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Abstract. Atmospheric aerosols from anthropogenic and
natural sources reach the polar regions through long-range
transport and affect the local radiation balance. Such trans-
port is, however, poorly constrained in present-day global
climate models, and few multi-model evaluations of polar an-
thropogenic aerosol radiative forcing exist. Here we compare
the aerosol optical depth (AOD) at 550 nm from simulations
with 16 global aerosol models from the AeroCom Phase 11
model intercomparison project with available observations at
both poles. We show that the annual mean multi-model me-
dian is representative of the observations in Arctic, but that
the intermodel spread is large. We also document the geo-
graphical distribution and seasonal cycle of the AOD for the

individual aerosol species: black carbon (BC) from fossil fuel
and biomass burning, sulfate, organic aerosols (OAs), dust,
and sea-salt. For a subset of models that represent nitrate and
secondary organic aerosols (SOAs), we document the role of
these aerosols at high latitudes.

The seasonal dependence of natural and anthropogenic
aerosols differs with natural aerosols peaking in winter (sea-
salt) and spring (dust), whereas AOD from anthropogenic
aerosols peaks in late spring and summer. The models pro-
duce a median annual mean AOD of 0.07 in the Arctic (de-
fined here as north of 60° N). The models also predict a note-
worthy aerosol transport to the Antarctic (south of 70°S)
with a resulting AOD varying between 0.01 and 0.02. The
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models have estimated the shortwave anthropogenic radia-
tive forcing contributions to the direct aerosol effect (DAE)
associated with BC and OA from fossil fuel and biofuel (FF),
sulfate, SOAs, nitrate, and biomass burning from BC and OA
emissions combined. The Arctic modelled annual mean DAE
is slightly negative (—0.12 Wm™2), dominated by a positive
BC FF DAE in spring and a negative sulfate DAE in sum-
mer. The Antarctic DAE is governed by BC FE. We per-
form sensitivity experiments with one of the AeroCom mod-
els (GISS modelE) to investigate how regional emissions of
BC and sulfate and the lifetime of BC influence the Arctic
and Antarctic AOD. A doubling of emissions in eastern Asia
results in a 33 % increase in Arctic AOD of BC. A doubling
of the BC lifetime results in a 39 % increase in Arctic AOD
of BC. However, these radical changes still fall within the
AeroCom model range.

1 Introduction

The polar regions are relatively free from local sources of an-
thropogenic climate drivers, but are still experiencing rapid
changes to increasing greenhouse gas concentrations, which
are distributed globally. These changes are amplified by feed-
backs in the system, such as temperature feedbacks and the
ice albedo feedback (Pithan and Mauritsen, 2014). The tem-
perature in the Arctic is experiencing increases that are twice
the global rate, resulting in reductions in summer sea-ice
(Hartmann et al., 2013; Screen and Simmonds, 2010). In the
Antarctic, summer sea-ice is increasing, while several inte-
rior regions are rapidly losing ice mass (Rignot et al., 2008).
The role of aerosols in the ongoing polar climate changes is
not well understood. Yang et al. (2014) emphasize the im-
portance of including aerosols in models when simulating
the recent changes in the Arctic climate. For instance, the
measured decrease in anthropogenic sulfate concentrations
in the Arctic over the last decades (Hirdman et al., 2010;
Quinn et al., 2009) may have had a warming effect on the
Arctic (Navarro et al., 2016). Shindell and Faluvegi (2009)
showed that decreasing sulfate and increasing BC concentra-
tions over the last three decades have substantially warmed
the Arctic. In general, the climate impacts of aerosols and
clouds constitute one of the largest sources of uncertainty
in climate models (Boucher et al., 2013). This is true on
a global scale and likely for the critical polar regions, where
both sensitivities and dynamical processes may differ signif-
icantly from global mean values. Reducing these uncertain-
ties is crucial for improving the reliability of future climate
projections.

Aerosols perturb the Earth’s radiation balance through ex-
tinction of solar radiation (McCormick and Ludwig, 1967;
Schulz et al., 2006). By scattering solar radiation, aerosols
produce a negative DAE at the top-of-the-atmosphere (TOA).
Some aerosols such as BC and dust also absorb solar radia-
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tion, and this absorption can lead to a positive DAE TOA
(Bond et al., 2013). For a given aerosol abundance, the mag-
nitude and sign of the DAE depend on the underlying sur-
face albedo (Haywood and Shine, 1995). In the polar regions,
the high albedo of snow- and ice-covered surfaces will in-
crease the absorption associated with the DAE for absorbing
aerosols (Hansen and Nazarenko, 2004; Bond et al., 2013).
Concurrently, deposition of BC and dust can reduce the sur-
face albedo and promote snowmelt (Flanner et al., 2009;
Krinner et al., 2006; Clarke and Noone, 1985). Aerosols also
influence the energy balance by changing the optical proper-
ties and lifetime of clouds (Twomey, 1977; Albrecht, 1989),
and through changes to atmospheric stability (Hansen et al.,
1997; Hodnebrog et al., 2014; Samset and Myhre, 2015).

The amount of aerosols emitted into the atmosphere has
increased over the industrial era. Myhre et al. (2013) re-
ported on the DAE due to anthropogenic aerosols in Aero-
Com Phase II. The global model median DAE of the total
aerosol effect, taking into account changes to BC, sulfate,
OA, biomass burning aerosols, nitrate, and secondary organic
aerosols, was estimated at —0.27 W m™2 with an intermodel
range of —0.58 to —0.02 Wm™2 for the time period 1850—
2000. Modifying the results from models with missing SOAs
and nitrate by use of results from the other models and scal-
ing the period to 1750-2010 resulted in a median DAE of
—0.35Wm™2.

Most of the aerosols in the polar regions originate from
lower latitudes and midlatitudes (Koch and Hansen, 2005;
Hirdman et al., 2010). Large-scale planetary circulations in
the Northern Hemisphere govern transport into the Arctic.
The pronounced seasonal cycle of Arctic AOD typically has
a maximum in late winter and spring due to a wintertime
build-up in the shallow boundary layer with effective trans-
port and reduced scavenging, often referred to as the Arc-
tic haze (Iversen and Joranger, 1985; Stohl, 2006). The sea-
sonal cycle of Arctic AOD also varies spatially due to chang-
ing emissions, composition, and transport patterns. In spring,
pollution haze and dust plumes from Asian deserts are most
common, while late in the season biomass burning and wild-
fire smoke from North America and Siberia are observed
more frequently (Tomasi et al., 2007). As the Arctic sea-
ice melts and more open water is exposed, emissions of sea-
salt, dimethylsulfide (DMS), and organic aerosols within the
Arctic are expected to increase (Nilsson et al., 2001; Browse
etal., 2014).

In the Antarctic, sea-salt particles dominate the coastal
sites, which are strongly influenced by the surrounding ocean
(Tomasi et al., 2007). In summer, the sulfate from DMS pro-
duced by phytoplankton is at its peak, which can also influ-
ence the aerosol distribution in the Antarctic (Arimoto et al.,
2004). The stations on the Antarctic Plateau, conversely, are
mostly influenced by long-range transport in the free tropo-
sphere and the subsidence of fine sulfate and methane sul-
fonic acid (MSA) (Hara et al., 2004; Bigg, 1980; Tomasi
et al., 2015). Sea-salt measured here originates mainly from

www.atmos-chem-phys.net/17/12197/2017/
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marine air transported by large storm events. The Antarctic
is also influenced by smoke aerosols transported from South
America, Australia, and southern Africa (Fiebig et al., 2009;
Stohl and Sodemann, 2010).

The ability of climate models to simulate aerosol burdens
in remote regions depends on transport and precipitation, as
well as internal aerosol physical and chemical parameteriza-
tions, such as wet deposition, oxidation, and microphysics
(Shindell et al., 2008; Textor et al., 2006; Zhou et al., 2012;
von Hardenberg et al., 2012). Aerosol observations in the po-
lar regions are sparse. Previous comparisons between models
and single observations show significant model biases (Stohl
et al., 2013; Shindell et al., 2008; Koch et al., 2009). Eck-
hardt et al. (2015) evaluate sulfate and BC concentrations
from different models against a large set of ground-based
and aircraft measurements in the Arctic. They find that the
aerosol seasonal cycle at the surface is weak in most models
and that the concentrations of equivalent BC and sulfate are
underestimated in winter and spring, but improved relative
to earlier comparisons. Jiao et al. (2014) compare AeroCom
Phase II models with observations of BC in snow in the Arc-
tic. They find that simulated BC distributions in snow are not
well correlated with measurements, but that averaged values
over the measurement domain are close to observed. The BC
atmospheric residence time in the Arctic varies from 3.7 to
23.2 days in the models, and they suggest that aerosol re-
moval processes are a leading source of variation in model
performance in the Arctic. Kristiansen et al. (2016) calculate
the aerosol lifetime by using observations of two radioactive
isotopes released from the Fukushima nuclear power plant
accident: one passive tracer and one that condenses on sul-
fate particles (137Cs) that were used as a proxy for sulfate
aerosols’ fate in the atmosphere. Based on surface measure-
ments taken in the weeks after the release, they derive an
e-folding lifetime of 14.3 days for '37Cs, which serves as an
estimate of the lifetime of sulfate. They compare this esti-
mate with 19 AeroCom Phase II models initialized with the
same identical emissions of '37Cs and the passive tracer. The
AeroCom models show a large spread in their estimates life-
times (4.8 to 26.7 days) and a mean of 9.4 days, which is
low compared to the measurements (14.3 days). The under-
estimation is larger for the northernmost stations, suggesting
that the models remove aerosols too quickly and underesti-
mate the transport to the Arctic.

Here we present results from Phase II of the AeroCom
model experiment. The goal is to document the seasonal
cycle of mean aerosol abundances and the resulting DAE
at the poles, predicted by climate models presently in use,
and the multi-model spread. The DAE does not include indi-
rect cloud effects or surface albedo modifications. As global
aerosol emissions may change rapidly, both in magnitude
and geographical distribution, and aerosol abundance obser-
vations in the polar regions are sparse, one aim of the present
study is to deliver a baseline to which future model studies
and observations may be compared.

www.atmos-chem-phys.net/17/12197/2017/
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2 Methods
2.1 Models

We have used results from 16 global aerosol models
that participated in the AeroCom Phase II project (e.g.
Myhre et al., 2013) http://aerocom.met.no. The models are
NCAR-CAM3.5 (Lamarque et al., 2010, 2012), CAM4-Oslo
(Kirkevag et al., 2013), CAMS5.1 (Liu et al., 2012), GISS-
MATRIX (Bauer et al., 2008), GISS modelE (Koch et al.,
2011), GMI-MERRA-v3 (Bian et al., 2009), GOCART-
v4 (Chin et al., 2009), HadGEM2 (Bellouin et al., 2011),
IMPACT (Lin et al., 2012), INCA (Szopa et al., 2013),
ECHAMS-HAM?2 (Stier et al., 2005; Zhang et al., 2012b),
OsloCTM2 (Skeie et al., 2011), SPRINTARS (Takemura
et al., 2005), TM5 (Vignati et al., 2004), GEOS-Chem (Yu
and Luo, 2009), and BCC (Zhang et al., 2012a). Model
descriptions including model resolution, meteorology, and
aerosol microphysics are given in Table S1 in the Supple-
ment.

Each model has provided climate and aerosol simulations
using year 2006 meteorology. For present-day simulations
emissions for the year 2000 have been used, and for prein-
dustrial runs year 1850 emissions have been used (Lamar-
que et al., 2010). All AeroCom models include sulfate, BC,
primary organic carbon, sea-salt, and mineral dust in their
total AOD, and some models also include nitrate and SOA.
To report on the individual species, the models have either
added double calls to the radiation code (i.e. for each time
step the radiation code is called with and without the ar-
guments needed to calculate the given species’ forcing) or
performed additional runs where each species has been run
with preindustrial emissions. However, not all models were
able to extract the AOD for the individual species. Table 1
lists the models and the species reported by each model.
The individual species include BC (from fossil fuel, bio-
fuel, and biomass burning emissions), sulfate, total OA (from
fossil fuel, biofuel, and biomass burning emissions), nitrate,
SOA, sea-salt, and dust. Here, organic aerosols refer to the
total mass of organic compounds in the aerosol (both pri-
mary and secondary). For a comprehensive documentation
on OA and SOA treatment in the AeroCom Phase II mod-
els, see Tsigaridis et al. (2014). The AOD is a measure of
the total extinction (scattering and absorption) of sunlight
as it passes through the atmosphere. In this study we use
the AOD at 550 nm wavelength. The models have estimated
AOD as a combination of aerosol abundances and optical
properties, which is why AOD can be reported in the months
in which there is no actual sunlight. The DAE is calculated
as the difference in TOA SW radiation between simulations
with present-day and preindustrial emissions of aerosols and
their precursors (under all-sky conditions). Results are avail-
able for total aerosol forcing, as well as for individual aerosol
species (BC from fossil fuel and biofuel emissions (FF), sul-
fate, total OA FF, nitrate, SOA, and OA and BC combined

Atmos. Chem. Phys., 17, 12197-12218, 2017
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Table 1. List of the models used in this study and which species they have reported.

Aerosol optical depth

Direct aerosol effect

Total Sulfater BC OA SOA Nitrate Dust Sea-salt Total Sulfate  BCFF OAFF BB SOA Nitrate
CAM4-Oslo X X X X X X X
HadGEM2 X X X X X X X X X X X X X X
ECHAMS-HAM X X X X X X X X X X X X
OsloCTM2 X X X X X X X X X X X X X X X
SPRINTARS X X X X X X X X X X X X
GISS-MATRIX X X X X X
GISS-modelE X X X X X X X X X X X X
CAMS.1 X X X X X X X X X X X X X
BCC X X X X X X X X X
GMI-MERRA-v3 X X X X X X X X X X X X
GEOS-Chem X X X X X X X X X X
GOCART-v4 X X X X X X X X X X X
NCAR-CAM3.5 X X X X X X X
IMPACT X X X X X X X
INCA X X X X X X X X X X X
TMS5-V3 X X X X X X X X

Table 2. List of the Arctic and Antarctic stations with ground-based measurements of AOD. Data for Tiksi, Andenes, Yakutsk, Bonanza
Creek, Resolute Bay, and Kangerlussuaq are taken from the AERONET database (http://aeronet.gsfc.nasa.gov/) and data from Ny-Alesund,

Barrow, and Alert are from Stone et al. (2014) and Tomasi et al. (2015).

Stations Coordinates and altitude (a.m.s.l.)  Measurement period

Tiksi 71°N, 128°E, Alt Om 2010-2012, 2014

Andenes 69° N, 16°E, Alt 379 m 2002, 2008-2011, 2013, 2014
Yakutsk 61°N, 129°E, Alt 118 m 2004-2015

Bonanza Creek

Resolute_Bay 74° N, 94° W, Alt 40 m

Kangerlussuaq ~ 66° N, 50° W, Alt 320 m
Ny-Alesund 78°N, 11°E, Alt 5m
Barrow 71°N, 156° W, Alt 8 m
Alert 82°N, 62° W, Alt 210 m
Neumeyer 70°S, 8°W, Alt 40 m
Troll 72°8S,2°E, Alt 1309 m
South Pole 90° S, 0°E, Alt 2835 m

64°N, 148° W, Alt 150 m

1994-1997, 1999-2015
2004, 2006, 2008-2015
2008-2015
2001-2011
2001-2011
2004-2011
2000-2007
2007-2013
2001-2012

from biomass burning (BB) emissions. Hereafter we will use
the term “BC” for total BC (from fossil fuel, biofuel, and
biomass burning emissions) and BC FF for anthropogenic
BC (from fossil fuel and biofuel emissions), and the same is
used for total OA. For AOD we report BC (and OA) only, and
for DAE we distinguish between BC FF, OA FF, and biomass
burning, the latter consisting of emissions from both BC and
OA. For information on the radiative transfer schemes of the
individual models, see Stier et al. (2013), their Table 2, and
the aerosol model references in Myhre et al. (2013), their
Table 2. Uncertainties in calculating the radiative impact of
aerosols are linked to the vertical distribution of aerosols
(Samset et al., 2013; Kipling et al., 2016). A comparison
of the aerosol vertical extinction coefficient from 11 Ae-
roCom models to CALIPSO has been performed in Koffi
et al. (2016) showing that about half of the models capture
the mean aerosol vertical distribution. The models generally

Atmos. Chem. Phys., 17, 12197-12218, 2017

perform better over ocean than land (9 of 11 models repro-
duce the aerosol mean vertical distribution over ocean), while
the models underestimate the mean aerosol distribution over
land. The annual mean multi-model mean absolute error is
11 %, but the bias depends highly on model, season, and re-
gion. The negative bias is especially pronounced in spring
and summer, in source regions in Africa and Asia dominated
by biomass burning (—17 to —26 % bias) and dust (—8 to
—23%).

Even if the models used meteorology for the year 2006,
there is some intermodel variability in the simulated wind.
Some models are nudged to different sets of reanalysis, while
others have used different prescribed meteorology data sets;
see Table S1. Three models (NCAR-CAM3.5, CAM4-Oslo,
and CAMS.1) have calculated the meteorology online, i.e.
with free-running meteorological fields. In CAM4-Oslo the
meteorology is calculated based on the CAM4 aerosol ex-

www.atmos-chem-phys.net/17/12197/2017/
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tinction and cloud droplet fields, which do not differ be-
tween preindustrial and present-day simulations. The two
other models have been run for several years to account
for the year-to-year variability, and the reported simulations
are based on a 5-year average. The fields (wind, tempera-
ture, humidity) are not identical for the preindustrial simu-
lations and the present-day simulations in these two models.
The calculated aerosol-induced climate response in the po-
lar regions will therefore be due to a combination of differ-
ences in emissions and in transport and lifetime. One model
(GISS modelE) has duplicate 6-year runs with both nudged
winds and free-running winds for preindustrial and present-
day conditions, and we find that the difference in the Arctic
fraction of the transported tracers between the nudged and
the free wind simulations is small. The difference varies be-
tween 0.1 and 1.0 % for most species (up to 2.0 % for a few
species), for both preindustrial and present-day simulations.
Another study with the CAMS5.3 MAM4 model finds a sig-
nificant difference in BC concentrations on a global scale
between nudged and free-running winds (Liu et al., 2016),
while the differences between the nudged and unnudged runs
in a study with ECHAM-HAM were small (von Hardenberg
et al., 2012). Nevertheless, it did not make much difference
for the ensemble results as to whether we included or ex-
cluded the three models that generated their own winds, and
we have therefore decided to include these models in the
analysis.

There is no unique definition of the Arctic region and here
we have defined the Arctic as the region north of 60° N, a def-
inition found in other studies (Shindell and Faluvegi, 2009;
AMAP, 2011). To avoid a large influence from the Southern
Ocean we have defined the Antarctic as the region south of
70°S.

2.2 Comparison with observations
2.2.1 AERONET

We have compared the modelled seasonal cycle of AOD in
the grid box of each model in which the respective station
is located with ground-based measurements from 12 sta-
tions in the Arctic and Antarctic from the AErosol RObotic
NETwork (AERONET) http://aeronet.gsfc.nasa.gov/ (Hol-
ben et al., 1998). The locations for each station are plotted
in Fig. 3, and the coordinates and measurement years for
each station are given in Table 2. For Barrow, Alert, and
Ny-Alesund, we have used monthly mean climatology de-
rived from daily mean of spectral AOD reported in Stone
et al. (2014). For the three stations in Antarctica, one coastal
(Neumayer), one mid-altitude (Troll), and one plateau (South
Pole) monthly mean climatology are taken from Tomasi
et al. (2015).

www.atmos-chem-phys.net/17/12197/2017/
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2.2.2 MODIS

Due to the high reflectance over bright surfaces, obtaining
reliable satellite retrieval of AOD is difficult at the poles.
Glantz et al. (2014) compared AOD 555 nm from the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) Aqua
collection 5 Level 2 (Remer et al., 2005) over (dark) ocean
areas around Svalbard with available AERONET ground-
based measurements at Svalbard (Longyearbyen, 78.2° N,
15.6° E; Hornsund, 77.0° N, 15.6° E) for the period 2003—
2011. They found comparable values in the summer sea-
son (JJA) (0.041 &+ 0.025 for MODIS and 0.043 £ 0.024
for AERONET) and early autumn (September) (0.035 £
0.021 for MODIS and 0.038 £0.021 for AERONET), but
larger differences in spring (0.11540.069 for MODIS and
0.093 £0.050 for AERONET). The spring differences are
partly explained by diverse air masses causing inhomoge-
neous aerosol geographical distributions. Glantz et al. (2014)
conclude that satellite AOD retrievals in the Arctic marine at-
mosphere vary within the expected uncertainties of MODIS
retrieval over ocean and can be of use to climate model vali-
dation. We have compared the MODIS AOD values with the
AeroCom models averaged over the same area (75-82°N,
10° W—40° E), illustrated in Fig. 3 (in blue). For details on
the retrieval, see Glantz et al. (2014).

2.2.3 CALIOP

We have compared modelled AOD with retrieved AOD
from the Cloud-Aerosol Lldar with Orthogonal Polariza-
tion (CALIOP) on board the Cloud—Aerosol Lidar and In-
frared Pathfinder Satellite Observations (CALIPSO) satellite
(Winker et al., 2013). CALIOP is an active nadir-looking
backscattering lidar. It distinguishes clouds and aerosols by
using the total backscatter radiation measured at 1063 nm
combined with the linear depolarization at 532nm (Liu
et al., 2009). Because it is an active instrument, CALIOP can
retrieve aerosol and cloud vertical profiles in the day and at
night, and can measure over the highly reflective surfaces
in the Arctic. However, daytime retrievals are affected by
the noise from scattering of solar radiation and are therefore
less accurate than night-time retrievals (Winker et al., 2009).
In the Arctic, there are no night-time observations in May,
June, and July which complicates the interpretation of spring
and summer retrievals. CALIOP reports AOD by integrat-
ing the aerosol extinction coefficient from all detected layers
over a given location. Thin aerosol layers in the Arctic often
have backscattering values below the detection threshold of
CALIOP and the column AOD can therefore be underesti-
mated (Rogers et al., 2014). Omar et al. (2013) found that
retriecved AOD from AERONET stations was 25 % higher
compared to CALIOP AOD for AOD less than 0.1. CALIOP
has an inclination angle of about 98.14° and therefore has no
data points above 82° N.

Atmos. Chem. Phys., 17, 12197-12218, 2017
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Figure 1. Mean seasonal cycle of the Arctic (60-90° N) (a) and Antarctic (70-90° S) (b) total AOD. The different colours represent the
different AeroCom Phase II models. The black solid line is the model median and the dashed line is the 25th/75th percentile.

The AeroCom models ran simulations for the year 2006
(with emissions for the year 2000), while we compared AOD
with observations from different available years in the period
2000-2015. Comparing 2006 AOD values from CALIOP
(only available July—December) with the 2007-2012 aver-
age, we find that 2006 is representative of the average (values
varies 0-36 %).

3 Results

Here we present AOD and DAE results from the Arctic (de-
fined as 60-90° N) and the Antarctic (70-90°S) regions.
We compare the simulated seasonal AOD to ground-based
measurements from a selection of stations in the Arctic and
Antarctic. We also compare the modelled AOD with a re-
trieval from MODIS over the Svalbard ocean region and with
CALIOP. We then document the model-simulated regional
patterns for each aerosol species.

3.1 Aerosol optical depth

Figure 1 shows the seasonal cycle of the total AOD in the
Arctic and the Antarctic, for all the AeroCom Phase II mod-
els. Values are for present-day conditions, i.e. emissions rep-
resentative of the year 2000. The model-median AOD (Fig. 1,
thick black line) has a summer maximum and a winter min-
imum at both poles, but there is a large variation among
the different models. For the Arctic, the spread is larger
in winter and early spring and smaller during the summer
months. A few models suggest an earlier Arctic AOD max-
imum in winter (IMPACT) and early spring (GEOS-Chem
and GOCART). For GEOS-Chem and GOCART this maxi-
mum is dominated by natural aerosols (sea-salt and dust, re-
spectively, as shown in Fig. 9). The higher values of AOD
in CAM-Oslo are linked to efficient vertical transport in
deep convective clouds, which exaggerates the amount of
aerosols in the upper troposphere (and poleward transported
aerosols). Note that modelled AOD is calculated from simu-
lated aerosol distributions, and can therefore be reported even
for months in which there is no actual sunlight.

Atmos. Chem. Phys., 17, 12197-12218, 2017

3.1.1 Comparisons with measurements at both poles

We have compared the seasonal cycle of modelled AOD with
measurements from nine Arctic stations (details in Table 2),
shown in Fig. 2. The AERONET mean (a climatology for all
available years) is shown as a red line, and the model median
is shown as a thick black line. The yellow line represents the
year 2006, in which this was available. The AeroCom mod-
els are shown as thin grey lines (for individual models, see
Fig. S1 in the Supplement). The root mean square error and
the correlation factor are shown for each site. We have calcu-
lated the root mean square error (RMSE) as the square root
of the average of the difference between the model median
and AERONET values for each month. The values ranges
from 0.02 (Ny-/g;lesund, Kangerlussuaq, and Andenes) to
0.07 (Bonanza Creek). Alert, Ny-Alesund, Barrow, and Res-
olute Bay show the typical maximum in springtime AOD.
Some models also show this peak, but the model median
fails to capture the observed high spring AOD. The corre-
lation factor for these stations is low (—0.08 to 0.27), except
for Ny-Alesund (0.63). Figure 3 shows the type of aerosol
in terms of AOD that the models simulate for each station in
spring (MAM) (JJA average in Fig. S2). Ny-Alesund is dom-
inated by sea-salt in spring, and the total AOD is larger than
the other stations. There is a better agreement between mea-
surements and models during the summer season when the
observed AOD and its variability is lower. Bonanza Creek
experienced unusually high August values in 2004, 2005,
and 20009, resulting in a large SD. Here, the 2006 values for
AERONET are closer to the model median in summer, but
not in early spring. Tiksi station has the best correlation be-
tween AERONET and the model median (0.86). This station
has a maximum in AOD in summer, with large influences of
organic aerosols from biomass burning (Fig. S2). Averaged
over all nine stations, the annual mean AERONET AOD is
27 % higher compared to the model median AOD (excluding
months without measurements). The correlation coefficient
between the AeroCom and the AERONET monthly mean is
0.68 (P < 0.05). We would expect the spring peak in AOD
to be stronger at the surface than for the total column. The
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M. Sand et al.: Aerosols at the poles: an AeroCom Phase II multi-model evaluation

r=0.27 rms=0.04 (b)03 Ny Alesund

Aerosol optical depth at 550 nm

0.0 e

JFMAMUJJASOND

(d) Kangerlussuag  r=0.53 rms=0.02 () Resolute Bay
0.3 0.3

£

=

o

Yo}

[Te}

®

s 0.2 0.2

a

[}

hel

®

ksl

53 0.1

°

12

1=

[}

<

. 0.0 bt -
JFMAMJJASOND

r=0.63 rms=0.02 (c) Barrow
0.3

JFMAMUJ JASOND

JFMAMUJJASOND

12203

r=-0.08 rms=0.04

—— Model median
A e Model 25th/75th perc.
Models
= AERONET mean
e AERONET one SD
AERONET 2006

0.0 s oneennnss
JFMAMJJASON

r=-0.38 rms=0.04 (f) Bonanza Creek r=0.84 rms=0.07
0.8

0.6

0.4

0.2

J FMAMJ JASOND

(9) Yakutsk r=0.53 rms=0.06 (h)  Andenes r=-0.02 rms=0.02 (i) 05 Tiksi r=0.86 rms=0.04
7 0.4 K

E

- 06 y oa N

w 05 )

<

=3 0.3

$ 0.4

° 0.2

803 0.2

g

3 0.2 o4

o 0.1 s

Q

<

o o
2

.0 0.0

"UFMAMUJJASOND

[0 em— ]
JFMAMUJ JASOND

Figure 2. Seasonal cycle of model-median AOD compared to observations for nine Arctic stations: (a) Alert (82° N, 62° W), (b) Ny—Alesund
(78°N, 11° E), (¢) Barrow (71° N, 156° W), (d) Kangerlussuaq (66° N, 50° W), (e) Resolute Bay (74° N, 94° W), (f) Bonanza Creek (64° N,
148° W), (g) Yakutsk (61° N, 129° E), (h) Andenes (69° N, 16° E), and (i) Tiksi (71° N, 128° E). The black solid line is the model median
and the black dashed line is the 25th/75th percentile. Models are shown in thin, grey lines. The red solid line is the observational mean and
the dashed red line is 1 SD from mean values. Measurements for (a—c) are taken Stone et al. (2014), (d—i) are from AERONET stations.
Yellow lines are AOD measurements for the year 2006 (only available at a few stations).

age of Arctic air and its amplitude of the seasonal cycle
with highest values in spring decrease strongly with altitude
(Stohl, 2006), and the observed spring AOD is highest near
the surface (Stone et al., 2010).

Figure 4 shows the spring (MAM) and summer (JJA) AOD
for each model averaged over the nine Arctic stations, to-
gether with the measured AERONET AOD. As is appar-
ent from the correlation coefficient (0.68) and the plots, the
multi-model average is not a bad representation of the ob-
served AOD, but the models vary altogether by a factor of
5-6 in magnitude. GOCART and GEOS-Chem are the mod-
els closest to the observations in summer, and GMI-MERRA
and IMPACT are the closest models in spring.

Retrievals of AOD from the MODIS satellite directly over
snow and sea-ice are not available due to the high reflectiv-
ity of these surfaces. Glantz et al. (2014) have provided spa-
tial averages of MODIS AOD 555nm over (darker) ocean

www.atmos-chem-phys.net/17/12197/2017/

areas around Svalbard over a 9-year period (see Sect. 2). In
our comparison, we have included this 9-year average to take
into account the interannual spread in the data, even though
the AeroCom models have simulated 1 year only. Figure 5a
shows AOD over the Arctic Ocean (75-82° N, 10° W—40° E)
from MODIS retrieval 2003-2011 from Glantz et al. (2014)
compared with the AeroCom models from April to Septem-
ber. The retrieved AOD is approximately 0.1 in spring, but
the uncertainty range is large: 0.11540.069 for MODIS and
0.093 +0.050 for AERONET (mean AOD =+ 1 SD). The re-
trieved AOD decreases over summer through to September.
The AeroCom model mean also show a decrease throughout
the year, but the slope is not as steep compared to MODIS.
Some of the models shown in Fig. 5b) do have a steeper
slope (GOCART, GISS-MATRIX, and GEOS-Chem). In the
MODIS data the influence from large forest fire events and
volcanic eruptions in summer has been removed to represent

Atmos. Chem. Phys., 17, 12197-12218, 2017



12204

Bonanza Creek
Yakutsk
L]

Barrow Tiksi
L]

’ Resolute Bay
Alert® ’

Kanger.lussua

S

esund
enes ‘

M. Sand et al.: Aerosols at the poles: an AeroCom Phase II multi-model evaluation

a

Neumayer
[ 2

Troll A%

South Pole
‘aa

M Sulfate

M Black carbon

I Organic aerosols

I Secondary organic aerosols
Nitrate
Sea-salt

M Dust

Figure 3. The locations of the stations (red dots) with AOD measurements used in this study and the MODIS area (blue square). The circles
show the modelled AOD species MAM average for each station. The area of the circles is scaled to the model median total AOD.
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1SD.

background conditions, and this might be part of the reason
why the models show higher values in summer compared to
MODIS.

We have compared total AOD with the vertical integral
of the monthly mean elastic backscatter at 532nm from
CALIOP. Figure 6 shows the seasonal cycle of AOD532 nm
retrieval from CALIOP for the years 2006-2011 averaged
over 60—82° N compared to the AeroCom models screened
by CALIOP availability (which is why June has zero num-
bers north of 60° N). The summer months are therefore dom-
inated by biomass burning emissions at the southernmost lat-
itudes. For all months except September, the model median
lies within the range of the CALIOP retrievals. The corre-
lation coefficient between the model median monthly mean
and the CALIOP monthly mean is 0.75.

Figure 7 shows the measured seasonal cycle of AOD from
three Antarctic stations (Neumayer, Troll, and the South
Pole) compared to the AeroCom models. The Neumayer site
is located closest to the ocean and has the highest variabil-

Atmos. Chem. Phys., 17, 12197-12218, 2017

ity among the models. The correlation factor at Neumayer
is 0.37, higher than at Troll (—0.26) and the South Pole
(—0.04). Most models seem to be in the lower range of
the observations. Tomasi et al. (2015) report multi-year sets
of ground-based sun-photometer measurements conducted at
nine Antarctic sites. For the high-altitude sites on the Antarc-
tic Plateau (Dome Concordia 75°S and South Pole 90° S)
AOD is very stable, mainly ranging from 0.02 to 0.04. These
values are slightly higher than the median AeroCom Phase I1
AOD (0.01).

Figure 8 shows a box plot of the annual mean AOD in
the Arctic and Antarctic for total aerosols and for the indi-
vidual components (sulfate, BC from all sources, OA from
all sources, SOA, nitrate, sea-salt, and dust). Model-median
total AOD is 0.07 in the Arctic (with a model range of 0.02—
0.2), with the largest contribution to Arctic AOD from sul-
fate (45 %). In the Antarctic the total AOD is 0.01 (0.001-
0.05) with sulfate being the largest model median compo-
nent. However, sea-salt shows a large range with the 75th

www.atmos-chem-phys.net/17/12197/2017/



M. Sand et al.: Aerosols at the poles: an AeroCom Phase II multi-model evaluation

(a) AOD over Greenland Sea/Barents Sea (b)
0.2 + 0.2
0.15 + 0.15
0.1 + 01
0.05 + 0.05

0 } } ’_h | 0

1
t

12205

CAM4-Oslo
HadGEM2
ECHAM5-HAM
OsloCTM2
SPRINTARS
GISS-MATRIX
GISS-modelE
CAMS5.1

BCC
GMI-MERRA-v3
GEOS-Chem
GOCART-v4
NCAR-CAM3.5
IMPACT

INCA

TM5-V3

April-May June

O MODIS (2003-2011)

July-August  September

@ Aerocom models

April-May

June July-August September
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Figure 6. AOD in the Arctic (60-82° N) from CALIPSO retrieval
for the different years 2006-2011 (AOD532 nm) (purple lines) com-
pared to the AeroCom Phase II models (thin grey lines) screened by
CALIOP availability.

percentile and the maximum value, which is much higher
than the corresponding values for sulfate. Note that all mod-
els have reported total AOD but not all the individual com-
ponents’ AOD; see Table 1. The AOD median and 25th/75th
percentiles values are listed in Tables 3 and 4.

Figure 9 shows the seasonal cycle of the AOD for the
same individual components as in Fig. 8: sulfate, BC, OA,
SOA, nitrate, sea-salt, and dust averaged over the Arctic re-
gion (60-90° N). There is a large spread between the mod-
els. Most models show a peak in the AOD in summer, with
a few models showing a late spring maximum. The geograph-
ical distribution over the same region for the summer and
winter season is shown in Fig. 10. For sulfate the highest
model-mean AOD values in summer are found in the Rus-
sian and northern Europe regions (0.09), while for BC the
highest AOD values are found over Russia and eastern Asia
(0.006). Both OAs and SOAs show a maximum in summer in
the fire season with the highest AOD over Russia and eastern

www.atmos-chem-phys.net/17/12197/2017/

Asia (0.07 and 0.02, respectively). Summer is also the season
with maximum chemical production. In winter the AOD val-
ues are low for OAs and SOAs. There is one outlier for OAs,
CAM4-Oslo, which has very high marine primary OA emis-
sions, and is the only model that includes MSA in the primary
organics emissions (Tsigaridis et al., 2014). The emissions of
aerosols (per mass) are dominated by sea-salt and dust. Since
these emissions are mostly interactive (a function of wind
speed and soil moisture for dust), a large model diversity in
AOD is not surprising. Sea-salt AOD is highest during the
winter season, with a maximum over the North Atlantic re-
gion (0.1). The areas around the Norwegian Sea and Barents
Sea have the highest cyclonic activity in winter (Serreze and
Barrett, 2008). For dust aerosols, the models show a maxi-
mum in spring/early summer and a secondary maximum in
September. The spring maximum originates most likely from
dust storms in the Gobi and Taklamakan deserts, while the
second smaller maximum in September might be due to local
sources (Barrie and Barrie, 1990). GOCART shows higher
AOQOD values for dust compared to the other models, proba-
bly linked to an overestimation of dust emissions (Kim et al.,
2014). Only four models have reported AOD from nitrate.
The nitrate maximum is located over Eurasia in winter and
over eastern Asia in summer.

Figure 11 shows the seasonal cycle of AOD in the Antarc-
tic for all the aerosol species. The model-median AOD has
a maximum during the SH summer season of 0.02 and is
reduced to about half during the winter season (0.01). Mod-
elled BC, sulfate, and dust concentrations are highest during
the winter months (SH summer). GISS-modelE shows higher
values for SOAs. This model has the highest SOA lifetime
(14 days) because of a large amount of SOAs in the upper
troposphere, where there is less scavenging and more SOA
available to be transported poleward. SPRINTARS shows the
opposite behaviour on the seasonal cycle of sulfate AOD
compared to the other models. This is likely linked to an
anomaly in the relative humidity over East Antarctica in the

Atmos. Chem. Phys., 17, 12197-12218, 2017
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Table 3. Annual mean Arctic (60-90° N) AOD AeroCom Phase II model median, model range (minimum and maximum), and the 25th/75th
percentile. The number of models for each species is given in the rightmost column. BC is total BC from all sources and OA is total OA from

all sources.

Median Minimum Maximum  25th percentile  75th percentile =~ Number of models
Total 0.071 0.025 0.183 0.031 0.121 16
Sulfate 0.032 0.003 0.068 0.009 0.044 12
BC 0.002 0.000 0.004 0.001 0.003 12
OA 0.014 0.001 0.072 0.006 0.017 11
SOA 0.004 0.001 0.012 0.002 0.007 6
Nitrate 0.001 0.000 0.011 0.000 0.003 4
Sea-salt  0.013 0.001 0.054 0.007 0.018 12
Dust 0.008 0.001 0.035 0.003 0.014 11

Table 4. As Table 3, but averaged over the Antarctic region (70-90° S).

Median Minimum Maximum 25th percentile  75th percentile  Number of models
Total 0.014 0.001 0.052 0.003 0.019 16
Sulfate 0.007 0.000 0.014 0.000 0.009 12
BC 0.000 0.000 0.001 0.000 0.000 12
OA 0.001 0.000 0.020 0.000 0.002 11
SOA 0.001 0.000 0.003 0.000 0.001 6
Nitrate 0.000 0.000 0.002 0.000 0.000 4
Sea-salt  0.002 0.000 0.032 0.001 0.011 12
Dust 0.001 0.000 0.002 0.000 0.002 11

Table 5. Annual mean Arctic (60-90° N) DAE AeroCom Phase I model median, model range (minimum and maximum), and the 25th/75th
percentile. The number of models for each species is given in the rightmost column. BC FF is BC from fossil fuel and biofuel emissions and
OA FF is OA from fossil fuel and biofuel emissions. BB is BC and AO combined from biomass burning emissions.

Median Minimum Maximum 25th percentile ~ 75th percentile =~ Number of models
Total —0.12 —0.30 0.09 —0.22 0.01 16
Sulfate —0.24 —043 0.01 —0.29 —0.11 14
BCFF 0.19 0.03 0.37 0.12 0.26 14
OA FF 0.00 —0.04 0.02 —0.02 0.00 14
BB 0.01 —0.06 0.04 —0.02 0.02 13
SOA —0.01 —0.12 0.01 —0.02 0.00 5
Nitrate —0.03 —0.09 0.00 —0.06 —0.01 6

simulation and has been improved in a newer version of the
model. The high sea-salt values in Geos-Chem have been
linked to an overestimation of sea-salt under high-wind con-
ditions at middle and high latitudes (Jaeglé et al., 2011). By
adding a SST-dependent source function, the model bias was
reduced from 464 to +33 % for cruise measurements and
from 432 to —5 % for ground-based sites. GMI-MERRA
shows higher nitrate AOD values compared to the other
models and is probably linked to the inclusion of oceanic
NHj3 emissions (based on the GEIA emission inventory) in
the model. The CMIP5 emission data set does not include
NHj3 oceanic emissions. For a first assessment of nitrate
from multiple models compared with observations, see Bian
et al. (2017). Nine models from the AeroCom Phase III ni-

www.atmos-chem-phys.net/17/12197/2017/

trate experiment show large diversity in their simulated ni-
trate concentrations, especially in remote regions. The au-
thors link this spread to the involvement of nitrate in compli-
cated chemistry and the concentrations of nitrate depending
on accurate simulations of precursors (NH3, HNO3, dust, and
sea-salt).

3.2 Aerosol direct radiative forcing

The DAE is calculated as the difference between the reflected
solar radiation at TOA between simulations with present-day
(2000) and pre-industrial (1850) emissions of anthropogenic
aerosols and precursors. Figure 12 shows the multi-model
DAE for sulfate, BC FF (from fossil fuel and biofuel emis-

Atmos. Chem. Phys., 17, 12197-12218, 2017
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Table 6. As Table 5, but averaged over the Antarctic region (70-90° S).

M. Sand et al.: Aerosols at the poles: an AeroCom Phase II multi-model evaluation

Median Minimum Maximum 25th percentile  75th percentile =~ Number of models
Total 0.03 0.00 0.10 0.01 0.07 16
Sulfate 0.00 —0.03 0.00 —0.01 0.00 14
BC FF 0.02 0.00 0.09 0.01 0.04 14
OA FF 0.00 0.00 0.01 0.00 0.00 14
BB 0.01 —0.01 0.08 0.00 0.02 13
SOA 0.00 0.00 0.01 0.00 0.00 5
Nitrate 0.00 0.00 0.03 0.00 0.00 6
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Figure 10. The geographical distributed model-median Arctic AOD (a) sulfate, (b) BC (from all sources), (c) total OA (from all sources),
(d) SOA, (e) nitrate, (f) sea-salt, and (g) dust, for the summer (JJA) season (left) and the winter (DJF) season (right). Note the different axes.

sions), OA FF (from fossil fuel and biofuel emissions), BB,
SOA, nitrate, and the total, averaged in the Arctic and the
Antarctic regions. In the Arctic, the dominant aerosol forc-
ing agents are BC FF and sulfate with model-median DAE
estimated at +0.19 and —0.24 W m~2, respectively, although

Atmos. Chem. Phys., 17, 12197-12218, 2017

the Arctic AOD of BC is low compared to the other aerosols
(Fig. 8). The other treated species are relatively low both in
burden and in modelled DAE. The Arctic annual mean multi-
model-median DAE is —0.12Wm™2 (with the 25th, 75th
percentile; —0.22, 0.01). The Antarctic model-median DAE
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is 0.03Wm™2 (0.01, 0.07). The two largest forcing compo-
nents here are BC FF and BB. Note that only the direct ra-
diative forcing is reported. The numbers are listed in Tables 5
and 6.

Figure 13 shows the Arctic DAE seasonal cycle. The di-
rect influence of aerosols on the radiation budget in the Arc-
tic shifts from a BC-driven positive DAE during the spring
months, to a sulfate-driven negative forcing in late summer,
caused by higher surface albedo from sea-ice and snow in the
former season (@demark et al., 2012). Also shown in Fig. 13
is the geographical distribution of DAE in summer (JJA),
and a balance between sulfate and BC FF is also apparent
here linked to albedo. Negative DAE from sulfate dominates
land areas outside the high Arctic, while higher positive DAE
from BC FF is evident in the high Arctic and in the Pacific.

Even though the AOD of BC is low in the Arctic, the DAE
from BC FF dominates the total DAE in spring. In Fig. 14 we

www.atmos-chem-phys.net/17/12197/2017/

have normalized the JJA DAE (for total, sulfate, and BC FF)
to AOD (total, sulfate and BC) to illustrate this. The total
normalized forcing is positive in the high Arctic due to the
high efficiency of the BC forcing. Outside the high Arctic,
there is a band of negative direct forcing due to sulfate.

3.3 Sensitivity simulations with GISS modelE

The model-spread for aerosols at the poles is large and not
entirely surprising, given the large sensitivity to remote trans-
port for aerosol concentrations at high latitudes. The rea-
sons for this spread include transport and removal mecha-
nisms and the interaction between them. To illustrate some
of the variation we have performed sensitivity tests with one
of the AeroCom models, GISS modelE. The anthropogenic
BC emissions (from fossil fuel and biofuel) have been dou-
bled in southern Asia, eastern Asia, and Russia, and Fig. 18a
shows the resulting (total) BC AOD in the Arctic for the
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BC are missing for GEOS-Chem, IMPACT, NCAR-CAM3.5, GISS-MATRIX, CAM4-Oslo and TMS (see Table 1).

different regional emission perturbations. The annual mean
BC AOD in the Arctic increases by 33 % from a doubling of
the BC FF emissions in East Asia, while doubling in south-
ern Asia and Russia increase the BC AOD by 10 and 8 %,
respectively. The change in AOD from a doubling in emis-
sions is still within the AeroCom model range, shown in
grey lines. Here we only show plots for the Arctic, but the
increase in BC AOD in Antarctica is not negligible: 28 %
increase for a doubling in eastern Asia and 7 % for a dou-
bling in southern Asia (zero for Russia) (Fig. S2). We have
also tested the sensitivity to the e-folding time of BC from
hydrophobic (fresh) to hydrophilic (aged) state. GISS mod-
elE has a BC global lifetime of 5.9 days, which is close to
the AeroCom average global lifetime of 6.5 days (it ranges
from 3.8 days in CAMS.1 to 17.1 days in HadGEM?2) (Sam-
set et al., 2014). Figure 18b shows the resulting change in
BC AOD in Arctic by (1) doubling the e-folding time and (2)
reducing it by 50 %. By reducing the e-folding time by half,
BC decreases by 30 % at both poles. However, by making the
lifetime longer by doubling the e-folding time, the BC AOD

www.atmos-chem-phys.net/17/12197/2017/

increases with 36-39 % at both poles. The change in BC is
still within the AeroCom model range.

Figure 15 shows the multi-model DAE in the Arc-
tic, sorted by highest-to-lowest, for total aerosol and for
sulfate and BC FF. Most models have an annual mean
negative net DAE in the Arctic, ranging from —0.3 to
0.0Wm~2, while five models show a positive net DAE
(CAM4-Oslo, HadGEM?2, OsloCTM2, GEOS-Chem, and
CAMS.1). These latter models have a lower-than-average
negative sulfate forcing (HadGEM2, CAMS.1, OsloCTM2),
and/or higher-than-average positive BC FF forcing (GEOS-
Chem, OsloCTM2, and HadGEM?2). When normalizing the
Arctic DAE with AOD for each model (Fig. 16), it is ap-
parent that some models have a high forcing efficiency for
sulfate (ECHAMS5-HAM?2) and/or BC FF (BCC, ECHAMS-
HAM?2).

Figure 17 shows the seasonal cycle of DAE for total
aerosols and for sulfate, BC FF, OA FF, BB, SOA, and ni-
trate in Antarctica. There is a large spread in DAE during SH
summer season, with values ranging from 0 to 0.3 Wm™2,
dominated by BC DAE. Several of the models that have the

Atmos. Chem. Phys., 17, 12197-12218, 2017
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highest (positive) BC FF DAE also have the highest (nega-
tive) sulfate DAE, as indicated by Myhre et al. (2013). As
these models do not show particularly strong forcing per unit
AQD (see e.g. Fig. 16), but generally have high values for
Antarctic AOD (Fig. 11), we attribute this correlation to effi-
cient transport of aerosols to the South Pole region.

4 Summary and discussion

We have reported on modelled AOD and DAE at both poles,
and compared individual and multi-model results to avail-

Atmos. Chem. Phys., 17, 12197-12218, 2017

able measurements. Defining the Arctic as the 60-90° N re-
gion, the dominant aerosol species, in terms of AOD, are sul-
fate, sea-salt, and OA. The total model-median AOD is 0.07,
which is close to observed AOD. However, the intermodel
spread is very wide (0.02-0.18). Compared to measurements
at nine Arctic stations, most models tend to underestimate
the AOD, especially the build-up of aerosols in early winter
and spring. Seasonally, the influence of aerosols on the Arctic
energy balance shifts from a BC-driven positive DAE during
the spring months, to a sulfate-driven negative DAE in late
summer. Despite a relatively low Arctic BC AOD compared
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to the other aerosols, the BC FF DAE dominates in spring
with an annual mean model median of 0.19 Wm™2 (0.12,
0.26 Wm™2 25th/75th percentiles). The total Arctic annual
mean DAE model median is slightly negative, —0.12 Wm™2
(—0.22, 0.01). We note, however, that this estimate of Arctic
aerosol radiative forcing does not include semi- or indirect
cloud effects, or surface albedo modification. The Arctic sur-
face radiative forcing from BC in snow has been estimated at
0.18 Wm™2 using deposited fields from the AeroCom Phase
II models into an offline land and sea-ice model (Jiao et
al., 2014). There are few estimates of the semi-direct effects
of aerosols, which is mostly due to BC. Bond et al. (2013) in-
dicates a —0.1 Wm ™2 global effect, equally split between di-
rect and indirect effects, while a later study also indicates that
the semi-direct effect counteracts about 50 % of the direct
effect, independent of altitude (Samset and Myhre, 2015).
None of these estimates are made specifically for the Arctic.
Indirect cloud effects are likely different in the Arctic than
at lower latitudes, in large part because of the already bright
surfaces in the Arctic. Also, cloud emissivity might be more
important here, as thermal radiation dominates the dark win-
ter months (Garrett et al., 2004).

The models also predict a fair amount of aerosol trans-
port to the Antarctic region (defined here as 70-90° S). In
Antarctica, modelled AOD is smaller in magnitude than in
the Arctic, with an annual mean of 0.01 (0.001-0.05 model
range). Compared to limited available measurements, these
values might be on the lower end of the spectrum. As in the
Arctic, the dominant aerosol species is sulfate. The dominant
aerosol forcing agent in the Antarctic, however, is BC, result-
ing in a small, but positive DAE in this region (0.03 Wm™2).
Again, this does not include possible additional effects of sur-
face albedo modification (Jiao et al., 2014).

Not surprisingly, the spread in modelled AOD at both
poles is large. The relative spread in DAE is larger than the
relative spread in AOD, linked to each model’s radiation pa-
rameterization (Stier et al., 2013). Sensitivity experiments of
BC with one of the AeroCom models reveal that the Arctic
BC AOD is sensitive to the emissions and lifetime of BC.
A doubling of fossil fuel and biofuel emissions in eastern
Asia results in a 33 % increase in Arctic BC AOD. How-
ever, radical changes such as reducing the e-folding lifetime
by half or doubling it, still fall within the AeroCom model
range.

The AeroCom data are only available as monthly aver-
ages, and we have therefore compared them with monthly
averaged retrievals from AERONET and CALIOP/MODIS.
Schutgens et al. (2016a, b) suggests that models should be
temporally collocated to the observations before comparing
the data to prevent sampling errors. In their study three global
models were compared to AERONET/MODIS and sampling
errors up to 100 % in AOD were apparent for yearly and
monthly averages. Since the AeroCom data are only provided
monthly, this is a potential problem both for this and most
other AeroCom studies.
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Various factors lie behind the large spread in modelled
AOD in the polar regions. Recommendations to improve our
understanding of the role of aerosols in the polar regions
and to reduce the uncertainties include sensitivity tests on
removal processes (Wang et al., 2013; Liu et al., 2011; Bour-
geois and Bey, 2011) and resolution (Ma et al., 2014) dur-
ing transport to the Arctic, up to date treatment of aerosol
mixtures and missing emission sources (Stohl et al., 2013;
Evangeliou et al., 2016), and a better characterization of mea-
surement uncertainties in satellite data over polar land and
oceans. Of these, updated emission inventories (global and
polar) and model validation of AODs and column loadings
against local observations seem most crucial for providing
a solid baseline for evaluations of transport schemes and cal-
culations of radiative forcing, taking into account a broader
range of physical effects.

Data availability. AeroCom data and CALIOP data are available
through http://aerocom.met.no. Sensitivity studies and further anal-
ysis results are available upon request to Maria Sand. AERONET
data are available at http://aeronet.gsfc.nasa.gov/.

The Supplement related to this article is available
online at https://doi.org/10.5194/acp-17-12197-2017-
supplement.
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