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Particulate Organic Carbon (POC) plays a vital role in the ocean carbon cycle. Though

relatively small compared with other carbon pools, the POC pool is responsible for large

fluxes and is linked to many important ocean biogeochemical processes. The satellite

ocean-color signal is influenced by particle composition, size, and concentration and

provides a way to observe variability in the POC pool at a range of temporal and spatial

scales. To provide accurate estimates of POC concentration from satellite ocean color

data requires algorithms that are well validated, with uncertainties characterized. Here,

a number of algorithms to derive POC using different optical variables are applied to

merged satellite ocean color data provided by the Ocean Color Climate Change Initiative

(OC-CCI) and validated against the largest database of in situ POC measurements

currently available. The results of this validation exercise indicate satisfactory levels

of performance from several algorithms (highest performance was observed from the

algorithms of Loisel et al., 2002; Stramski et al., 2008) and uncertainties that are within the

requirements of the user community. Estimates of the standing stock of the POC can be

made by applying these algorithms, and yield an estimated mixed-layer integrated global

stock of POC between 0.77 and 1.3 Pg C of carbon. Performance of the algorithms vary

regionally, suggesting that blending of region-specific algorithms may provide the best

way forward for generating global POC products.
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1. INTRODUCTION

Total particulate organic carbon (POC or Co) in the ocean is
a key currency used in studies of both the biological export of
carbon from the surface to the deep ocean, and the availability
of food for marine organisms. The pool of POC in the ocean is
relatively small (estimates include: 0.43 Pg C in the first light-
attenuation depth—Gardner et al., 2006; 2.28 Pg C over a 200
m surface layer—Stramska, 2009). Despite the relative small
size of the POC compartment, its components (phytoplankton,
bacteria, zooplankton, and organic detritus) are responsible for
large fluxes in the ocean, because of their high turnover rates. The
organic tissue generated by photosynthesis in the sunlit ocean
is either exported from the surface via the “biological pump”
(Volk and Hoffert, 1985; Ducklow et al., 2001), transferred to
higher trophic levels through the food chain, transformed into
detritus, or recycled via the microbial loop, with some of it going
into the pool of dissolved organic (DOC) and inorganic carbon
(DIC). Organic particles are therefore involved in two important
carbon fluxes in the ocean, primary production and export to
either the deep ocean or the DOC and DIC pools, in addition
to being an integral part of the marine food web. In addition
to the components of POC arising from local sources, POC
may be transported to a particular location from distant sources:
for example, by currents that move POC horizontally in the
ocean, or by transport of POC of terrestrial origin to the oceans
by river outflow. Though POC is typically treated as a single
pool, there is growing awareness of the importance of different
particles, such as defined by their size, because of their variety
of biogeochemical functions, and their effect on ocean optical
properties. For example, it has been shown that around 40% of
POC concentration in the oligotrophic regions may be associated
with bacteria alone (Cho andAzam, 1990) and submicron detrital
particles can alsomake a significant contribution to the POC pool
(Mel’nikov, 1976). Similarly, relatively large particles (generally
larger than a fewmicrometers) can play an important role in POC
export (e.g., Boyd and Newton, 1995; Dall’Olmo et al., 2009). The
importance of particles characteristics in determining the optical
signal of POC has also been recognized.

The theoretical work of Stramski and Kiefer (1991),
assuming spherical and homogenous particles, indicated that
small particles can make an important contribution to the
backscattering signal in the oceans. Further work has shown the
impact of non-sphericity and intracellular structures on optical
properties, particularly backscattering (Meyer, 1979; Kitchen and
Zaneveld, 1992; Quirantes and Bernard, 2004, 2006; Clavano
et al., 2007; Matthews and Bernard, 2013; Robertson Lain
et al., 2017). Work by Cetinić et al. (2012) linked variation
in the beam attenuation coefficient with plankton community
composition, and variability in particle backscattering with
changes in particle composition due to remineralization. They
also highlighted how measurement artifacts might influence
the observed relationships between POC and optical properties.
Further work has explored separation of the phytoplankton
component in POC—through both indirect (Behrenfeld et al.,
2005; Kostadinov et al., 2016) and direct methods (Graff et al.,
2012, 2015). The contribution of phytoplankton to the POC

pool leads to the covariance between chlorophyll a concentration
([Chl]) and POC concentrations, although some scatter exists in
these relationships, as a result of variability in the phytoplankton
community composition, physiological factors that can affect
the carbon-chlorophyll ratio in phytoplankton, and the variable
contribution of substances other than phytoplankton (including
detritus and bacteria) to POC (see discussion and references
within Stramska and Stramski, 2005; Sathyendranath et al.,
2009).

POC is readily quantifiable by filtering seawater samples,
and forms a key component of many biological ocean
models. However, in situ samples are expensive to collect,
leading to a scarcity of data that hinders efforts to both
validate ocean models and develop a complete understanding
of POC dynamics. Satellite ocean color data offers the
opportunity to quantify POC at the global scale on an
almost daily basis. Ocean color or more specifically the
water-leaving radiance and corresponding remote sensing
reflectance spectra, and derived [Chl] are recognized as
Essential Climate Variables (ECVs) by the Global Climate
Observing System (GCOS, 2011). This is in recognition of
their importance for studying various biological variables and
processes in the ocean. In fact, of all the oceanic ECVs that
are amenable to remote sensing, ocean color is the only
one that targets a biological property. In response to the
GCOS requirements, the European Space Agency (ESA) Ocean
Color Climate Change Initiative (OC-CCI) has generated a
time series of merged satellite products for climate research,
using data from the ESA satellite sensor MERIS (MEdium
spectral Resolution Imaging Spectrometer) and NASA (National
Aeronautics and Space Administration) satellite sensors SeaWiFS
(Sea-viewing Wide Field-of-view Sensor) and MODIS-Aqua
(Moderate-resolution Imaging Spectroradiometer-Aqua). The
products include the normalized remote-sensing reflectances,
Rrs at SeaWiFS wavelengths and [Chl], as well as some
additional inherent optical properties (IOPs) such as absorption
and backscattering coefficients of phytoplankton and other
particulate matter, and diffuse attenuation coefficient for
downward plane irradiance, Kd at 490 nm. There is a recognized
need in the user community for additional products from
ocean color that deal directly with POC, including separation
of the contribution of phytoplankton, and the size distribution
of particles. Further, these products need to be regionally
optimized and their uncertainties well characterized. Both of
these requirements may be addressed via optical classification
(e.g., Moore et al., 2009), whereby waters are classified
according to their spectral or bio-optical properties. Optical
classification allows specific algorithms to be applied to the
different optical water types (resulting in a global, merged
product) and provides provides a method (Moore et al., 2009;
Jackson et al., in press) that can be used to calculate per pixel
errors. Other methods exist: e.g., formal error propagation (Lee
et al., 2010), or estimation of uncertainties based on model-
observation comparison (Maritorena et al., 2010). However,
the users consulted within the OC-CCI project expressed a
preference for uncertainties based on comparison with in situ
data (Sathyendranath et al., in press).
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Remote sensing of POC through ocean color radiometry
requires the exploitation of some optical signal that is associated
with the material. In fact, optically, the beam attenuation
coefficient of particles (cp), particle scattering coefficient (bp),
backscattering coefficient (bbp) and the attenuation coefficient of
downward irradiance Kd are all sensitive to particle abundance
(to a first order), and to particle composition (through
refractive index), size, shape and internal structure. It has been
demonstrated that POC is correlated with in situ cp measured
using transmissometers (Gardner et al., 1993; Bishop, 1999;
Claustre et al., 1999; Stramska and Stramski, 2005), which has
provided a robust optical method for measuring POC using
in situ devices. Although bp and cp are not among the data
products that are routinely retrieved from remote sensing,
satellite-based algorithms exist for retrieving POC from all the
optical properties listed above, as well as from remote-sensing
reflectance values.

This paper compares five different algorithms for estimating
POC concentrations, selected as being representative of varied
approaches that are prevalent for POC retrieval from ocean-
color data. Each algorithm is applied to different optical
properties derived from satellite ocean color data, and each uses
different formulations for linking the parameters to the POC
concentration. Matchups between in situ measurements of POC
and satellite ocean color allow for the validation, intercomparison
of global performance, and estimation of uncertainties associated
with the POC calculated using these algorithms.

2. METHODS

2.1. Collation of an In situ Database
For this study, POC concentration data were collected
from a number of existing databases and from individual
contributors. Databases collated included PANGAEA
(https://www.pangaea.de/) and SeaBASS (Werdell and Bailey,
2005), and those compiled by Martiny et al. (2014) and the
Biological and Chemical Oceanography Data Management
Office (BCO-DMO, USA). Further data were included from the
Atlantic Meridional Transect (AMT) (including data derived
from both CTD and the ship’s clean water supply) and other
cruises in the Southern Ocean (see a description of the Good
Hope line and associated data collection in Thomalla et al.,
2017). Operationally, POC is defined as all the organic carbon
that is retained on GF/F filters (nominal pore size of 0.7 µm). To
measure POC, samples are collected on pre-combusted (450◦C)
GF/F filters and dried overnight at 65◦C before analysis. To
remove particulate inorganic carbon, filters are acidified either
by adding low-carbon HCl directly or by overnight exposure
to the fumes of a concentrated HCl solution in a desiccator.
Filters are then dried, packed in pre-combusted tin capsules,
combusted at 960◦C in an elemental analyser to convert the
organic carbon in CO2. The liberated CO2 is finally detected
by thermal conductivity (Sharp, 1974). Acetanilide is used as
a standard. The procedure for applying a blank however is
not always consistent across studies, and as such could be a
source of bias within the data set collated here. Cetinić et al.
(2012) (and references therein) have studied the consequences of

different methodologies for treating POC blanks, summarizing
that the effect of DOC adsorption on filters (if not accounted
for with an adequate blank correction) can cause substantial
bias at low POC concentrations. In the database used here, a
large quantity of the samples from low POC regions (i.e., the
oligotrophic gyres) are from the AMT cruise programme, where
a multiple-volume intercept blank methodology is used to reduce
potential bias from blanks. Where data was provided at depth,
measurements were averaged over 10m to provide the “surface”
value for the matchup. Optical weighting of these measurement
were considered, however given the variability of the water types
sampled and associated mixed layer depths, and the necessary
assumptions to apply an optical model for this purpose, it was
decided not to introduce additional sources of uncertainty for
these data points.

2.2. Extraction of Satellite-In situ Matchups
Matchup extraction was based on the procedure developed for
the OC-CCI. The daily, 4 km, sinusoidally projected OC-CCI
version 2 data (Sathyendranath et al., 2016) were searched to
find satellite data associated with each in situ data point. The
OC-CCI data is a merged product from three sensors, each
with a different overpass time. However these overpass times
are generally around 12 p.m. ± 2.5 h, meaning a maximum
time difference between the in situ and satellite data of <12
h. The OC-CCI data used contain all of the relevant optical
and biogeochemical properties necessary for implementation of
the different algorithms under consideration, as well as water
class membership of each pixel which quantifies the similarities
between the remote-sensing reflectance spectrum at that pixel
and the characteristic mean and covariance spectra associated
with each of the optical classes (Jackson et al., in press), see also
the OC-CCI product user guide (http://www.esa-oceancolor-
cci.org/?q=documents). The OC-CCI data were interrogated to
assess the availability of data covering the latitude and longitude
of the in situ data point, on the same date as the in situ data
collection. If the central pixel contained valid data, the data
surrounding eight pixels are also extracted from the selected data
(a 3 × 3 pixel box, corresponding to a 12 km × 12 km region) .
The central value and the mean, median, and standard deviation,
number of valid pixels out of the nine pixels, the optical class with
the dominant membership, and the calculated POC products
using various algorithms applied to the central and mean pixel
values, are returned as output, along with the in situ data values
and metadata.

2.3. Candidate Algorithms
Five different algorithms for determination of POC
concentration were considered. For consistency of comparison,
all algorithms were implemented using the appropriate variables
from the OC-CCI product suite. Another reason for using
the OC-CCI products is that a rigorous algorithm selection
procedure for atmospheric correction (Müller et al., 2015) and
in-water properties (Brewin et al., 2015) (including derivation
of [Chl], IOPs and the diffuse attenuation coefficient), had
been put in place, to ensure quality of products. Furthermore,
being a merged product, OC-CCI coverage is higher than that
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available from single-sensor products, ensuring a higher number
of match-up points with in situ data. However, we recognize
that all the five candidate algorithms were initially developed,
implemented and tested using other ocean-color products, and
that any systematic differences between the OC-CCI products
and the datasets used by the algorithm developers, could be a
potential source of difference in performance. Therefore, in the
description of the algorithms, we also provide details of how the
algorithms were implemented in the original work.

We also note that there are differences in how the five
algorithms compared here were developed and implemented
in the original work. For example, two of the algorithms
(algorithms A and B presented below) were derived solely
from coincidentally collected in situ data, whereas Algorithm D
(G06—described below) combined in situmeasurements of POC
and beam attenuation, with satellite-derived measurements of
diffuse attenuation coefficient. Algorithms A and B are based
on some 50 measurements, whereas the POC—beam attenuation
coefficient relationship used in Algorithm D was based on over
3,000 measurements. Algorithm C (described below) relies on a
large in situ database of [Chl] and backscattering ratio to estimate
total particle scattering coefficient from particle backscattering
coefficient, and then relies on an extensive literature review to
find a conversion factor between particle scattering coefficient
and POC. Here we use a common set of satellite data (OC-CCI)
to compute POC using the different algorithms and compare
the products against a common set of in situ data. Where there
are differences between how the various steps in the algorithms
were implemented in the original work, and howOC-CCI treated
similar steps in its product generation, they are highlighted,
since such differences could have potential impact on algorithm
performance.

2.3.1. Algorithm A Based on Remote-Sensing

Reflectance
This algorithm (designated Co(A)) proposed by Stramski et al.
(2008) uses remote-sensing reflectance at 443 and 555 nm
(equation 1) as inputs, and takes the following form:

Co(A)(mg m−3) = 203.2

[

Rrs(443)

Rrs(555)

]−1.034

. (1)

The model parameters were determined using some 53 pairs of
co-located in situmeasurements of both POC and spectral values
of Rrs from oligotrophic and upwelling waters of the East Atlantic
and the South Pacific. The authors have provided various fits
to the models for different pairs of wavebands for Rrs and for
different selections of data. The one we have used here is based
on all data, and for the 443–555 waveband pair, as recommended
by the authors. This algorithm is currently used by the NASA
Ocean Biology Processing Group to generate the global POC
data product from ocean color data. The Rrs values in the OC-
CCI product suite were used as input to this algorithm for the
validation exercise presented here. We note that a similar POC
algorithm based on the blue-to-green reflectance ratio has been
developed and validated with the data from the Southern Ocean
(Allison et al., 2010). For the Southern Ocean algorithm the best

fit coefficients of the power function of the same form as Equation
(1) were determined to be 189.29 and -0.87. A power function
was found to provide better error statistics compared with those
usingmodified fits of those typically used inmaximum band ratio
algorithms for [Chl].

2.3.2. Algorithm B Based on Backscattering by

Particles
This algorithm (Co(B)), also proposed by Stramski et al. (2008)
uses bbp(555), the particulate backscattering coefficient at 555 nm
(2), as input. The equation has the form:

Co(B)(mg m−3) = 53606.7× bbp(555)+ 2.468 . (2)

Stramski et al. (2008) tested two approaches for calculating
bbp for the eventual determination of POC: firstly, the method
of Maffione and Dana (1997) as refined by Boss and Pegau
(2001) was used to derive spectral backscattering coefficient from
in situmeasurements of volume scattering function at 140o. Next,
using a two-step empirical approach, Stramski et al. (2008) then
calculated bbp by removing the backscattering coefficient for pure
water [they used pure-water backscattering coefficients proposed
by Buiteveld et al. (1994) and by Morel (1974), and reported that
the difference between the measurements of bbw was likely within
the range of errors associated with the measurements themselves,
and therefore did not substantially impact the performance of the
algorithm for deriving POC]. Then, bbp was empirically related
to POC concentrations (Equation 2). Stramski et al. (2008)
provide various fits to this equation, but the parameters selected
above correspond to the results (number of observations =

54) excluding upwelling data, which provided better uncertainty
metrics, and may better reflect the data within the database used
here. Secondly, to provide the remote-sensing context, Stramski
et al. (2008) used either a direct empirical relationship between
the backscattering coefficient (bb) and Rrs or the Quasi Analytical
Algorithm (QAA) approach of Lee et al. (2002) to derive bbp
from Rrs. They found that the comparison with measured bbp
was improved considerably when an empirical correction based
on their measurements of bbp was applied to the QAA algorithm.
Thus, this algorithm uses a two-step approach: first, bbp is derived
from Rrs, and then that bbp is used in Equation (2) to calculate
POC.

In the computation of OC-CCI bbp products, the QAA
model was used, along with Zhang et al. (2009) for the pure-
water backscattering coefficient (Sathyendranath et al., 2016).
In QAA the spectral backscattering coefficient is calculated
empirically using Rrs at 440 nm and at 555 nm. A power
law is then used to calculate the particle backscattering
coefficients at other wavelengths given the value of the
spectral backscattering coefficient and bbp(555), estimated from
an analytical relationship using Rrs(555) and the absorption
coefficient (a(555)). These values of bbp were used to compute
POC in the calculations presented here, without any empirical
correction. For this algorithm a linear fit provided the best error
statistics in the original study of Stramski et al. (2008).
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2.3.3. Algorithm C Based on both Backscattering

Coefficient and Chlorophyll-a Concentration
This algorithm (Co(C)) is based on a combination of bbp(490)
and [Chl], and was proposed by Loisel et al. (2002) (3). They
derived bbp and [Chl] from SeaWIFS data using the method of
Loisel and Stramski (2000) and the OC4 algorithm (based on
O’Reilly et al., 1998) respectively. They then used a relationship
proposed by Twardowski et al. (2001) to compute the total
particle scattering coefficient given the particle backscattering
coefficient (bbp) and [Chl] (designated B in Equation 3). They

then adopted a conversion value of 400mgCm−2 to go from total
scattering coefficient to POC concentration. Combining these
steps yields the following algorithm:

Co(C)(mg m−3) = 41666.7× bbp(490)× B0.25 . (3)

AlgorithmC is implemented here using the Lee et al. (2002) QAA
approach (for bbp), and a more recent OC4 (v6) for [Chl].

2.3.4. Algorithm D Based on the Diffuse Attenuation

Coefficient for Irradiance and Beam Attenuation

Coefficient
This algorithm (Co(D)), based on Gardner et al. (2006), uses
a two-step relationship relating Kd(490) to beam attenuation
coefficient for particles (cp), and then the beam attenuation
coefficient to POC:

cp = exp(1.124× log 10(Kd(490)+ 1.1361)), (4)

and

Co(D)(mg m−3) = 12× (31.7× cp + 0.785). (5)

In Gardner et al. (2006), Kd(490) is obtained from SeaWIFS
data where the algorithm of Mueller (2000) is used, based on
water-leaving radiances at 490 and 555 nm. Gardner et al. (2006)
used an extensive database (number of observations = 3,462)
of concurrent measurements of POC and beam attenuation
coefficient from Atlantic, Pacific and Indian Oceans, to derive the
parameters of Equations (4) and (5) empirically.

The Kd(490) values used in the comparison presented here are
obtained from theOC-CCI version 2 data, which uses themethod
of Lee et al. (2005).

2.3.5. Algorithm E Based on Spectral Backscattering

Coefficient:
This algorithm (Co(E)) was developed by Kostadinov et al. (2009)
and Kostadinov et al. (2016). It correlates the slope (η) of
backscattering as a function of wavelength to the slope (ξ ) of the
particle size distribution (PSD) that is assumed to follow a power-
law. The method has three steps: firstly, η is calculated from
the spectral bbp values at 490, 510, and 555 nm extracted from
the OC-CCI matchup data (for which OC-CCI uses Lee et al.
(2002)). Note that in Kostadinov et al. (2009) and Kostadinov
et al. (2016), bbp is instead retrieved using the formulation of
Loisel and Stramski (2000). Secondly, look-up-tables (LUTs) are

used to retrieve the parameters of the PSD, namely the slope
(ξ ) and the differential number concentration at a reference
diameter of 2 µm, (No), given η and bbp at 443 nm. The LUTs
are constructed using theoretical forward simulations using Mie
code (Bohren and Huffman, 1983). Finally, to compute Co, the
PSD is integrated to calculate particle volume in the 0.5 to 50 µm
diameter range, and then volume is converted to carbon using
existing allometric relationships derived from phytoplankton
cultures (Menden-Deuer and Lessard, 2000), assuming biogenic
origin for all the scattering particles. An empirical correction is
applied toNo (based on PSD validation statistics) to achieve more
realistic absolute carbon concentration values (Kostadinov et al.,
2016).

2.4. Separation of Matchups by Optical
Water Class and Calculation of
Uncertainties
The OC-CCI product suite includes memberships of each pixel
in 14 optical classes, following the fuzzy logic classification
methodology of Moore et al. (2009), with some modifications as
described in Jackson et al. (in press). The memberships of the
14 optical water classes associated with the satellite matchups
were extracted alongside the radiometric and biogeochemical
properties required for the validation. Each matchup point
was then assigned to the optical class that had the dominant
membership in the central match-up pixel. The statistical
analyses were carried out for the global dataset as well as for
subsets of the data grouped according to dominant optical class.
These uncertainty metrics per optical class were then used to
assign uncertainties at each pixel, by calculating the weighted
average of the metrics associated with each of the water classes,
with the membership of the classes in that pixel providing the
weighting function.

Statistical analysis used in the assessment of each algorithm
was based on that used by OC-CCI (see Brewin et al., 2015). The
Kolmogorov-Smirnov test for normality of the in situ matchup
data showed a significant deviation of normality for log10
transformed and un-transformed data (p <0.001). Therefore, for
completeness, the statistical analysis was conducted for both log10
transformed using parametric tests and for un-transformed data
using non-parametric, rank-based, statistics. Statistical metrics
computed were:

• Pearsons correlation coefficient for log10 transformed data,
and Spearman’s correlation for un-transformed data (rp and
rs respectively),

• Root mean square differences for log10 transformed and un-
transformed data (RMSD - 9 , in log10 for the transformed
data and mg m−3 of POC for the untransformed data),

• Bias for log10 transformed data and untransformed data ((δ),
in log10 for the transformed data and mg m−3 of POC for the
untransformed data),

• Median absolute percentage deviation between predictions
and observations (MAPD in %), an estimate of bias and
precision was estimated as the interquartile range (IQR) of the
absolute percentage deviation for the untransformed data,
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• Center pattern root mean square deviation (1), in mg m−3),
which is the error of the predicted values with respect to the
observations, irrespective of the average bias between the two
distributions. It is related to the RMSD and bias as follows: 12

= 9 - δ2, and was calculated for both the log10 transformed
and un-transformed data,

• Slope and intercept (S, I) from a Type-II linear regression
(Reduced Major Axis) for log10 transformed and un-
transformed data.

To provide an indication of the stability of the statistics and
to compute confidence intervals on them, bootstrapping (Efron,
1979; Efron and Tibshirani, 1993) with random re-sampling and
replacement was used to construct 1,000 different datasets from
which confidence intervals were computed for some statistics.
Statistics were computed for the whole dataset, and also after
segregating the data according to dominant water class, at the
central matchup pixel.

3. RESULTS

3.1. Distribution of Validation Data and
Matchups
Geographic distribution of the data in the in situ data base is
shown in Figure 1, with the color scale representing the average
POC concentration (mg m−3) over measurements made in the
top 10 m (total N = 63, 704, depth averaged N = 19, 282).
Figure 2 shows the in situ data with valid satellite data matchups
(N = 3891), colored according to the concentration of POC (mg
m−3) measured. A number of expected patterns can be observed.
Firstly, the number of valid matchups is much reduced relative
to the total number of data points in the in situ database. This is
a result of several factors including: the averaging of the in situ
data over the top 10m, elimination of data points outside of
the OC-CCI period (1997–2012); and failure of matchup when
there were no satellite observations corresponding to the date
and location of the in situ sampling. Other factors are spatially
heterogenous, such that there is some regional skew in the
likely success of obtaining a matchup, for example cloud cover
has a spatially and temporally variable influence on matchup
availability, such that in some areas it is less likely that a matchup
will be found, e.g., in the tropics, or during winter in the mid
latitudes—where satellite coverage was relatively poor. There
is a high concentration of data in the Atlantic—as a result
of the substantial AMT cruise data. Similarly, there is a high
concentration of data from some coastal regions, particularly
in the northern hemisphere. Observed concentrations of POC
follow an expected distribution, with higher values in coastal
and shelf regions, and lower concentrations in the oligotrophic
gyres (Figure 2). A bimodal distribution can be observed in the
in situ data, as a result of the high numbers of data from the
AMT cruises which go predominantly through the oligotrophic
gyres, and from coastal regions, which tend to be predominantly
high-POC areas (Figure 3).

3.2. Algorithm Performance
The histogram of the in situ data frequency distribution is
replicated to a degree by all the algorithms (Figure 3). The

histogram of Algorithm A is very similar to that of the in situ
data, with both histogram shapes and peak locations reproduced.
Algorithm B tends to overestimate the POC values relative to
in situ data at the lower end of POC concentrations, resulting
in the first peak in the histogram being offset toward the
right of the figure (i.e., toward higher POC concentrations).
By contrast, Algorithm C underestimates POC slightly, at the
lower end. The range of estimates provided by Algorithm D
is narrower than that of the in situ data. Algorithm E also
has a narrower range, and in general underestimates POC
concentrations. Both algorithms D and E show significant shifts
in both peaks of the distribution relative to those of the in situ
data.

As could be expected from the histograms (Figure 3), there
is generally a high correlation between the algorithm estimates
and in situ measurements of POC, with r values between 0.75
and 0.82 for all algorithms tested (Figures 4A–E). It is of
note that all algorithms show a small cloud of underestimated
concentrations associated with high in situ POC. These points
are from different data sources, and from different regions, and
as such, outliers do not appear to be related to any systematic
errors in the in situ measurements. Furthermore, not all of
these substantial underestimates are associated with common
data points across all the algorithms. It is important to note,
however, that although we compare the satellite-derived POC
with in situ POC over a very broad range, extending to very
high values >1,000 mg m−3, the original formulations of the
algorithms were not, in general, implemented with such high
POC data.

The scatter plots and uncertainty statistics for Algorithm A
shown in Figure 4A and Table 1 suggest that this algorithm,
on average, performs better than the other algorithms shown in
Figures 4B–E. Algorithm A has the smallest bias, a linear fit that
is closest to the 1:1 line, with a slope of 0.92 and a relatively
small intercept value (the second smallest after Algorithm C),
and also the highest (albeit slightly) correlation coefficient
and the smallest values (albeit slightly) of the Root Mean
Square Difference. The statistical parameters are consistently
good for Algorithm A, though the results for Algorithm C
also present some advantages. The performance of Algorithm
C has a slope of 1 and intercept closest to zero, but has
a slightly higher RMSD, CRMSD and bias compared with
Algorithm A (Figure 4C). Algorithm B has relatively small bias,
however other parameters are clearly inferior compared with
Algorithm A (Figure 4B). Some statistical parameters associated
with the performance of Algorithm D are significantly inferior
compared with those associated with algorithms A and C,
especially the slope and intercept of linear fit which indicate
a large deviation of this fit from the 1:1 line (Figure 4D).
As a result, low values of POC are overestimated, and
high values underestimated, compared with the in situ data.
The statistical performance for Algorithm E is poorest with
significant negative bias and the best fit regression deviating
greatly from the 1:1 line (Figure 4E). Performance statistics
are summarized for all algorithms in the first section of
Table 1. A statistical analysis was also conducted for the non-
transformed data, and provided in the second section of
Table 1.
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FIGURE 1 | Geographic distribution of Particulate Organic Carbon (POC) measurements within the in situ database. The color scale represents the averaged POC

concentration (mg m−3) over the top 10 m.

FIGURE 2 | Locations of OC-CCI satellite data matchups and associated in situ concentrations of Particulate Organic Carbon (mg m−3).

3.3. Performance Per Water Class
To further understand algorithm performance, the matchups
were separated by their optical water class. The total number
of matchups per water class, and their distribution spatially,
is shown in Figures 5, 6 respectively. The lower water classes
are associated with oligotrophic regions, such as in the gyres,
whilst the higher classes correspond to progressively more
turbid shelf and coastal waters. Statistical performance of the
algorithms across the different water classes is summarized in
Figure 7.

Performing the statistical analysis across the different water
classes reveals some similarities in performance across all
algorithms, and some consistency with the overall performance
(Figure 7). Algorithms A, C, and D show little differences
between them in terms of RMSD across the water classes, with
the exception of water class 14 (i.e., the most optically complex
waters) (Figure 7A). The RMSD associated with Algorithm E
follows the same broad pattern as algorithms A and D across
the water classes, although its RMSD is substantially higher than
those algorithms in all instances. Algorithm B shows slightly

Frontiers in Marine Science | www.frontiersin.org 7 August 2017 | Volume 4 | Article 251

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Evers-King et al. Estimating POC from Ocean Color

FIGURE 3 | Histograms summarizing distribution of in situ POC data and associated satellite based estimates for (A) Algorithm A (Stramski et al., 2008, Rrs based),

(B) Algorithm B (Stramski et al., 2008, bbp based), (C) Algorithm C (by Loisel et al., 2002) , (D) Algorithm D (by Gardner et al., 2006), (E) Algorithm E (by Kostadinov

et al., 2016).

TABLE 1 | Summary of statistics of the algorithm performances for log10 and untransformed data.

Statistic A B C D E

log10 TRANSFORMED DATA

rs 0.80 0.73 0.79 0.80 0.78

9 0.29 ± 0.01 0.33±0.01 0.34± 0.01 0.32± 0.01 0.53±0.01

1 0.29 ± 0.01 0.32± 0.01 0.31± 0.01 0.29± 0.01 0.30± 0.01

δ -0.04± 0.01 0.03 ± 0.01 -0.13± 0.01 -0.13± 0.01 -0.43± 0.01

S 0.92± 0.01 0.63± 0.01 1.00 ± 0.01 0.63± 0.01 0.66± 0.01

I 0.14± 0.02 0.76± 0.02 −0.13 ± 0.03 0.63± 0.02 0.27± 0.02

UNTRANSFORMED DATA

rp 0.84 0.80 0.84 0.85 0.83

9 420± 12.7 443± 13.3 463± 13.9 413 ± 12.46 444± 13.1

1 417± 12.4 442±13.1 460± 13.8 401 ± 11.8 417± 12.1

δ -51.9± 13.1 -41.1 ± 14.0 -48.5± 14.5 -98.8 ± 12.6 -154± 13.1

S 0.15 0.27 0.49 0.13 0.05

I 126 112 58.8 83.3 45.3

MAPD±IQR 25.5 ± 37.3 42.5± 58.0 31.4± 36.5 31.7± 34.6 60.9 ± 30.0

For log10: rs is Spearman’s correlation; slope and intercept for were calculated with a Type-II linear regression model (Major Axis) and the statistics provided have uncertainty estimates

(95% confidence interval), derived from 1,000 bootstrap realizations. For untransformed data: rp is Pearson’s correlation; 9, δ and 1 are provided with uncertainty estimates (95%

confidence interval), derived from 1000 bootstrap realizations; slope and intercept for were calculated with a Reduced Major Axis regression model; MAPD is the median absolute

percent deviation between predictions and observations and is a measure of bias, and IQR is the interquartile range of the absolute percent error, and is a measure of precision. Bold

italic numbers are the best results for each statistic, for some is the highest value (e.g., rs or rp), for some is the lowest (e.g., 9, δ, 1, Intercept and MAPD) and for some is the closest

to one (e.g., Slope).

higher RMSD than the other algorithms in some of the more
oligotrophic water classes (1–5), then largely follows the same
patterns as algorithms A and D. The cloud of outlier points
observed in the overall comparisons are associated with water
classes 6, 7, and 8, where RMSD is relatively high for most
of the algorithms. The estimates of bias for each of the water
classes is consistent with the results from the global application
e.g., Algorithm A shows very little bias, and this is consistent
across water classes, whilst Algorithm E generally underestimates
across all classes (Figure 7B). Algorithm C shows slight negative
bias across most of the water classes, except 12 and 13, whilst
algorithms D and B show slight (larger) positive bias in the
more oligotrophic classes. Algorithm B shows large positive
bias in water class 13, as with Algorithm C; however, both

algorithms show negative bias in class 14. The center-pattern (or
unbiased) RMSD in Figure 7C shows the largest uncertainties
are associated with water classes 6, 7, and 8 whilst the largest
differences in algorithm performance across the water classes are
found in water classes 12, 13, and 14. The regional variability in
algorithm performance, which can be associated with the optical
water classes, is discussed further in Sections 3.4, 3.5, and 4.2
below.

3.4. Mapped Products
In addition to application to the matchups points, the POC
algorithms can also be applied to global satellite data to compare
algorithm performance at synoptic scales. POC concentrations
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FIGURE 4 | Scatter plots and statistics detailing performance of (A) Algorithm A by Stramski et al. (2008) (using Rrs), (B) Algorithm B by Stramski et al. (2008) (using

bbp), (C) Algorithm C by Loisel et al. (2002), (D) Algorithm D by Gardner et al. (2006), and (E) Algorithm E by Kostadinov et al. (2016). Statistical parameters are as

follows: correlation coefficient (r), bias (δ), Root Mean Square Difference (9), Center Patterned Root Mean Square Difference (1), slope (s), intercept (I). The solid line is

the 1:1 line, and the dashed line is the line of best fit for the linear regression.
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FIGURE 5 | Locations and associated water class for each satellite-in situ matchup.

FIGURE 6 | Histogram showing number of matchups associated with each OC-CCI water class.

FIGURE 7 | Calculated RMSD (A), Bias (B), and Center Patterned RMSD (C) for each algorithm per water class based on the matchup statistics.

were estimated by applying algorithms A-E to a sample set of OC-
CCI monthly products fromMay 2005 (Figure 8). All algorithms
produce the broad patterns that were observed in the in situ

measurements and would be expected to be associated with
POC, i.e., increased POC associated with regions of high [Chl]
in upwelling zones, lower concentrations in the oligotrophic
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FIGURE 8 | POC estimated using the five candidate algorithms applied to a monthly composite of OC-CCI data from May 2005 (A) Stramski et al. (2008) (Rrs), (B)

Stramski et al. (2008) (bbp), (C) Loisel et al. (2002), (D) Gardner et al. (2006), (E) Kostadinov et al. (2016), and (F) POC associated with an extracted transect through

the Atlantic at 20o W for each algorithm, and the associated [Chl] from the OC-CCI data.

gyres, and higher concentrations in turbid shelf and coastal
regions. However, there are some notable differences between
the POC concentrations estimated by the different algorithms.
Algorithm A and C perform similarly (Figures 8A,C). Algorithm
B (Figure 8B) produces estimates that are generally higher
relative to Algorithm A and C, particularly at low POC
concentrations. Algorithm D (Figure 8D) underestimates at
higher POC concentrations relative to all other algorithms, whilst
at low concentrations its estimates are generally higher than

algorithms A and C, and lower than algorithm B. In contrast,
Algorithm E (Figure 8E) estimates lower POC concentrations
relative to the other methods. A transect, extracted along
from 20o west, shows the regional differences in algorithm
estimates for POC, and the associated OC-CCI [Chl] for
reference (Figure 8F). Histograms of these products (not shown),
show a similar range to the in situ data used for validation
(≈ 10–1,000), though values greater than 1,000 mg m−3

are scarce in the satellite products (though higher values
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FIGURE 9 | Root Mean Squared Difference calculated for POC as estimated using water-class specific performance of the the five candidate algorithms applied to

monthly composite OC-CCI data from May 2005 (A) Stramski et al. (2008) (Rrs), (B) Stramski et al. (2008) (bbp), (C) Loisel et al. (2002), (D) Gardner et al. (2006), (E)

Kostadinov et al. (2016), and (F) the associated OC-CCI water classes.

are more frequent with Algorithm C than with Algorithm
A). Also, the pronounced bimodal frequency distribution of
the in situ data is absent in the satellite products, which
show a unimodal distribution. This difference between the
frequency distribution of in situ data and satellite products could
have had an impact on the comparative statistics presented
here.

3.5. Mapped Uncertainties
Each algorithm has uncertainties associated with its performance
for each water class, calculated from the validation exercise.
These values can be used to estimate uncertainties for pixels
outside of direct matchup locations, using a weighted average
based on the percent membership to each of the classes. This
procedure was applied to the data in Figure 8 to calculate
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FIGURE 10 | Bias as estimated using per water class performance of the five candidate algorithms applied to monthly composite OC-CCI data from May 2005 (A)

Stramski et al. (2008) (Rrs), (B) Stramski et al. (2008) (bbp), (C) Loisel et al. (2002), (D) Gardner et al. (2006), (E) Kostadinov et al. (2016), and (F) the associated

OC-CCI water classes.

per pixel RMSD and bias. As could be expected from the
performance of the algorithms across the substantial in situ
data set, Algorithm A (Rrs based algorithm of Stramski
et al., 2008) shows low RMSD and bias when uncertainties
are calculated (Figures 9, 10). Algorithms B and particularly
Algorithm C show higher RMSE, particularly in the gyre
regions, consistent with the distribution of the matchup-
based estimates in Figure 3. Algorithm D has low RMSD

and bias in the oligotrophic gyres, but relatively higher
values appear in the more productive (upwelling and coastal)
areas. Algorithm E shows high RMSE throughout the image.
Highest positive bias estimates are associated with algorithm
B, relating to overestimation in the gyre regions (Figure 10B).
Bias for Algorithm E (Figure 10E) shows negative bias globally,
consistent with the general trend toward underestimation shown
in Figures 4E, 8E.
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FIGURE 11 | Percentage error for POC as estimated using per water class performance of the Stramski et al. (2008) (Rrs) applied to monthly composite OC-CCI data

from May 2005.

4. DISCUSSION

4.1. Variability in Algorithm Performance
As a Result of Input Satellite Data, Choice
of Optical Models, and Regional Optical
Properties
The strength of the relationships between bio-optical properties
and POC concentration has been quantified in the original
studies where the algorithms examined above were formulated,
and in some cases, validated against satellite data. To the
extent that some of the satellite data used in the original
studies are included in the match-up dataset used here, the
impact on the results is likely to be small because the
size of the match-up data used here is much larger than
that used in any of the previous studies. Furthermore, the
comparisons presented here are based on a common satellite
product suite (OC-CCI). However, further insights are gained
from the bigger in situ data base assembled for this study,
and from the climate-quality data set provided by OC-
CCI.

Results from the OC-CCI based validation are generally
consistent with the observations made by Stramski et al. (2008).
The in situ data used by Stramski (Stramski et al., 2008) were
limited to the south eastern Pacific and eastern Atlantic Oceans
and covered a POC range of 12—270 mg m−3, whilst the range
for the data used here cover a broader range (2.7–8,097 mg
m−3). The waters sampled by Stramski et al. (2008) ranged
from upwelling to oligotrophic, with significant contributions
of mineral particle matter to the particle assemblage at some
stations. Consistent with the results here, Stramski et al.
(2008) found that empirical relationships between Rrs and POC
performed better than two-step approaches where an inherent

optical property (IOP) is derived from the Rrs and then related
to the POC. They also indicated relatively better performance
of the Rrs relationship over that derived from bbp, highlighting
the uncertainties in the derivation of bbp as one source of error
in estimation of POC from IOPs. Additionally, the relationships
between POC and IOPs would be expected to vary as a result
of the particle size distribution (PSD), the refractive index
of particles, and the fractional POC concentrations within
different particle types in the assemblage. For example, significant
variations in the POC-specific backscattering coefficient has been
reported for different water bodies of the Southern Ocean (see
Figure 1 in Stramski et al., 1999). Whilst variability in the
POC-specific backscattering introduces uncertainty in total POC
estimates, a better understanding of the relationship between

particle characteristics and IOPs has the potential to provide
further insight into the composition of the POC pool, and

therefore to improve POC algorithms. Hence, it is important to

pursue this line of algorithm development, even if the current
performance of these methods might not be as good as that of

some more empirical approaches. The line of investigation that
accounts for the contributions of different types of POC to their
optical properties is already yielding fruit (Stramski et al., 2008).

The algorithm of Loisel et al. (2002) (Algorithm C) is also
a two-step approach, drawing on the relationship between bp
and POC, via a relationship between bbp and [Chl]. Though

Loisel et al. (2002) did not directly validate their POC estimation

from SeaWiFS data, they found a good match between retrieved
bbp and that measured in situ in a previous study (Loisel et al.,
2001). Loisel et al. (2002) did indicate variability in the bbp:[Chl]

relationship, linked to changes in the particulate pool; they
highlighted the variable influence of small particles consisting

of dead cells, grazers, and minerals. Gardner et al. (2006)
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FIGURE 12 | Covariance between POC and [Chl] extracted from the OC-CCI matchups with the in situ database for (A) in situ POC data, (B) POC estimated using

Stramski et al. (2008) (Rrs), (C) POC estimated using Stramski et al. (2008) (bbp), (D) POC estimated using Loisel et al. (2002), (E) POC estimated using Gardner et al.

(2006), (F) POC estimated using Kostadinov et al. (2016).

(Algorithm D ) also uses a two-step approach, exploiting the
relationship between the beam attenuation coefficient (cp) and
POC. This relationship was shown to be strong, when in situ
POC was compared with transmissometer profiles. Although no
fully-validated algorithm exists for routine derivation of cp from
satellite ocean color measurements, Gardner et al. (2006) showed
in situ cp was strongly correlated with [Chl] (r = 0.845–0.897)
and Kd(490)) (r = 0.846-0.878) derived from SeaWIFS data over
different oceanic regions.

Algorithm E, by Kostadinov et al. (2016), addresses some
sources of variability between optical properties and POC, such
as the influence of the particle size distribution, which was
also identified as being important by Stramski et al. (2008).
The method of Kostadinov et al. (2016) uses spectral values
of bbp to derive a PSD, which is then converted to POC (and
phytoplankton carbon) using allometric relationships. The focus
of the Kostadinov et al. (2016) paper was on phytoplankton
carbon, computed as 1/3 of POC. Relationships between the

phytoplankton carbon estimated from in situ PSDmeasurements
and direct analytical determinations, showed r values between
0.5 and 0.714, depending on the limits of integration of the
PSD, with wider limits resulting in the lower r. As discussed
by Stramski et al. (2008), Kostadinov et al. (2016) also notes
the impact of uncertainties in retrieved backscattering arising
from both measurement and theory. In particular, assumptions
of sphericity and homogeneity used in Mie theory are likely to
be violated in real seawater particle assemblages, particularly for
backscattering and in coastal and more productive areas (which
are included in the database used here). For a more detailed
discussion of the sphericity and homogeneity assumption, see
Kostadinov et al. (2009) and refs. therein. Future work needs
to focus on developing and more widely adopting bio-optical
models that relax the Mie assumptions (e.g., Quirantes and
Bernard, 2004, 2006; Clavano et al., 2007; Matthews and
Bernard, 2013; Robertson Lain et al., 2017). Understanding
of PSD variability, how it relates to backscattering, and how
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FIGURE 13 | Summary of (A) POC to [Chl] relationships including the in situ POC data collated in this study and the extracted OC-CCI [Chl (gray dots)] and the

relationships proposed by Morel (1988) (green line), Stramska and Stramski (2005) (red line), Legendre and Michaud (1999) (blue line), and Sathyendranath et al.

(2009) (pink line), a best fit line for the in situ data vs. the OC-CCI chlorophyll (dashed line), and the estimated POC using Stramski et al. (2008) (cyan dots) are

provided for context, (B) estimated POC from the previously listed approaches, plotted against the Rrs (443) to Rrs(555) to show relationship to this ratio commonly

used in algorithms to derive [Chl].

particle composition affects scattering over broad marine regions
are required to develop further such detailed mechanistic
approaches.

General sources of error associated with any ocean-color
product include differences introduced by choice of sensor,
sensor calibration, and the atmospheric correction procedure
used to retrieve Rrs. In addition to these, a further consideration,
particularly in the cases where algorithms use IOPs, is the
methods used to derive the IOP product from the Rrs data.
The OC-CCI processing uses the Quasi-Analytical Algorithm
(QAA) of Lee et al. (2002) to calculate IOPs, including the bbp
values used in this study. The original study by Kostadinov et al.
(2016) used the method of Loisel and Stramski (2000) to estimate
bbp. Stramski et al. (2008) also used different formulations to
calculate bbp from Rrs, finding a corrected version of QAA
produced a better estimate of bbp, and a strong relationship
with POC (r = 0.933). The effect of the choice of method to
derive bbp on the POC estimates requires further consideration,
which goes beyond the scope of this study, as this IOP is
particularly poorly understood and validated (Lee et al., 2002).
The differences in algorithm performance across the different
water classes indicate that regional variability in performance
of the different algorithms can be expected. This is confirmed
in the mapped regional distribution of uncertainties (Figures 9,
10). These results suggest that algorithms either need to be
selected carefully for applications in different regions, or that
a selection of optimal algorithms may have to be blended for
a global product (as done in Jackson et al., in press). This
point is also raised in Stramski et al. (2008), where different
formulations are provided for global application, and excluding
upwelling data. Uncertainties in the underlying satellite data
may also be responsible for a portion of this variability: for
example, an IOP model may be more or less suitable to derive
backscattering. It should also be noted that there can also
be uncertainties in the in situ data and the validation process

that can affect the assessment of uncertainties in algorithm
performance. Ideally, multiple replicates will be taken to quantify
uncertainties in the in situ measurement, and instruments will
have a well-characterized calibration history, and be processed
with community endorsed methodologies. For POC, the issue
of blank correction was already highlighted in Section 2.1.
Uncertainties resulting from variable methods used for the
in situ data collated for this study may influence the results
presented here, particularly at low POC concentrations. In
terms of comparison to matchups, further uncertainties can be
introduced by comparing values at different scales, i.e., point
measurements may not represent the average over a pixel (in this
case of 4 km in size). These uncertainties will limit the ultimate
accuracy to which any satellite based product can be derived and
validated. However, issues of spatial mismatch are beginning to
be addressed with the use of underway systems (for example,
Brewin et al., 2016).

Despite the difficulties highlighted above, the overall
performance of the algorithms studied here is encouraging.
Percentage error estimates based on the OC-CCI methodology
show how well these algorithms can generate products suitable
for the needs of the scientific community. For example, the
percentage errors associated with the Stramski et al. (2008) Rrs
algorithm applied to OC-CCI data in May 2005 (Figure 11),
show that a majority of pixels fall within an error range that is
widely accepted by the ocean color community for [Chl] (30%;
GCOS, 2011).

4.2. Variability in the Ratio of Particulate
Organic Carbon to Chlorophyll-a
Further perspective on the performance of the different
algorithms can be gained by considering the covariance between
POC and [Chl]. The relationship between the in situ POC data
and satellite [Chl] is shown in Figure 12A, where the color
indicates the associated dominant optical water class. These data
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then forms the background for each of the subsequent panels
of Figure 12, which show the relationship between the POC
estimated by each algorithm, and the satellite [Chl]. Algorithm
A shares a commonality in method with the algorithms used
to derive satellite [Chl], in that the same reflectance ratios
are used to derive POC, and [Chl] (at lower concentrations);
hence it shows a very constrained relationship in this domain
of the parameter space (Figure 12B). Other algorithms capture
the scatter in the POC:[Chl] relationship to a greater or lesser
degree, though offsets can be seen, associated with the behavior
identified in the validation exercise, i.e., overestimation of POC
relative to lower [Chl] in the case of Algorithm B (Figure 12C),
and underestimation of the ratio at low [Chl] using POC from
Algorithm C (Figure 12D—though it should also be noted that
this algorithm is also dependent on [Chl] to derive POC). As
with Algorithm A, Algorithm D shows a relatively constrained
relationship between POC and [Chl]. Algorithm E produces
similar variability between POC and [Chl] as seen in the in situ
data, in terms of shape and scatter of the curve, but the bias of
this algorithm toward lower estimates of satellite derived POC is
clear (Figure 12D).

The ratio of POC to [Chl] is important in the context of the
discussion here for two reasons. Firstly, this ratio is important
in the context of biogeochemical modeling, and the ecological
and physiological processes that influence this ratio. Secondly,
empirical relationships between POC and chlorophyll have been
developed, which can be applied to satellite derived estimates
of [Chl]. As mentioned above, these algorithms are typically
similar to those employing blue:green reflectance ratios (e.g.,
Algorithm A from Stramski et al., 2008), and as such were
not initially considered in the algorithm intercomparison here.
Figure 13A shows a number of these empirical relationships,
against a background of the same in situ POC and [Chl] data
as shown in Figure 12. Figure 13B shows POC estimated using
these [Chl]-based algorithms on OC-CCI [Chl] as a function of
the blue-green Rrs reflectance ratio. The same reflectance ratio is
employed by Stramski et al. (2008) to derive POC, and is also used
in a number of empirical [Chl] algorithms. A linear regression of
the in situ POC concentrations, against the satellite derived [Chl],
results in an r2 value of 0.70. Using the various relationships
shown in Figure 13A to estimate POC based on the satellite
[Chl] returns r2 values between 0.63 and 0.69, lower than those
returned for all the other algorithms assessed. The [Chl] based
approaches show in Figure 13 produce RMSD values (between
0.27 and 0.47) and bias (between −0.03 and 0.117) in the same
range as the other algorithms.

Even though to first order Chl and POC are positively
correlated in the global ocean, a residual scatter in the
relationship remains (e.g., in satellite observations—Figure 12A,
and in situ observations as well—e.g., Kostadinov et al., 2012).
Ideally, a POC algorithm should be able to retrieve POC
independently of [Chl] and capture the variable POC/[Chl] ratio
correctly. Note that this ratio can vary due to both variability
in the fraction of living phytoplankton carbon in the total
POC pool, due to the physiology and photoacclimation of the
phytoplankton component of POC (Geider, 1987; Geider et al.,
1998; Behrenfeld et al., 2005), and species specific differences

among phytoplankton themselves (Stramski, 1999). Therefore,
independent knowledge of total POC, living phytoplankton
carbon, and [Chl a] should be the goal of future bio-optical
algorithm development.

4.3. Estimates of Total Pools of Carbon
The OC-CCI archive can be used to estimate total pools of
POC in the mixed layer, taking into account interannual and
regional variability, which is well captured by this merged
dataset. Algorithms A-D were applied to the monthly OC-CCI
version 2 data, and the values integrated over the mixed-layer
depth (derived from MIMOC, Schmidtko et al., 2013), assuming
homogeneity over the mixed layer. These were then averaged
over all the months and for all the years of the OC-CCI version
2 (1998-2012) to provide estimates of the average standing pool
of POC as follows: Algorithm A: 0.86 Pg C, Algorithm B: 1.3
Pg C, Algorithm C: 0.87 Pg C, Algorithm D: 0.77 Pg C. These
are larger than the estimate of Gardner et al. (2006) and smaller
than the estimate of Stramska (2009). Comparison of these
estimates with those of phytoplankton carbon pools estimated in
a parallel study (Martinez-Vicente et al., in review), indicates that
phytoplankton carbon represents between 17 and 48% of the total
POC pool. Whilst this ratio shows considerable variability, the
often assumed value of 1/3 for phytoplankton carbon:POC falls
within this range. High levels of variability in the phytoplankton
carbon to POC ratio were also observed in situ by Graff et al.
(2015). Satellite based estimates calculated by Kostadinov et al.
(2016) (using a different set of mixed layer depth values) suggest
a phytoplankton carbon standing stock of around 0.24 Pg C,
implying a corresponding POC stock of around 0.72 Pg C when
using the 1/3 assumption. Kostadinov et al. (2016) showed the
estimated phytoplankton standing stock to be similar to estimates
derived from the application of both the Stramski et al. (2008) bbp
based algorithm, combined again with a 1/3 assumption and the
method of Behrenfeld et al. (2005) to SeaWIFS data, and tomodel
estimates from the Coupled Model Intercomparison Project 5
(CMIP5). The estimate of phytoplankton carbon standing stock
from Kostadinov et al. (2016) is similar to that estimated by other
size class based approaches, such as that of Roy et al. (2017)
which used size classes derived from absorption to estimate a
total phytoplankton carbon stock of 0.26 Pg C. Though the global
estimates of POC from the different approaches assessed here are
quite similar to each other, the differences are more pronounced
at smaller scales, as can be seen in Figure 8F.

5. CONCLUSIONS

A variety of POC algorithms were applied to matchup pixels
extracted from the satellite OC-CCI ocean color data, and
validated against in situ data. The database used here represents
the largest collection of in situ POC data available, to the author’s
knowledge. The five algorithms showed strong predictive
capacity for estimating POC, with Algorithm A (based on
Rrs—Stramski et al., 2008) and C (based on Loisel et al., 2002)
performing well across the broad range of the in situ dataset.
Algorithms A and C performed consistently across different
water types as defined in the OC-CCI data. From the water class
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based validation, errors can be estimated per pixel. For Algorithm
A and C, the errors were mostly within the range requested by
the user community. These results suggest a maturity in POC
algorithms and their suitability for production of long term time
series for climate related studies. However, several key points
of development are highlighted from the inter comparison
of the different algorithms and the various studies reviewed
here. Greater knowledge of the composition of the particulate
pool, and how it affects the IOPs of the oceans, may allow
increased accuracy of POC algorithms (within the constraints
of the sensitivities of current satellite ocean color radiometry),
as well as providing further information on different types of
particles, many of which play important roles in water quality
and ocean biogeochemistry. To support this aim, further in situ
data should be collected, including additional measurements
to provide detail on phytoplankton community size structure,
physiology, and photoacclimation. Further, it is recommended
that future work seeks to use consistent methodology for blank
correction of POC measurements, and clarify any trends in the
low POC region which may be influenced by these uncertainties.
Further understanding of the sources of variability between
POC and optical parameters can then be incorporated in
to future, semi-analytical algorithms. New understanding
of these relationships may also inform future sensor
development (e.g., hyperspectral sensors) and optical modeling
techniques.
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