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Modelling of the Am(III) - Cm(III) kinetic separation effect observed 

during metal ion extraction by bis-(1,2,4)-triazine ligands 

Abstract 

The kinetic separation effect was observed leading to a separation factor for Am(III) over Cm(III) as 

high as 7.9  by using 2,9-bis-(1,2,4-triazin-3-yl)-1,10-phenantroline (BTPhen) ligands in our recent 

study. In an attempt to explain the observed tendencies, several kinetic models were tested. A model 

based on mass transfer as the rate-controlling process was found to best describe the kinetic data and 

allowed to simulate the dependence of Am/Cm separation factor on time. The calculated values of 

the overall mass-transfer coefficients confirmed that the observed kinetic effect was caused by the 

different rates of Am(III) and Cm(III) extraction. This kinetic separation phenomenon and its 

explanation paves the way for potential new approaches to separation of metal ions with very similar 

properties, such as the adjacent minor actinides Am(III) and Cm(III). 

 

Keywords: liquid-liquid extraction; bis-(1,2,4)-triazine ligands; Am(III); Cm(III); kinetic 

separation effect; BTPhen ligands 

Introduction  

The separation of substances with similar properties, such as various isotopes of one 

element, lanthanide or actinide elements (both within and among the series), or for example 

Co(II)-Ni(II), Zr(IV)-Hf(IV)), or U(VI) separation from some nuclear impurities, may be 

accomplished in many ways. Chemical separation processes usually rely upon an 

equilibrium separation effect realized by means, e.g., of High-Performance Liquid 

Chromatography or liquid-liquid extraction in mixer-settler cascades or in columns. Many 

separation processes are described in the literature and are used not only on the laboratory or 

pilot plant scale but also under operating conditions on a large scale. As an example of the 

latter, the preparation of nuclear-grade zirconium and uranium may be cited [1]. As for the 
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U-235/U-238 isotope separation, two chemical processes have been developed and brought 

up to pilot plant scale, in Japan (the ASAHI-process) based on the application of classical 

solid anion exchangers [2], and in France (the CHEMEX-process), based on the application 

of liquid-liquid extraction with tri-n-butyl-phosphate [3].  

The equilibrium separation effect between two components depends on the values of the 

corresponding distribution coefficients; the greater the difference in their values, the higher 

the separation effect, and vice versa. Consequently, the most difficult to achieve is the 

separation of isotopes, especially of the isotopes of heavy elements such as uranium, where 

the separation factors range from 1.001 to 1.003 for the best performing aqueous systems. 

However, processes based on these systems are still regarded as being able to compete in the 

enrichment of uranium with the gaseous diffusion process, although the latter has 

significantly higher separation factors [4].  

In the 1980s, the so called “kinetic concentration isotope effect” was discovered [5] at the 

Czech Technical University in Prague (CTU), and its application to the separation of 

isotopes or substances with similar properties was patented [6]. According to this discovery, 

the kinetic (time-dependent) effect occurs in two-phase systems, such as liquid-liquid 

extraction or ion-exchange systems, comprising at least three exchangeable components; 

namely two substances with similar properties (e.g. isotopes or chemically similar metal 

ions) in one phase (usually aqueous) and a counter-ion (counter-component) in the second 

phase (usually liquid organic or solid polymer). The results of the respective kinetic 

experiments can be evaluated and depicted as dependencies α = f(t) that go through an 

extreme (usually through a maximum); the values of αextr then characterize the kinetic 

concentration isotope effect. In the case of uranium isotope separation studies, maximum 

values of the separation factor were found to range ca. from 1.020 to 1.040 – even for 

systems that converge to α=1.001-1.000 at equilibrium [7,8] . This principle was 
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experimentally verified in study of the kinetics of uranium isotope separation by uranium 

extraction into tri-n-octyl-amine (TOA) and tri-n-butyl-phosphate [7], by uranium sorption 

onto both cation and anion exchangers [5-8], or in the study of the kinetics of ion exchange 

in the ternary systems Na+-Co2+-Ni2+ + strong-acid cation exchanger [9], or Na+-Mg2+-UO2
2+ 

+ strong-acid cation exchanger [10,11]. 

These studies revealed that the occurrence and magnitude of the kinetic separation effect 

depends on many parameters such as the nature of the second (non-aqueous) phase, 

especially its functional groups and corresponding counter-ions, the concentration of the 

separated species and time. In the course of the experiments mentioned above, attention was 

focused mainly on ion-exchange systems, and only two types of liquid-liquid extraction 

system were considered.  

Recently, many new triazinylpyridine N-donor ligands have been studied for the liquid-

liquid extraction separation of minor actinides from used nuclear fuel solutions [13]. In our 

recent study of Am(III) – Cm(III) separation by these ligands, the kinetic separation effect 

was observed leading to separation factors for Am(III) over Cm(III) as high as 7.9 [12]. 

Therefore, it seemed useful and even necessary to attempt to simulate this kinetic separation 

effect by means of mathematical-physical modelling. Therefore, the ultimate goal of this 

contribution to model the kinetics of the separation of Am(III) – Cm(III) in liquid-liquid 

extraction systems using the N-donor 2,9-bis(1,2,4-triazin-3-yl)-1,10-phenanthroline 

(BTPhen) ligand CyMe4–BTPhen, C4-BTPhen and C5-BTPhen families under given 

reaction conditions. The progressive goals were formulated as follows: 

 Initially, to evaluate the time dependent concentrations of Am(III) and Cm(III) with 

the aim of identifying the rate-controlling extraction process and to find the 

corresponding kinetic model.   
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 In the second step, to model the experimental data, evaluated as a time-dependent 

separation factor, SF = f(t), where SF ≡ α; for this task, the corresponding kinetic 

model has first to be constructed and verified. 

 To assess the results from the point of view of separation efficiency of the liquid-

liquid extraction systems studied, and to assess and quantify the influence of the 

basic reaction parameters. 

Theory  

Kinetic models for two-phase systems 

As regards the first step of the experimental data evaluation, the kinetic models summarized 

in Table 1 are available from the literature, e.g. from [14]: mass transfer (DM), film 

diffusion (FD), diffusion in inert layer (ID), diffusion in reacted layer (RLD), chemical 

reaction (CR) and gel diffusion (GD); the rate-controlling processes being evident from their 

names. All of these models are given by ordinary first order differential equations where the 

numerical solution is relatively simple.  

Here, the DM-model is used for a demonstration of the detailed account of the liquid-liquid 

extraction kinetics; for example of the system Am(III) – extraction agent, as follows:   

control process – mass transfer:        (caq)Am  ↔ (corg)Am  (1) 

rate equation:     rAm =  - d(caq)Am / dt = (KDM)Am /Rv ∙ ((corg)Am
 * - (corg)Am) (2) 

equilibrium equation:            (corg)Am
 * = (caq)Am ∙ DAm  (3) 

balance equation:       (corg)Am = Rv ∙ ((c0aq)Am – (caq)Am) + (c0org)Am  (4) 

modified rate equation: 

        - d(caq)Am / dt = (KDM)Am /Rv ∙ ((caq)Am ∙ DAm - Rv ∙ ((c0aq)Am – (caq)Am) + (c0org)Am) (5) 

The meaning of the symbols: 
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(caq)Am - concentration of Am(III) in the aqueous phase at time t; (corg)Am - concentration of 

Am(III) in the organic phase at time t (see Eq. (4)); (corg)Am
 * - equilibrium concentration of 

Am(III) in the organic phase corresponding to the concentration in the aqueous phase (see 

Eq. (3)); DAm - distribution coefficient of a given component; Rv - volume ratio of aqueous to 

organic phase; (c0aq)Am and (c0org)Am - starting (initial) concentration in the given phase at t = 

0; (KDM)Am - over-all mass transfer coefficient. 

It is evident that the rate equation (2) describes the extraction (mass transfer) of Am(III) 

from the aqueous into organic phase. Its mathematical solubility assumes that Eqs. (3) and 

(4) have to be inserted into Eq. (2). Then, Eq. (5) is obtained which can be used for the direct 

evaluation of experimental data (of course, the quantities DAm and Rv, and starting 

concentrations have to be known). For this evaluation, in the course of which the value of the 

over-all mass transfer coefficient is sought, a non-linear regression procedure, combined 

with the solution of differential equation (5) under given boundary conditions (Runge-Kutha 

method used), is applied. 

The quantities WSOS/DF (weighted sum of squares divided by the degrees of freedom) [15] 

were used as criteria of the goodness-of-fit. WSOS/DF is evaluated by the χ2-test, which is 

based on calculating the quantity χ2 according to equation: 
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where ni is the number of degrees of freedom, np is the number of experimental points and n 

is the number of model parameters sought during the regression procedure. 

For this specific criterion, it holds that the fit is acceptable if 0.1 < WSOS/DF < 20. 

Kinetic model of the time-dependent separation factor, SF(t) 

The modelling of the time dependent separation of two components having similar chemical 

properties in a liquid-liquid extraction system, is based on the findings obtained in the 

kinetic studies of isotope systems [5-8] as well as non-isotope systems [9-12]. The time-

dependent kinetic separation effect then exists in the two-phase system as a result of the 

antagonistic action of two processes: 

 Different transfer rates of the separated substances from one phase (usually from 

aqueous) into the second phase. 

 Heterogeneous isotope or reversible chemical reaction that aims at returning the 

system to the equilibrium state.  

In principle, such a model consists of three differential rate equations. For example, if it 

deals with the system Am(III) – Cm(III) – liquid extraction organic agent, e.g. [13,14], then 

there are two mass transfer rate equations of type Eq. (2) – see Eqs (9) and (10). The third 

one is the rate equation describing the reversible chemical reaction of the 2nd order – see Eqs. 

(10) and (11): 

mass transfer Am(III)                        (caq)Am  ↔ (corg)Am  (8) 

 mass transfer Cm(III):                        (caq)Cm  ↔ (corg)Cm  (9) 

chemical reaction:             (caq)Am + (corg)Cm  ↔  (corg)Am + (caq)Cm  (10) 

The corresponding first order rate equations are defined above (Eqs (2) – (5)) for americium; 

analogous equations may be written for curium.  

The rate equation of the 2nd order reaction will then be: 

             rAm-Cm  =  d(caq)Am / dt = k3 ∙ ((caq)Am ∙ (corg)Cm – (caq)Cm ∙ (corg)Am / KAC )  (11) 
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Where:  k3 is the rate constant of the forward reaction (taking place from left to right- of 

chemical reaction (10) mentioned above) and KAC (= k3/k4) is the corresponding equilibrium 

constant (k4 is the rate constant of the reverse reaction). It is assumed that KAC tends to the 

ratio of distribution coefficients, DAm / DCm, or to the equilibrium value of the separation 

factor (see Eq. (14)). 

Therefore, the system can be described by differential equations (10) and (12), where 

equation (12) is the sum of differential equations (9) (see rAm) and (11) (see rAm-Cm): 

                                                    rAmΣ = rAm + rAm-Cm  (12) 

The experimental time-dependent values of the separation factor, SF(Am/Cm)(t)  – see eq. (13), 

are evaluated and simulated by means of the non-linear regression procedure combined with 

the mathematical (numerical) solution of differential equations (10) and (12) by means of the 

Runge-Kutha method. 

                      SF(Am/Cm)(t) = ((corg)Am ∙ (caq)Cm) / ((caq)Am ∙ (corg)Cm)  (13) 

In equilibrium, it holds:      SF(Am/Cm) =  DAm / DCm  (14) 

Again, the quantities chi-squared (χ2) and WSOS/DF [15] can be used as a criterion of the 

goodness-of-fit. 

Experimental 

The aqueous solutions were prepared by spiking 0.5 mol/Laq HNO3 with stock solutions of 

241Am and 244Cm tracers. Solutions of the 0.005 mol/Lorg hydrophobic BTPhen ligands, 

namely CyMe4-BTPhen (1), C4-BTPhen (2) and C5-BTPhen (3), were prepared by 

dissolving the ligands in cyclohexanone. The structures of the ligands are shown in Figure 1. 

Prior to labelling, the aqueous phases were pre-equilibrated with neat cyclohexanone by 

shaking them for 4 hours at 400 min−1 and volume ratio of   4:1 (= Rv). The cyclohexanone 

phase was pre-equilibrated with the respective non-labelled aqueous phases by shaking them 

for 4 hours at 400 min−1 and a volume ratio of 1:1 (= Rv). In each case, 1020 µLaq of labelled 
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aqueous phases was prepared from which two 10 µLaq standards were taken (to allow for 

mass balance calculations) prior to contacting the aqueous phases with the organic phases. 

Initial concentrations of americium and curium in the aqueous phase can be found in Table 

2. Each organic phase (1 mLorg) was shaken separately with each of the aqueous phases for 

the desired time at a thermostatted temperature (22 ± 1 °C) using a GFL 3005 Orbital Shaker 

(250 min−1). Each kinetic run consisted of 10 experimental points at different contact times: 

1, 3, 5, 7, 10, 20, 30, 60, 90, and 120 minutes.  

After phase-separation by centrifugation, two parallel 10 µL aliquots of each phase were 

withdrawn for analysis. Aliquots were deposited on stainless steel planchets, evaporated to 

dryness under an infra-red lamp, and heated in a burner flame until the sample glowed dull 

red. Activity measurements of 241Am and 244Cm were performed with ORTEC® OCTETE 

Plus Integrated Alpha-Spectroscopy System equipped with an ion-implanted-silicon ULTRA 

Alpha Detector Model BU-020-450-AS. The Am and Cm peaks were evaluated by 

AlphaVision-32 Alpha Analysis Software (ORTEC, Advanced Measurement Technology, 

Inc., USA). The count rates were converted into molar concentrations (mol/L) of 241Am and 

244Cm and the molar concentrations in the aqueous phase were used for the evaluation by 

means of the kinetic models listed in Table 1. 

Results and Discussion 

Evaluation of kinetic dependences 

The experimental dependences of D = f(t) measured for all the systems under evaluation 

have been previously discussed in detail [12]. Here, F = f(t) dependences  are shown only in 

comparison with the data predicted by the models (see Figs 1a and 1b). It is evident from the 

description of the experimental procedure, that extraction kinetics of both nuclides, i.e. 

Am(III) and Cm(III), were determined simultaneously (in one experiment), which means 
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that any mutual interaction of nuclides mentioned was not considered. In our opinion, such a 

supposition is correct and reasonable in view of the very low concentrations of Am(III) and 

Cm(III) (see Table 2).  

As is evident from the lowest values of quantity WSOS/DF in Table 3, the DM model proved 

to describe our liquid-liquid extraction systems the best. It has to be noted, that the DM 

model is the classical mass transfer model based on the so-called two-film theory of 

interphase diffusion [16], according to which “films” exist on both sites of the interphase 

boundary of a given two phase system. In some cases, FD and CR models can be applied as 

well; whereas the ID, RLD and GD models, usually used for solid-liquid systems, are 

practically inapplicable for the description of the kinetics in our liquid-liquid systems. 

As mentioned above, the kinetic experimental data were also evaluated with the aim of 

establishing the values of over-all-mass transfer coefficients, (KDM)Am and (KDM)Cm. In 

addition, the values of the distribution coefficients, DAm and DCm, were obtained from the 

equilibrium states of the kinetic experiments. The values of these parameters are summarized 

in Table 4. 

The graphical evaluations of the CyMe4-BTPhen extraction system, namely the experimental 

and calculated results, are depicted in Figure 2a (extraction kinetics of Am(III)) and Figure 

2b (extraction kinetics of Cm(III)). From the comparison of both figures and the respective 

overall mass transfer coefficient values shown in Table 4, it is clear that the rate of extraction 

of americium is higher than the rate of extraction of curium. From the ligands studied, the 

difference between the rates of extraction of Am(III) and Cm(III)  is by far the largest in the 

case of CyMe4-BTPhen (compare the values of coefficients and their relations in Table 4). 

The reason for this fact is not clear at this moment, although differences in the kinetic 

labilities of the Am(III) and Cm(III) aqua complexes toward ligand substitution, similar to 

those observed for the lanthanide series [e.g. 17–19], have been suggested as one of the 
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possible reasons in our earlier paper [12]. Moreover, the side-groups can also have an effect 

on rates of extraction, for example due to steric effects or their influence on the electron 

densities at the binding sites. 

On the other hand, from the point of view of equilibrium extraction properties, it is the C5-

BTPhen ligand that exhibits the best selectivity for Am(III) according to the DAm/DCm values. 

For CyMe4-BTPhen, the SF(Am/Cm) limits to 1.00 in equilibrium. 

Evaluation of time dependent separation factor SF(Am(III)/Cm(III)) 

The experimental time dependent values of the separation factor, SF(Am(III)/Cm(III)), were 

evaluated and simulated by means of the model described above. Again, a non-linear 

regression procedure combined with numerical solution of the corresponding differential 

equations (by means of the Runge-Kutha method) was applied. Of course, it related to the 

DM – model (Eqs. (2) and analogous equations for Cm, Eqs. (11) and (12)) and new values 

of the kinetic parameters, {(KDM)Am}SF and {(KDM)Cm}SF, were sought in the course of the 

non-linear regression procedure. The quantity WSOS/DF was used as a criterion of the 

goodness of fit. The corresponding kinetic parameters, (KDM)Am and(KDM)Cm, from Table 4 

were used as initial estimates of the parameters sought. As regards the initial values of k3 and 

KAC, they were estimated as k3=1E-03 and KAC=DAm/DCm (taken from Table 4), respectively, 

on the basis of trial-and-error.  

The resulting new values of the kinetic coefficients and WSOS/DF obtained for the 

extraction systems with CyMe4-BTPhen, C4-BTPhen and C5-BTPhen can be found in Table 5, 

and a graphical evaluation of Eq. (13), i.e. SF(Am/Cm)(t),  in Figures 3 a, b and c. If we 

compare the new values of the kinetic coefficients, {(KDM)Am}SF and {(KDM)Cm }SF, and KAC 

(≡ DAm/DCm) with the previous ones in Table 4, it is evident that these values do not differ. 

This can be regarded as good confirmation, because it means that input data into the code for 
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the simulation of time dependent separation factor of extraction systems can be obtained on 

the basis of the evaluation of individual kinetic experiments. 

Equally interesting is the mutual relationship of Figures 3a, b and c where the experimental 

and calculated dependences of separation factor on time for all three extraction agents 

studied are demonstrated. Here, CyMe4-BTPhen extraction system having the highest value 

of SF appears to be the most promising candidate for kinetic separation of Am(III) and 

Cm(III). On the other hand, how best to utilize this kinetic separation effect for Am(III)-

Cm(III) separation is not known at this point, and consequently, further studies will need to 

be carried out in future. 

The model of the time dependent separation factor determination consists of concentration, 

kinetic, equilibrium and balance parameters. The contribution of individual parameters can 

be studied by means of a so-called parametric study. On the basis of preliminary 

calculations, we suppose that the overall mass transfer coefficient, KDM, and equilibrium 

constant of the reversible reaction, KAC, are among the important parameters. Therefore, two 

3D-graphs (Figure 4a and 4b) demonstrating the functions SF(Am(III)/Cm(III)) = f(t,(KDM)Am) and 

SF(Am(III)/Cm(III)) = f(t,KAC), were constructed for the CyMe4-BTPhen extraction system. The 

conditions of these constructions are as follows: 

Figure 4a: function  Z = f(X,Y), i.e. SF(Am(III)/Cm(III)) = f(t,(KDM)Am), 

Z = SF, X = t [min-1], Y = (KDM)Am ∙ 102 [min-1], 

further it holds (see Table 4 and 5): (KDM)Cm = (KDM)Am /1.83 [min-1] ; KAC = 1.00; 

 Rv = 1 [Laq·Lorg
-1]; 

DAm = 58.00 [Laq·Lorg
-1]; DCm = DAm / KAC [Laq·Lorg

-1]; (c0aq)Am = 3.49E-07 [mol·Laq
-1] ; 

(c0aq)Cm = 1.31E-08 [mol·Laq
-1]. 

Figure 4b:  function  Z = f(X,Y), i.e. SF(Am(III)/Cm(III)) = f(t,KAC), 

Z = SF, X = t [min-1], Y = KAC, 
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further it holds (see Table 4 and 5): (KDM)Am = 8.68E-03 [min-1]; (KDM)Cm = 4.74E-03 [min-

1]; Rv = 1[Laq·Lorg
-1]; DAm = 58.00 [Laq·Lorg

-1]; DCm = DAm/KAC [Laq·Lorg
-1];  

(c0aq)Am = 3.49E-07 [mol·Laq
-1]; (c0aq)Cm = 1.31E-08 [mol·Laq

-1]. 

 

As Figure 4a clearly demonstrates, an interaction between the both parameters, time and 

overall mass transfer coefficient, exists and can be regarded as important and unexpected. 

This unexpected behaviour of the given system lies in the sudden change of the separation 

factor from 1.0 to 4.0 if Y (=KDM) is smaller than circa 4∙10-3 [min-1] and X (= t) is greater 

than circa 30 minutes. Of course, this deals only with the results of calculations executed 

under conditions that are not be fully relevant to the time and mass transfer coefficients of 

real systems.  

The interpretation of Figure 4b is easier – it is evident that the increase of KAC is favourable 

for the separation process; we see that if the value of this parameter increases from 1 to 1.5, 

the separation factor increases from ca. 4 to 8.  

In any case, such simulations of the influence of selected parameters on the separation 

efficiency of given system enable the results of research to be optimized before their 

application in practice.    

Conclusions   

In the present paper, we have tried to model the different behaviour of Am(III) and Cm(III) 

during liquid-liquid extraction by three 2,9-bis-(1,2,4-triazin-3-yl)-1,10-phenantroline 

(BTPhen) derivatives published by Lewis et al. [12], who observed that extraction of 

Am(III) by CyMe4-BTPhen into cyclohexanone is significantly faster than extraction of 

Cm(III) resulting in higher-than-equilibrium SF(Am/Cm) values after 7 minutes of shaking. 

Computational modelling has helped to explain the observed dependences. A DM model, 

based on mass transfer as the rate-controlling process, was chosen as the best model for the 
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kinetic data. The value of the overall mass-transfer coefficients confirmed that extraction of 

Am(III) by the CyMe4-BTPhen is approximately twice as fast as the extraction of Cm(III). 

Moreover, a dependence of SF(Am/Cm) on time was simulated and the obtained good fit of 

the calculated transfer-coefficients to the determined experimental values confirmed the 

validity of the theoretical model.  

This kinetic separation phenomenon and its explanation paves the way for potential new 

approaches to separation of metal ions with very similar properties, such as the adjacent 

minor actinides Am(III) and Cm(III). In addition to a more detailed study of related systems, 

the next challenge is to engineer processes and devices that will be able to make practical use 

of this separation effect. 
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