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Extreme Value Theory (EVT) is exploited to determine the global stability threshold Rg of
plane Couette flow –the flow of a viscous fluid in the space between two parallel plates– whose
laminar or turbulent behavior depends on the Reynolds number R. Even if the existence of a global
stability threshold has been detected in simulations and experiments, its numerical value has not
been unequivocally defined. Rg is the value such that for R > Rg, turbulence is sustained, whereas
for R < Rg it is transient and eventually decays. We address the problem of determining Rg by using
the extremes - maxima and minima - of the perturbation energy fluctuations. When R� Rg, both
the positive and negative extremes are bounded. As the critical Reynolds number is approached
from above, the probability of observing a very low minimum increases causing asymmetries in the
distributions of maxima and minima. On the other hand, the maxima distribution is unaffected
as the fluctuations towards higher values of the perturbation energy remain bounded. This tipping
point can be detected by fitting the data to the Generalized Extreme Value (GEV) distribution
and by identifying Rg as the value of R such that the shape parameter of the GEV for the minima
changes sign from negative to positive. The results are supported by the analysis of theoretical
models which feature a bistable behavior.

INTRODUCTION

The detection of thresholds underlying the sudden shift from one to another dynamical regime, often called critical
transitions or tipping points, is a problem of great importance for complex systems, e.g. global change in climate
science, specie extinction in ecology, stresses in materials, etc. The statistical approach to this question traditionally
involve so-called indicators of criticality [1]. Some of these indicators are based on modifications of the auto-correlation
properties of specific observables when parameters controlling the system approach some critical value, others on the
fact that an increase of the variance and the skewness is observed when moving towards tipping points [2]. Systems
alluded to above involve a multitude of “agents” acting on widespread spatiotemporal scales. Understanding their
transitions may involve modeling issues which hinder a neat interpretation of the warnings that one could draw from
these indicators. It should therefore be worth studying systems from physics displaying analogous features but where
these issues would be kept at a minimal level. Far-from-equilibrium transitions in macroscopic systems and especially
the transition to turbulence in simple flows configurations offer such an opportunity. With respect to the latter,
Navier–Stokes equations are indeed well-known and the flow regime essentially depends on the rate of shear measured
by the Reynolds number R, with laminar flow for R� 1 and turbulence for R� 1.

The transition to turbulence follows one or the other of two broad routes depending on whether or not the laminar
base flow profile displays an inflection point [3]. When an inflection point is present (shear layer, jets, wakes,. . . ) the
complexity of the fluid increases progressively and there is no marked hysteresis when R is increased or decreased.
Of particular interest in the present context, the opposite case with no inflection point – Poiseuille flow in a pipe
or a channel, simple shear (Couette) flows between plates or cylinders, boundary layer flow – is characterized by an
abrupt transition with a wide hysteresis range in R called the transitional range. It is marked with the coexistence
in space of laminar and turbulent domains: turbulent spots in channel and boundary layer flow, turbulent puffs and
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slugs in pipe flow. The lower end of the transitional range is conceptually pinpointed by a global stability threshold
Rg below which perturbations of arbitrary shapes and amplitudes all decay asymptotically in time. The upper end of
the transitional range is where laminar/turbulent coexistence disappears and a featureless turbulent regime prevails.
This limit may be more fuzzy but a threshold Rt can sometimes be identified [4].

Recently, important progress has been achieved about the determination of Rg in Poiseuille pipe flow and the
transition threshold attributed to a balance of puff splitting that propagates turbulence by puff decay that eradicates
it at this well-defined Reynolds number [5]. The simplicity of the interpretation was mainly due to the quasi-one-
dimensional feature of the system along the tube axis and the straightforward interpretation of the stochastic processes
involved. The case of the transition in plane flows is more complicated owing to the quasi-two-dimensional character
of the geometry and the greater variety of the local processes entailed in the growth/decay of turbulent domains [6].
Accordingly this give some value to all-purpose statistical approaches apt to signal and quantify the proximity of
regime changes with large impact, such as the laminar / turbulent transition.

Such studies bear on the time series of given local or global observables. Below, we restrict ourselves to the
consideration of simple shear flow taking place between parallel plates in relative translation. More information
about this system and its transition to turbulence will be given in Section . The distance to laminar flow is then
a global variable of particular interest since it clearly discriminates the laminar state where it is identically zero
from the turbulent state where it is non-zero by construction. This observable will be extracted from large scale
direct numerical simulations (DNS) of the Navier–Stokes equations in the corresponding geometry (§). Although the
variance and skewness of the times series are quantities very straightforward to compute, they are of limited value
in view of the threshold determination since there is no a priori way to relate their variation to the position of the
tipping point. Complementarily, we will thus develop a statistical approach based on the Extreme Value Theory and
propose a criterion allowing the determination of Rg with possibly broader applicability.

As will be recalled in Section , extremes are distributed according to one out of three possible asymptotic laws
forming a single family called Generalized Extreme Value distribution. The family is parameterized by a shape
exponent describing the distribution’s tail, either exponential (type 1 or Gumbel law), decaying as a power law
(type 2 or Frechet law), or bounded (type 3 or Weibull law). We will argue that a system approaching a tipping
point generically explores the vicinity of a repeller separating the two competing attracting states involved in the
bifurcation, so that the statistics of the observable changes from bounded (type 3) away from the tipping point to
unbounded/exponentially decaying (type 1) exactly at the tipping point, to unbounded with a fat (power law) tail,
i.e. a Fréchet law, beyond the tipping point, even if the transition is not actually observed due to finite observation
time.

The main difficulty of the approach lies in uncertainties related to the finiteness of the time series. This limitation
linked to the experimental/computational load at the data production stage cannot be easily overcome. Our aim is
to present a method for the analysis of finite time series rather than an asymptotic theory which, in the case analyzed
and in many others of relevant scientific interest, is often inapplicable. So, in order to support the methodology,
we shall rather turn to appropriate toy-models based on theoretical considerations and designed to reproduce the
phenomenology, but for which data collection is no longer a problem and sensitivity studies may be performed. This
will be developed in Section .

Beyond the issues strictly related to the behavior of plane Couette flow, the goal is to provide a new technique
for getting reliable information about early warning of critical transitions in complex systems. The reduction to
theoretical models, as a well established way of understanding complex features in a rather simple set up, might help
to cope with technological issues related to producing long data samples. The example analyzed here may represent
a gateway for applications in climate science or ecology. Accordingly, after a summary of our results, we indicate
possible research lines for further developments in Section .

OVERVIEW OF EXTREME VALUE THEORY

We start by introducing the asymptotic theory for extremes of statistically independent and identically distributed
(i.i.d.) variables, presenting the generalized extreme value distribution and the resulting three possible extreme value
laws. Afterwards, we consider issues arising when the data in the form of finite length time series as the output of
some dynamical system.
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Asymptotic Extreme Value Theory for i.i.d. variables

Classical Extreme Value Theory (EVT) states that, under general assumptions, the statistics of maxima Mm =
max{X0, X1, ..., Xm−1} of i.i.d. variables X0, X1, . . . , Xm−1, with cumulative distribution function F (x) in the form:

F (x) = P{am(Mm − bm) ≤ x},

where am and bm are normalizing sequences, asymptotically obeys –if there is convergence to a non-degenerate
distribution– a Generalized Extreme Value (GEV) distribution with cumulative distribution function:

FG(x;µ, σ, κ) = exp

{
−
[
1 + κ

(
x− µ
σ

)]−1/κ
}

(1)

with 1 + κ(x− µ)/σ > 0 [7]. The location parameter µ ∈ R and the scale parameter σ > 0 in Equation 1 account for
the normalization of the data, avoiding the recourse to scaling constants am and bm [8].

Parameter κ ∈ R in (1) is the shape parameter also called the tail index . Its sign discriminates the kind of tail
decay of the parent distribution:

• When κ = 0, the distribution is of Gumbel type (type 1). It is skewed to the right; the location parameter
µ is equal to the mode but differs from median and mean. According to Gnedenko [9], it is the asymptotic
Extreme Value Law (EVL) to be expected when the parent distribution shows an exponentially decaying tail,
which includes the normal, log-normal, gamma, or exponential types.

• The Fréchet distribution (type 2), with κ > 0, is observed when the parent distribution possess a fat tail decaying
as a power law, e.g. when the bulk statistics obeys a Cauchy or a T-Student distribution.

• The Weibull distribution (type 3), with κ < 0, corresponds to a parent distribution having a finite upper
endpoint xup = µ − σ/κ. The traditional definition of the Weibull distribution relates to minima of variables
with a cumulative distribution bounded from below so that the definition above could rather be termed reversed
Weibull.

When properties of maxima and minima are of interest, respectively corresponding to the exploration of the right or
left tails of the parent distribution, they can be treated on an equal footing by considering the minima as maxima of
the variables after sign reversal [10].

Asymptotic Extreme Value theory for dynamical systems

In the past decade significant progresses have been made in understanding EVLs related to the output of a dynamical
systems. Generally speaking this output is in the form of time series of some observable computed from orbits [11]
and difficulties arise from translating results for i.i.d. variables to such an observable evaluated all along a typical
trajectory that samples the natural measure, while being autocorrelated via the underlying dynamics. As shown by
Leadbetter et al. [8], the independence condition can be relaxed on general grounds and replaced by appropriate
mixing conditions expressing the decay of correlations. In the case of deterministic dynamical systems, such a mixing
is naturally expected to stem from the sensitivity to initial conditions inherent in chaos and convergence to EVLs was
indeed obtained for a special class of observables by Freitas et al. [12].

Another issue specific to dynamical systems, deterministic or noisy, is related to the clustering of extremes, as
discussed originally by Newell [13], Loynes [14], or O’Brien [15], and thoroughly explained in [8, §3.7]. In such a
situation, introducing the extremal index θ, convergence to EVLs is obtained for FG(x;µ, σ, κ)θ, where FG is the GEV
distribution introduced earlier, whereas 1/θ is a measure of the cluster size. Alternatively, theorem 3.7.2 in [8] can
be exploited to hide the dependence on θ by appropriately adjusting µ and σ, which will be done automatically when
fitting FG against the empirical data from the numerical simulations.

Recent advances related to the use of Extreme Value Theory for dynamical systems have been mainly limited to
observables sampling a typical trajectory while making reference to specific a point on the attractor [12, 16–18]. This
kind of observable is however experimentally out of reach when dealing with systems with many degrees of freedom.
For such systems, especially those governed by partial differential equations that cannot be brought to (very) low
dimension by inertial manifold reduction [19], the computation of trajectories is indeed computationally too expensive
and the existence of the attractor mainly a conceptual view. The behavior of the system is then often depicted using
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physical (macroscopic) observables, e.g. total energy or angular momentum, temperature, etc., extreme values of
which are analyzed in a pure statistical way, and not from an investigation of its dynamical properties at a local
(microscopic) level.

Selection procedures and finite samples

Gnedenko’s results relate to selecting extremes using the block maxima approach which consists in dividing the
time series of the considered observable of length s into n bins each containing the same number m of observations,
next selecting the maximum (or the minimum) value in each of them [10]. Then, the GEV distribution is fitted and
convergence towards a member of the GEV family proven in the limits m → ∞, and n → ∞. When moving from
theory to practice, it remains first to show that this asymptotic limit can be reached even with a finite amount of
data s = n × m. Comparing analytical results and empirical findings from numerical experiments, the authors of
[20], among whom two of us (D.F. & V.L.), studied how a robust estimation of parameters could be obtained. For
typical chaotic maps, good agreement between theoretical and experimental parameters was obtained for n & 1000
and m & 1000, which will here help us to fix the order-of-magnitude of the amount of data needed.

Extremes value laws near crisis points

Let us consider a dynamical system, either deterministic or noisy, controlled by some parameter λ which, when
increased beyond some value λcrit, drives it through a critical transition, making it tumble from one operating point to
another. Here the word ‘critical’ has the meaning it takes, say, in environmental sciences, where the expression tipping
point is also used. In dynamical systems theory, one would speak of a saddle-node bifurcation or some appropriate
generalization of it, namely crises [21].[42]

On general grounds we may expect that physical observables have bounded fluctuations and that their extremes
follow Weibull distributions [22, 23]. Gaussian fluctuations (featuring Brownian motion of microscopic degrees of
freedom) would yield the formal possibility of infinite extremes and thus Gumbel distributions, but the convergence
towards this law is logarithmically slow [24], which makes it unobservable in practice.

This viewpoint is however relevant only as long as there is only one typical time scale in the system and the
asymptotic time behavior corresponds to a single component attracting set on this time scale, which is explicitly stated
in the formulation of mathematical theorems when the existence of an invariant probability measure is assumed, but
most of the time tacitly admitted. If two attracting pieces are in competition and that, either under the effect of
external noise or due to internal chaotic fluctuations, two time scale are present, a short one related to transitive
dynamics within an attracting component and a long one corresponding to intermittent jumps from one to the other
component, the picture has to be modified.

On the short time scale, we have the situation considered up to now of a Weibull distrubution. Noise, either
extrinsic or intrinsic, does not change the picture: It adds the possibility of extremes that have to be considered as
local at the scale of that part of the attractor which is visited with probability one for a time series of the typical
duration s used in the evaluation of the shape of the distribution, which makes the Gumbel distribution irrelevant in
practice due to logarithmic convergence.

On the long time scale, some extremes correspond to noisy excursions directed toward the saddle-state and gain a
global status as they can trigger jumps from one to the other component. The probability increases that the observable
visits corresponding “anomalous” values associated to these global extremes during a time series of length s. With
the tail of the parent distribution becoming heavier and heavier, the EVL will turn to a Fréchet distribution. Upon
continuous variation of the control parameter, the shape exponent can thus be expected to cross zero from negative
values, and λcrit be defined as the value at which this crossing happens.

In high dimensional systems of interest, critical transitions are featured by specific physical observables that ex-
perience abrupt changes when the system crosses its tipping point. Like in the above discussion more directed to
low-dimensional systems, these observables will display deviations of greater amplitude in the direction of the state
the system is doomed to tumble, than in the opposite direction. This generally implies an increase in the skewness of
the distribution, backing the suggestion that this quantity could be an early warning indicator of a tipping point [25].
The skewness being a measure of the asymmetry of a distribution, the method performs well when the distribution
is symmetric for λ � λcrit but may fail if the distribution is already badly skewed. The extreme value analysis of
maxima and minima of the time series is able to overcome this problem and locate the critical transition.
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It is generally understood that, even if no real “energy” can be defined in a strict sense, the system evolves in some
energy landscape. As long as the considered operating point is stable against any perturbation, the geography of this
landscape is simple, with a single minimum (sink) and trajectories bouncing around it. When several different oper-
ating points coexist, each being locally stable and having its own attraction basin, trajectories gain some probability
to crawl over some pass in that landscape from one sink to another. Variation of the control parameter is then naively
understood to produce changes of relative altitudes of sinks, bumps and saddles. A critical transition taking place at
some unknown λc, as long as λ is far below λc the probability of tipping during an experiment producing a time series
of length s is completely negligible and the system is assigned to a given sink that it explores with essentially bounded
variations of the observable, leading one to expect some finite and negative shape exponent. When λ increases, the
probability for the system to leave its current operating point within time s also increases, supposedly changing the tail
of the parent distribution. The goal is to locate λc with the same criterion as before bearing on the shape parameter
using information extracted from the data series at our disposal. As can be inferred from the discussion above, the
main difficulty lies in adjusting the width m of the bins used in the bock maxima approach, with m sufficiently large
to sample anomalous extremes typical of the dangerous excursions toward tipping when keeping n = s/m sufficiently
large for reliable statistics, while the length s of the time-series is subjected to the experimental constraints.

In the next section we apply the method to plane Couette flow as a prototype of high-dimensional system accurately
described by a set of partial differential equations controlled by a single parameter, but working in a complex regime.

RESULTS FOR PLANE COUETTE FLOW

The transition to/from turbulence in plane Couette flow

Plane Couette flow is the prototype of plane flows with laminar velocity profiles deprived of inflection points and
transiting to turbulence in a subcritical fashion. This flow configuration refers to the shearing of a viscous fluid in
the space between two parallel plates in relative motion. The plates, at a distance 2h, translate in opposite directions
at a speed U and the flow results from the viscous drag acting on the fluid with kinematic viscosity ν. The nature
of the flow regime, either laminar or turbulent, is controlled by a single parameter, the Reynolds number R = Uh/ν.
The laminar flow depends linearly on the coordinate normal to the plates and is known to remain stable against
infinitesimal perturbations for all values of R, while turbulent flow is instead observed under usual conditions when
R is sufficiently large, typically of order 400–500, when increasing R without particular care.

As R is decreased from high values for which the flow is turbulent, a particular regime appears at about Rt ≈ 410
where turbulence intensity is modulated in space [4]. When the experimental setup is sufficiently wide, a pattern
made of oblique bands, alternatively laminar and turbulent, becomes conspicuous. Bands have a pretty well defined
wavelength and make a specific angle with the streamwise direction. As R is further decreased, they break down and
leave room to the laminar base flow below Rg ≈ 325. Experiments show that the streamwise period[43] λx of the
band pattern is roughly constant (λx ' 110h) while the spawise period λz increases from about 55h close to Rt to
about 85h as R decreases and approaches Rg [4]. Whereas the turbulence self-sustainment process in wall-bounded
flows is well understood [26], the mechanisms explaining band formation are still somewhat mysterious.

The transition thus display a large amount of hysteresis. A similar situation is to be found in several other flow
configurations, circular Couette flow, the Couette flow sheared by coaxial cylinders rotating in opposite directions,
plane channel, the flow between two plates driven by a pressure gradient, as well as in Poiseuille flow in a circular
tube, see Section .

Conditions of the numerical experiment

The transition to turbulence in plane Couette flow has been studied numerically by a number of authors. System
sizes required to observe the oblique band regime in Navier–Stokes DNSs are numerically quite demanding [27]. In
order to reduce the computational load, Barkley & Tuckerman performed their computations in a cleverly chosen
narrow but inclined domain [28]. The drawback is however to freeze the orientation beforehand, forbidding any angle
or orientation fluctuation. Previous work by one of us (P.M.) has shown that another way to decrease computer
requirements was to accept some under-resolution of the space dependence, especially in the wall-normal direction
y [29]. All qualitative features of the transitional range are indeed well reproduced in such a procedure, including
orientations fluctuations. Quantitatively, the price to pay appears to be a systematic downward shift of the [Rg, Rt]
interval (see below), giving supplementary evidence of the particular robustness of the band regime.
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In this work, DNSs have been performed in a domain of constant size able to contain one pattern wavelength in each
direction, i.e. (Lx, Lz) ≡ (λx × λz), with Lx = 108 and Lz = 64. This size seems well adapted to the central part of
the transitional domain, i.e. slightly too wide for R ≈ Rt and slightly too narrow at R ≈ Rg, with mild consequence
on the effective value of these thresholds, as guessed from a Ginzburg–Landau approach to this pattern forming
problem [30]. Such finite-size effects [31] also account for the intermittent reentrance of featureless turbulence.[44]

The well-validated open-source software ChannelFlow [32] has been used throughout the study. This Fourier–
Chebyshev–Fourier pseudo-spectral code is dedicated to the numerical simulation of flow between parallel plates with
periodic in-plane boundary conditions. In the wall-normal direction (see Note ), the spatial resolution is a function
of the number Ny of Chebyshev polynomials used. The in-plane resolution depends on the numbers (Nx, Nz) of
collocation points used in the evaluation of the nonlinear terms. From the 3/2 rule applied to remove aliasing,
this corresponds to solutions evaluated in Fourier space using 2

3Nx,z modes, or equivalently to effective space steps
δeff
x,z = 3

2Lx,z/Nx,z. Numerical computations have been performed using three different resolutions: low (Ny = 15,
Nx = Lx, Nz = 3Lz), medium (Ny = 21, Nx = 2Lx, Nz = 6Lz), and high (Ny = 27, Nx = 3Lx, Nz = 6Lz) for
which we expect [Rg, Rt] ≈ [275, 350], [300, 380], and [325, 405], respectively; see Fig. 6 in [29]. Simulations have been
performed chronologically from low to high resolution, confirming these transitional range estimates but results will
be presented in the reverse order since they require less and less computing power, which allows better and better
statistics at comparable numerical load.

The EVT analysis of turbulent energy near the band-breaking point

In this section we show results about the changes in the extreme value distributions of quantity Et defined as the
mean-square of the perturbation velocity ṽ, the difference between the full velocity field v and the base flow velocity
vb = y ex. Physically speaking, apart from a factor 1

2 , it is thus the kinetic energy contained in the perturbation
and accordingly a good measure of the distance to laminar flow where it is identically zero. Here we focus on the
determination of Rg using extremes as sketched above. A similar approach could be developed to study the behavior
of extremes associated to turbulence reentrance around Rt but the subcritical character of the transition at this
threshold value is still unclear.

For each value of the Reynolds number, very long simulations are performed and, once the time series of Et has
reached a stationary state, maxima (minima) are extracted in bins of fixed block length as described in the previous
section. We then fit the maxima (minima after sign change) to the GEV distribution by using a Maximum Likelihood
estimation as described in [20]. The results could have equivalently been obtained by using other estimators. The
choice of the bin length m is crucial: in the asymptotic regime the value of the shape parameter should be independent
of m. We have tested that, within the confidence intervals, this happens for m > 1000.

The shape parameter is next analyzed as a function of the Reynolds number. A first intuition on how the method
should work comes from looking at the data series and the histograms shown in figure 1, see caption for details. The
series in red refers to a value of Reynolds inside the band regime (R = 300), with fluctuations exploring a limited
interval. The series in blue, with R is fixed just above Rg (R = 277), illustrates a clear tendency to intermittently
visit states with very low values of the energy. These events, spotted in the green ovals, crucially contribute to a shift
towards Fréchet laws since the fit to the GEV returns a Weibull EVL when removing them from the histogram.

Let us start with the localization of the global stability threshold Rg in simulations performed at high resolution,
namely Nx = 216, Ny = 27, Nz = 384. Results are shown in Fig. 2 (left column) for the shape parameter (upper
panel), to be compared to the two common early warnings indicators based on the bulk statistics: the skewness
(middle panel) and the variance (lower panel). When approaching R = 322 the shape parameter for the distribution
of minima changes its sign, whereas for the maxima it remains negative in agreement with what was stated in the
previous sections. It is however evident that these results need confirmation since a limited set of Reynolds numbers
has been studied and a single slightly positive value of κ has been obtained for R = 322, with error bars so large
that the significance of the result is rather limited. The variance and the skewness of the time series follow what is
expected from the statistics of global observables at a tipping point, namely a monotonic trend towards larger values.
Since Et visits lower energy states, the skewness becomes more negative so that only the distribution of minima is
affected. However, as noticed previously, no definite threshold value Rg can be inferred from the consideration of the
variance and skewness curves.

In fact, at full resolution, the cumulated amount of CPU time required to produce series of length s = 2.5 ·105 time
units was beyond 105 CPU hours, making it practically impossible to obtain much longer series with the available
resources. In order to support the so-obtained results, we have exploited the fact that downgrading the resolution
preserves the qualitative features of the transition, up to a shift of transitional range [29]. At medium resolution
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FIG. 1: (Color online) Perturbation Energy Et for two simulations at low resolution. Upper panel: Et as a function of time.
Lower panel: Histograms of Et in log-linear scale.

(Nx = 216, Ny = 21, Nz = 384), all time series have been stopped at s = 2 · 105 time units. In these conditions,
band breakdown was never observed for R > 306. The results shown in Fig. 2 (center column) confirm those at high
resolution, with a slightly more pronounced change of sign of the shape parameter at R = 306 but point out the need
of more and much longer series around the global stability threshold.

Further downgrading the resolution to Nx = 108, Ny = 15, Nz = 192, allowed us to produce series lasting nearly one
order of magnitude longer than above, up to 2 ·106 time units. As a matter of fact, by collecting a greater statistics of
maxima, the uncertainty on the estimation of the shape parameter could be greatly reduced, as shown in Fig. 2 (right
column). In view of our proposal to define Rg using extreme value statistics, the results at low resolution look much
more convincing then those produced at higher resolutions since a clear monotonic variation of the shape parameter
for minima is now observed upon decreasing R. As soon as Rg ≤ 278, a Fréchet distribution is found for the minima
of the turbulent energy.

Values of Rg determined here for the different resolutions studied are not much different from those given in [29]
obtained by inspection of individual cases without any systematic criterion and using much shorter time series. While
the proposed new methodology to define the global stability threshold seems appropriate, it would be interesting to
determine a rescaling procedure defining a master curve common to our three cases independently of the resolution
and, next, to justify κ = 0 as signature of the threshold by some heuristic argument. The complexity of plane Couette
flow forbids us to scrutinize these issues by means of DNSs and suggests to make use of simplified toy models, as
considered in the next section.



8

FIG. 2: Tipping-point indicators for plane Couette flow as functions of R. Upper panel: Shape parameter κ; red: maxima,
blue: minima; error bars represent 95% confidence intervals, m = 1000. Center and bottom panels: Variance and skewness of
the full series, respectively. Left: High resolution. Center: Medium resolution. Right: Low resolution.
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THEORETICAL MODELS OF CRITICAL TRANSITIONS

A good candidate for testing the identification of the global stability threshold using methods based on GEV
parameters is a slightly modified version the model originally introduced in [33]:

dX/dt = −(µ+ uξ(t))X + Y 2, dY/dt = −νY +X −XY. (2)

Here X and Y may be related to the amplitudes involved in the self-sustaining process of turbulence. Parameters µ
and ν are damping coefficients accounting for viscous effects and assumed to vary as 1/R. Non-linearities preserve
the energy E = 1

2 (X2 + Y 2) in the same way as the advection term of the Navier–Stokes equations. Noise is here
introduced in a multiplicative way via the term uξ(t), where ξ(t) is a white noise and u its amplitude, as proposed
by Barkley [34]. A saddle-node bifurcation takes place at µν = 1

4 . The trivial solution X = Y = 0, corresponding to
laminar flow, competes with two nontrivial solutions on the interval µν =

[
0, 1

4

]
, the stable nontrivial solution being

assimilated to turbulent flow. Unlike the additive noise considered in [35], the multiplicative noise taken here does not
affect the trivial state and can be understood as a fluctuating turbulent-like contribution to effective viscous effects.
Whenever the system undergoes a transition towards the laminar state, the simulation is restarted from the stable
nontrivial fixed point.

Whereas for plane Couette flow only one simulation could be performed at each Reynolds number, here we can easily
produce ensembles of realizations for given parameter sets (ν, µ, u), extract corresponding GEV shape parameters,
and average them over the realizations, from time series of the energy E that, measuring of the distance to the trivial
state, remains an appropriate observable. In view of locating the transition from a probabilistic viewpoint we now
want to relate the conditions when the probability of transition becomes significant to the change of sign of the GEV
parameter κ.

Results of two different simulations are shown in Figure 3. Here, the control parameter is the intensity of the noise
u whereas µ and ν are kept fixed. The left plots refer to the case dt = 0.01, µ = 1, ν = 0.2487, n = 103, m = 106,
whereas the right ones refer to ν = 0.2475 with the other parameters left unchanged. For each values of u, ensembles
of 30 realizations has been prepared. The upper panels show the variation with u of the shape parameter averaged
over the realizations with error bars corresponding to the standard deviation over each ensemble. The plots in the
second row display the number Ntr of times the system has undergone a critical transition during a whole simulation
performed at given u, i.e. the duration of each realizations being s, the number Ntr is obtained by counting how
many times the system has reached the laminar state and been reset to the nontrivial fixed point in 30× s time units.

In both simulations, the shape parameters vary like in plane Couette flow. For the distribution of minima, it crosses
zero and changes its sign when u reaches a certain value uc (vertical lines between the first and second rows in Fig. 3)
that depends on the other parameters µ and ν, while it remains negative for the maxima. That the value so assigned
to uc acts as an effective transition warning stems from the comparison of the two upper rows of Fig. 3, from which
we infer that Ntr markedly increases when κ goes through zero. Experiments have been repeated for other values of
ν (not shown here) with identical results. The plots in the third and fourth row respectively refer to the variance and
the skewness of the bulk statistics of E. In contrast, these indicators based on the bulk statistics, while displaying
the expected trends, do not show any accident allowing us to locate any threshold.

A problem that cannot be explored with sufficient data from the DNS of plane Couette flow relates to whether
GEV distributions are properly fitted, which will be solved if we show that scaling laws relate the bin length m to
other parameters of the system while preserving the graph of the shape parameter. This would indeed imply that, no
matter the total length of the time series, the same warning conditions would be obtained provided the data samples
provided they are not too short. This property would be highly desirable in view of the extension of the present
approach to other applications, e.g. in the environment. We scrutinize this problem by considering the simplest
model featuring bi-stability in the presence of random noise:

dX = −V ′(X)dt+ εdW (3)

with potential V (X) = 1
4X

4−aX2 +λX, where a > 0, λ > 0 are parameters and W is a Wiener process of amplitude
ε > 0. Like parameter µ in Model (2), λ serves as a control parameter and pursuing the analogy to plane Couette
flow, we can assume λ ∝ 1/R.

We consider System (3) for values of λ such that, in the deterministic limit, it features two stable fixed points
(X̄1 < 0 and X̄2 > 0) and an unstable fixed point X̃. The asymptotic behavior of this system can be assessed in
terms of the solution to a Fokker–Plank equation [36]. Here we are rather only interested in the finite-time behavior
and we restrict to simulations such that the noise is sufficiently small to leave the system confined in one of its two
wells and does not push it over the saddle.
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FIG. 3: Variation of different indicators of critical transitions as functions of the noise intensity for model (2) with µ = 1. Left:
ν = 0.2475. Right: ν = 0.2487. Top row: Averaged shape parameter κ; red: maxima, blue: minima; error bars represent the
standard deviation over the ensemble of 30 independent realizations. Second row: Number of transitions observed (see text).
Vertical lines between the two top panels point to the critical value uc for which κ = 0. Third and fourth row, respectively,
averaged variance and skewness. Note that u increases to the left and not to the right as usual.

In the block maxima approach, extremes are detected in bins of length m whereas n is kept fixed and supposed
to be sufficiently large that the resulting GEV distribution is appropriately sampled. The bin length m is thus the
characteristic time to be used. On the other hand, in System (3), escape from a well takes an average time 〈τ〉 given
by

〈τ〉 ∝ exp
(
2∆V/ε2

)
, (4)

where ∆V = V
(
X̃
)
− V

(
X̄
)
, where X̄ is the coordinate of the minimum of V of interest and X̃ that of the saddle
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FIG. 4: Shape parameter κ for the minima of Observable X as a function of λ for Model (3); error bars represent the standard
deviation over the ensemble.

[37]. Following the same procedure as for Model (2), we consider the minimum with positive abscissa X̄2 > 0 as initial
condition and prepare ensembles of 30 realizations for each value of λ. The observable chosen here is just variable X
itself. For the minima, the shape parameter κ averaged over the realizations is seen to change its sign, as expected
since minima correspond to excursions toward the basin of attraction of the other minimum, i.e. aborted transitions.
In order to rescale the different graphs of κ as a function of λ. Admitting that the GEV statistics will be correctly
sampled if the bin length m scales as the exit time necessary, we rewrite (4) as

ε2 log(m) ∝ ∆V .

Figure 4 displays the results for the minima of observable X for several combinations of bin length m and noise
intensity ε, while varying the quality of the statistics by changing the number n of bins considered. It clearly shows
that the location of the zero of κ is statistically well defined through the proposed rescaling, since fixing λ, i.e. ∆V
comes to specifying the physical conditions. The presence of the logarithm for m and the square for ε in the scaling
relation points out intrinsic limitations to the identification of λc through the condition κ = 0, while showing that
good estimates can be obtained with limited data.

FINAL REMARKS AND PERSPECTIVES

In this paper we have introduced a new method for detecting critical transitions based on the properties of extreme
fluctuations in recorded time series of relevant observables measured on the system of interest. We have shown that
the change in the shape parameter of the Generalized Extreme Value distribution is a valid criterion for locating the
bifurcation while the probability that the system experiences a transition is still low in view of the available length
of the data sample. The main advantage of this method when compared to others based on the property of the bulk
statistics is to provide a value for the critical parameter at which the bifurcation is likely to occur. In contrast, as we
have seen through the examples provided, variance and skewness can be used as qualitative warning but there is no
way of using them for a quantitative estimation of critical parameters.
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We have tested the capabilities of the method on transitional plane Couette flow, the non trivial bifurcation structure
of which has been well established by previous studies. We have proposed that the value of shape parameter κ = 0 be
the signature of the transition and to locate the transition at the corresponding value control parameter, hence the
global stability threshold Rg. The method has indeed been able to provide estimates for Rg, most significantly at low
resolution with the largest possible amount of data, but also at medium and high resolution, with shorter time series.

The statistical analysis subsequently carried out using toy-models has confirmed that the methodology was able to
provide warnings efficiently, in that κ = 0 marks a transition where the probability of transition becomes significant.
More theoretical work is however necessary to further justify the proposed criterion, especially regarding the variation
of this probability with the control parameter, say λ, so that the extrapolation of the function κ(λ) to zero effectively
gives a reliable critical value λc. In particular, the amount of data necessary to this estimate remains to be assessed,
however the continuous increase of data collection capabilities in experiments and the ever growing computational
power support some optimism in this matter.

The approach followed in this exploratory paper offers a novel avenue to tackle the problem of detecting bifurcations
in complex systems and is hoped to trigger the search for rigorous justifications from theoretical studies and further
confirmation from other experiments. As a matter of fact, the path from empirical results on plane Couette flow to
related toy models can be reproduced in many other systems where multi-stability problems are of interest, vis. in
climate sciences, the stability of the overturning meridional circulation [38, 39] or the problem of the transition to a
snowball planet [40]. For this reason we believe that, in the future, the method will be accessible to a vast public of
different scientific disciplines.
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