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theDAPCby Tricyclo-DNA-Mediated ExonSkipping
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London, UK; 3Universite de Versailles St. Quentin, INSERM U1179, Montigny-le-Bretonneux, France
Exon skipping mediated by tricyclo-DNA (tc-DNA) antisense
oligonucleotides has been shown to induce significant levels
of dystrophin restoration in mdx, a mouse model of Duchenne
muscular dystrophy. This translates into significant improve-
ment in key disease indicators in muscle, cardio-respiratory
function, heart, and the CNS. Here we examine the relationship
between muscle fiber type, based on myosin heavy chain
(MHC) profile, and the ability of tc-DNA to restore not only
dystrophin but also other members of the dystrophin-associ-
ated glycoprotein complex (DAPC). We first profiled this rela-
tionship in untreated mdx muscle, and we found that all fiber
types support reversion events to a dystrophin-positive state,
in an unbiased manner. Importantly, we show that only a small
fraction of revertant fibers expressed other members of the
DAPC. Immunoblot analysis of protein levels, however, re-
vealed robust expression of these components, which failed to
correctly localize to the sarcolemma. We then show that
tc-DNA treatment leads to nearly all fibers expressing not
only dystrophin but also other key components of the DAPC.
Of significance, our work shows that MHC fiber type does
not bias the expression of any of these important proteins.
This work also highlights that the improved muscle physiology
following tc-DNA treatment reported previously results from
the complete restoration of the dystrophin complex in all
MHCII fibers with equal efficiencies.
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INTRODUCTION
Duchenne muscular dystrophy (DMD) affects 1:5,000 male births,
and it is the most common fatal childhood muscular disease.1,2 Mu-
tations in the DMD gene affect expression of dystrophin, a protein
normally localized to the inner surface of the sarcolemma in muscle
fibers.3,4 Dystrophin together with a number of other proteins that
constitute the dystrophin-associated glycoprotein complex (DAPC)
acts to link the muscle fiber cytoskeleton, the sarcolemma, and the
extracellular matrix (ECM) into a functional unit that maintains mus-
cle integrity.5,6 The DAPC is composed of three sub-complexes: (1)
the sarcoglycans (a, b, g, and d); (2) syntrophin, nNOS, and dystro-
brevin; and (3) a and b dystroglycan. The absence of dystrophin re-
sults in a drastic reduction of all components of the DAPC at the
Molecular Ther
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sarcolemma, and it renders muscle cells prone to stretch-induced
muscle damage.7

A number of drug-based or surgical procedures have been developed,
including the use of corticosteroids or addressing scoliosis, that
greatly improve the quality of life for DMD patients or delay disease
onset.8,9 However, none has completely halted progression of the dis-
ease. Gene-based approaches that aim to restore dystrophin in muscle
hold great promise. One attractive approach is to take advantage of
the molecular structure of the dystrophin gene and to use antisense
oligonucleotides (AONs) to promote exon skipping to bypass
mutated stretches of DNA and restore the open reading frame.10

The aim of the current study is to establish expression of a functional,
albeit internally deleted, dystrophin protein. Restoration of dystro-
phin expression by exon skipping has been proven to be efficacious
in vitro, in animal models and in DMD patients.11–13 Several classes
of chemical modifications have been developed for AON-mediated
exon skipping, among which are 20O-methylribooligonucleoside-
phosphorothioate (20OMe), phosphorodiamidate morpholino oligo-
mers (PMOs), and tricyclo-DNA (tc-DNA). The latter has a number
of properties that make it an attractive chemistry to exploit for ther-
apeutic uses, including high RNA affinity, resistance to nuclease activ-
ity, and the ability to form nanoparticles that may facilitate uptake
into cells.14–16 We have recently shown, using mdx mice as a rodent
model for DMD, that tc-DNA mediates unprecedented levels of exon
skipping after systemic delivery not only in skeletal muscle but also in
the heart and brain.16 This translated into normalization of specific
force in the tibialis anterior muscle as well as improved cardiovascular
function and the correction of behavioral characteristics.16

A number of studies using AONs in both mdx mice and DMD pa-
tients have shown restoration of dystrophin in a subset of muscle fi-
bers.13,17,18 Most skeletal muscles are composed of a heterogeneous
apy: Nucleic Acids Vol. 9 December 2017 ª 2017 The Authors. 409
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Figure 1. Myosin Heavy Chain Profile of the Tibialis

Anterior Muscle

(A) Immunohistochemical images of TA muscle from 20-

to 22-week-old male wild-type,mdx, and tc-DNA-treated

mdx mice. Green fibers signify the expression of MHCIIA

with MHCIIB appearing as red. Non-green and red fibers

represent MHCIIX. (B) MHC profile in the three cohorts.

Results show that WT, mdx, and tc-DNA-treated mdx

mice have the same proportion of each MHC subtype

(n = 4 for each cohort). Statistical analysis was performed

by one-way ANOVA followed by Bonferroni correction for

multiple comparison.
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population of muscle fibers that differ in their metabolic properties as
well as contractile speeds, a feature impacted by the type of myosin
heavy chain (MHC) being expressed. Muscle of adult mice is
composed of MHCI, MHCIIA, MHCIIX, and MHCIIB fibers.
MHCI has the slowest contraction rate and is highly reliant on oxida-
tive phosphorylation for energy production. MHCIIB is at the other
end of the spectrum, displaying the fastest contraction rates and high-
ly dependent on glycolytic metabolism. Slow fibers are invested with a
higher capillary density as well as thicker ECM compared to fast fi-
bers.19,20 Fast-contracting fiber with its decreased ability to store en-
ergy in the ECM is hypothesized to facilitate a greater proportion of
force transfer to the skeletal elements.21 A number of studies have
shown that slow muscle, based on MHC expression profiling as
well as physical measures, expresses more dystrophin than fast mus-
cle22 and that fast muscle fibers are preferentially affected in DMD.23

Here we examined whether the efficacy of dystrophin exon skipping
is influenced by MHC fiber type, possibly due to fiber type differ-
ences in ECM thickness impacting on the rate of AON diffusion
into the muscle fiber. We first profiled revertant fibers in mdx
mice with a view of establishing whether their appearance was
related to MHC fiber type. We then investigated the relationship be-
tween the restoration of dystrophin and of members of the three
DAPC sub-complexes by treatment with tc-DNA and by MHC fiber
type. Our results demonstrate that revertant fibers caused by
splicing events in untreated mdx mice develop in a manner inde-
pendent of MHC fiber type. Importantly, we show that only a frac-
tion of revertant fibers also express DAPC members. Treatment
with tc-DNA results in over 90% of all fibers expressing all proteins
examined, with no observed bias toward any one MHC fiber type.
These data demonstrate that tc-DNA treatment is able to induce
exon skipping in all MHCII fibers.
410 Molecular Therapy: Nucleic Acids Vol. 9 December 2017
RESULTS
We first established the MHC landscape of the
tibialis anterior (TA) muscle and the effect
wrought upon it first by the mdx mutation
and second after treatment with AONs con-
sisting of tc-DNA. Previous work has reported
that the mdx mutation affects the MHC fiber
profile in a muscle-specific manner, with the
extensor digitorum longus (EDL) and soleus
unchanged by the mutation24 whereas the diaphragm contains
slower isoforms compared to control.25 Analysis of the TA muscle
of wild-type (WT) mice at its maximum circumference revealed
an approximate ratio of 1:3:6 with respect to MHCIIA, MHCIIX,
and MHCIIB fibers (Figures 1A and 1B). The same ratios were
found in the TA muscles of mdx mice and tc-DNA-treated mdx
mice (Figures 1A and 1B). Statistical analysis failed to reveal signif-
icant differences in the proportions of a particular MHC isoform
among the three cohorts. Therefore, the MHCII profile of TA mus-
cle was not affected by the absence of dystrophin or by treatment
with tc-DNA.

We next examined the relationship between revertant fibers
(dystrophin+), co-expression of one member of each of the three
DAPC sub-complexes, and MHCII class in untreated mdx mice.
There were approximately 60 dystrophin+ fibers in the TA muscle
of 20- to 22-week-old mice. The ratio of dystrophin+ in relation
to MHC fiber type (IIA:IIX:IIB) was approximately 1:3:6, respec-
tively. Therefore, the segregation of dystrophin+ fibers within
MHC subtypes followed the distribution of each isoform. Hence,
there was no bias toward any one MHC isoform with regard to
reversion to a dystrophin-positive state (Figure 2A). Profiling the
expression of b-sarcoglycan, nNOS, and a-dystroglycan revealed a
number of interesting features. First, they were found in all three
MHC fiber isoforms, and, similar to dystrophin, there was no bias
toward any one MHCII type (Figure 2A). b-sarcoglycan-, nNOS-,
and a-dystroglycan-expressing fibers were a subset of those that ex-
pressed dystrophin. However, the number of fibers that expressed
these three molecules was always lower than the number expressing
dystrophin (Figure 2B). Indeed, nNOS-positive fibers, although be-
ing the most frequent of the three, only represented about half of
dystrophin-positive fibers.



Figure 2. Expression of Dystrophin, b-Sacroglycan, nNOS, and a-Dystroglycan in the TA Muscle of 20- to 22-Week-Old Male mdx Mice

(A) Each row shows the entire TAmuscle stained for one of the four molecules together with amagnified detailed image. All positive fibers were correlated to the expression of

an MHC isoform, and their distribution is given as the total number as well as proportion to the frequency of the MHC isoform. (B) Graph showing the proportion of TA fibers

expressing the four investigated molecules (n = 4 for each cohort). *p < 0.05, **p < 0.01, and ***p < 0.001. Statistical analysis was performed by one-way ANOVA followed by

Bonferroni correction for multiple comparison.
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These results show that revertant fibers do not express the full com-
plement of DAPC components.

Thereafter, we examined the expression of dystrophin, b-sarcogly-
can, nNOS, and a-dystroglycan in relation to MHC fiber type in
the TA muscle of tc-DNA-treated mdx mice. Immunostaining re-
vealed that the majority of fibers were positive for dystrophin after
tc-DNA treatment, which is in agreement with previous findings
of Goyenvalle and colleagues16 (Figure 3A). Robust expression of
dystrophin was found in all MHC fiber types, and analysis of
Molecular Therapy: Nucleic Acids Vol. 9 December 2017 411
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Figure 3. Expression of Dystrophin, b-Sarcoglycan, nNOS, and a-Dystroglycan in the TA Muscle of 20- to 22-Week-Old Male tc-DNA-Treated mdx Mice

(A) Each row shows the entire TA muscle immunostained for dystrophin, b-sarcoglycan, nNOS, and a-dystroglycan together with a magnified detailed image. All positive

fibers were correlated to the expression of an MHC isoform, and their distribution is given as the total number as well as proportion to the frequency of the MHC isoform.

(B) Graph showing the proportion of TA fibers from tc-DNA-treated mdx mice expressing the four investigated molecules (n = 4 for each cohort). *p < 0.05, **p < 0.01, and

***p < 0.001. Statistical analysis was performed by one-way ANOVA followed by Bonferroni correction for multiple comparison.

Molecular Therapy: Nucleic Acids
frequency with respect to fiber proportion revealed that there was
no bias to any one fiber type. Immunostaining for b-sacroglycan,
nNOS, and a-dystroglycan revealed the same features as dystro-
phin; the vast majority of fibers expressed the three proteins, and
their presence in a particular MHC fiber type was proportional
412 Molecular Therapy: Nucleic Acids Vol. 9 December 2017
to the frequency of that form (Figure 3A). We then compared
the relative frequency of fibers expressing each of the four proteins.
We found there were significantly more fibers that expressed dys-
trophin than the other three components of the DAPC assessed
(Figure 3B).



Figure 4. Semiquantitative Analysis of DAPC Restoration following tc-DNA Treatment of 20- to 22-Week-Old Male mdx Mice

Untreated and tc-DNA-treatedmuscle shows high levels of individual proteins inMHCIIA fibers (white arrows) compared toMHCIIB fibers (yellow arrows). Intensities from over

30 regions for each fiber type were taken from revertant untreatedmdx and set to a reference value of one. Similar numbers of intensity readings were plotted for each fiber

(legend continued on next page)
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Figure 5. Western Blot Analysis of DAPC Proteins in

20- to 22-Week-Old Male Mice

(A) Western blot image of DAPC proteins in the TA

muscle. (B) Quantification of DAPC proteins relative to

GAPDH. Note the robust expression of b-sarcoglycan,

nNOS, and a-dystroglycan in untreated mdx muscle

(n = 3 for each cohort). **p < 0.01. Statistical analysis was

performed using two-tailed t test.
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These results show that tc-DNA treatment ofmdxmice results in the
restoration of dystrophin in the majority of muscle fibers. This is also
the case for a-dystroglycan, b-sarcoglycan, and nNOS. However, the
number of fibers expressing b-sarcoglycan, nNOS, and a-dystrogly-
can was significantly lower compared to dystrophin.

Previous work has shown that contractile properties of a muscle fiber
impact both qualitatively and quantitatively on its surrounding
ECM.19,20 Here we examined the relationship between MHC fiber
type and expression of components of the DAPC as well as an ECM
component, collagen IV, using semiquantitative techniques. Fluores-
cence intensity was used as previously described to gain an indication
of the amount of protein at the sarcolemma.18We first determined the
signal intensity for the five proteins in question in relation to MHC fi-
ber type in the revertant fibers from the mdx mouse. For each fiber
type, the signal intensity was set to a reference value of 1. Thereafter
the same procedure was repeated for the tc-DNA-treated muscle,
and intensity was compared to that of the untreated TA muscle. The
outcome of the process showed that tc-DNA treatment resulted in
an increase in the amount of each protein of interest in all fiber types
compared to untreated revertant mdx fibers (Figure 4). We also
measured the thickness of the expression domain for each of the five
marker proteins, revealing that each expression domain was thicker
in MHCIIA fibers compared to MHCIIB fibers (Figure 4). This rela-
tionship persisted following tc-DNA treatment. Second, we found
that there was an increase in the expression domain following tc-DNA
treatment for all fiber types (Figure 4).

These results show that the amount of each component of the DAPC
and collagen IV at the sarcolemmawere elevated above those found in
revertant fibers.

Last, we examined the effect of tc-DNA treatment on the total level of
expression of the DAPC components under investigation here. To
type from tc-DNA-treated mdxmuscle. In all cases there was a significant increase in intensity compared to untre

expression domain was measured and plotted for each MHC isoform originating from revertant untreated mdx an

expression domains compared toMHCIIB. Thickness for expression domains irrespective of MHC fiber type was in

bar applicable to all images represents 50 mm. *p < 0.05, **p < 0.01, and ***p < 0.001. Statistical analysis was p
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that end we carried out quantitation of western
blots. Our results showed that there was a
14-fold increase in the amount of dystrophin
following tc-DNA treatment (Figures 5A and
5B). Interestingly, we found robust expression
of b-sarcoglycan, nNOS, and a-dystroglycan in untreated mdx mus-
cle and that their levels were not changed significantly by tc-DNA
treatment. In summary, components of the DAPC are translated in
the absence of dystrophin, but they fail to localize to the sarcolemma.

DISCUSSION
Tc-DNA chemistry is an exciting development in the area of molec-
ular medicine. We have previously shown that, in the context of a
mouse model of DMD, tc-DNA treatment was more efficacious in
restoring muscle function than many other approaches.16 Of partic-
ular note was the finding that tc-DNA AONs spontaneously form
nanoparticles, which are believed to promote entry into the cell and
may be the reason why these were able to penetrate the heart and
the brain.16 In this study, we investigated the relationship between
muscle compositions in terms of MHC fiber type and dystrophin
restoration by tc-DNA AON with a view to developing an under-
standing of its specificity of action.

We commenced the study by comparing the MHC profile of the TA
muscle in the three cohorts under investigation: WT, mdx, and
tc-DNA-treated mdx mice. We found that all three shared the same
MHC profile. Previous studies have shown that the MHC profile of
the diaphragm underwent a significant change in its MHC composi-
tions, with a decrease in the proportion of MHCIIB+ fibers and a
concomitant increase in the number of MHCI+ fibers.25 The change
in MHC profile was proposed to be an adaptive step to preserve con-
tractile function and fiber integrity by lowering energy requirements.
In contrast, the EDL and soleus muscles of themdx were shown to be
identical to those from WT in terms of MHC profile.24 Our results
here now add the TA muscle to the list of muscles that show normal
MHC profile in the mdx mouse. Nevertheless, all mdx muscles have
reduced specific force. We propose that, if a change toward a slower
MHC profile is an adaptive change to the absence of dystrophin, it
must be a secondary step that is dependent on other upstream factors,
ated revertant fibers of the same MHC type. Thickness of

d tc-DNA-treated mdx muscle. MHCIIA fibers had thicker

creased by tc-DNA treatment (n = 4 for each cohort). Scale

erformed using two-tailed t test.
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one of which could be contractile activity, which would explain the
change in constantly used muscles like the diaphragm and not in
limb muscles. A number of studies have proposed mechanisms to
explain the reduced specific force in mdx, including nitrosylation of
the contractile machinery, which, if it occurred, would lead to long-
term damage due to low turnover rate of MHC.26,27 However, recent
work has shown that theMHC frommdx functions normally in terms
of cross-bridging, which argues against long-term effect of altered
muscle function.28 This suggestion is indirectly corroborated by the
efficacy of tc-DNA treatment being able to normalize specific force
in the TA muscle of mdx mice.16

Our work examining the distribution of the DAPC protein in un-
treated mdx muscle offers interesting insights into the formation of
the functional unit. First, we show that there was no bias in terms
to MHC fiber type and the appearance of dystrophin. Therefore, if
metabolic activity were to generate differential cellular stress based
on fiber contraction rate, then this metric does not impact on the
splicing events that restore dystrophin expression in mdx muscle.
Furthermore, when serendipitous events lead to the restoration of
dystrophin, they bring back the protein in a relatively normal manner
with respect to MHC fiber type, with higher expression in slow fibers
compared to faster ones.22 Additionally, there was no bias in terms of
MHC fiber type and any of the other components of the DAPC exam-
ined here.

An interesting feature highlighted by our work in this section was the
finding that revertant fibers (dystrophin+) are heterogeneous in terms
of their DAPC composition as follows: dystrophin+ > nNOS+ >
a-dystroglycan (aDG)+ > b-sarcoglycan (ßSG)+. Our quantifications
of DAPC expression in revertant fibers extends previous findings of
Lu et al.29 who showed co-expression of DAPC proteins in clusters
of revertant fibers. Interestingly, our western blotting data agree
with prior reports showing an abundance of nNOS, aDG, and ßSG
total protein inmdxmuscle.30 It follows, therefore, that a mechanism
must be active that prevents the translocation of DAPC proteins to
the sarcolemma of some revertant fibers. One possibility is that
they may not have had sufficient time to correctly translocate. This
is, however, unlikely since revertant fibers form from events that
occur in muscle precursors.31 Another possibility is linked to the
poor diffusion of dystrophin within the myofiber sarcolemma,
limiting membrane expression to spatially confined nuclear domains.
Moving out of this dystrophin domain during serial sectioning would
affect detection of other components of the DAPC. While this phe-
nomenon can contribute to a decreased co-detection of dystrophin
and DAPC proteins, it should be noted that dystrophin expression
in revertant fibers has been reported to span membrane segments
of 654 ± 409 mm.32 It is unlikely that exiting a nuclear domain during
collection of serial sections over a length of muscle not exceeding
160 mm (16 serial sections) could on its own account for over half
of the revertant fibers lacking expression of other DAPC proteins
(Figure 3B). It is therefore possible that a significant proportion of
internally deleted dystrophins generated by revertant fibers is not
able to assemble a functional DAPC but can be correctly localized
to the membrane. This hypothesis would be consistent with reports
of truncated or internally deleted dystrophins that lack the
cysteine-rich domain required for interaction with the DAPC but
can still be correctly localized to the sarcolemma.33 Overall our results
highlight two interesting findings: first, the majority of revertant fi-
bers produce internally deleted forms of dystrophin that cannot func-
tionally contribute to force transduction, since they are uncoupled
from the dystroglycan and sarcoglycan complexes; and, second,
mdx muscle has a rich pool of DAPC proteins available for recruit-
ment to the sarcolemma upon expression of a functional dystrophin
protein.

Restoration of dystrophin expression following tc-DNA treatment re-
sulted in near total coverage of TA fibers, consistent with our previous
work.16 We do not believe that the variation in the affinities of anti-
bodies for their epitopes is a decisive factor in showing a variation
in DAPC profile betweenmdx and tc-mdxmice. We base this conclu-
sion on the fact that have we have compared the same strain (indeed
littermates) with or without tc-DNA treatment. Therefore, the
differing affinities between antibodies for their particular epitope
would remain a constant factor. Hence, the appearance of a molecule
at the sarcolemma in tc-mdx mice compared to mdx must be due to
changes in the expression levels of the protein. The results of this
study demonstrate that there is no bias with regard to dystrophin
expression induction following tc-DNA treatment and fiber type.
This is, we believe, highly relevant and important for prospective
translation into therapies.

Previous work carried out in humans revealed restoration of dystro-
phin in a subset of muscle fibers, a differential restoration that may
have been influenced by the structural properties of the muscle.13,17

Indeed, it is well established that slow muscle fibers have a thicker
ECM in comparison to fast fibers.19,20 It would, therefore, be reason-
able to postulate that slow fibers are more resistant to infiltration by
tc-DNAAON.However, our work shows that, at least in terms of type
II fiber sub-types, there is no preference to exon skipping. This bodes
well for the use of this chemistry in a spectrum of muscles with
differing fiber composition, as it seems they are all in principle able
to take up the tc-DNA AON. In addition, we show that MHC fiber
type does not influence the restoration of the other components
examined here. Also, tc-DNA treatment leads to more of each
component at the sarcolemma compared to revertant mdx fibers.
Nevertheless, it is worth noting that not all the fibers that expressed
dystrophin contained the other three components of the DAPC
examine here (dystrophin+ > nNOS+ > ßSG+ > aDG+). This again
highlights the point that the presence of the DAPC proteins does
not necessarily translate into them being assembled into a functional
complex.

There is a dearth of knowledge regarding mechanisms that regulate
the formation of the DAPC, a gap in our understanding that requires
urgent attention. One potential consequence of this gap in our un-
derstanding is that it is possible that we will develop the means
of inducing protein dystrophin expression but that it may not
Molecular Therapy: Nucleic Acids Vol. 9 December 2017 415
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translocate to the correct sub-cellular region and, therefore, reduce
therapeutic benefit. Insights into this process could be gained by
examining revertant fibers. Nevertheless, tc-DNA treatment resulted
in over 90% of the fibers having all four of the DAPC components at
the sarcoplasm. We believe that this high level of DAPC restoration
explains the normalization of specific force following tc-DNA treat-
ment, and, again, it bodes well for translation into the clinic since
previous studies have demonstrated that restoration of dystrophin
protein levels to 10%–20% of WT results in improved health.34

In summary, we show that reversion of fibers to a dystrophin-positive
state in mdx mice is a stochastic process with regard to MHC fiber
type. However, expression of dystrophin in mdx revertant fibers
only translates into a minority (>25%) of fibers expressing members
of the three sub-complexes. Tc-DNA treatment results in over 90% of
fibers’ expression of dystrophin as well as members of the three sub-
complexes in the TA muscle. Importantly, there is no bias in terms of
expression of any component with regard to MHC fiber type. This
work shows that, in principle, tc-DNA treatment is equally efficacious
across all type II fibers.

MATERIALS AND METHODS
Animals

Animal procedures were performed in accordance with national and
European legislation, approved by the French government (Ministère
de l’enseignement supérieur et de la recherche, Autorisation APAFiS
6518). Mdx (C57BL/10ScSc-Dmdmdx/J) and C57BL/10 mice were
bred in our specific opportunistic pathogen-free (SOPF) animal facil-
ity at the Plateform 2Care, UFR des Sciences de la santé, Université de
Versailles Saint Quentin, and they were maintained in a standard
12-hour light/dark cycle with free access to deionized water and stan-
dard laboratory chow (M20, Dietex) ad libitum. Mice were weaned at
postnatal weeks 4–5 and 2–5 individuals were housed per cage. Mice
were randomly allocated to treatment and control groups, ensuring
equal numbers of control and treated mice within the same litters.

The tc-DNA-AON PS M23D (50-AACCTCGGCTTACCT-30) target-
ing the donor splice site of exon 23 of the mouse dystrophin pre-
mRNA used in this study was synthesized by SYNTHENA (Bern,
Switzerland). The 6- to 8-week-old male mdx mice were injected
intravenously in the retro-orbital sinus, under general anesthesia us-
ing 1.5%–2% isoflurane, once a week with 200 mg/kg/week of the
M23D-tc-DNA for a period of 12 weeks. Treated mice were sacrificed
2 weeks after the last injection, and muscles and tissues were har-
vested and snap-frozen in liquid nitrogen-cooled isopentane and
stored at �80�C before further analysis.

Immunohistochemistry

Dissected and frozen muscles were mounted in Tissue Tech freezing
medium (Jung) cooled by dry ice/ethanol. Immunohistochemistry
staining was performed on 10-mm cryosections that were dried for
30 min at room temperature (RT) prior to three washes in 1� PBS.
Muscle sections were incubated in permeabilization buffer solution
(0.952 g HEPES, 0.260 g MgCl2, 0.584 g NaCl, 0.1 g Sodium azide,
416 Molecular Therapy: Nucleic Acids Vol. 9 December 2017
20.54 g Sucrose, and 1 mL Triton X-100) for 15 min at room temper-
ature, before the application of block wash buffer (PBS with 5% fetal
calf serum [v/v] and 0.05% Triton X-100) for 30 min at room
temperature.

Primary antibodies were pre-blocked in wash buffer for 30 min prior
to incubation onto muscle sections overnight at 4�C. Pre-blocked-in
wash buffer was performed for all secondary antibodies (in dark) for a
minimum of 30 min prior to their addition onto the slides. Sections
were then incubated for 1 hr in the dark at room temperature. Finally,
slides were mounted in fluorescent mounting medium, and myonu-
clei were visualized using 2.5mg/mLDAPI. Details of primary and sec-
ondary antibodies are given in Supplemental Materials and Methods.

Western Blotting

TA proteins from 20- to 22-week-old male mice (20 mg/lane) were
separated on 4%–12% gradient SDS-PAGE gels (Invitrogen), trans-
ferred to nitrocellulose membranes (Whatman), and blocked with
5% skim milk in 0.1% Tween 20/Tris-buffered saline. Membranes
were cut at appropriate molecular weights in order to allow for
simultaneous probing of the exact same samples for dystrophin and
multiple DAPC proteins. Membrane strips were then incubated
with appropriate primary antibodies overnight at 4�C, followed by
a 1-hr incubation at room temperature with the appropriate horse-
radish peroxidase-conjugated secondary antibodies (Jackson Im-
munoResearch Laboratories). Protein bands were visualized using
enhanced chemiluminescence reagents (Pierce). Signal was detected
on X-ray film (RPI) at multiple exposures. For densitometric analysis,
protein band intensities from multiple non-saturated film exposures
were quantified using ImageJ (NIH). Values in the linear range of
pixel intensities were selected for quantifications. Signal intensities
were normalized to GAPDH, used as an internal loading control,
and probed on the samemembrane. Details of primary and secondary
antibodies are given in Supplemental Materials and Methods.

Semiquantitative Measures of Sarcolemma Protein Expression

Intensity of signals of protein of interest was measured as previously
described.18 Briefly, membrane signal intensities of approximately
30 muscle fibers of each MHC phenotype (IIA, IIX, and IIB) in
each TA muscle section from mdx mice and mdx mice treated with
tc-DNA were measured. Fiji software was used to measure signal
from area of interest after images had been corrected for background
to avoid regions of signal saturation. To calculate relative signal inten-
sity levels, individual measurements from treated and control fibers
were taken as a percentage of mean of control samples.

Sarcolemma Thickness Measurement

Connective tissue thickness between approximately 30 fibers of the
same MHC phenotypes (IIA-IIA, IIX-IIX, and IIB-IIB) of TA muscle
sections was measured using Fiji software. One measurement on the
constant connective tissue thickness and multiple measurements on
the fluctuating connective tissue thickness areas between each two
myofibers that expressed the same MHC isoform were taken on all
muscle sections of mdx mice and mdx mice treated with tc-DNA.
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Imaging and Analysis

A fluorescence microscope (Zeiss AxioImegar A1) was used to
examine immunofluorescently stained sections, and images were
captured using an Axiocam digital camera with Zeiss Axiovision
computer software version 4.8.

Statistical Analysis

Data are presented as mean ± SE. Significant differences between two
groups were performed by two-tailed Student’s t test for independent
variables. Differences among groups were analyzed by one-way
ANOVA followed by Bonferroni multiple comparison tests as
appropriate. Statistical analysis was performed on GraphPad Prism
software. Differences were considered statistically significant at
*p < 0.05, **p < 0.01, or ***p < 0.001.
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