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This study hypothesized that the predominant strawberry anthocyanin, pelargonidin-3-O-
glucoside (Pg-3-glc), and 3 of its plasma metabolites (4-hydroxybenzoic acid, protocatechuic acid,
and phloroglucinaldehyde [PGA]) would affect phagocytosis, oxidative burst, and the production of
selected pro- and anti-inflammatory cytokines in awhole blood culturemodel. For the assessment
of phagocytosis and oxidative burst activity of monocytes and neutrophils, whole blood was
preincubated in the presence or absence of the test compounds at concentrations up to 5 μmol/L,
followed by analysis of phagocytic and oxidative burst activity using commercially available test
kits. For the cytokine analysis, diluted whole blood was stimulated with lipopolysaccharide in the
presence or absence of the test compounds at concentrations up to 5 μmol/L. Concentrations of
selectedcytokines (tumornecrosis factor-α, interleukin [IL]-1β, IL-6, IL-8, and IL-10)weredetermined
using a cytometric bead array kit. There were no effects of any of the test compounds on
phagocytosis of opsonized or nonopsonized Escherichia coli or on oxidative burst activity. Pg-3-glc
and PGA at 0.08 μmol/L increased the concentration of IL-10 (P < .01 and P < .001, respectively), but
therewas no effect on tumor necrosis factor-α, IL-1β, IL-6, and IL-8, and therewere no effects of the
other compounds. In conclusion, this study demonstrated a lack of effect of these compounds on
the opsonization, engulfment, and subsequent destruction of bacteria. Pg-3-glc and PGA, at
physiologically relevant concentrations, had anti-inflammatory properties; however, effects were
modest, only observed at the lowest dose tested and limited to IL-10.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Anthocyanins are polyphenols which are abundant in berry
fruits and which may convey health benefits to humans,
including cardiovascular disease prevention, obesity control,
alleviation of diabetes, improvement of vision and memory,
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loroglucinaldehyde; TNF
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and increased immune defenses [1,2]. An anthocyanin-rich
elderberry extract was demonstrated to exert antimicrobial
and antiviral activity in vitro toward human pathogenic
respiratory bacteria and influenza viruses, although mecha-
nisms were unclear [3]. Leukocytes play a crucial role in
pathogen defense [4], and several leukocyte functions have
IL, interleukin; LPS, lipopolysaccharide; PCA, protocatechuic acid;
-α, tumor necrosis factor-α.
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been reported to be influenced by flavonoids, although some
of the data are conflicting. Blueberries [5], an anthocyanin-
rich juice [6], and purple sweet potato leaves [7] were reported
to increase numbers and activity of natural killer cells [5], but
there was no effect of red wine, dealcoholized red wine, or red
grape juice [8,9]. Similarly, lymphocyte proliferation and
interleukin (IL)-2 secretion by activated lymphocyte were
increased upon consumption of an anthocyanin-rich juice
[6] and purple sweet potato leaves [7] but not affected by red
wine, dealcoholized red wine, or red grape juice [8,9]. Red
wine, dealcoholized red wine, or red grape juice also had no
effect on phagocytosis by neutrophils and monocytes [8,9]. In
an animal model, red wine anthocyanins increased phago-
cytic activity at 25 and 50 mg/kg body weight but decreased
phagocytic activity at higher doses [10]. In mice, pyogallol-
type green tea polyphenols increased phagocytic activity in
vitro [11], and a polyphenol-rich cereal fraction increased
phagocytic activity and increased production of reactive
oxygen species and superoxide anion [12], but a number of
anthocyanin- and flavonoid-rich fruits were reported to
diminish reactive oxygen species production [13]. There are
a lack of evidence from human studies and limited and
conflicting data regarding the influence of flavonoids on the
phagocytic process.

Several cell culture studies have explored the effect of
anthocyanins to modulate cytokine production and other
parameters of immune function, but most were conducted
using the unmetabolized parent anthocyanins, often at high
doses [3,10,13-26], which may not be physiologically relevant.
Strawberries constitute a popular fruit, and they are particu-
larly rich in anthocyanins, predominantly pelargonidin-3-O-
glucoside (Pg-3-glc) [27]. Glucuronidated pelargonidin has been
reported as the predominant metabolite in 3 pharmacokinetic
studies [28-30], but there is ambiguity regarding the position of
glucuronidation, and glucuronidated pelargonidin compounds
are currently commercially unavailable and hence cannot be
tested in cell culture models. 4-Hydroxybenzoic acid (4-HBA)
and protocatechuic acid (PCA) have also been reported in
plasma following strawberry consumption in low–micromole
per liter concentration (0.1–2 μmol/L) [30-32]. In addition, it is
likely that phloroglucinaldehyde (PGA) might appear in
plasma following strawberry consumption, as it is an A-ring
degradant, reported in plasma upon anthocyanin con-
sumption in low– to high–nanomole per liter concentration
(20-600 nmol/L) [33,34]. It is important to note in this
context that 4-HBA, PCA, and PGA are not pelargonidin-
specific metabolites. Their presence in plasma has been
reported following ingestion of other flavonoids, and they
are also naturally present in several other dietary sources.
However, there are very little data on the effects of these
physiologically relevant compounds. Furthermore, most in
vitro work has been conducted using cell lines, but whole
blood cultures more closely represent physiological condi-
tions [35,36]. This study therefore characterized the effect of
the parent anthocyanin Pg-3-glc and 3 physiologically
relevant plasma metabolites on phagocytosis, oxidative
burst, and the production of selected pro- and anti-
inflammatory cytokines (tumor necrosis factor-α [TNF-α], IL-1β,
IL-6, IL-8, and IL-10) in a whole blood culture model to test our
hypothesis that modulations would be observed.
2. Methods and materials

2.1. Subjects

Ten healthy volunteers (8 women and 2 men) were recruited
for this pilot study. Inclusion criteria included the following:
40-65 years old; good general health; and absence of diabetes,
cancer, liver cirrhosis, asplenia, other acquired or congenial
immunodeficiency, HIV, or any kind of inflammatory, auto-
immune, or connective tissue disease. The exclusion criteria
were use of anti-inflammatory or immunomodulating med-
ication, use of antibiotics within 3months, vaccination within
3 months, participation in another drug or nutritional
research study within 3 months, and alcoholism or drug
misuse. Subjects were asked to follow a low-flavonoid diet for
24 hours prior to the blood sample collection. Volunteers
arrived following a 12-hour fast to the Hugh Sinclair Unit of
Human Nutrition of the University of Reading, and blood was
collected into sodium heparin vacutainer tubes (Greiner Bio-
One Ltd, Gloucestershire, UK). Written informed consent was
obtained from all subjects. The work was conducted accord-
ing to the guidelines laid down in the Declaration of Helsinki
and approved by the University of Reading Research Ethics
Committee (Project reference 10/05).

2.2. Materials

Pg-3-glc was purchased from Extrasynthese (Genay, France). PCA (3,4-
dihydroxybenzoic acid), 4-HBA, PGA (2,4,6-trihydroxybenzaldehyde),
lipopolysaccharides from Escherichia coli (LPS), methanol, and
formic acidwere purchased fromSigma-Aldrich (Dorset, United
Kingdom). RPMI 1640 culture medium, fetal calf serum (FCS),
and antibiotics (penicillin and streptomycin) were purchased
from Lonza (Basel, Switzerland). The cytometric bead array kit
to analyze cytokine concentrations was purchased from BD
Biosciences (Oxford, United Kingdom). Phagoburst and
Phagotest kits as well as the opsonized E coli bacteria were
manufactured by Glycotope Biotechnology (Heidelberg, Germa-
ny). Pg-3-glc, PCA, 4-HBA, and PGA were dissolved in acidified
methanol (2% formic acid) to a concentration of 10mmol/L and
storedat −70°Candaway from light. Further dilutions of the test
compounds were prepared freshly on each study day by
dilution in RPMI medium with added FCS and antibiotics.
RPMI culture medium was stored at 4°C. FCS and antibiotics
were defrosted upon delivery, aliquoted, and stored at −20°C
until use.

2.3. Whole blood culture for phagocytosis and oxidative
burst capacity

Heparinized whole blood samples were preincubated with the
test compounds (Pg-3-glc, PCA, 4-HBA, PGA, or RPMI 1640
medium as control) at 4 different concentrations (0.08, 0.31,
1.25, and 5 μmol/L) at 37°C for 4 hours in 15 × 75–mm tubes.

2.4. Whole blood culture for cytokine analysis

Heparinized whole blood was diluted 6:10 with RPMI 1640
medium supplemented with FCS and antibiotics. The diluted
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blood (1 mL/well) was placed into 24-well tissue culture
plates. Working solutions of the test compounds were added
to provide final concentrations of 0.08, 0.31, 1.25, and 5 μmol/L.
Respective volumes of RPMI 1640 medium were added to control
cultures (no polyphenols). LPS (1-μg/mL final concentration) was
added to stimulate cytokineproduction. Cultureswere incubatedat
37°C in a 5%CO2 atmosphere for 24 hours. At the end of the culture
period, plates were centrifuged at 260g for 5 minutes. Culture
supernatants were collected and stored in aliquots at −20°C
until analysis.

2.5. Measurement of leukocyte phagocytosis and oxidative
burst capacity

Phagocytic and oxidative burst activities of monocytes and
neutrophils were analyzed using commercially available test
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Fig. 1 – Effect of Pg-3-glc, PCA, 4-HBA, and PGA on phagocytic activi
monocytes (B). Human whole blood (n = 10) was treated with Pg-3-g
μmol/L, for 4 hours at 37°C. Phagocytic activity was analyzed using
phagocytic activity vs control (no polyphenols). Data are represented
lowered P < .01 was considered significant to account for multiple c
kits (Phagotest and Phagoburst) following the instructions of
the manufacturer. The percentage of neutrophils or mono-
cytes engaged in phagocytosis of E coli bacteria (opsonized
and nonopsonized) and oxidative burst activity and the mean
fluorescence intensity were acquired on a BD FACS Canto II
flow cytometer. Data were analyzed using DIVA software.

2.6. Measurement of cytokine concentrations

Concentrations of TNF-α, IL-1β, IL-6, IL-8, and IL-10 in the
culture supernatants were measured using a cytometric bead
array kit from BD Biosciences (Oxford, United Kingdom)
according to the manufacturer's instructions. The intensity
of the fluorescence signal was acquired on a BD FACS Canto II
flow cytometer, and data were analyzed using the BD FCAP
Array v3 software. Limits of detection of the cytokine assays
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ty of nonopsonized E coli bacteria in human neutrophils (A) and
lc, PCA, 4-HBA, PGA, or vehicle control at concentrations of 0-5
the Phagotest test kit. Results are expressed as percentage of
as themeans ± SD. Datawere analyzed by 1-wayANOVA, and a
omparisons. There were no statistically significant changes.
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are 0.13 pg/mL (IL-10), 1.2 pg/mL (TNF-α and IL-8), 1.6 pg/mL
(IL-6), and 2.3 pg/mL (IL-1β).

2.7. Statistical analyses

Results are expressed as percentage of phagocytic activity/
oxidative burst activity/cytokine production vs control (no
polyphenols) and shown as means with their standard
deviations (SD). One-way analysis of variance (ANOVA) was
performed, followed by Dunnett as post hoc analysis vs
control group where appropriate. Statistical analysis was
performed using SPSS 21 (IBM Corporation, Armonk, NY,
USA), and a lowered P < .01 was considered significant to
account for multiple comparisons.
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Fig. 2 – Effect of Pg-3-glc, PCA, 4-HBA, and PGA on phagocytic activi
monocytes (B). Humanwhole blood (n = 10) was treated with Pg-3-g
μmol/L, for 4 hours at 37°C. Phagocytic activity was analyzed using
phagocytic activity vs control (no polyphenols). Data are represented
lowered P < .01 was considered significant to account for multiple c
3. Results

3.1. Effects of Pg-3-glc, PCA, 4-HBA, and PGA on phago-
cytic and oxidative burst activity

None of the test compounds significantly affected the overall
percentage of neutrophils or monocytes engaged in phagocy-
tosis of opsonized or nonopsonized E coli bacteria and their
oxidative burst activity (Figs. 1-3). A high degree of
intersubject variability was notable. Furthermore, there were
no significant effects of any of the test compounds on the
mean fluorescence intensity, which indicates degree of
phagocytic/oxidative burst activity (data not shown).
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the Phagotest test kit. Results are expressed as percentage of
as themeans ± SD. Datawere analyzed by 1-wayANOVA, and a
omparisons. There were no statistically significant changes.
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3.2. Effects of Pg-3-glc, PCA, 4-HBA, and PGA on cytokine
production

Stimulation with LPS increased IL-1β production 11-fold, TNF-α
production 9-fold, IL-6 production 2-fold, IL-8 production 1-fold,
and IL-10 production 5-fold. Pg-3-glc and PGA at the lowest dose
tested (0.08 μmol/L) significantly increased IL-10 production
compared with the control cultures (P < .01 and P < .001, respec-
tively; Table 1). There was no significant effect of any tested
compound, at concentrations up to 5 μmol/L, on the production of
IL-1β, TNF-α, IL-6, or IL-8 by humanwhole blood cultures (Table 1).
4. Discussion

The current study investigated, for the first time, the effects of
the strawberry-derived anthocyanin Pg-3-glc and 3 of its
physiologically relevant plasma metabolites on phagocytosis,
oxidative burst, and the production of selected pro- and anti-
inflammatory cytokines by whole blood cultures, and our
hypothesis was only partially supported by the results. There
were no effects of any of the test compounds on phagocytosis
or on oxidative burst activity. In agreement with these data,
some human intervention studies report no significant effects
of anthocyanin-rich red wine, red grape juice [8,9], or
quercetin [37-40] on phagocytic ability of monocytes and
neutrophils. However, higher doses of red wine anthocyanins
did increase phagocytic activity in mice [10], suggesting that
the outcomes of animal and human studies may differ and
that dose might be important.

Once pathogens are engulfed by phagocytes (phagocyto-
sis), they are destroyed in part by the production of reactive
oxygen metabolites in a process termed oxidative burst [4]. In
the current study, contrary to our hypothesis, there were no
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effects of any of the test compounds on oxidative burst
activity upon E coli stimulation. In contrast, a reduction in
hydrogen peroxide production was reported by a raspberry
fruit extract in phorbol-12-myristate-13-acetate–stimulated
J774 murine macrophages, but the effects were only observed
at higher extract concentrations and were less pronounced in
arachidonic acid–stimulated macrophages [41]. Similarly,
diminished production of reactive oxygen species production
was reported by a number of anthocyanin- and flavonoid-rich
fruits by opsonized zymosan-activated phagocytes, but no
effects were observed with phorbol-12-myristate-13-acetate
as stimulus [13]. This study used higher polyphenol doses
compared with the current experiment, where doses may have
been too low to have an effect. The 2 studies have also used a
different technique for reactive oxygen species measurement.
Another important consideration thatmay contribute to discrep-
ant findings between studiesmight be the nature of the stimulus
used. Emerging data suggest that the phagocytic immune
response is governed by the type of stimulus [42]. It is important
to note that interpretation of oxidative burst data is not
straightforward. On the one hand, oxidative burst is involved in
the destruction of pathogens upon phagocytosis and thus
represents a critical component of immune defense [4], but it
can also be harmful to tissues and contribute to the pathogenesis
of chronic health conditions [13], especially if there are insuffi-
cient antioxidant defenses.

Cytokines are a critical component of immune defense,
but, on the other hand, inappropriate or excessive production
of TNF-α, IL-1β, IL-6, and IL-8 has been linked with the
pathogenesis of a number of chronic inflammatory diseases
[4]. IL-10, on the other hand, is a predominantly anti-
inflammatory cytokine and would be expected to be associ-
ated with reduced atherosclerosis by suppressing macro-
phage activation and inhibiting several proinflammatory
cytokines, chemokines, and growth factors [43]. In the current
experiment, the increased IL-10 production by Pg-3-glc and
PGA could be interpreted as a modest anti-inflammatory
effect, and the original hypothesis is therefore partially
upheld [43]. Interestingly, in the current experiment, the
increase in IL-10 by Pg-3-glc and PGAwas only observed at the
lowest dose tested (0.08 μmol/L). Importantly, these doses are
physiologically relevant. PGA and Pg-3-glc were reported in
plasma upon anthocyanin consumption at 5-600 nmol/L
[29,30,33,34]. Although the validity and interpretation of this
effect remain to be confirmed, it could indicate the presence
of an inverted U-shaped response curve. Previously, trends for
(inverted) U-shaped associations were observed in a cell
model testing vanillic acid and heme oxygenase-1 protein
expression [44] in a human intervention study between
blueberry beverage consumption and flow-mediated dilation
[45] and in an epidemiological study between tea consump-
tion and coronary heart disease mortality [46]. To our
knowledge, no other studies have investigated the effect of
PGA on IL-10 production by monocytes or macrophages.
There were no effects of any of the other test compounds on
IL-10 levels, which are in line with results on the effect of PCA
in human monocyte–derived dendritic cells [25] and PCA and
4-HBA in THP-1 monocytes [47]. In the latter study, Pg-3-glc
did not alter IL-10 production, which is in contrast to the
current data. However, that study only tested a 1-μmol/L dose,
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and the lack of effect was consistent with the observation that
Pg-3-glc at 0.31-5.00 μmol/L had no effect in the current study.

There is evidence from in vitro studies to suggest that
particular structural characteristics might be required for
phagocytosis-enhancing effects. A cell line study (using 1,25-
dihydroxyvitamin D3–differentiated HL60 cells) concerned
with the effect of green tea polyphenols suggested that a
pyrogallol-type B-ring and/or a galloyl group is required to
increase phagocytic activity [11]. These structural character-
istics were absent from the tested compounds in the current
studies. However, this observation was only based on a screen
of 6 compounds and therefore requires confirmation, ideally
in screening studies with a larger number of related com-
pounds to clearly identify chemical structures or properties
required for phagocytosis-enhancing effects.

A limitation of the present experiment is that although
subjects were asked to follow a low-flavonoid diet for 24 hours
prior to the blood sample collection, it cannot be excluded
that some phenolic acids were present in circulation,
which could have contributed to the variability and/or lack
of effect.

In conclusion, there was no effect of the strawberry-
derived anthocyanin Pg-3-glc or 3 of its physiologically
relevant plasma metabolites on phagocytosis or oxidative
burst activity in an in vitro humanwhole blood culture model.
The data suggest that PGA and Pg-3-glc at physiologically
attainable concentrations may possess anti-inflammatory
properties through modulation of IL-10 production, which
could contribute to protective effects in inflammatory dis-
eases, although the magnitude of the effects appears to be
modest and was only observed at the lowest dose tested (0.08
μmol/L). None of the test compounds had any effect on IL-1β,
TNF-α, IL-6, and IL-8. Subsequent studies should explore other
immunomodulatory effects of dietary anthocyanins.
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