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We present a systematic study of the stability of nineteen different periodic structures using the
finite range Lennard-Jones potential model discussing the effects of pressure, potential truncation,
cutoff distance and Lennard-Jones exponents. The structures considered are the hexagonal close
packed (hcp), face centred cubic (fcc) and seventeen other polytype stacking sequences, such as dhcp
and 9R. We found that at certain pressure and cutoff distance values, neither fcc nor hcp is the
ground state structure as previously documented, but different polytypic sequences. This behaviour
shows a strong dependence on the way the tail of the potential is truncated.

I. INTRODUCTION

Polytypism is a special form of polymorphism, occur-
ring in layered materials, in which the polymorphs are
derived simply by varying the way in which the layers
are arranged relative to each other. This means that the
various stacking arrangements do not affect the chem-
istry of the phase as a whole, but some of the physical
properties (e.g. density, Young modulus, band gap or
electron mobility) can be significantly different. A large
variety of materials have several different stable poly-
type phases [1], one of the most extensively studied being
SiC [2, 3]. SiC has more than 200 identified polytypes,
a few being more favoured in applications than the rest
due to their superior electronic properties. Many materi-
als with similar structural properties also form polytypes,
such as metal sulphides and halogenides, e.g. ZnS [4, 5]
and CdI2 [6]. The physical properties of such materials
can be tuned by changing the stacking sequences, e.g.
in ZnO [7]. Polytypism also occurs in the case of dia-
mond. The common cubic form of diamond has a hexag-
onal polytype called Lonsdaleite, which is suggested to be
a complex mixture of different stacking sequences [8, 9].
Similarly, hexagonal (Ih) and cubic (Ic) ice are also poly-
typic structures. Some elements are also known to form
polytype phases, such as lanthanum, which exists in the
dhcp form [10], samarium and lithium having the 9R
stacking sequence as the ground state structure [11, 12],
erbium which is stable in both dhcp and 9R stacking
sequences at different pressures [13], and bismuth, long
suspected to exist in several polytypic forms [14]. It has
been speculated that the transformation from fcc to hcp
structure with increasing pressure might occur through
a series of different stacking fault structures, e.g. as in
the case of noble gases xenon, krypton [15, 16] and ar-
gon [17, 18], as suggested by some experimental results,
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or in the case of iron at high pressure and high tempera-
ture [19, 20]. Finally, if a wider definition of polytypism is
used such that structurally compatible modules are also
considered, a range of minerals which include the pyrox-
enes, perovskites, spinelloids, chlorites and oxides form
polytypic structures as well [21].

In order to model the polytypic behaviour, the ax-
ial next-nearest-neighbour Ising (ANNNI) model, was
used in the 1980s [21–23]. (An overview of the ANNNI
and A3NNI ground state structures are given in the
Appendix.) However, the two possible layer types in
ANNNI, usually marked by ↓ and ↑ are interchangeable,
a phase is only defined by the number of consecutive lay-
ers of the same orientation, but not the orientation of
the layer itself, thus phases ↓↓↑ and ↑↑↓ are identical.
In contrast, close packed stacking structures are built
up by layers in three different possible positions, usually
denoted by A, B and C, forming either a hexagonal (in
ABA stacking) or a cubic (in ABC stacking) layer. These
two are not identical nor interchangeable, meaning that
the ability of ANNNI to describe the behaviour of close
packed materials is limited.

One of the most widely used models to study close-
packed materials is the Lennard-Jones pair potential. It
has been long known that its low temperature dominant
structures are the hexagonal close packed (hcp) and the
face centred cubic (fcc) [24]. Interestingly, although other
structures (bcc, simple cubic, diamond) have been stud-
ied [25], to the best of our knowledge no other polytype
sequences have ever been investigated from the point of
view of phase stability, only as stacking faults in rela-
tion to crystal growth defects or nucleation [26]. It is
also notable that the customary finite range truncation
of the potential has a significant effect on the liquid-
vapour equilibrium [27–29] and on the melting tempera-
ture [30, 31], yet it is rarely mentioned and almost never
taken into account in the discussion of the low temper-
ature solid phases, causing an apparent inconsistency in
the literature with regard to the lowest energy structure:
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some works refer to the fcc [26, 32], others to hcp [25, 33]
as the global minimum of the Lennard-Jones model. An
exception is an article by Jackson et. al [34] showing that
the ground state can be either fcc or hcp depending on
the cutoff distance and method of truncation.

Our aim in this work is to provide a systematic study
of the ground state structure of the Lennard-Jones po-
tential considering different polytypic stacking sequences,
and fill the gap in the literature regarding its dependence
on pressure, potential parameters and potential trunca-
tion. The rich diversity of structures we find serve as
a reminder that complex material behaviour can result
from comparatively simple models, and that implemen-
tation details can have a strong effect on phase stability
when modelling materials.

Although the motivation of this work is to study the ef-
fect of various truncation schemes routinely used in com-
puter simulation of materials rather than how to evalu-
ate the long-range limit, we briefly comment on the un-
truncated version of the Lennard-Jones potential. Long-
range electrostatic interaction converges only condition-
ally in the thermodynamic limit and therefore requires
careful treatment to avoid unphysical behaviour[35]. By
contrast, the energy of the (untruncated) Lennard-Jones
potential is absolutely summable and hence converges un-
conditionally with simply increasing the number of neigh-
bours, even though this is rarely applied in practice.

II. COMPUTATIONAL DETAILS

A generalised form of the Lennard-Jones potential can
be given by

ULJ(r) =
p

(p− q)( q
p )q/(p−q)

ε

[(σ
r

)p
−
(σ
r

)q]
. (1)

The values p = 12 and q = 6 are most common, in which
case one obtains

ULJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
, (2)

where ε is the depth of the potential well, σ is the size
of the repulsive core and r is the distance between two
particles. This potential is usually truncated at a cut-
off distance, rc, and to avoid the discontinuity at this
point, the potential can be shifted. The energy-shifted
LJ potential is a continuous (C0) function,

ULJ−C0(r) =

{
ULJ(r)− ULJ(rc) r ≤ rc
0 r > rc.

(3)

In order to obtain continuous forces at the cut-off dis-
tance, and thus make the potential function differen-
tiable, it can be force-shifted, which leads to

ULJ−C1(r) =


ULJ(r)− ULJ(rc)−

− (r − rc)U ′LJ(rc)
r ≤ rc

0 r > rc.

(4)
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FIG. 1. Shape of the Lennard-Jones potential of exponents
p = 12 and q = 6, with different cutoff schemes. All func-
tions were used with cutoff distance rc = 3.0σ and in case
of the smoothed force-shifted potential, rs = 1.0σ smoothing
range has been used. The top inset shows the functions at
the vicinity of the cutoff, while the bottom inset shows the
second derivative at the potentials.

In order to make also the second derivatives continuous
at rc (i.e. create a C2 function), the potential can be
further shifted by a third term,

ULJ−C2(r) =


ULJ(r)− ULJ(rc)

−(r − rc)U ′LJ(rc)

− 1
2 (r − rc)2U ′′LJ(rc)

r ≤ rc

0 r > rc.

(5)

Alternatively, a sigmoidal shaped function, fs(r), can be
used to ”smooth out” the force shifted potential within
a distance rs of the cutoff,

ULJ−C1−smoothed(r) = fs(r)ULJ−C1(r). (6)

For fs(r) we used an infinitely differentiable (C∞)
function,

fs(r)


1 r ≤ (rc − rs)
1− e(−1/x)

e(−1/x)+e(−1/(1−x)) (rc − rs) < r ≤ rc
0 r > rc,

(7)

where x = [r − (rc − rs)]/rs).
Nineteen different stacking sequences were considered

(shown in Table I), all variations up to five stacking lay-
ers, and some of the possible six layer arrangements. The
notation used to mark the sequences is that layers with
fcc surroundings (the two neighbouring layers occupy dif-
ferent positions) is marked “c” as cubic, while the layers
with hcp surrounding (sandwiched between two layers
occupying the same position) is marked “h” as hexago-
nal. An example structure, with associated notation, is
shown in Figure 2.



3

TABLE I. Different stacking variants studied, listed with both
their hc and ABC notation. Alternative names and Ramsdell
notations are shown for specific stacking sequences in paren-
thesis.

stacking min. number physical stacking of the layers

variants of layers

c (fcc, 3C) 3 [ABC]n

h (hcp, 2H) 2 [AB]n

hc (dhcp,4H) 4 [ABCB]n

hcc
(thcp,6H1)

6 [ABCACB]n

hccc 8 [ABCABACB]n

hcccc 10 [ABCABCBACB]n

hccccc 12 [ABCABCACBACB]n

hhc (9R) 9 [ABACACBCB]n

hhcc 12 [ABACBCBACACB]n

hhccc 5 [ABACB]n

hhcccc 18 [ABACBACACBACBCBACB]n

hhhc 8 [ABABCBCB]n

hhhcc 10 [ABABCACACB]n

hhhccc 12 [ABABCABABACB]n

hhhhc 15 [ABABACACACBCBCB]n

hhhhcc 18 [ABABACBCBCBACACACB]n

hhhhhc 12 [ABABABCBCBCB]n

hchcc (15R) 15 [ABCBACABACBCACB]n

hchhc 10 [ABCBCACBCB]n

A

A

B

B

C

C

h

h

c

c

c

c

FIG. 2. An example snapshot[36] of the 〈hcc〉 sequence. Lay-
ers at the same lateral position are connected by dashed lines.

The geometry optimisations were performed with the
QUIP package [37], with the conjugate gradient method
and double-checked with the steepest descent method for
several cases. The minimisation tolerance was set to
10−6ε/σ for the norm of the forces, which corresponds
to 10−15ε/atom accuracy in the energy calculation. Hy-
drostatic pressure was applied. The minimisations were
started from configurations where atoms were placed
1.0σ distance from each other, and during the minimi-
sation the atomic positions and all the lattice parame-
ters were allowed to relax. The calculations were done
with different shifted and smoothed versions of the poten-
tial to compare their effects within the truncation range
2.0σ ≤ rc ≤ 6.0σ, in 0.05σ intervals.

III. RESULTS: GROUND STATE PHASE
DIAGRAMS OF THE LENNARD-JONES

POTENTIAL

During the minimisation process configurations re-
tained their stacking order, and the atoms forming the
stacking plane also stayed perfectly in the plane. Lat-
tices remained orthorhombic, but the lattice height cor-
responding to the stacking direction changed with respect
to the other two, as expected. To be able to identify the
ground state structures and draw the phase diagrams,
the enthalpies of the minimised configurations were cal-
culated and compared. These enthalpy curves were indi-
vidually checked and more calculations were performed
with a finer pressure scale whenever it was necessary,
thus we believe that no phases have been missed. A set
of example enthalpy curves can be seen on Figure 3.
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FIG. 3. Enthalpy difference of different polytypes relative to
that of the fcc structure as a function of pressure. The poten-
tial is force shifted and cutoff is rcut = 2.7σ. The arrows show
the location of the two phase transitions where the enthalpy of
several polytypes are almost equal due to the relatively short
cutoff, thus the phase boundary between 〈c〉 and 〈hc〉 is close
to being a multiphase boundary with 〈hck〉 and 〈hchcc〉 type
polytypes, while the boundary between 〈h〉 and 〈hc〉 is degen-
erate with 〈hkc〉 and 〈hchhc〉 type sequences. This behaviour
becomes less prominent as the cutoff increases.

Truncation distance vs. pressure phase diagrams of
the Lennard-Jones type potentials with different cutoff
schemes are shown on Figures 4, 5 and 6. The coloured
regions show the series of phases found to be the most
stable at a given truncation length and in a given pres-
sure range. Dark grey colour corresponds to the fcc and
light grey to hcp structures, with other colours repre-
senting different stacking variants (yellow and red shades
represent stackings with a single “h” layer in the repeated
subunit, green shades are polytypes with two consecutive
“h” layers, while blues and purples correspond to three
and four consecutive “h” layers, respectively).

It is clear from all the phase diagrams, that the hcp
structure tends to be the most favourable stacking vari-
ant at lower pressure values, while for every value of the
cutoff there is a pressure above which the fcc is the most
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FIG. 4. Lennard-Jones ground state structures as a function
of cut-off radius and pressure. The potential is C0, i.e. en-
ergy shifted. The colours represent the different stacking se-
quences, dark grey is pure fcc and light grey is pure hcp. The
white dashed line demonstrates one of the boundaries along
which a new shell of atoms gets inside the cutoff sphere. The
red star on the right axis marks the pressure p = 878.5ε/σ3,
the phase boundary between hcp and fcc with infinite cutoff
radius.

stable polytype. In order to see whether one of the stud-
ied polytypes becomes the ground state again at even
higher pressures, the structures were minimised up to
p = 6 × 105ε/σ3 for a few randomly chosen cutoffs: fcc
remained the lowest enthalpy structure in every case.

However, the most striking result is that at the bound-
ary between the ground state regions of fcc and hcp
structures, several other stacking variants are found to
be more stable. This means that, in contrast with the
common belief, the (truncated) Lennard-Jones potential
exhibits a wide range of different global minima depend-
ing on the fine details of the potential.

The boundary between the fcc and hcp regions appear
to have a “wave”-like pattern for all the potential func-
tion variants we used. The shape of these waves reflect
how the distance of atomic shells decreases as the density
increases with increasing pressure. (The white dashed
graph in Figure 4 represents the curve along which the
number of atoms within the cutoff radius jumps from 177
to 201 in the fcc crystal.) As different polytypes have
different numbers of neighbours in each shell, their rel-
ative energy will be different depending on which shells
lie within the cutoff radius. As the pressure increases the
atoms get closer, farther shells appear within the smaller
cutoff radii, causing the phase boundary to be shifted
towards smaller cutoffs.

At small cutoff values, fewer polytypes appear along
the fcc-hcp boundary and these remain the same as the
pressure increases. As the number of shells are increased
using larger cutoffs, this is no longer true, due to the fact
that the distance between the layers of fcc and hcp can be
different depending on the pressure, thus the neighbour
shells will no longer be isotropic. Finally, with increas-
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FIG. 5. Lennard-Jones ground state structures as a function
of cut-off radius and pressure. In the top panel the poten-
tial is force shifted, the middle panel shows the C2 shifted
potential (see eq. 5), while the bottom panel shows the force
shifted potential with a C∞ smoothing function (see e.q. 7)
applied in the 1.0σ range of the cutoff. The colours repre-
sent the different stacking sequences. The insets show the
phase boundaries between cutoffs 4.0σ and 6.0σ enlarged, the
different pressure scale shown on the right.

ing cutoff, the energy contribution of the outmost shells
gets smaller, the “waves” gradually flatten out, with
hcp being the most stable structure below ∼ 900ε/σ3,
and fcc above. This corresponds to a pressure between
43− 55 GPa, taking into account typical Lennard-Jones
parameters used to describe different noble gases.[38]
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Figure 4 shows the phase diagram of the simple energy
shifted Lennard-Jones function (see eq. 3). At smaller
cutoff values, only one phase is found to be stable other
than fcc and hcp, the 〈hc〉 phase. As the cutoff increases,
first the 〈hhc〉 and 〈hhcc〉 phases appear, than other se-
quences with longer repeated subunits as well.

Applying additional shifts to the potential, such as
force-shift and second-derivative shift, the “wave” like
pattern of the phase diagram becomes significantly less
pronounced (see the first two panels of Figure 5), but the
order in which the more complex polytypes appear on the
phase diagram remains similar. For example 〈hhc〉 and
〈hhcc〉 phases appear on the second “wave”, the same two
and 〈hc〉 on the two sides of the third “wave” and then
〈hcccc〉 first appears on the tip of the fourth “wave” in
all three phase diagrams. Although we are unable to of-
fer a rigorous explanation for the flattening trend of the
“waves”, we speculate that it is due to the fact that a
non-smooth cut-off mechanism leads to large variations
in energy as new neighbour shells cross the interaction
range. Since different polytypes have different neighbour
shells, significant changes in energy differences can there-
fore occur.

Using a smoothing function to obtain a completely
smooth potential, ULJ−C∞ has seemingly the opposite
effect, while the width of the stability region of the
〈hc〉 phase becomes significantly narrower, especially at
shorter cutoffs, the magnitude of the “waves” increases
(see Figure 5). The explanation for this effect is that
ULJ−C∞ is only qualitatively smooth but not quantitively.
Indeed we observe in Figure 1 that its second derivative
has rapid variations in the interval where the cut-off is
applied. It also has to be noted that the exact effect
of the smoothing will also depend on the widths of the
smoothing region.

In order to study the effect of the Lennard-Jones expo-
nents, thus the shape of the pair potential on the ground
state phase diagram, we repeated our calculations on the
force shifted potential with the following different p and
q exponents: 12 and 8, 12 and 4, 14 and 6, 10 and 6.
The phase diagrams are shown in Figure 6. It is clear
from these figures that changing the exponents does not
notably change the order in which the polytypic phases
appear to be stable, thus the same stacking variants ap-
pear at the same cutoff values, but the corresponding
pressure of the phase transitions are significantly differ-
ent. As a general rule, if either of the exponents are
increased, the pressure above which the fcc phase is the
most stable increases as well.

IV. OTHER INTERATOMIC POTENTIALS

A. Power law potential

A simple repulsive power law potential with the expo-
nent set to 12,

Upl(r) = 4ε
(σ
r

)12
, (8)

was also tested to see whether polytypic phases are stable
in this case. A force-shift was applied here as well. The
results indicate that the ground state structure is fcc at
every pressure and cutoff studied.

B. Morse potential

In order to see how another simple pair potential with
an attractive term behave we also tested the Morse po-
tential,

UM(r) = De

(
e−2a(r−re) − 2e−a(r−re)

)
, (9)

with parameters De = 1.0, re = 1.0 controlling the depth
and location of the minimum, respectively, and a = 4.0.
(We chose the value for parameter a so that the pair
potential is similar in shape to the Lennard-Jones poten-
tial.) The potential was force shifted. The Morse phase
diagram (see Figure 7) shows some stacking fault struc-
tures too: 〈hc〉, 〈hhc〉 and 〈hhcc〉, similarly to the LJ
potential, but only at small cutoffs. Above rcut = 3.6re
the fcc is the only stable phase. This fast decay of the
“waves” can be explained by the exponential decay of the
potential function, but the fact that polytypes other than
fcc and hcp are found to be ground states also in case
of the Morse potential indicates that the results we ob-
tained for Lennard-Jones potentials in the previous sec-
tions might be generic for truncated pair potentials.

V. CONCLUSION

We have systematically studied the global minimum
structure of the bulk Lennard-Jones model as a function
of pressure and the details of potential truncation. Our
results demonstrate that its ground state structures are
far more complex than previously reported, the stable
phases including not only fcc and hcp but a wide range
of more complex stacking sequences. Most notably we
obtained 〈hc〉 and 〈hhc〉 phases, the two polytypes most
often observed in real materials (as dhcp and 9R) other
then hcp and fcc. This suggests that well-known pair
potentials might be useful models of polytypism and can
help us to understand and predict polytypic behaviour.

The relative stability of polytypes was found to be es-
pecially sensitive to the degree of smoothness of the po-
tential around the cutoff. This shows that the effect of
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truncation and the way the derivative of the potential is
treated should not be underestimated when using pair
potentials. Further work is still needed, however, to ob-
tain a clear theoretical explanation for the polytypism
that we observed, e.g. to construct potentials with pre-
scribed polytypes, as well as to confirm analogous effects
in case of more complex model systems.
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Appendix A: Stable structures of the ANNNI and
A3NNI models

One of the simplest nontrivial models exhibiting pe-
riodically ordered phases, is the axial next-nearest-
neighbour Ising model, ANNNI [39, 40], which is a vari-
ant of the Ising model with a two-state spin on each lat-
tice site. Interactions are between nearest neighbours,
together with a second-neighbour interaction along one
lattice direction (this is the axial direction, z). The model
is defined by the Hamiltonian

H = −1

2
J0
∑
ijj′

Si,jSi,j′−J1
∑
ij

Si,jSi+1,j−J2
∑
ij

Si,jSi+2,j

(A1)
where Sij is the two-state spin on each lattice site, and
i denotes the layers perpendicular to the axial direction
and j and j′ are nearest neighbour spins within the layer.

The ANNNI model is considered a prototype for
polytypism [21, 22], since its phase diagram contains
sequences of long-wavelength-modulated phases, hence
showing that short-range competing interactions are suf-
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ficient to stabilise long periodic structures as ground
states.

Within ANNNI, the layers building up the polytypes
can be characterised by two signs, ↓ and ↑. In these
models · · · ↑↑↑ · · · and · · · ↓↓↓ · · · are identical, and
often simply marked as 〈∞〉 (this is called the Zhdanov
notation where the numbers in the brackets show the
band widths, i.e. the number of layers with the same
spin, e.g. 〈2〉=(2,2) means · · · ↑↑↓↓ · · · ).

The ground state phase diagram of ANNNI can be eas-
ily determined [21], see Figure 8. There are three main
stable phases at 0 K, 〈1〉, 〈2〉 and 〈∞〉, but the two dashed
lines mark regions where the ground state is highly de-
generate: along the line between 〈1〉 and 〈2〉 all phases
containing only 1 and 2 bands have equal energy (e.g.
〈12〉, 〈122〉,...etc.), and along the line between 〈2〉 and
〈∞〉 all phases which contain no 1-bands have the same
energy (e.g. 〈23〉, 〈224〉, etc.). Note, that the bound-
ary between 〈1〉 and 〈∞〉 is not degenerate! This means
in particular that there are several phases missing from
this phase diagram, e.g. 〈13〉, 〈14〉, and so forth, are not
ground states at any value of J1 or J2.

In order to see how longer range interactions effect
the stability of phases, the third neighbour Ising model,
A3NNI has been studied too and discussed as a model for
polytypism [23, 41, 42]. If the third neighbour interac-
tions are also taken into account, the ground state phase

diagram becomes more complicated and two additional
structures appear as possible ground states phases com-
pared to ANNNI, the 〈12〉 and 〈3〉 with several additional
phases along the multiphase lines [23, 42]; see Figure 9.

Many of the polytypic structures found in different
materials resemble the phases seen in the ANNNI and
A3NNI models. For example, PbI2 has a reversible phase
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J2

<1>
......

<∞>
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J 1=
2J 2 J
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FIG. 8. Ground states of the ANNNI model. Dashed lines
mark multiphase boundaries.
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FIG. 9. Ground states of the A3NNI model, in case J1 < 0
(left hand side) and J1 > 0 (right hand side). Dashed lines
mark multiphase boundaries and correspond to the follow-
ing structure groups; (A): 〈2(12)k〉 and 〈2(12)k2(12)k+1〉 for
J2/J1 < 0 and for J2/J1 > 0 also 〈(12)k112(12)k−1〉, (B):
〈2(12)k〉 and 〈2(12)k2(12)k+1〉, (D): phases containing 1 and
2 bands, (E): 〈23k〉 and 〈23k23k+1〉, (F ): 〈3k4〉 and for
J2 > 0〈3k43k+14〉

transition between the phases 〈∞〉 and 〈1〉, with the
phases 〈2〉 and 〈12〉 being observed under different growth
conditions only [42]. Same is true for ZnS and AgI. Phase
transitions between 〈1〉−〈2〉−〈∞〉 are found in MgSiO3,
and 〈1〉 − 〈∞〉 − 〈3〉 − 〈23〉 are seen in case of SiC [2].
However, there are also polytypic structures seen in ex-
periments, e.g. 〈13〉 in spinelloids, which do not occur in
the ANNNI model.

At temperatures slightly above 0 K, the phase diagram
remains similar but at the vicinity of the multiphase lines
sequences of 〈12k〉 and 〈2k3〉 appear, and even more new
phases at higher temperatures (though the proportion of
disordered layers increase too) [40].
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