic carbon pool

(g C m−2)
1.936×103 1.276×103 100−2×105

Table 5.3: Parameter values and standard deviations for background vector used in experiments.
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Parameter A B C D
θmin 1.822×10−6 3.742×10−7 1.519×10−6 3.854×10−7

fauto 2.913×10−3 1.428×10−3 2.937×10−3 1.510×10−3

f f ol 5.459×10−3 4.581×10−3 6.797×10−3 4.591×10−3

froo 7.907×10−2 9.141×10−3 8.199×10−2 9.149×10−3

clspan 4.884×10−7 5.894×10−4 5.304×10−7 5.469×10−4

θwoo 1.849×10−8 8.365×10−9 1.849×10−8 8.365×10−9

θroo 6.870×10−6 3.494×10−6 7.326×10−6 3.508×10−6

θlit 3.144×10−6 4.808×10−7 2.242×10−6 4.635×10−7

θsom 1.178×10−8 6.848×10−9 1.210×10−8 6.850×10−9

Θ 7.905×10−5 6.808×10−5 8.010×10−5 6.978×10−5

ce f f 3.755×102 2.625×102 3.724×102 2.608×102

donset 3.552×101 3.755×101 3.649×101 3.766×101

flab 1.220×10−2 3.209×10−3 1.225×10−2 3.203×10−3

cronset 8.304×101 1.642×102 1.100×102 1.644×102

d f all 5.992×102 5.294×101 5.772×102 6.145×101

cr f all 1.540×102 1.521×102 1.604×102 1.599×102

clma 2.134×102 2.209×102 2.503×102 2.372×102

Clab 6.142×102 5.709×102 8.586×102 5.618×102

C f ol 7.971×102 1.212×102 8.029×102 1.285×102

Croo 3.984×104 2.539×104 4.114×104 2.553×104

Cwoo 5.075×107 2.764×107 5.075×107 2.764×107

Clit 4.157×104 5.416×104 7.179×104 5.532×104

Csom 1.454×106 1.106×106 1.482×106 1.105×106

Table 5.4: Standard deviations for each experiment after assimilation, calculated using equa-
tion 5.19.
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Chapter 6

Using data assimilation to understand

the effect of disturbance on the carbon

dynamics of the Alice Holt forest

The work in this chapter has been previously published as: Pinnington, E. M., E. Casella, S. L.

Dance, A. S. Lawless, J. I. L. Morison, N. K. Nichols, M. Wilkinson and T. L. Quaife, 2017: Un-

derstanding the effect of disturbance from selective felling on the carbon dynamics of a managed

woodland by combining observations with model predictions. Journal of Geophysical Research: Bio-

geosciences, 122 (4), 886–902, doi: 10.1002/2017JG003760

6.1 Abstract

The response of forests and terrestrial ecosystems to disturbance is an important process in the

global carbon cycle in the context of a changing climate. This study focuses on the effect of se-

lective felling (thinning) at a managed forest site. Previous statistical analyses of eddy covariance

data at the study site had found that disturbance from thinning resulted in no significant change

to net ecosystem carbon uptake. In order to better understand the effect of thinning on carbon

fluxes we use the mathematical technique of four-dimensional variational data assimilation. Data

assimilation provides a compelling alternative to more common statistical analyses of flux data

as it allows for the combination of many different sources of data, with the physical constraints
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of a dynamical model, to find an improved estimate of the state of a system. We develop new

observation operators to assimilate daytime and nighttime net ecosystem exchange observations

with a daily time-step model, increasing observations available by a factor of 4.25.

Our results support previous analyses, with a predicted net ecosystem carbon uptake for the

year 2015 of 426±116 g C m−2 for the unthinned forest and 420±78 g C m−2 for the thinned forest

despite a model-predicted reduction in gross primary productivity of 337 g C m−2. We show that

this is likely due to reduced ecosystem respiration post-disturbance compensating for a reduction

in gross primary productivity. This supports the theory of an upper limit of forest net carbon

uptake due to the magnitude of ecosystem respiration scaling with gross primary productivity.

6.2 Introduction

The response of forests and terrestrial ecosystems to disturbance (e.g. felling, fire, or insect out-

breaks) is one of the least understood components in the global carbon cycle (Ciais et al., 2014).

Current land surface models fail to represent the effect of disturbances on long-term carbon dy-

namics (Running, 2008), although these disturbances could have a significant effect on net land

surface carbon uptake. Indeed, there could be significant variations in the effect as the range of

forest disturbance can be wide: from stand-replacing disturbance (where tree mortality is close

to 100%) to non-stand-replacing disturbance, (where only a proportion of trees are lost). This pa-

per uses data assimilation to improve the modelling of the non-stand-replacing disturbance of

selective felling (thinning) on forest carbon dynamics.

Thinning is a silvicultural practice used to improve ecosystem services or the quality of a

final tree crop and is globally widespread. The effect of thinning on carbon budgets has largely

been ignored (Liu et al., 2011). Thinning has been shown to increase the basal growth increment

of remaining trees due to increased light and water availability which may indicate increased net

primary productivity in subsequent years (Brda et al., 1995; Martı́n-Benito et al., 2010). However,

Misson et al. (2005) found that the immediate effect of thinning can change an ecosystem from a

sink to a source of CO2, due to reduced gross primary productivity (GPP) following a reduction in

total leaf area and unchanged or heightened ecosystem respiration. Other studies, analysing flux-

tower eddy covariance records, find no significant change in the observed net ecosystem exchange

(NEE) of CO2 after thinning (Vesala et al., 2005; Moreaux et al., 2011; Dore et al., 2012; Saunders
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et al., 2012; Wilkinson et al., 2016). These studies suggest this is due to increased light availability

and reduced competition allowing ground vegetation to display increased GPP and compensate

for an increase in heterotrophic respiration post-disturbance.

Other studies have shown a significant reduction in the carbon content of rhizosphere soils

following tree felling (Hernesmaa et al., 2005). It has been shown that tree roots provide a rhizo-

sphere priming effect, greatly increasing the rate of soil organic carbon decomposition (Dijkstra

and Cheng, 2007). This is consistent with previous work carried out at the study site in this paper,

where it has been shown that the magnitude of ecosystem respiration is strongly coupled to the

magnitude of GPP (Heinemeyer et al., 2012). Predictions made by Kurz et al. (2008) about the

impacts of mountain pine beetle outbreaks in Northern American forests suggested a switch from

sink to source of carbon following this disturbance. However, the analysis of a diverse set of ob-

servations for an area with approximately 70% infested trees by Moore et al. (2013) revealed little

change in net CO2 flux, due to concurrent reductions in GPP and ecosystem respiration. Similar

results were also found from large scale tree girdling experiments (Högberg et al., 2001), where

1-2 months after girdling a 54% decrease in soil respiration was observed.

Here we used data assimilation, which is a mathematical technique for combining obser-

vations with prior model predictions in order to find the best estimate of a dynamical system.

Functional ecology models have been combined with many different observations relevant to the

carbon balance of forests (Quaife et al., 2008; Fox et al., 2009; Zobitz et al., 2011; Richardson et al.,

2010; Zobitz et al., 2014; Niu et al., 2014; Pinnington et al., 2016), leading to improved estimates of

model parameter and state variables and reduced uncertainty in model predictions. There have

been many efforts to model the effect of disturbance on forest ecosystems (Thornton et al., 2002;

Seidl et al., 2011), with a growing number of dynamic global vegetation models (Sitch et al., 2008),

some of which explicitly model the impact of disturbance e.g. Moorcroft et al. (2001). However, the

use of data assimilation has been limited to a few examples, all of which used satellite data (Hilker

et al., 2009; Kantzas et al., 2015). The authors are not aware of any studies assimilating site level

data to quantify disturbance effects. By assimilating observations relevant to post-disturbance

ecosystem carbon dynamics with prior model predictions of ecosystem behaviour, we can analyse

the retrieved parameters after data assimilation to find the model predicted effects of disturbance.

In this paper we investigate the effect of thinning on the carbon dynamics of the Alice Holt

flux site (Wilkinson et al., 2012), a deciduous managed woodland, following an event in 2014,
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when one side of the site was thinned and the other side left unmanaged. We present new ob-

servation operators for the assimilation of daytime and nighttime NEE observations with a daily

time-step model, in this case the Data Assimilation Linked Ecosystem Carbon (DALEC2) model

(Bloom and Williams, 2015). These methods require no model modification. We combine all avail-

able observations for 2015 with prior model predictions to find two sets of optimised model pa-

rameter and initial state values, corresponding to thinned and unthinned sides of the forest. We

then use these two versions of the model to seek to explain why the net uptake of carbon re-

mains unchanged even after removing a large proportion of the trees from one side. We find a

net ecosystem carbon uptake for the year 2015 of 426±116 g C m−2 for the unthinned forest and

420±78 g C m−2 for the thinned forest, despite a reduction in GPP of 337 g C m−2 for the thinned

forest when compared to the unthinned forest. We find that reduced ecosystem respiration for

the thinned forest allows for this unchanged net carbon uptake. The data assimilation techniques

presented in this paper could be applied for similar analyses at other sites and provide a novel

method to help elucidate the reasons behind ecosystem responses.

6.3 Observation and data assimilation methods

6.3.1 Alice Holt research forest

Alice Holt Forest is a research forest area managed by the UK Forestry Commission located in

Hampshire, SE England. Forest Research has been operating a CO2 flux measurement tower in a

portion of the forest, the Straits Inclosure, continuously since 1998. The Straits Inclosure is a 90 ha

area of deciduous broadleaved plantation woodland located on a surface water gley soil and has

been managed for the past 80 years. The majority of the canopy trees are oak (Quercus robur L.),

with an understory of hazel (Corylus avellana L.) and hawthorn (Crataegus monogyna Jacq.), but

there is a small area of conifers (Pinus nigra ssp. laricio (Maire) and P. sylvestris L.) within the tower

measurement footprint area depending on wind direction. Further details of the Straits Inclosure

site and the measurement procedures are given in Wilkinson et al. (2012), together with analysis

of stand-scale 30 minute average net CO2 fluxes (NEE) from 1998-2011.

As part of the management regime, the Straits Inclosure is subject to thinning, whereby a

proportion of trees are removed from the canopy in order to reduce competition and improve the

quality of the final tree crop. At the Straits, an intermediate thinning method is used with a portion
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of both subdominant and dominant trees being removed from the stand to stimulate the growth

of remaining dominant trees (Kerr and Haufe, 2011). The whole of the stand was thinned in 1995.

Subsequently the eastern side of the Straits was thinned in 2007 and then the western side in 2014.

The flux tower at the site is situated on the boundary between these two sides. This allows for

the use of a footprint model to split the flux record and thus analyse the effect of this disturbance

on carbon fluxes at the site. In Wilkinson et al. (2016) a statistical analysis of the eddy covariance

flux record found that there was no significant effect on the net carbon uptake of the eastern side

after thinning in 2007. In this paper we focus on the effect of disturbance on the western side after

thinning in 2014. We therefore refer to the western side as “thinned” forest and the eastern side as

“unthinned” forest, although the “unthinned” forest was previously thinned in 2007 and so will

have a different structure to a completely unmanaged forest.

6.3.2 Observations

In order to assess the effect the 2014 thinning had on the Straits Inclosure, an intensive field cam-

paign was undertaken by the lead author in 2015 to measure leaf area index and also to estimate

standing woody biomass. From the site we also have a long record of flux data, as discussed in

section 6.3.1. These observations span both the thinned and unthinned sides of the forest.

6.3.2.1 Leaf area index

To assess the impact of the 2014 thinning, three transects were established in the Straits Inclosure

for intensive sampling during 2015. A total of 435 sampling points were marked at 10 m apart,

using a GPS and fluorescent tree spray paint. Measurements of peak LAI (July 2015 - September

2015) were made using both a ceptometer and hemispherical photography. The transects were

walked twice with the ceptometer taking readings at every sampling point, giving 870 readings

in total. Hemispherical photographs were taken every 50 m as shown in Figure 6.1, giving 89

photographs in total.

We measured below-canopy Photosynthetically Active Radiation (PAR) using the ceptome-

ter while logging above-canopy PAR using a data logger and PAR sensor positioned outside the

canopy. We then estimated LAI using the above-canopy and below-canopy PAR readings (Fass-

nacht et al., 1994). For the hemispherical photographs, we used the HemiView software (Rich
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et al., 1999) which calculates the proportion of visible sky as a function of sky direction (gap frac-

tion) which it then uses to calculate LAI (Jonckheere et al., 2004).

Six litter traps were also established at points along the transects (positions shown in Fig-

ure 6.1) allowing for comparison with the other methods. These were sampled throughout the

leaf-fall season in 2015. We found the LAI derived from the litter traps was always greater than

LAI estimated from optical methods, as expected (Bréda, 2003). From the sampling of the litter

traps we also have estimates of leaf mass per leaf area for use in data assimilation. As the 6 litter

traps are not enough to describe the LAI for the research site (Kimmins, 1973), we used estimates

from the ceptometer and hemispherical photographs for data assimilation. We took the weighted

average (dependent on number of observations taken of each type) of the hemispherical photo-

graph and ceptometer estimated LAI and derived an LAI of 4.42 with a standard error of 0.07

for the eastern unthinned forest, and an LAI of 3.06 with a standard error of 0.07 for the western

thinned forest. We assimilated the mean of 299 LAI observations in the unthinned and 225 in the

thinned section of forest. Consequently the appropriate representation of error for data assimila-

tion is the standard error of the mean. From our litter trap observations we find a leaf mass per

area of 29 g C m−2 free soluble carbohydrates for both sides of the forest.

Figure 6.1: LAI derived from hemispherical photographs for the Straits Inclosure at 50m intervals
along three transects.
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6.3.2.2 Woody biomass

The method of Point-Centred Quarters (PCQ) was used to conduct a biomass survey as specified

in Dahdouh-Guebas and Koedam (2006). Along the three transects 114 points were sampled mea-

suring the Diameter at Breast Height (DBH) and the density of trees. We then used allometric

relationships between DBH and total above ground biomass and coarse root biomass, found in

work carried out by Forest Research and in McKay et al. (2003), to find an estimate of total woody

and coarse root carbon (referred to as Cwoo in the DALEC2 model). These observations are shown

in table 6.1.

Forest Research have carried out their own mensuration studies at the site. One such study

of the western thinned forest (at a similar time to our own PCQ measurements) found a tree

density of 225 ha−1 and an average DBH of 32 cm, which are in close agreement to the estimates in

table 6.1. This gives us confidence that earlier measurements taken by Forest Research before the

thinning are representative of the methods we have used. Measurements of the same section of

forest from 2009 found a tree density of 418 ha−1 and an average DBH of 28 cm. This suggests that

approximately 46% of trees have been removed during the 2014 thinning. From these estimates

we can also see the effect thinning has on the type of trees found at the site. The trees per hectare

has dropped dramatically after thinning but the mean DBH has increased, because the smaller

subdominant trees have been removed. The greater mean DBH of the eastern unthinned section,

34 cm, indicates that the thinning that took place in 2007 has allowed the dominant trees to grow

as a result of reduced competition.

Table 6.1: Point-centred quarter method observations for 2015.

Sector Tree den-
sity (ha−1)

Mean DBH
(cm)

Estimated woody biomass
and coarse root carbon (g
C m−2)

Unthinned (E) 272 34.12 13130
Thinned (W) 225 32.85 9908

6.3.2.3 Flux tower eddy covariance

The Straits Inclosure flux tower provides half-hourly observations from January 1999 to December

2015. These consist of the NEE fluxes and meteorological driving data of temperature, irradiance

and atmospheric CO2 concentration for use in the DALEC2 model. The NEE data was subject to u∗
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filtering (with a value of 0.2 m s−1), where data corresponding to low friction velocity values were

removed from the data set, and quality control procedures as described by Papale et al. (2006b),

but was not gap-filled. The resultant half-hourly NEE dataset was then split between observations

corresponding to the western thinned and eastern unthinned sides of the site using a flux-footprint

model. This model is dependent on wind speed and direction to calculate the location that the flux

tower is sampling. Partitioning the NEE data set in this way reduces the total number of available

NEE observations (see Wilkinson et al. (2016) for more details).

To match the time-step of our model we computed daily NEE observations by taking the

mean over the 48 measurements made each day, selecting only days where there is no missing

data. As we have been strict on the quality control of the flux record and not used any gap filling,

this presented a problem in terms of the number of daily NEE observations available. By further

splitting the flux record between two sides we retrieved very few total daily observations of NEE

for either side. In order to address this we computed day and nighttime NEE fluxes (NEEday and

NEEnight respectively) for use in data assimilation. We used a solar model to define whether NEE

measurements were made at daytime or nighttime. We then took the mean over the half-hourly

day or nighttime measurements, again only taking periods where there were no gaps in the data

so that we were only considering true observations. This provided us with a factor of 4.25 more

observations of NEE for assimilation, as seen in table 6.2. Because we are averaging over shorter

time periods we have a smaller probability of gaps and erroneous data. We see that we have more

daytime NEE observations than nighttime, as we tend to have much more turbulent air mixing

in daylight hours. Times of low turbulent mixing lead to an underestimation in flux values. In

section 6.3.3.2 we give details of how we relate these twice daily observations of NEE to a daily

time-step model.

Table 6.2: Number of observations of NEE, NEEday and NEEnight for East and West sides of the
Straits Inclosure for the year 2015.

Sector NEE NEEday NEEnight

Unthinned (E) 22 60 42
Thinned (W) 26 54 48

The errors in observations of daily NEE were assumed to be constant and set at

0.5 g C m−2day−1 by Williams et al. (2005), whereas Braswell et al. (2005) found these errors to

be closer to 1 g C m−2day−1. A more recent study finds a mean value of 0.8 g C m−2day−1 for
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NEE flux errors (Post et al., 2015). However, Richardson et al. (2008) show that flux errors are

heteroscedastic. To account for the heteroscedastic nature of NEE errors we define an error func-

tion that scales between 0.5 to 1 g C m−2day−1 based on the magnitude of the observation. This

function is defined as 0.5+ 0.04|NEEi
day| g C m−2day−1, where |NEEi

day| is the magnitude of the

daytime NEE observation on day i, this function is derived by considering the maximum and min-

imum —NEEi
day— values. Raupach et al. (2005) comment that nighttime measurements of NEE

are much more uncertain than daytime measurements. This is difficult to quantify, but here we

assume that nighttime flux errors are 3 times the magnitude of daytime errors. We therefore have

the error function of 1.5+ 0.12|NEEi
night| g C m−2day−1, where |NEEi

night| is the magnitude of the

nighttime NEE observation. We also include correlations in time between the errors in our obser-

vations of NEE, as discussed in Pinnington et al. (2016) (see Figure 6.13 and 6.14, supplementary

material).

6.3.3 Model and data assimilation

6.3.3.1 DALEC2 ecosystem carbon model

The DALEC2 model is a simple process-based model describing the carbon dynamics of a forest

ecosystem (Bloom and Williams, 2015). The model is constructed of six carbon pools (labile (Clab),

foliage (C f ol), fine roots (Croo), woody stems and coarse roots (Cwoo), fresh leaf and fine root litter

(Clit) and soil organic matter and coarse woody debris (Csom)) linked via fluxes. The aggregated

canopy model (ACM) (Williams et al., 1997) is used to calculate daily gross primary production

(GPP) of the forest, taking meteorological driving data and the modeled leaf area index (a function

of C f ol) as arguments. Figure 6.2 shows a schematic of how the carbon pools are linked in DALEC2;

full model equations can be found in the appendix, section 6.8.

6.3.3.2 Data assimilation

We implement Four-Dimensional Variational data assimilation (4D-Var) with the DALEC2 model

for joint parameter and state estimation (Navon, 1998). In 4D-Var we aim to find the parameter

and initial state values such that the model trajectory best fits the data over some time window,

given some prior information about the system. This prior information takes the form of an ini-

tial estimate of the parameter and state variables of the model, xb, valid at the initial time. This
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Figure 6.2: Representation of the fluxes in the DALEC2 carbon balance model. Green arrows
represent C allocation, purple arrows represent litter fall and decomposition fluxes, blue arrows
represent respiration fluxes and the red arrow represents the influence of leaf area index in the
GPP function.

prior is assumed to have unbiased, Gaussian errors with known covariance matrix B. Adding the

prior term ensures that our problem is well posed and that we can find a locally unique solution

(Tremolet, 2006). We aim to find the parameter and initial state values that minimise the weighted

squared distance to the prior and the weighted squared distance of the model trajectory to the

observations, over a time window of length N, with individual time points t0, . . . , tN . We do this by

finding the state xa at time t0 that minimises the cost function

J(x0) =
1
2
(x0−xb)T B−1(x0−xb)+

1
2

N

∑
i=0

(yi−hi(xi))
T R−1

i (yi−hi(xi)), (6.1)

where x0 is the vector of parameter and initial state values to be optimised, xi is the vector of model

variables at time ti, hi is the observation operator mapping the parameter and state values to the

observations, yi is the vector of observations at time ti and Ri is the observation error covariance

matrix. The time step, i, is 1 day in this case. Further details of the implemented data assimilation

scheme and specification of prior and observational errors can be found in Pinnington et al. (2016).

In this paper we assimilate day and nighttime NEE in order to increase the number of obser-

vations available to us and also better partition our modeled estimate of GPP and total ecosystem

respiration. As the DALEC2 model runs at a daily time step, this requires us to relate the daily

parameter and state values from the model to the twice-daily observations of NEE. We do this by

writing two new observation operators, one relating the model state and parameters to daytime

NEE, and the other to nighttime NEE. The NEE of CO2 at any given time is the difference between
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GPP and ecosystem respiration. For an observation of total daily NEE on day i we have,

NEE i =−GPPi(Ci
f ol,Ψ)+ fautoGPPi(Ci

f ol,Ψ)+θlitCi
lite

ΘT i
+θsomCi

someΘT i
, (6.2)

where Ψ represents meteorological driving data used in the calculation of GPP, fauto is the fraction

of autotrophic respiration, θlit is the litter carbon turnover rate, θsom is the soil and organic carbon

turnover rate, Θ is the temperature dependence exponent factor and T i is the mean temperature

over 24 hours. Further description can be found in the appendix section 6.8. The first term in

equation (6.2) represents gross primary productivity, the second autotrophic respiration and the

third and fourth terms heterotrophic respiration.

For total daytime NEE we have,

NEE i
day =−GPPi(Ci

f ol,Ψ)+δday fautoGPPi(Ci
f ol,Ψ)+δdayθlitCi

lite
ΘT i

day +δdayθsomCi
someΘT i

day (6.3)

where δday is number of daylight hours
24 , and T i

day is the mean temperature over daylight hours. Here we

still have the same term for GPP as in equation (6.2) as all photosynthesis occurs during daylight

hours. We have made the assumption that respiration is spread uniformly in time; therefore the

respiration terms are scaled by the fraction of daylight hours. For nighttime NEE we have,

NEE i
night = δnight fautoGPPi(Ci

f ol,Ψ)+δnightθlitCi
lite

ΘT i
night +δnightθsomCi

someΘT i
night (6.4)

where δnight is number of night hours
24 , and T i

night is the mean nighttime temperature. In equation (6.2) we

do not have a term for GPP as no GPP will occur during the night. The respiration here is scaled

by the fraction of nighttime hours. The length of day and night are calculated using a solar model.

These new observation operators allow for assimilation of day/nighttime NEE without the

need for altering the model and can be applied to other ecosystem models to allow for the assimi-

lation of eddy covariance data at a finer temporal resolution.

6.3.4 Experimental setup

In order to assess the information content of the three available data streams (described in sec-

tion 6.3.2) and their impact on the effect of disturbance as predicted by the model, we conducted a

data denial procedure. This involved assimilating different combinations of observations, in three
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experiments, as shown in table 6.3. In our first experiment, Experiment A, we used only the eddy

covariance data, as this is the data type most commonly used in data assimilation studies. In the

second, B, we added the observations relating to leaf mass and area and finally in the third exper-

iment, C, we added the observations of woody biomass, as NEE observations have been shown to

be unable to constrain this (Fox et al., 2009). In each experiment we used the prior model as spec-

ified in the appendix in table 6.6 and Figure 6.10 (supplementary material). This prior model was

found by assimilating daytime and nighttime NEE, leaf mass per area and LAI observations from

2012 and 2013 before the thinning occurred. More information on the data assimilation methods

used to find this prior model can be found in Pinnington et al. (2016).

In each experiment we ran the assimilation for both the thinned forest and the unthinned for-

est, using the distinct data for each side. This allowed us to retrieve a unique set of parameter and

initial state values for each section of forest. We analysed the optimised parameter and initial state

values for the thinned and unthinned forest and also the model predictions of different variables

for each side post-disturbance. This allowed us to judge the effect the thinning in 2014 had on the

carbon dynamics of the forest in 2015.

Table 6.3: Combination of observations used in data assimilation experiments.

Experiment NEE LAI & leaf mass per area Cwoo

A ×
B × ×
C × × ×

It would be expected that we will retrieve different estimates for each of the experiments

outlined in table 6.3, with our most confident estimate being when all observations types are

assimilated together in experiment C. This would allow us to see how much information each

data stream provides and assess whether NEE data alone is enough to understand the effect of

disturbance.

6.4 Results

In Figure 6.3 and 6.4 we show the observations and model trajectories after assimilation for the

thinned and unthinned forest for experiments A and C respectively. We can see that performing

the data assimilation has allowed the model to fit all the assimilated observations well for both
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experiments (In experiment A only NEE observations are assimilated). This can also be seen by

the reductions in root-mean-square error compared to the prior in table 6.4. From Figure 6.3a and

6.3b we see that the modified observation operators presented in section 6.3.3.2 have allowed our

model to represent both daytime and nighttime NEE well.

6.4.1 Comparison of experiments

In experiment A we have only assimilated NEE observations. From table 6.4 we can see that we

improve the fit to the assimilated observations for both the unthinned and thinned forest when

compared to the prior model. The root-mean-square error (RMSE) is within the specified observa-

tion error for both daytime and nighttime NEE after assimilation. By only assimilating observa-

tions of NEE we have not been able to accurately predict LAI. Although we have improved the fit

of the model to LAI after assimilation for the thinned forest (see table 6.4), we have significantly

degraded the fit of the model to LAI for the unthinned forest. Partitioning the NEE dataset be-

tween the thinned and unthinned forest (as described in section 6.3.2.3) has resulted in a gap in

the observations for the unthinned forest during the period of greatest carbon uptake (June 2015

- August 2015), see Figure 6.3a. This is due to the prevailing wind in this period being from the

south-west. This gap is potentially causing an underestimation of NEE for the unthinned forest.

From Figure 6.3d and table 6.4 we can see that NEE observations alone do not give us enough

information to recover a value of Cwoo with the DALEC2 model. This is also found in previous

work (Fox et al., 2009).

In experiment B we have assimilated observations of NEE, LAI and leaf mass per area. From

table 6.4 we see that including the extra observations has allowed the model to fit LAI well for both

the unthinned and thinned forest, and although the fit of the model to the NEE observations is

slightly degraded compared to experiment A, it is still well within the specified observation error

from section 6.3.2.3. Table 6.4 also shows that including these extra observations in experiment B

still does not allow us to recover an accurate value of Cwoo. Further results from experiment B can

be found in the supplementary material (Figure 6.8 and 6.9).

In experiment C we assimilate all available observations. This gives us very similar results

as in experiment B, except that including the observations of Cwoo in the assimilation allows the

model to fit this observation well, as seen in table 6.4. We see from Figure 6.4a and 6.4c that

including observations of LAI in the assimilation removes the issue of under prediction of NEE
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for the unthinned forest, as discussed for experiment A. The distinct difference in stand structure

is now clear in Figure 6.4, with reduced LAI and woody carbon for the thinned forest.
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Figure 6.3: Experiment A: 2015 unthinned (blue) and thinned (orange) forest observations and
model trajectories after assimilation. Solid line: model trajectory after assimilation, shading: un-
certainty in model trajectory after assimilation (± 1 standard deviation), dots: observations with
error bars, open circles: unassimilated observations.

6.4.2 Partitioning of carbon fluxes

Table 6.5 shows the cumulative annual fluxes for the year 2015 for the three experiments. All three

experiments show only small differences in the net ecosystem carbon uptake between the thinned

and unthinned forest. The area common to the distributions of the thinned and unthinned forest

NEE in table 6.5 was found to be 89%,79% and 81% in experiments A to C respectively, calculated

using the Weitzman overlap measure (see Inman and Bradley Jr (1989)). However, the partitioning

of this carbon uptake between GPP and total ecosystem respiration (TER) is markedly different

(distribution overlap << 1%), with experiment A predicting increased TER and GPP after thinning

and experiment C (and B) predicting reduced TER and GPP after thinning. This can be seen more

clearly in Figure 6.5. The difference between the results of experiment A and C highlights the issue
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Figure 6.4: Experiment C: 2015 unthinned and thinned forest observations and model trajectories
after assimilation. Colour, lines and dots have the same meaning as described in Figure 6.3. Figure
c) and d) now also include observations of LAI and Cwoo (dots).

that NEE is the difference between two large fluxes (NEE = -GPP + TER) and we can therefore find

an accurate prediction of NEE despite under/overestimating both GPP and TER. Therefore, care

should be taken when interpreting model results based solely on NEE data, especially in this case,

as we have seen that the partitioning of the NEE data between the thinned and unthinned forest

has introduced a bias into our dataset. If we were to base our analysis on experiment A we would

assume that the thinning had caused an increase in ecosystem respiration and that this had been

compensated for by an increase in GPP. This is the opposite conclusion to the one we find in

experiment C when we include observations relating to the structure of the forest. Table 6.5 also

shows that in some cases adding more observations reduces the uncertainty in model predicted

annual fluxes. However, in other cases we see the opposite effect. We believe this is due to the

assimilation over-fitting to the observations (see section 6.5.1) and therefore under-predicting the

modeled uncertainty in NEE.

In Figure 6.6 we show the partitioning of modeled cumulative ecosystem respiration for the

year 2015 between total autotrophic respiration and heterotrophic respiration from litter and soil
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Table 6.4: Root-mean-square error of model fit to observations for the prior model and all experi-
ments after data assimilation.

Unthinned forest
Exp. NEEday NEEnight LAI Cwoo

Prior 1.25 g C m−2 day−1 1.02 g C m−2 day−1 0.43 5507 g C m−2

A 0.61 g C m−2 day−1 0.83 g C m−2 day−1 2.16 6361 g C m−2

B 0.75 g C m−2 day−1 0.93 g C m−2 day−1 0.04 5987 g C m−2

C 0.75 g C m−2 day−1 0.93 g C m−2 day−1 0.04 0.16 g C m−2

Thinned forest
Exp. NEEday NEEnight LAI Cwoo

Prior 1.05 g C m−2 day−1 0.61 g C m−2 day−1 1.79 2285 g C m−2

A 0.63 g C m−2 day−1 0.54 g C m−2 day−1 0.55 2505 g C m−2

B 0.63 g C m−2 day−1 0.56 g C m−2 day−1 0.04 2241 g C m−2

C 0.63 g C m−2 day−1 0.56 g C m−2 day−1 0.04 0.07 g C m−2

Table 6.5: Total annual fluxes and standard deviations for 2015 after assimilation (g C m−2).

Unthinned forest
Flux Experiment A Experiment B Experiment C
NEE −379±99 −425±113 −426±116
GPP 1648±159 2191±87 2193±83
TER 1267±150 1766±146 1767±146

Thinned forest
Flux Experiment A Experiment B Experiment C
NEE −394±81 −421±73 −420±78
GPP 1976±112 1855±75 1856±80
TER 1582±134 1435±100 1436±109

for both the unthinned and thinned forest in experiment C. The DALEC2 model represents au-

totrophic respiration as a constant fraction of GPP. From Figure 6.6 we can see the strong depen-

dance of autotrophic respiration on GPP with the growth rate being much greater between June

2015 - September 2015 (when GPP will be of greater magnitude). For heterotrophic respiration the

growth rate is more constant throughout the whole year. Total ecosystem respiration is reduced

by 331 g C m−2 for the thinned forest when compared to the unthinned forest, with reductions in

both heterotrophic and autotrophic respiration of 169 g C m−2 and 162 g C m−2 respectively.

6.4.3 Parameter and initial state values after assimilation

Figure 6.7 shows the change in parameter and initial state values for the thinned and unthinned

forest after assimilating all observations in experiment C. It is important to note that this is the
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Figure 6.5: Experiment A & C: 2015 unthinned and thinned forest model trajectories for cumu-
lative fluxes after assimilation. Solid line: cumulative NEE, dotted line: cumulative ecosystem
respiration, dashed line: cumulative GPP. Colour and shading has the same meaning as in Fig-
ure 6.3.

difference when compared to our prior model estimate, which was found by assimilating only

eddy covariance, LAI and leaf mass per area observations from 2012 and 2013. We therefore ex-

pect changes in parameter and state values for both the thinned and unthinned forest, as we are

assimilating new data streams. This is particularly noticeable in the initial carbon pool state vari-

ables in Figure 6.7. Constraints on the carbon pool state variables are provided by the assimilated

observations of woody biomass and coarse roots (Cwoo), LAI and leaf mass per area (clma). LAI and

clma give us a constraint on foliar carbon (C f ol) as LAI = C f ol
clma

. We can see the values for the model

predicted carbon pools are as we might expect with the thinned forest having less carbon in all

pools when compared to the unthinned forest. For litter carbon (Clit) we expect a reduction in in-

put of leaf litter for the thinned forest and, although there might be increased woody debris after

thinning, this is much less readily decomposed and so possibly has little impact in the year after

thinning (Wilkinson et al., 2016). The difference in predicted soil carbon content (Csom) between

the thinned and unthinned forest is consistent with studies analysing soil carbon contents after

felling (Hernesmaa et al., 2005). For the parameters the biggest changes appear to be in the litter
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Figure 6.6: Experiment C: 2015 unthinned and thinned forest model trajectory for cumulative total
ecosystem respiration after assimilation and its partitioning between total autotrophic respiration
and heterotrophic respiration from litter and soil.

carbon turnover rate parameter (θlit), with the retrieved parameter being significantly reduced for

the unthinned forest when compared to the thinned. However, we still see reduced total litter

respiration in Figure 6.6 for the thinned forest compared to the unthinned forest. This is due to the

significant difference in litter carbon content (Clit) for both sides, with the unthinned forest having

a much higher litter carbon content than the thinned forest. The large change in the θlit parameter

between the two sides is therefore compensating for an overestimated difference in litter carbon

content between the two sides.

6.4.4 Twin experiments

Experiment C should give us the best possible results as we have assimilated all available data.

To ensure that this is the case we have run three ‘twin’ experiments (described in the supple-

mentary material), where we aim to estimate a set of known model parameters and initial state

variables (referred to as the model “truth”) by assimilating synthetic observations generated from

a normally-distributed random sample around the known model mean. We use the same com-
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Figure 6.7: Experiment C: normalised change in parameter and state variables after data assim-
ilation

( (xa( j)−xb( j))
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)
for the unthinned and thinned forest. Explanation of parameter and state

variable symbols in table 6.6.

bination of observations as in experiments A to C, but generate the observations from the model

truth. The results from these experiments are shown in Figure 6.12 and table 6.7 in the supple-

mentary material. From these experiments we find the smallest error in parameter and initial

state values in twin experiment C where all synthetic observations are assimilated. The error in

parameter and initial state values is reduced by 28% in twin experiment C, compared to the results

when only NEE observations are assimilated in twin experiment A. Although this does not prove

that experiment C will give us the correct results, (as twin experiments are based on modeled ob-

servations which will not directly reflect physical observations and so have limitations, see Errico

et al. (2013)), it lends confidence that the best results will be achieved when all observations are

used.

6.5 Discussion

In this paper we have investigated the possible explanations for the observation that a thinning

event, where approximately 46% of trees were removed from the study site, had no impact on net

ecosystem carbon uptake. We used data assimilation to combine observations and prior model

predictions of ecosystem carbon balance in order to understand how the state of an ecosystem

might be altered after a disturbance event. We have confidence in the optimised model prediction

of NEE as we have demonstrated previously that assimilating a single year of data can accurately

forecast the carbon uptake of the site for a long time period (15 years) (Pinnington et al., 2016).
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6.5.1 Impacts of increased data steams

We conducted three experiments assimilating different combinations of available data streams.

For all experiments we find no significant change in net carbon uptake for the studied ecosystem

following stand thinning. This is consistent with other studies of ecosystem carbon dynamics

following thinning (Vesala et al., 2005; Moreaux et al., 2011; Dore et al., 2012; Wilkinson et al.,

2016).

We find different reasons for this unchanged carbon uptake dependent on which data streams

are assimilated. When only assimilating NEE observations in experiment A we find increased

ecosystem respiration and increased GPP post-disturbance. These results are unreliable due to

bias introduced into the NEE dataset from partitioning between the thinned and unthinned forest.

It is likely that the gap in the NEE dataset for the unthinned forest when observations would

have been of highest magnitude has caused our model to under-predict the carbon uptake for

the unthinned forest. This is a potential explanation for the large under-prediction of LAI for the

unthinned forest in experiment A, as seen in Figure 6.3c. It is also likely that in experiment A we

are over-fitting to the NEE data as there are no additional independent observational constraints.

This means that unrealistic parameter values can be retrieved in order to find the best possible

fit to the observations. This over-fitting is potentially giving us an unrealistically low posterior

uncertainty for our optimised parameters and model estimated carbon fluxes (shown in table 6.5).

Introducing other independent observations in experiment B has reduced the problem of over-

fitting. MacBean et al. (2016) have shown that, for non-linear data assimilation, assimilating all

available data concurrently is superior to assimilating individual data streams in sequence.

We can see from table 6.5 that both experiments B and C predict very similar cumulative

fluxes, suggesting that the assimilated observations of Cwoo have not had much impact on the

model carbon dynamics for this time period. Because the rate parameters controlling this pool

are relatively slow it is likely that observations of Cwoo will become much more important over

longer time-scales. Here we have only assimilated a single observation of Cwoo for either side of

the forest; if multiple observations of Cwoo were available throughout time this would give us an

estimate of the rate of woody biomass accumulation, providing an important constraint on the

carbon assimilation of the forest. For experiment C the time of senescence in LAI predicted by the

model is consistent with phenocam observations made by Forest Research at the site, as shown

in the supplementary material (Figure 6.11). However, the time of green-up in LAI predicted by
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the model is later than the phenocam observations. We hypothesise that this is due to the model

predicting the photosynthetically effective LAI implicitly, rather than the LAI related to canopy

green index measured by the phenocam. The phenocam will show a peak in green index LAI

before new leaves become competent at photosynthesis (Reich et al., 1991; Morecroft et al., 2003;

Klosterman et al., 2014).

From our most confident estimate, where all available observations are assimilated, the model

shows that reductions in GPP, following a decrease in total leaf area post-thinning, are being offset

by simultaneous reductions in ecosystem respiration. This is in contrast to current suggestions

that reduced canopy photosynthesis is compensated for by increased GPP by ground vegetation

post-thinning (Vesala et al., 2005; Moreaux et al., 2011; Dore et al., 2012; Wilkinson et al., 2016).

It is important that more independent data relating to both productive and respiration fluxes are

sought to further verify the results of this study.

6.5.2 GPP and respiration are closely linked

Our results show a decrease in both autotrophic and heterotrophic respirations following thinning.

We follow the definition of Heinemeyer et al. (2012) and characterise below ground autotrophic

respiration as respiration from roots, mycorrhizal fungi and other micro-organisms dependent on

the priming of soils with labile carbon compounds from roots. Heterotrophic respiration is respi-

ration by microbes not directly dependent on autotrophic substrate; however, the largest fraction

of heterotrophic respiration is based on the decomposition of young organic matter (e.g. leaves

and fine roots) whose availability also depends on the GPP of an ecosystem (Janssens et al., 2001).

We find similar decreases in both heterotrophic and autotrophic respiration for the thinned forest

when compared with the unthinned forest. While it has been shown that heterotrophic respira-

tion can decrease after disturbance events (Bhupinderpal et al., 2003), it is possible we overesti-

mate the reduction in heterotrophic respiration and underestimate the reduction in autotrophic

respiration. This is understandable as we have assimilated no data on this partitioning. Also our

model description of autotrophic respiration is simple (described as a constant fraction of GPP)

and therefore the heterotrophic respiration component of the model might compensate and in this

instance describe the behaviour of mycorrhizal fungi and other microbes commonly categorised

in the autotrophic component of respiration.

In a study measuring soil CO2 fluxes over 4 years at the Straits Inclosure (the study site in
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this paper) Heinemeyer et al. (2012) showed a large contribution (56%) of autotrophic respiration

(characterised as root and mycorrhizal respiration) to total measured soil respiration. Heinemeyer

et al. (2012) also suggested that mycorrhizal fungi play a role in priming the turnover of soil

organic carbon by other microbes, with evidence from Talbot et al. (2008). Högberg and Read

(2006) find similar figures for the autotrophic contribution to total soil respiration, with around

half or more of all soil respiration being driven by recent photosynthesis. Heinemeyer et al. (2012)

discuss the possibility of this tight coupling between GPP and ecosystem respiration leading to an

upper limit for forest CO2 uptake due to increased GPP leading to increased respiration, which is

also discussed by Heath et al. (2005). Our results support this hypothesis, as ecosystem respiration

scales with GPP after approximately 46% of trees are removed from the study site, meaning that

we find no significant change in net ecosystem carbon uptake after thinning.

Studies analysing eddy covariance flux records also find no significant change in the net

ecosystem exchange of CO2 after thinning (Vesala et al., 2005; Moreaux et al., 2011; Dore et al.,

2012; Wilkinson et al., 2016).Vesala et al. (2005) used a model of light interception and ground

vegetation photosynthesis to show that the unchanged NEE was due to increased GPP by ground

vegetation (following increased light availability and reduced competition). This compensated for

increases in heterotrophic respiration and reduced canopy photosynthesis post-thinning. Similar

conclusions were drawn by Moreaux et al. (2011) who destructively sampled ground vegetation

and showed an increase in biomass post-thinning. We do not find evidence to support such con-

clusions and instead suggest that reduced ecosystem respiration is the most important component

for the unchanged NEE of the forest following thinning. However, it is important to note that our

measurements of LAI are made at approximately 1 m above the forest floor, which means that our

measurements of LAI do not account for ground vegetation. Therefore, any effect of this ground

vegetation is not simulated by our model. Despite this, observations made during multiple walks

of the three established transects find no evidence of increased ground vegetation in the year after

thinning. In fact much of the ground vegetation and subcanopy was removed during thinning

and did not appear to have recovered in the following year. At longer time-scales re-growth of

the subcanopy and ground vegetation will play an important role in increased productivity. Our

results suggest that this increased productivity would also be met with subsequent increases in

ecosystem respiration.
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6.5.3 The use of data assimilation to predict disturbance effects

Data assimilation provides a valuable alternative to more common statistical analyses of flux data

records to calculate constituent ecosystem carbon fluxes, as it allows for the combination of many

distinct data streams and the dynamics of a physically meaningful model to construct our solution.

We have shown that basing our results on a single data stream (NEE) can give us much different

conclusions than when all data streams are assimilated. Through the use of data assimilation, we

find different results for the effect of thinning on ecosystem carbon fluxes than in previous statis-

tical analyses of flux tower data at the same study site by Wilkinson et al. (2016). Wilkinson et al.

(2016) found increased ecosystem respiration after a thinning event at Alice Holt in 2007 and sug-

gested that this was counteracted by an increase in GPP by ground vegetation. After assimilating

all available data streams, we instead find that a thinning event in 2014 led to reductions in both

TER and GPP.

In this work we have been strict on the quality control procedures for NEE data, and have

allowed no gap filling, to ensure we base our results on only the best quality true observations.

This and the partitioning of the NEE data set between the thinned and unthinned areas of forest

has resulted in a distinct data gap during the growing season for the thinned site NEE, as dis-

cussed in section 6.4. From the data assimilation experiments conducted we have shown that the

combination of multiple distinct data steams has helped to reduce the impact of this data gap on

assimilation results.

The effect of disturbance is poorly characterised in current land surface and global climate

models (Running, 2008); it is important to better understand how parameters and carbon pools

might change following disturbance. DALEC2 and many other ecosystem models assume that

respiration rates are proportional to carbon pool size. It has been suggested that although this

assumption works well in equilibrium conditions it may not allow such models to predict ecosys-

tem carbon dynamics following disturbance (Schimel and Weintraub, 2003). The data assimila-

tion techniques in this paper present a way for these simple models to cope with step changes in

ecosystem behaviour, by allowing parameters and carbon pools to be updated following distur-

bance events.
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6.6 Conclusion

In this work we have investigated the response of a managed forest ecosystem to the disturbance

of selective felling by using data assimilation. Assimilating all available data streams after an

event of disturbance with a prior model prediction allows us to assess changes to model parameter

and state variables due to this disturbance. We have also created modified observation operators

to allow for the assimilation of daytime and nighttime NEE observations with a daily time-step

model. This negated the need for model modification and increased the number of observations

by a factor of 4.25.

Our modeled estimates show no significant change in net ecosystem carbon uptake after a

thinning event in 2014 where approximately 46% of trees were removed from the studied area.

Similar results were also found following a thinning activity in 2007 (Wilkinson et al., 2016). From

our optimised model we find that reduced ecosystem respiration is the main reason for this un-

changed net ecosystem carbon uptake. Therefore, even for a decrease in GPP following thinning,

there is no significant change in NEE. We hypothesise this reduction in ecosystem respiration

is due to reduced input of autotrophic substrate following thinning, meaning both autotrophic

and heterotrophic respiration are reduced. These results support work suggesting that GPP is

the dominant driver for ecosystem respiration (Janssens et al., 2001; Bhupinderpal et al., 2003;

Högberg and Read, 2006; Heinemeyer et al., 2012; Moore et al., 2013). This has implications for

future predictions of land surface carbon uptake and whether forests will continue to sequester

atmospheric CO2 at similar rates, or if they will be limited by increased GPP leading to increased

respiration.
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6.8 DALEC2 equations

The model equations for the carbon pools at day i are as follows:

GPPi = ACM(Ci−1
f ol ,clma,ce f f ,Ψ) (6.5)

Ci
lab =Ci−1

lab +(1− fauto)(1− f f ol) flabGPPi−ΦonCi−1
lab , (6.6)

Ci
f ol =Ci−1

f ol +ΦonCi−1
lab +(1− fauto) f f olGPPi−Φo f fCi−1

f ol , (6.7)

Ci
roo =Ci−1

roo +(1− fauto)(1− f f ol)(1− flab) frooGPPi−θrooCi−1
roo , (6.8)

Ci
woo =Ci−1

woo +(1− fauto)(1− f f ol)(1− flab)(1− froo)GPPi−θwooCi−1
woo, (6.9)

Ci
lit =Ci−1

lit +θrooCi−1
roo +Φo f fCi−1

f ol − (θlit +θmin)eΘT i−1
Ci−1

lit , (6.10)

Ci
som =Ci−1

som +θwooCi−1
woo +θmineΘT i−1

Ci−1
lit −θsomeΘT i−1

Ci−1
som, (6.11)

where T i−1 is the daily mean temperature, Ψ represents the meteorological driving data used in

the GPP function and Φon/Φo f f are functions controlling leaf-on and leaf-off. Descriptions for

each model parameter used in equations (6.5) to (6.11) are included in table 6.6. DALEC2 can be

parameterised for both deciduous and evergreen sites with Φon and Φo f f being able to reproduce

the phenology of either type of site. The full details of this version of DALEC can be found in

Bloom and Williams (2015).

6.9 Supplementary material

In Figures 6.8 and 6.9 we present plots from the experiment B outlined in the paper.

In Figure 6.10 we show the prior model trajectory and observations of daytime NEE for 2012-

2013. This is the period in which the prior model was calibrated.

Figure 6.11 shows phenocam observations of green fraction taken at the Alice Holt flux site.

The LAI as predicted by experiment C is also shown on this figure.

In Figure 6.12 we show the results from three data assimilation twin experiments (A, B & C). In

these twin experiments we generate synthetic observations from a model “truth” and add noise to

these synthetic observations. We generate a prior model by drawing from the multivariate normal
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Table 6.6: Parameter values and standard deviations for prior vector used in experiments.

Parameter Description Prior esti-
mate (xb)

Standard de-
viation

Range

θmin Litter mineralisation rate (day−1) 5.471×10−4 6.828×10−7 10−5−10−2

fauto Autotrophic respiration fraction 4.492×10−1 1.814×10−4 0.3−0.7
f f ol Fraction of GPP allocated to foliage 4.091×10−2 1.211×10−4 0.01−0.5
froo Fraction of GPP allocated to fine

roots
3.700×10−1 3.389×10−3 0.01−0.5

clspan Determines annual leaf loss fraction 1.089×100 2.777×10−3 1.0001−10
θwoo Woody carbon turnover rate (day−1) 1.012×10−4 3.040×10−9 2.5 × 10−5 −

10−3

θroo Fine root carbon turnover rate
(day−1)

5.411×10−3 1.353×10−6 10−4−10−2

θlit Litter carbon turnover rate (day−1) 4.387×10−3 1.825×10−6 10−4−10−2

θsom Soil and organic carbon turnover
rate (day−1)

1.311×10−4 2.705×10−9 10−7−10−3

Θ Temperature dependance exponent
factor

9.354×10−2 6.810×10−5 0.018−0.08

ce f f Canopy efficiency parameter 5.618×101 6.676×100 10−100
donset Leaf onset day (day) 1.584×102 1.370×101 1−365
flab Fraction of GPP allocated to labile

carbon pool
7.927×10−2 1.491×10−4 0.01−0.5

cronset Labile carbon release period (days) 1.891×101 6.011×101 10−100
d f all Leaf fall day (day) 3.049×102 1.046×102 1−365
cr f all Leaf-fall period (days) 5.447×101 1.502×102 10−100
clma Leaf mass per area (g C m−2) 2.929×101 7.099×102 10−400
Clab Labile carbon pool (g C m−2) 7.309×101 1.672×103 10−1000
C f ol Foliar carbon pool (g C m−2) 1.313×101 6.707×102 10−1000
Croo Fine root carbon pool (g C m−2) 2.103×102 2.024×104 10−1000
Cwoo Above and below ground woody

carbon pool (gCm−2)
7.182×103 2.019×107 100−105

Clit Litter carbon pool (g C m−2) 1.697×102 4.958×104 10−1000
Csom Soil and organic carbon pool

(g C m−2)
1.950×103 8.344×105 100−2×105

distribution described by xb∼N (xt ,diag(0.15×xt)), where xb is the prior and xt is the model truth.

We then run three data assimilation twin experiments with the same combination of observations

as in experiment A to C, described in the paper. The error and location in time of observations is

also the same as in the experiments for the unithinned forest in the paper. Figure 6.12 shows the

error in parameter and initial state variables for the prior and experiment A to C after assimilation

of synthetic observations. Table 6.7 shows the average error in parameter/state variables for the

prior and experiment A to C after assimilation of synthetic observations.

Figure 6.13 and 6.14 show the observation error covariance matrices used in experiment C in

the paper.

Table 6.7: Average error in parameter/state variables for twin experiments.

Experiment Prior A B C
Average error (%) 14.94 9.59 7.55 6.95
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Figure 6.8: Experiment B: 2015 unthinned (blue) and thinned (orange) forest observations and
model trajectories after assimilation. Solid line: model trajectory after assimilation, shading: un-
certainty in model trajectory after assimilation (± 1 standard deviation), dots: observations with
error bars, open circles: unassimilated observations.
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Figure 6.9: Experiment B: 2015 unthinned and thinned forest model trajectories for cumulative
fluxes after assimilation. Solid line cumulative NEE, dotted line: cumulative ecosystem respira-
tion, dashed line: cumulative GPP (NEE=-GPP+RT). Colour and shading has the same meaning
as in Figure 6.8.
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Figure 6.10: Prior model prediction and observations of daytime NEE for 2012-2013. Green line:
model predicted value, orange dots: observations with error bars. The prior model has a correla-
tion coefficient of 0.96 in this case.
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Figure 6.11: Model predicted LAI for experiment C and Alice Holt phenocam observations of
green fraction (green dots), calculated for the canopy region of interest using red-green-blue digital
numbers for each pixel, see Mizunuma et al. (2013) for more details.
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Figure 6.13: Observation error correlation matrix for thinned forest used in experiment C data
assimilation. For more details see Pinnington et al. (2016).
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Figure 6.14: Observation error correlation matrix for unthinned forest used in experiment C data
assimilation. For more details see Pinnington et al. (2016).
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Chapter 7

Conclusion

This thesis has explored data assimilation for the terrestrial carbon cycle. The current understand-

ing of the global carbon cycle in the IPCC AR5 suggests that the land surface is the most uncertain

component. The response of ecosystem carbon uptake to land use change and disturbance (e.g.

fire, felling, insect outbreak) is a large component of this uncertainty. The uncertainties in land

surface carbon cycling processes are largely due to gaps in direct observations and poor parame-

terisations of model processes. Data assimilation provides methods to improve current estimates

by combining observations with prior model estimates. In order to improve data assimilation re-

sults it is important that we include as much information as possible about a system. This could

mean new observations with high levels of information for constraining poorly understood pro-

cesses, or better characterisations of prior model and observational errors. Both the optimal set of

observations and appropriate representation of error in data assimilation for the carbon cycle are

not well understood. Based on this and knowledge of other components of uncertainty three key

areas of research were identified in Chapter 1:

1. Investigating the information content in distinct carbon balance observations

2. Improving the representation of prior and observational errors in carbon cycle data assimilation

3. Using data assimilation to understand the effect of disturbance on forest carbon dynamics

The following sections will address these points in turn based on the work presented in this thesis

in Chapter 4–6.
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7.1 Investigating the information content in distinct carbon balance

observations

In chapter 4 we used both the DALEC1 and DALEC2 models of ecosystem carbon balance in a

series of information content experiments. We calculated the tangent linear and adjoint model of

DALEC1 analytically by hand so that we could implement measures of information content rely-

ing on the adjoint of the model code. For the larger DALEC2 joint state and parameter estimation

case the tangent linear and adjoint model were calculated using automatic differentiation. From

the information content experiments in chapter 4 we deduced the following conclusions:

• For both the DALEC1 and DALEC2 models we found our system was observable for the

available observations of NEE. This means that for data assimilation we can construct a

locally unique solution from observational information alone. This is important as it gives

us confidence in subsequent experimental results relying on NEE as the main source for

observational information.

• There was a strong temporal variation in information content for observations of NEE, with

observations made at times of higher temperatures having higher information content. For

deciduous ecosystems, observations of NEE made at times of leaf-on and leaf-off have higher

influence in the assimilation as these act to help constrain the phenology of the model.

• Including an increasing correlation between NEE observation errors in time reduced the

information content in the assimilated observations.

• It was clear from these experiments that in order to further improve understanding of the

information content in observations it is important to improve estimates and representations

of uncertainty for both prior model predictions and observations.

7.2 Improving the representation of prior and observational errors in

carbon cycle data assimilation

In chapter 5 we implemented and tested a 4D-Var data assimilation scheme with the DALEC2

model. We then used this system to investigate the effect of including correlations between prior

model errors and between NEE observation errors. In each experiment we assimilated a single
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year of NEE observations (1999) and then ran a 14 year forecast (2000-2014). From this work our

conclusions were:

• Including correlations in the background error covariance matrix significantly improved the

model forecast after assimilation. Correlations in the observation error covariance matrix

between NEE observation errors also had a positive, but much smaller, effect on results.

However, we expect these correlations will have more impact when assimilating more than

one data stream or assimilating observations of NEE at a finer temporal resolution. This

is because here correlations will be of much greater magnitude than those included in our

experiments.

• When correlations were included in both the background error covariance matrix and the

observation error covariance matrix we found the best model forecast results. In this case

the forecast root-mean-square error was reduced by a significant 44% in comparison to the

use of a diagonal background and observation error covariance matrix.

7.3 Using data assimilation to understand the effect of disturbance on

forest carbon dynamics

In chapter 6 we again utilised the 4D-Var data assimilation scheme with DALEC2 outlined in

chapter 5 along with a set of observations taken on a fieldwork campaign to investigate the effect

of selective felling on the carbon dynamics of the Alice Holt forest. We conducted a data-denial

experiments using all the available observations to understand their impact on the model pre-

dicted effect of disturbance. We also proposed novel observation operators which facilitate the

assimilation of daytime and nighttime NEE observations with a daily time-step model. The main

results in chapter 6 were as follows:

• The proposed observation operators allow our model to accurately predict daytime and

nighttime NEE and negate the need for any model modification.

• We find no change to the net ecosystem carbon uptake after felling when approximately 46%

of trees were removed from the area of interest.

• Our most confident modelled estimate (when all available data is assimilated) suggests this

unchanged carbon uptake is due to GPP being the main driver for both autotrophic and
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heterotrophic respiration, so that even with reduced GPP post-disturbance the same NEE

can occur due to significant reductions in total ecosystem respiration. We find different

conclusions when assimilating only NEE observations, which highlights the need for caution

when interpreting results based solely on the assimilation of this variable.

7.4 Future work

The continued application of information content measures is important to better understand

where to direct efforts in future observation campaigns. For example, by applying these measures

to a model of ecosystem carbon dynamics with a more sophisticated representation of respira-

tion processes, we could judge the impact of new measurements such as stem respiration. Efforts

should also be made to continue to improve estimates of uncertainty for both prior model predic-

tions and observations. This will ensure that results from information content experiments can

be as accurate as possible. The application of these measures on larger scales is also important

for understanding how to improve current global observing systems relevant to the carbon cycle.

Although these measures are subject to a number of assumptions they will still be able to help us

understand which possible new observations could add orthogonal constraints to current mea-

surements. This will ultimately lead to better constrained predictions and reduced uncertainties

in terrestrial carbon budget estimates.

We have shown that including a more sophisticated representation of error in data assimila-

tion schemes can be of great benefit to results. Further investigation to improve the representation

of uncertainty in data assimilation schemes would be advantageous. In relation to the experiments

carried out in this thesis it is clear that a more diagnostic tool for the specification of observation

error correlations is needed. One possibility for this would be to use the Desroziers et al. (2005)

diagnostic to statistically estimate the error covariance structure of assimilated observations. In

order to diagnose correlations in time (similar to those specified in chapter 5) the Desroziers et al.

(2005) diagnostic would have to be expanded. The Desroziers et al. (2005) diagnostic estimates the

observation error covariance matrix as

R = E[(y−h(xa))(y−h(xb))
T ] (7.1)
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this could be re-written as

R̂ = E[(ŷ− ĥ(xa))(ŷ− ĥ(xb))
T ] (7.2)

to estimate time correlations in the observation error covariance matrix. This would require that

an ensemble of 4D-Var data assimilations were run with perturbed prior model estimates and

perturbed observations. We could then retrieve a statistical estimate of the temporal correlation

structure for the observation error covariance matrix. It is also possible to account for model error

when the matrix R̂ is specified in this way (Howes et al., 2017).

It will also be useful to test these new covariance matrices with included correlations with

larger model implementations. It will be important to test if global estimates can be improved

with improved representations of uncertainty. These larger scale applications could also consider

the effect of spatial correlations between carbon balance observation errors. In the work presented

in this thesis we have implemented these correlations at a temperate forest site that is not drought-

stressed. it is important that these type of correlations are implemented at other research sites with

different characteristics to understand if similar improvements can be found, as the behaviour of

other ecosystems will be considerably different.

The results we find for the short term effect of disturbance do support ecological measurement

campaigns that have analysed soil microbial communities after selective felling events. In order

to understand the long term effects of disturbance on the Alice Holt forest, the experiment could

be repeated after collecting a few more years of data. This would also give us an insight into the

recovery of leaf area. If possible, it would also be extremely beneficial to set up soil respiration

chambers on both the thinned and unthinned sides of the forest, observations from which could

improve constraint on the constituent processes.

Our findings highlight the need to improve current characterisations of uncertainty in carbon

cycle data assimilation schemes. This should ultimately lead to improved modelled forecasts of

land surface carbon uptake which would better constrain what is currently a key uncertainty in

the global carbon cycle. From Chapter 4 we also see that improving representations of errors will

help us to better understand which observations will give us the most information to improve

current estimates.

The search for novel applications of data assimilation to the terrestrial carbon cycle should

continue. The application of techniques developed in Chapter 6 to investigate disturbance on
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terrestrial carbon dynamics could be widened to other ecosystems and disturbance types. This

should lead to a better understanding of forests globally.
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