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Significant gains in the performance of the simulated annealing algorithm in the

DASH software package have been realized by using the irace automatic

configuration tool to optimize the values of three key simulated annealing

parameters. Specifically, the success rate in finding the global minimum in

intensity �2 space is improved by up to an order of magnitude. The general

applicability of these revised simulated annealing parameters is demonstrated

using the crystal structure determinations of over 100 powder diffraction

datasets.

1. Introduction

DASH (David et al., 2006, 1998), a computer program for

crystal structure determination from powder diffraction data

(SDPD) which utilizes a simulated annealing (SA) algorithm,

has previously been adapted to run on multiple CPU-core

computers via MDASH (Griffin et al., 2009b), distributed

computing systems via GDASH (Griffin et al., 2009a) and

cloud computing systems via CDASH (Spillman et al., 2015).

Since its launch in 1999, the key SA control parameter values

have remained unchanged; with good SDPD performance

(Shankland et al., 2013), there has been little incentive to vary

them. However, as the program is applied to ever more

complex structures, the chances of determining the correct

crystal structure from any given SA run fall dramatically

(Kabova, 2016). It is interesting and valuable to assess

whether better parameterization of the simulated annealing

algorithm can lead to better performance.

The effect upon DASH performance of individually varying

the initial SA temperature (T0) and the cooling rate (CR) of

the SA algorithm has previously been investigated (Shankland

et al., 2002), though only against a single powder X-ray

diffraction dataset. The results showed that the automatic

temperature setting in DASH was very effective but that

setting the CR value too high (0.3, where the default value of

CR is 0.02) halved the success rate1 in locating the global

minimum. The variation of the parameters N1 and N2, which

control the allocation of the available SA moves, was not

investigated.

ISSN 1600-5767
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1 Defined here as the number of SA runs that locate the global minimum,
divided by the total number of SA runs performed, then expressed as a
percentage.
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Finding appropriate control parameter values is a challenge

for all algorithm developers. Values may be adjusted manually,

but such manual parameterization is easily subject to human

bias, unless performed very carefully. For example, influenced

by previously reported DASH results, it is highly unlikely that

a researcher would choose to explore high values of CR

during parameterization, because of (a) the expectation that it

will lead to decreased success rates and (b) a desire to keep the

number of SA parameter combinations being explored small,

to save computational time. Automatic tuning algorithms

(‘tuners’), on the other hand, can implement the optimization

using approaches which do not require the parameter space to

be exhaustively explored and which alleviate the problems

associated with human bias in parameter variation. The design

and application of tuners is a dynamic area of research;

examples include the work of Eiben & Smit (2012) on tuning

evolutionary algorithms, use of SA for the optimization of

mapping on network chips (Yang et al., 2012), mixed integer

programming (Hutter et al., 2010) and general-purpose opti-

mization algorithms (Balaprakash et al., 2007).

Here, we report the use of the program irace (López-Ibáñez

et al., 2016), which implements the iterated racing procedure

(Balaprakash et al., 2007), to carry out SA parameter opti-

mization of DASH against a training set of 40 powder

diffraction datasets. irace has been shown (Pérez Cáceres et al.,

2014) to be well suited to tuning general-purpose algorithms

with relatively large numbers of configurable parameters of

different types, such as ordered, continuous, categorical and

integer parameters, and has been applied to tune computer

programs for optimization, machine learning and robotics

(López-Ibáñez et al., 2016).

Success rates in solving crystal structures from a library of

over 100 powder diffraction datasets were then obtained for

both the best performing SA parameter configuration

suggested by irace and the default SA parameter values in

DASH.

2. Materials and methods

2.1. Selection and composition of powder X-ray diffraction
datasets

A study carried out by Florence et al. (2005) on 35 indust-

rially relevant molecules concluded that crystal structures with

greater than 20 degrees of freedom (DoF) could be classed as

‘complex’ and were broadly representative of the perceived

limits of SDPD at the time. For the purposes of our work, a

dataset size of 100 molecules was considered sufficiently large

to facilitate an up-to-date, comprehensive and systematic

study of the performance of DASH. The detailed selection

criteria for dataset assembly are described fully elsewhere

(Kabova, 2016), but the key criteria were as follows: (a) that

the diffraction data should be derived from small organic

molecules whose crystal structures have previously been

solved from powder X-ray diffraction data, to ensure rele-

vance and to permit assessment of the quality of the SA

solutions; (b) that the crystal structures spanned a large DoF

range and that there should be multiple representatives of

most of the DoF values.

In total, diffraction data associated with 101 crystal struc-

tures were assembled. To satisfy the requirements of irace,

these were divided into two subsets – the ‘training’ set (A1–

A40) and the ‘test’ set (B1–B61). The training set was a

representative sample of 40 structures which, in the para-

meter-tuning experiments, was used by irace to optimize the

SA parameters of DASH. The remaining 61 structures

constituted the test set, which was then used to independently

validate the performance of these optimized SA parameters.

The composition of the full dataset, in terms of complexity,

can be summarized as follows: 50 structures with DoF < 14, 32

structures with 14 � DoF � 20, 16 structures with 21 � DoF �
30 and 3 structures with DoF > 30. Full molecular and crys-

tallographic details for each structure are given in Table S1,

Table S2 and Fig. S1 of the supporting information.

2.2. Software and hardware

The software employed in this work is summarized in

Table 1, whilst the hardware used is summarized in Table 2.

Note that irace is implemented as an R-package (R Core

Team, 2011), which was obtained from CRAN (Hornik, 2015).

2.3. irace operation

A full description of the irace package lies outside the scope

of this article; one can be found in the work of López-Ibáñez et

al. (2016) and the description here is limited to definitions of a
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Table 1
Summary of the software used in this work.

Software Version Application Reference

DASH 3.3.2 Indexing† David et al. (2006)
Space group

determination‡
Pawley refinement
Structure solution

dash.x 3.3.2 Structure solution
(under Linux)

CCDC (personal
communications)

3.3.1 irace calculations
(under Linux)

MDASH 3.1 Structure solution Griffin et al. (2009b)

TOPAS 4.2 Indexing Coelho (2003)
Pawley refinement
Rietveld refinement

CSD 5.36 Model building Allen (2002)

MarvinSketch 6.0.5 Model building ChemAxon (2011)

ConQuest 1.17 Structure mining of CSD Bruno et al. (2002)

Mercury 3.3 Structure visualization Macrae et al. (2008)

Mogul 1.6 Structure verification Bruno et al. (2004)

enCIFer 1.51 CIF verification Allen et al. (2004)

PLATON 1.51 Unit-cell conversion Spek (2003)

irace 1.4 Algorithm optimization López-Ibáñez et al. (2016)

Minitab 17.1.0.0 Statistical analysis Minitab (2010)

† Via interface to DICVOL91 (Boultif & Louër, 1991). ‡ With ExtSym as
implemented in DASH.
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number of irace-related terms (Table 3) that are essential to

understanding the optimization of the SA parameters, plus a

description of the irace operation in that context.

The irace package implements the iterated racing proce-

dure, which is a method for offline parameter tuning. Offline

tuning consists of two clearly defined stages: tuning for iden-

tifying good performing configurations and testing (or

deployment) of the best configurations found. The testing

stage does not involve irace. Rather, it consists of evaluating

the performance of each of the elite configurations suggested

by irace against a set of instances (a test set) which were not

included in the tuning stage.

2.3.1. The irace procedure. A single run of irace repeatedly

iterates over three phases: (a) sampling new configurations

(i.e. sets of SA parameters) according to a particular distri-

bution, a truncated normal distribution in the case of numer-

ical parameters; (b) selection of the best configurations by

means of racing; and (c) updating the sampling distribution in

order to bias future iterations towards optimal configurations.

Racing is a well known method for the selection of the best

candidate under uncertainty. In the context of algorithm

configuration, candidate parameter configurations are eval-

uated over a sequence of training instances. As soon as there is

enough evidence (for example, by means of the Friedman test)

that some configurations are worse than the best one, the

worst performing configurations are eliminated and the race

continues until a minimum number of configurations remains

or a maximum number of evaluations is reached. These three

phases are repeated until some termination criterion is met –

in the case of the current work, this is when the given budget

(see Table 3 for definition) of DASH runs is reached. A

representation of the workflow of SA parameter tuning is

given in Fig. 1.

The number of iterations Niterations performed during an

irace run depends upon the number of optimizable parameters

Nparameters and is calculated using

Niterations ¼ 2 þ log2 Nparameters: ð1Þ
For optimization of the DASH SA parameters, each irace run

comprises three iterations. Similarly, the budget for each

iteration Bj is dependent on the total budget B and the

number of iterations performed:

Bj ¼ B� Busedð Þ= Niterations � jþ 1ð Þ; ð2Þ
where j = 1, . . ., Niterations and Bused is the sum of Bj for all

previous iterations.

Once the required inputs are in place, the first iteration (or

‘race’) starts with the uniform sampling of the parameter space

and the generation of a set of parameter configurations, �. For

example: �1 [CR = 0.20; N1 = 6; N2 = 11]; �2 [CR = 0.22; N1 =

5; N2 = 25]; . . . ; �n (CR = 0.28; N1 = 40; N2 = 31)].

Then the race is performed by following the steps given in

Table 4. All subsequent iterations start with the generation of

new candidate configurations based upon the elite configura-

tions from the previous iteration. The number of candidate

configurations generated at the start of an iteration reduces

with the increasing number of iterations according to

�j ¼ Bj= �þ minð5; jÞ½ �; ð3Þ
where � is a user-defined parameter (set to 5 in the current

work), allowing control over the ratio between the budget and
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Table 3
Definitions of irace-related terms used in this work.

irace term Symbol Definition

Parameter space X The range of parameter values explored
during the optimization

Tuning instance i A representative of the particular optimiz-
able problem (e.g. crystal structures)

Training Set n/a A set of instances used in irace to bench-
mark the performance of DASH

Test Set n/a A set of instances unseen by irace, used to
evaluate the irace results

Configuration �j A set of SA parameter values (e.g. CR =
0.02; N1 = 20; N2 = 25)

Elite configuration �elite The best performing configuration, output
at the end of an iteration

Experiment n/a An implementation of the algorithm with a
specific configuration

Tuning budget B The maximum number of experiments (SA
runs) performed

Tfirst The number of instances run before the first
statistical test is applied

Teach The number of instances run before subse-
quent statistical tests are applied

Figure 1
The SA parameter-tuning workflow. The irace ‘box’ represents the work
carried out during the tuning stage. Once all cycles of the tuning are
complete, the final elite configurations are output and carried over to the
evaluation, which is performed independently of irace.

Table 2
Summary of the hardware used in this work.

PC CPU RAM Operating system

1 Intel Core 2 Quad Q9400
(2.66 GHz)

4 GB Windows 7 Enterprise (64 bit)

2 2 � Intel Xeon E5520
(2.270 GHz)

32 GB Windows Server 2008 R2
Datacenter (64 bit)

3 2 � Intel Xeon E5-2630 v2
(2.60 GHz)

16 GB Windows 7 Professional
(64 bit)

4 2 � Intel Xeon E5-2630
(2.30 GHz)

16 GB Windows 7 Enterprise (64 bit)
Ubuntu 13.04 (32 bit)
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the number of configurations. When the total budget is

exhausted, irace terminates. The configurations that survive

the last race are then output in an analogous fashion to step 9

in Table 4. These are the SA parameter configurations, which

are then evaluated against the test set.

2.3.2. Cost function. The cost function used by irace in the

case of SA parameter optimization in DASH is defined as

100�2
profile=�

2
target, where �2

profile is the familiar powder profile �2

value returned at the end of an SA run and �2
target is the profile

�2 value obtained for the correct crystal structure. To establish

�2 for a given structure, a rigid-body Rietveld refinement of

the previously deposited crystal structure was performed with

DASH. The �2 value from this refinement was assumed to be

the lowest achievable by the SA, and as such was set to be

�2
target.

2.3.3. irace experiments. A total of 14 irace runs were

performed; ten of these were performed on the full training set

(A1–A40) and were used to assess the validity of initial

parameter value bounds. However, with various budgets in the

range 5000–30 000 they consumed 799 days of CPU time. To

focus subsequent computational effort in the area where

improvement is most valuable (the more challenging struc-

tures with DoF � 14, where success rates are known to fall off

significantly), the remaining four irace runs were performed

on datasets A18–A40 only. These remaining irace runs had a

total budget of 30 000 runs and took 516 days of CPU time. In

all runs, the only optimizable parameters were CR, N1 and N2.

CR was varied as a real number in the range 0–0.3, whilst N1

and N2 were varied as integers in the range 0–100. These 14

irace runs alone utilized a total of 225 000 individual DASH

runs and a total of 1315 CPU days.

2.4. Baseline DASH performance with default SA parameters

Initially, 50 SA runs were executed on all 101 structures,

using the default DASH SA parameters (CR = 0.02; N1 = 20;

N2 = 25). Each run was set to perform 1 � 107 SA moves

followed by a short simplex calculation. A �2 multiplier of 1

(CCDC, 2017) ensured the full number of SA moves was

always carried out and that the SA was not terminated

prematurely. The starting molecular conformers were

randomly generated and all variable torsion angles were

allowed to rotate freely (i.e. in the range 0–360�) during the

SA calculations. Successful solutions were identified on the

basis of their �2 value and further confirmed by comparison of

coordinates with the reference crystal structure. The four

crystal structures for which no reference structures had been

previously deposited (A4, A6, B23 and B58) were considered

solved when a favourable value of the �2 ratio (typically

2<�2
profile < 10, associated with a crystallographically sensible

crystal structure) had been achieved (�2
Ratio ¼ �2

Profile=�
2
Pawley,

�2
Pawley being the best �2 achieved by a Pawley-type fit to the

data in question). A March–Dollase correction was introduced

in the SA process for some structures (Table S2), in order to

take account of intensity distortions attributable to preferred

orientation of the crystallites in the samples.

For crystal structures that were not solved with the initial 50

SA runs, an additional 100 SA runs of 1 � 107 SA moves were

performed. If a structure remained unsolved after this further

set of runs, a final attempt at a crystal structure solution was

performed with another 500 SA runs of 5 � 107 SA moves. In

order to speed up these longer calculations, the 500 runs were

performed using MDASH to spread the calculations over ten

CPU cores. Those structures which still remained unsolved

were considered to have a 0% success rate.

Whilst crystal structures deposited in the Cambridge

Structural Database (CSD; Groom et al., 2016) were used as

the starting point for Z-matrix (Shankland, 2005) generation

for the majority of the DASH calculations, the starting values

of the flexible torsion angles were always randomized by

DASH and so no advantage (other than the use of good

quality bond lengths and bond angles) is conferred by this

approach. Indeed, it represents the recommended approach in
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Table 4
Steps performed during a race within a single irace iteration.

Step irace step Utilization of DASH by irace

1 Evaluate each candidate configuration on the first instance Perform and evaluate DASH runs against instance 1, looping over the set of
parameter configurations (configurations j = 1 . . . n)

2 Continue the evaluation on subsequent instances until the number of
instances reaches the predefined value of Tfirst

Using the same set of configurations (1 . . . n), perform and evaluate DASH runs
on these (Tfirst) instances; Tfirst was set to 5 in all experiments

3 Perform a statistical test on the evaluated configurations to identify
statistically poorly performing configurations, if any

Check cost function values to determine which configurations resulted in the
poorest DASH performance: for example configuration 1

4 Discard poorly performing configurations Discard configuration 1

5 Run the next instance with the surviving configurations Run the next instance with configurations j = 2 . . . n

6 Perform the statistical test every Teach number of instances; predefined
value

Teach was set to 1, and thus statistical tests were performed after each instance

7 Continue until remaining budget is insufficient to test all remaining
configurations on another instance (Bj <N

Surviving
j )

Continue until the number of remaining configurations (N
Surviving
j ) is larger than

the remaining allowed number of DASH runs

8 Rank the surviving configurations based on their cost function value Rank the surviving configurations based on their cost function value

9 Output �elite (the three best ones from the surviving configurations) At most, three sets of best performing SA parameters are output, e.g.�6 [CR =
0.16; N1 = 23; N2 = 62], �29 [CR = 0.15; N1 = 21; N2 = 46], �2 [CR = 0.22; N1 =
51; N2 = 25]

electronic reprint



global-optimization-based SDPD, of using the most accurate

starting model that is available.

2.5. DASH performance with best performing configurations

The 12 elite configurations (Table 5) suggested by the four

irace runs performed on complex structures with DoF � 14

were initially performance tested against a representative

subset of structures, consisting of A20, A25, A28, A29, A30,

A32, A34, A38, B34, B44, B47, B48, B52 and B55, to manage

the computational requirements (see footnote 2 for an

explanation of why structures from the training set were

included). Some additional, minor, manual variants on these

configurations (Table 6) were also tested against these struc-

tures.

The six best performing SA parameter configurations (CR/

N1/N2 = 0.27/73/56, 0.27/73/61, 0.27/73/51, 0.27/60/63, 0.25/35/

86 and 0.25/46/62) from these tests were then tested against all

molecules in the dataset.2 The DASH runs performed using

each configuration mirrored those of the DASH baseline

calculations, i.e. initially 50 SA runs of 1 � 107 moves were

performed for all molecules, followed by 100 SA runs of 1 �
107 moves for the unsuccessful examples. Finally, 500 SA runs

of 5 � 107 moves were carried out if required. To facilitate the

direct comparison of results, all DASH runs were performed in

an identical manner to those of the baseline, i.e. identical

molecular models were used for the generation of Z-matrices,

all variable torsion angles were allowed to rotate freely (i.e. in

the range 0–360�) during the SA calculations, the same

random seed values were used and a value of one was selected

for the �2 multiplier to ensure that all SA moves were

executed.

2.6. DASH performance analysis

The key performance indicator chosen is that of the success

rate (SR), i.e. the percentage of any given set of SA runs that

successfully solve the crystal structure. Percentage values are

then easily plotted against the number of DoF present in the

structure, in order that general trends can be assessed. To

facilitate comparison between baseline DASH performance

and the performance of DASH using parameter configura-

tions suggested by irace, an analysis based on the empirical

log-of-the-odds (ELO) transform was performed. The ELO, as

described by Cox & Snell (1989), takes the form given in

equation (4):

ELO ¼ ln
ri þ 0:5

ni � ri þ 0:5

� �
; ð4Þ

where i is the subject (i.e. each of the individual structures in

the dataset), ni is the maximum value of the sample (in this

case the maximum SR, i.e. 100%) and ri is the error associated

with it, i.e. the actual SR value achieved. As such, equation (4)

can be rewritten as

ELO ¼ ln
SRi þ 0:5

100 � SRi þ 0:5

� �
: ð5Þ

Regression analysis on the log-transformed data was

performed using Minitab (Minitab, 2010).

3. Results

3.1. irace configurations

The elite configurations output by irace runs 11–14 are

summarized in Table 5.

research papers
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Table 5
Elite configurations returned by irace calculations 11–14.

Run No. Budget
Elite sets of SA parameters
CR/N1/N2

CPU time
(days)

11 30 000 0.27/59/50 93
0.25/31/56
0.28/63/51

12 30 000 0.25/75/29 115
0.27/70/25
0.26/74/23

13 30 000 0.25/46/62 199
0.30/35/69
0.29/38/57

14 30 000 0.24/18/84 109
0.21/16/85
0.21/19/91

Table 6
Additional configurations tested.

SA parameters CR/N1/N2

0.27/73/61 0.27/59/63 0.25/35/86 0.19/20/73
0.27/73/56 0.27/53/61 0.25/31/86 0.19/73/20
0.27/73/51 0.27/53/51 0.25/31/76 0.19/25/63
0.27/73/41 0.27/49/40 0.25/31/66 0.19/63/25

Figure 2
A comparison of the default (purple) and best performing (orange) SA
parameter configuration models based on the ELO regressions.

2 Whilst it is not standard practice to test the new configurations against the
training set, it was done here to confirm that similarly improved performance
was returned for structures that had been ‘seen’ by irace (training set) and ‘not
seen’ by irace (test set).
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3.2. DASH performance

The performance of DASH, using default SA parameters

and the best performing SA configuration from the experi-

ments outlined in x2.5, is summarized in Tables 7 and 8. Full

details of the baseline performance are given in Tables S3 and

S5 of the supplementary information, whilst details of the six

best performing SA configurations are given in Tables S4 and

S5. The calculations for this element of the work required just

over 3348 days of CPU time. The ELO analysis of the baseline

DASH performance yields

ELO ¼ 6:565 � 0:375 DoFtotal; ð6Þ
with an R2 (where R2 = explained variation/total variation) of

53.73% and a p value of 0.00 for the total DoF, DoFtotal,

showing them to be a statistically significant factor in deter-

mining success rate. The ELO analysis of DASH performance

using the best performing SA parameter set yields

ELO ¼ 7:013 � 0:329 DoFtotal; ð7Þ
with an R2 of 51.7% and a p value of 0.00 for the DoFtotal.

Using the above equations, a predicted SR can be calculated,

for any structure, based on the total DoF. For the current

dataset of 101 crystal structures, the calculated DASH

performance for both the default and the best performing SA

configurations is shown in Fig. 2. The fit of each ELO model to

the experimental data is shown in Fig. S2 of the supplementary

information.

4. Discussion

The objective of this work was to determine if the perfor-

mance of the simulated annealing algorithm in DASH could

be improved through the optimization of three key SA para-

meters using the irace program. The results indicate that there

was considerable room for improvement in performance over

that obtained using the default SA parameters which have

been in place since the initial release of DASH. This is most
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Table 8
Average success rates for each DoF, for both the default and the best
performing SA parameter sets.

Average SR (%)

DoF Number of representatives in dataset 0.02/20/25 0.27/73/56

6 4 98.0 100
7 5 100 100
8 5 100 100
9 6 93.7 99.7
10 8 82.8 92.3
11 7 99.1 99.7
12 6 84.3 95.7
13 9 84.6 93.8
14 11 24.9 42.6
15 2 45.0 83.0
16 7 24.3 64.9
17 3 27.0 43.3
18 5 26.4 53.2
20 4 9.0† 26.8
21 2 0.6† 3.2†
22 1 4.0 36.0
24 3 23.1 46.0
25 2 1† 11.5
26 1 2† 1
28 5 20.6† 38.9†
30 2 39.1† 52.0
33 1 0.0† 0.2†
42 1 0.4† 1
49 1 0.0† 0.0†

† Value given includes success rates based on experiments that required 500 SA runs.

Table 7
A comparison of SRs achieved using default and optimized SA parameter
configurations.

No. 0.02/20/25 0.27/73/56 No. 0.02/20/25 0.27/73/56

A1 100 100 B12 96 100
A2 100 100 B13 100 100
A3 100 100 B14 100 100
A4 100 100 B15 66 98
A5 100 100 B16 100 100
A6 100 100 B17 100 100
A7 48 78 B18 70 100
A8 100 100 B19 100 100
A9 100 100 B20 100 100
A10 100 100 B21 44 60
A11 100 100 B22 100 100
A12 100 100 B23 98 100
A13 78 98 B24 96 98
A14 96 100 B25 100 100
A15 100 100 B26 84 98
A16 42 74 B27 44 78
A17 100 100 B28 100 100
A18 4 6 B29 92 100
A19 14 12 B30 64 98
A20 34 88 B31 58 50
A21 56 78 B32 100 100
A22 28 74 B33 100 100
A23 54 92 B34 50 100
A24 50 84 B35 14 48
A25 2† 24 B36 4 12
A26 1† 10 B37 12 30
A27 78 96 B38 36 76
A28 8 40 B39 4 14
A29 60 96 B40 8 26
A30 34 56 B41 98 100
A31 16 20 B42 20 44
A32 18 54 B43 12 32
A33 14 40 B44 8 48
A34 4 36 B45 14 54
A35 14 48 B46 4 70
A36 46 72 B47 14 54
A37 0‡ 1† B48 4† 12
A38 98 100 B49 0‡ 1†
A39 1† 4 B50 0.2‡ 0.4‡
A40 0.2‡ 4 B51 1† 6
B1 92 100 B52 9.4‡ 18
B2 100 100 B53 2 22
B3 100 100 B54 2‡ 1†
B4 100 100 B55 4 90
B5 100 100 B56 0‡ 0‡
B6 100 100 B57 0‡ 0.4‡
B7 100 100 B58 78 100
B8 100 100 B59 0‡ 0.2‡
B9 100 100 B60 0.4‡ 1†
B10 100 100 B61 0‡ 0‡
B11 100 100

† The reported SR is achieved with 100 SA runs (each performing 1 � 107 SA
steps). ‡ The reported SR is achieved with 500 SA runs (each performing 5 � 107 SA
steps).
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clearly indicated in Fig. 2, which compares the best fit lines

obtained by ELO analysis of baseline performance and the

performance of the best performing SA configuration

returned as a result of the irace experiments. The marked shift

to the right seen for the best performing configuration

demonstrates the significant gains in success rate and conse-

quent ability to tackle more complex structures in a finite time

period. This improvement, its determination, its range of

applicability and its significance are discussed more fully

below.

4.1. Structural complexity and the dataset composition

A recent analysis of structural complexity of crystal struc-

tures in the CSD (Shankland et al., 2013) showed that the

average complexity of deposited structures since the year 2000

is approximately 52 atoms in the asymmetric unit and

approximately 13 DoF, and showed that SDPD methods are

well placed to address problems of such complexity. The

analysis also showed SDPD to be capable of solving problems

of much greater than average complexity.

The structures in the dataset employed in this current work

span a wide complexity range (6 � DoF � 49, with 50% of

structures having DoF � 14) and were chosen to ensure that

any improved performance is directly relevant to structures

that are likely to be attempted by SDPD now or in the near

future. Such applications include the following: single mol-

ecules, salts, hydrates, solvates and organometallic structures;

rigid molecules and conformationally flexible molecules (0 �
DoFtorsional � 43); cases with 0.5 � Z0 � 4; laboratory-based

and synchrotron-based X-ray data; representative coverage of

typically encountered space groups (see Table 9).

The resolution (minimum d spacing) of the powder data and

the number of reflections used in the Pawley refinement are

two fundamental factors expected to influence both the SR

and the quality of the DASH solution. Large variations of

those factors were observed within the dataset, with B3 having

the lowest resolution (only 3.64 Å) and only 19 contributing

reflections.

4.2. Considerations in setting up the irace runs

DASH has few user-controllable parameters which affect its

performance: the starting temperature (T0), the cooling rate

(CR), and the integers N1 and N2, whose product (N1N2)

governs the number of SA moves performed at each

temperature before a cooling step is applied.3 Currently a

value of ‘0’ is the default for T0, which instructs DASH to

automatically determine an optimal value of this parameter

for the structure under investigation. This is achieved by

performing a short preliminary SA run during which the

variation in �2 at different temperatures is examined. The

temperature above which no significant variations in the �2

values are observed is selected as the appropriate starting

temperature for the SA. The ranges explored for the

remaining parameters CR, N1 and N2 were set pragmatically,

recognizing that they needed to accommodate significant

changes from the default DASH parameter values but also

acknowledging the computational demands of spanning large

ranges of parameter space: large ranges require a large irace

budget to ensure good coverage. There was some uncertainty

as to whether irace runs of large numbers of DASH calcula-

tions (i.e. a larger budget) would give superior results to their

small-budget counterparts. Runs of irace with large budgets

(e.g. 30 000 DASH runs) were generally expected to give

better results, owing to the larger number of evaluations

carried out. Ultimately, to take account of the stochastic

nature of irace, and to explore all options, irace runs of varying

budgets were performed.

4.3. Baseline versus optimized DASH performance

It is clear from Tables 7 and 8 that improvements in the SR

are seen right across the dataset. Of particular interest are all

compounds which, during the baseline calculations, required

500 SA runs to solve, i.e. A40, B50, B52, B54 and B60. All of

these returned a solution within the first 100 SA runs with the

best performing SA configuration, a remarkable improvement

in performance. Furthermore, four of the six compounds that

gave 0% SR with the default settings (A37, B49, B57 and B59)

now returned a solution with the best performing configura-

tion, with only structures B56 and B61 remaining unsolved.

Close examination of all results shows that performance

gains are achieved not only by reducing the overall number of

SA runs needed to reach a solution but also by reducing the

number of SA moves required to reach a solution, especially

for the ‘complex’ examples. Furthermore, the quality of the

solutions obtained using the best performing SA configuration

was always at least as good as that obtained using default

settings and, for some of the complex structures, substantially

better. For example, the root-mean-square deviation (RMSD)

for a 15 molecule overlay in Mercury (Macrae et al., 2008) for
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Table 9
Distribution of space groups (transformed to standard settings) within the
full dataset and the CSD.

Space group

No. of
structures
in dataset

No. of organic
powder structures
in CSD

% of
structures
in dataset

% of organic
powder structures
in CSD

P21/c 40 355 39.6 35.8
P1 23 185 22.8 18.6
P212121 16 146 15.8 14.7
P21 10 100 9.9 10.1
Pbca 3 63 3.0 6.4
Pna21 2 33 2.0 3.3
C2/c 2 41 2.0 4.1
P1 1 22 1.0 2.2
Pbc21 1 20 1.0 2.0
I2 1 13 1.0 1.3
Pbcn 1 7 1.0 0.7
Cmca 1 7 1.0 0.7

3 N1 and N2 are parameters which control the number of SA steps performed
during the individual SA runs. N1 is the number of times each of the DoF is
adjusted before the DoF step lengths are altered. N2 is the number of times
that this cycle is repeated before a temperature reduction is applied. In other
words, N1N2 DoF = total SA moves at a given temperature.
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structure B60 fell from 0.498 to 0.225 Å and that of A40 fell

from 0.296 to 0.075 Å (Fig. 3).

Table 7 emphasizes the wide variation in changes of success

rate as a result of changing from the defaults to the best

performing SA parameter set. For many relatively simple

structures that can be solved 100% of the time with the default

settings, there is clearly no room for improvement. For several

very complex structures that cannot be solved with the

defaults, there is clearly infinite room for improvement. Our

estimate of an overall ‘order of magnitude’ improvement in

performance is derived from datasets with more than 14 DoF,

and by arbitrarily assigning an improvement factor of 100 for

cases where the default success rate was zero whilst the best

performing SA parameter set success rate was nonzero.

4.4. ELO analysis

An ELO analysis has been chosen as suitable for modelling

the S-shaped curves that describe the changes of SR as a

function of DoF. This is most clearly indicated in Fig. 2, where

the marked shift to the right seen for the best performing

configuration demonstrates the significant gains in success rate

and consequent ability to tackle more complex structures in a

finite time period. The R2 values for the ELO fits to the data

are not high, indicating that structure complexity is only one

factor in determining the SR.

A more detailed analysis of the data shows that a better fit

to the data is achieved when the individual components of the

DoF (i.e. positional, orientational and torsional) are consid-

ered separately in the ELO analysis (Kabova, 2016). The

resultant model better accounts for the high SR observed for

some compounds with large numbers of positional DoF and

highlights that, in general, structures with large numbers of

torsional DoF are more difficult to solve than structures with

the same total DoF, but higher numbers of non-torsional DoF.

5. Conclusions and recommendations

The significance of the results presented here lies in the fact

that a remarkable improvement in performance has been

achieved merely by adjusting the SA control parameter values,

with no changes to the underlying SA algorithm. The contri-

bution of irace (López-Ibáñez et al., 2016) in deriving the best

performing SA parameter configuration cannot be under-

estimated. It is unlikely that a set of control parameters which

included such a high cooling rate would have been considered

by a process of manual selection. Importantly, the best

performing SA configuration can be utilized immediately by

manually entering the appropriate parameter values into

DASH, in the ‘SA options’ window. It seems probable that the

approach taken in this work can be applied to many other

crystallographic programs that rely upon optimization algo-

rithms that have not themselves been optimized in terms of

their performance with respect to key control parameters.

Finally, some general recommendations, based on the

number of DoF in a crystal structure under investigation, can

be made regarding the number of runs and SA moves required

by DASH to give a high level of certainty that the crystal

structure will be solved; these are listed in Table 10.

6. Availability and documentation

Details of DASH’s availability can be found at https://www.

ccdc.cam.ac.uk/solutions/csd-materials/components/dash/.

7. Related literature

Details of the 101 crystal structures used in this work are

reported in the supporting information. The related references

are as follows: Albov et al. (2006), Alleaume (1967), Assaad &

Rukiah (2011), Ávila et al. (2009), Bamgboye & Sowerby

(1986), Bauer et al. (2001), Beale & Stephenson (1972), Bekö

et al. (2012), Borea et al. (1987), Bortolotti et al. (2011),

Brammer & Stevens (1989), Brüning et al. (2010), Burley

(2005), Burley et al. (2006), Bushmarinov et al. (2012), Carpy et

al. (1985), Chernyshev et al. (2000, 2002, 2010), Clegg & Teat

(2000), David et al. (1998), Dinnebier et al. (2000), Donaldson

et al. (1981), Dorokhov et al. (2007), Dupont & Dideberg

(1972), Eibl et al. (2009), Fernandes et al. (2006), Fernandes,

Florence et al. (2007a,b), Fernandes, Shankland et al. (2007),

Florence et al. (2003, 2005, 2008), Freer et al. (1993), Fries et al.

(1971), Fujinaga & James (1980), Gadret et al. (1976), Haynes

et al. (2006), Helmholdt et al. (2002), Himes et al. (1981),

Hodgson & Asplund (1991), Hulme et al. (2006), Ivashevskaja
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Table 10
Recommendations for setting up DASH runs, based on problem
complexity.

Complexity No. of SA runs No. of SA moves Note

DoF < 14 50 5 � 106 –
14 � DoF � 20 50 1 � 107 –
21 � DoF � 27 100 1 � 107 –
DoF > 27 500 5 � 107 †

† The use of prior conformational knowledge (e.g. obtained from the Cambridge
Structural Database via Mogul) is considered to be highly beneficial for structures of this
complexity (Kabova, 2016).Figure 3

Crystal structure overlay of the reference crystal structure for A40 (dark
green) and (a) the best structure obtained using DASH with default
settings (0.02/20/25; RMSD = 0.296 Å) and (b) the best structure obtained
using DASH with the best performing SA parameter configuration (0.27/
73/56; RMSD = 0.075 Å). For clarity, H atoms have been omitted and only
one ornidazole molecule, which is representative of the goodness of fit for
all three molecules in the asymmetric unit cell, is shown.
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et al. (2003), Ivashevskaya et al. (2009), Johnston et al. (2004),

Kato et al. (1979), Kennedy et al. (2001), Kojicprodic et al.

(1984), Koo et al. (1980), Lefebvre et al. (2005), Llinàs et al.

(2006), Maccaroni et al. (2010), Majumder et al. (2013),

Marder (2004), Nichols & Frampton (1998), Nishibori et al.

(2008), Noguchi, Fujiki et al. (2012), Noguchi, Miura et al.

(2012), Nowell et al. (2002), Post & Horn (1977), Rohlı́ček et

al. (2010), Rukiah & Al-Ktaifani (2011), Rukiah & Assaad

(2010), Rukiah et al. (2004), Schmidt et al. (2005), Sergeev et

al. (2010), Shankland (personal communication), Shankland et

al. (1996, 2001), Shanmuga Sundara Raj et al. (2000), Shin et al.

(1995), Smrčok et al. (2007), Sorrenti et al. (2013), Steiner

(2000), van de Streek et al. (2009), Vallcorba et al. (2011),

Yatsenko et al. (2001).

Acknowledgements

EAK thanks the University of Reading and the Cambridge

Crystallographic Data Centre (CCDC) for funding. We thank

Mark Spillman and David Edgeley for their help with various

computational matters pertaining to the rapid execution of

DASH, particularly under the Linux operating system. We are

also grateful to the University of Reading Chemical Analysis

Facility for powder X-ray diffraction facilities.

References

Albov, D. V., Jassem, A. & Kuznetsov, A. I. (2006). Acta Cryst. E62,
o1449–o1451.

Allen, F. H. (2002). Acta Cryst. B58, 380–388.
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M.

(2004). J. Appl. Cryst. 37, 335–338.
Alleaume, M. (1967). PhD thesis, University of Bordeaux, France.
Assaad, T. & Rukiah, M. (2011). Acta Cryst. C67, o469–o472.
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