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ENDPOINT COMPACTNESS OF SINGULAR
INTEGRALS AND PERTURBATIONS OF THE

CAUCHY INTEGRAL

KARL-MIKAEL PERFEKT, SANDRA POTT, AND PACO VILLARROYA

Abstract. We prove sufficient and necessary conditions for com-
pactness of Calderón-Zygmund operators on the endpoint from
L∞(R) into CMO(R). We use this result to prove compactness on
Lp(R) with 1 < p <∞ of certain perturbations of the Cauchy inte-
gral on curves with normal derivatives satisfying a CMO-condition.

1. Introduction

In [13], we started a general theory to characterize compactness of
singular integral operators. More precisely, we showed that a Calderón-
Zygmund operator T is compact on Lp(R) with 1 < p <∞ if and only
three conditions hold: the operator kernel satisfies the definition of a
compact Calderón-Zygmund kernel, a strengthening of the smoothness
condition of a standard Calderón-Zygmund kernel; T satisfies a new
property of weak compactness, analogue to the classical weak bounded-
ness ; and the functions T (1) and T ∗(1) belong to the space CMO(R),
the appropriate substitute of BMO(R).

Now, the purpose of the current paper is to continue this study in
two different but related ways. First, we extend the results appearing
in [13] to one of the endpoint cases, namely, from L∞(R) into CMO(R)
(Theorem 2.18). For this purpose, we follow a new approach, based on
the study of boundedness of a modified Martingale Transform, Propo-
sition 3.6, which substitutes the classical square function and, to the
authors knowledge, has not been studied before. Second, we use the
latter result to provide an application of the general theory by show-
ing how the methods devised in [13] allow to prove compactness on
Lp(R) of certain perturbation of the Cauchy integral operator defined
over Lipschitz curves with CMO-smooth normal derivatives, Proposi-
tion 4.2.
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The paper is structured as follows: in Section 2, we give the necessary
definitions, we state the main results of [13] that there will be needed
and we also state our main result in this paper, Theorem 2.19; in Sec-
tion 3 we characterize compactness of Calderón-Zygmund operators on
the endpoint case L∞ → CMO. Finally, in Section 4 we provide an ap-
plication of the theory by proving compactness of the before described
perturbation of the Cauchy integral.

2. Definitions and statement of the main result

2.1. Definitions and notation.

Definition 2.1. We say that three bounded functions L, S,D : [0,∞)→
[0,∞) constitute a set of admissible functions if the following limits hold

(1) lim
x→∞

L(x) = lim
x→0

S(x) = lim
x→∞

D(x) = 0.

Remark 2.2. Since any fixed dilation of an admissible function Lλ(x) =
L(λ−1x) is again admissible, we will often omit all universal constants
appearing in the argument of these functions.

Definition 2.3. Let ∆ be the diagonal of R2. Let L, S,D be admissible
functions.

A function K : (R2 \∆)→ C is called a compact Calderón-Zygmund
kernel if it is bounded on compact sets of R2\∆ and for some 0 < δ ≤ 1
and C > 0, we have

|K(t, x)−K(t′, x′)| ≤ C
(|t− t′|+ |x− x′|)δ

|t− x|1+δ
L(|t−x|)S(|t−x|)D(|t+x|),

whenever 2(|t− t′|+ |x− x′|) < |t− x|.

As shown in [13], it can be assumed without loss of generality that
in Definition 2.3 the functions L and D are monotone non-increasing
while the function S is monotone non-decreasing.

We also remark that there is an equivalent definition of compact
Calderón-Zygmund kernels which is more convenient to use in applica-
tions of the theory (see Section 4). In [13], we show that Definition 2.3
is equivalent to the existence of a bounded function B : R2 → [0,∞)
such that

lim
|t−x|→∞

B(t, x) = lim
|t−x|→0

B(t, x) = lim
|t+x|→∞

B(t, x) = 0

and for some 0 < δ ≤ 1 and C > 0,

|K(t, x)−K(t′, x′)| ≤ C
(|t− t′|+ |x− x′|)δ

|t− x|1+δ
B(t, x),

whenever 2(|t− t′|+ |x− x′|) < |t− x|.
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Definition 2.4. For every N ∈ N, N ≥ 1, we define SN(R) to be the
set of all functions f ∈ CN(R) such that

‖f‖m,n = sup
x∈R
|x|m|f (n)(x)| <∞

for all m,n ∈ N with m,n ≤ N . Clearly, SN(R) equipped with the
family of seminorms ‖ · ‖m,n is a Fréchet space. Then, we can also
define its dual space S ′N(R) equipped with the dual topology which turns
out to be a subspace of the space of tempered distributions.

Definition 2.5. Let T : SN(R)→ S ′N(R) be a linear operator which is
continuous with respect the topology of SN(R) for a fixed N ≥ 1.

We say that T is associated with a compact Calderón-Zygmund kernel
K if the action of T (f) as a distribution satisfies the following integral
representation

〈T (f), g〉 =

∫
R

∫
R
f(t)g(x)K(t, x) dt dx

for all functions f, g ∈ SN(R) with disjoint compact supports.

Definition 2.6. For 0 < p ≤ ∞ and N ∈ N, we say that a function
φ ∈ SN(R) is an Lp(R)-normalized bump function adapted to I with
constant C > 0 and order N , if it satisfies

|φ(n)(x)| ≤ C
1

|I|
1
p

+n

(
1 +
|x− c(I)|
|I|

)−N
, 0 ≤ n ≤ N

for every interval I ⊂ R, where we denote its centre by c(I) and its
length by |I|.

The order of the bump functions will always be denoted by N , even
though its value might change from line to line. We will often use the
greek letters φ, ϕ for general bump functions while we reserve the use
of ψ to denote bump functions with mean zero. If not otherwise stated,
we will usually assume that bump functions are L2(R)-normalized.

A result we will use in forthcoming sections is the following property
of bump functions whose proof can be found in [12]:

Lemma 2.7. Let I, J be intervals and let φI , ϕJ be bump functions
L2-adapted to I and J respectively with order N and constant C > 0.
Then,

|〈φI , ϕJ〉| ≤ C

(
min(|I|, |J |)
max(|I|, |J |)

)1/2(
diam(I ∪ J)

max(|I|, |J |)

)−N
.

Moreover, if |J | ≤ |I| and ψJ has mean zero then

|〈φI , ψJ〉| ≤ C

(
|J |
|I|

)3/2(
diam(I ∪ J)

|I|

)−(N−1)

.
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Notation 2.8. We now introduce some notation which will be fre-
quently used throughout the paper. We denote by B = [−1/2, 1/2] and
Bλ = λB = [−λ/2, λ/2].

Given two intervals I, J ⊂ R, we define 〈I, J〉 as the smallest interval
containing I∪J and we denote its measure by diam(I∪J). Notice that

diam(I ∪ J) ≈ |I|/2 + |c(I)− c(J)|+ |J |/2.
We also define the relative distance between I and J by

rdist(I, J) =
diam(I ∪ J)

max(|I|, |J |)
,

which is comparable to max(1, n) where n is the smallest number of
times the larger interval needs to be shifted a distance equal to its side
length so that it contains the smaller one. Notice that

rdist(I, J) ≈ 1 +
|c(I)− c(J)|
max(|I|, |J |)

.

Finally, we define the eccentricity of I and J to be

ec(I, J) =
min(|I|, |J |)
max(|I|, |J |)

.

Definition 2.9. A linear operator T : SN(R) → S ′N(R) with N ≥
1 satisfies the weak compactness condition, if there exist admissible
functions L, S,D such that: for every ε > 0 there exists M ∈ N so
that for any interval I and every pair φI , ϕI of L2-normalized bump
functions adapted to I with constant C > 0 and order N , we have

(2) |〈T (φI), ϕI)〉| . C(L(2−M |I|)S(2M |I|)D(M−1 rdist(I,B2M )) + ε),

where the implicit constant only depends on the operator T .

Remark 2.10. We note that in the main results of the paper, namely
Theorem 2.18 or Theorem 3.8, when we say that T satisfies the weak
compactness condition, we mean that there is an integer N ≥ 1 suffi-
ciently large depending on the operator or its kernel so that the operator
can be defined T : SN(R) → S ′N(R), it is continuous with respect the
topology in SN(R) and it satisfies Definition 2.9 for that value of N .

In [13] we discuss other equivalent formulations of this Definition.
From now on, we will denote

FK(I) = LK(|I|)SK(|I|)DK( rdist(I,B))

and

FW (I;M) = LW (2−M |I|)SW (2M |I|)DW (M−1 rdist(I,B2M )),

where LK , SK and DK are the functions appearing in the definition
of a compact Calderón-Zygmund kernel, while LW , SW , DW and the
constant M are as in the definition of the weak compactness condition.
Note that the value M = MT,ε depends not only on T but also on ε.
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We will also denote F (I;M) = FK(I) + FW (I;M),

FK(I1, · · · , In) =
( n∑
i=1

LK(|Ii|)
)( n∑

i=1

SK(|Ii|)
)( n∑

i=1

DK( rdist(Ii,B))
)

FW (I1, · · · , In;M) =
( n∑
i=1

LW (2−M |Ii|)
)( n∑

i=1

SW (2M |Ii|)
)

( n∑
i=1

DW (M−1 rdist(Ii,B2M ))
)

and F (I1, · · · , In;M) = FK(I1, · · · , In) + FW (I1, · · · , In;M).

2.2. Characterization of compactness. The Lagom Projection
operator. In order to prove our results about compact singular inte-
gral operators, we will use the following characterization of compact
operators in a Banach space with a Schauder basis (see [5]).

Theorem 2.11. Suppose that {en}n∈N is a Schauder basis of a Banach
space E. For each positive integer k, let Pk be the canonical projection,

Pk(
∑
n∈N

αnen) =
∑
n≤k

αnen.

Then, a bounded linear operator T : E → E is compact if and only if
Pk ◦ T converges to T in operator norm.

Definition 2.12. For every M ∈ N, let IM be the family of intervals
such that 2−M ≤ |I| ≤ 2M and rdist(I,B2M ) ≤M . Let D be the family
of dyadic intervals of the real line and DM be the intersection of IM
with D. We call the intervals in IM and DM as lagom intervals and
dyadic lagom intervals respectively.

Notice that I ∈ DM implies that 2−M(2M + |c(I)|) ≤ M and then
|c(I)| ≤ (M − 1)2M . Therefore, I ⊂ BM2M with 2−M ≤ |I|.

On the other hand, I /∈ DM implies either |I| > 2M or |I| < 2−M or
2−M ≤ |I| ≤ 2M with |c(I)| > (M − 1)2M .

Let E be one of the following Banach spaces: the Lebesgue space
Lp(R), 1 < p < ∞, the Hardy space H1(R), or the space CMO(R),
to be introduced later as the closure in BMO(R) of continuous func-
tions vanishing at infinity. In each case, E is equipped with smooth
wavelet bases which are also Schauder bases (see [6] and Lemma 2.16).
Moreover, in all cases, we have at our disposal smooth and compactly
supported wavelet bases.

Definition 2.13. Let E be one of the previously mentioned Banach
spaces. Let (ψI)I∈D be a wavelet basis of E. Then, for every M ∈ N,
we define the lagom projection operator PM by

PM(f) =
∑
I∈DM

〈f, ψI〉ψI ,
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where 〈f, ψI〉 =
∫
R f(x)ψ(x)dx.

We also define the orthogonal lagom projection operator as P⊥M(f) =
f − PM(f).

Remark 2.14. Without explicit mention, we will let the wavelet basis
defining PM vary from proof to proof to suit our technical needs.

We also note the use of the same notation for the action of T (f) as
a distribution and the inner product. We hope that this will not cause
confusion.

It is easy to see that both PM and P⊥M are self-adjoint operators.
We note the difference with the usual projection operator, PQ for

every interval Q ⊂ R, defined by

(3) PQ(f) =
∑
I ∈ D
I ⊂ Q

〈f, ψI〉ψI ,

which we will also use in forthcoming sections.
Let S denote the square function operator associated with a wavelet

basis (ψI)I∈D

S(f)(x) =
(∑
I∈D

|〈f, ψI〉|2

|I|
χI(x)

)1/2

.

Since we trivially have the pointwise estimates S(PM(f))(x) ≤ S(f)(x)
and S(P⊥M(f))(x) ≤ S(f)(x), by Littlewood-Paley theory, we deduce
that the lagom projection operator and its orthogonal projection are
both continuous on Lp(R) for all 1 < p <∞. Moreover, the estimate

‖PM(f)‖BMO(R) = sup
Q⊂R

( 1

|Q|
∑

I ∈ DM
I ⊂ Q

|〈f, ψI〉|2
)1/2

≤ ‖f‖BMO(R)

shows that PM is bounded on BMO(R) and, by duality, on H1(R)
with ‖PM‖BMO(R)→BMO(R) ≤ 1 and ‖PM‖H1(R)→H1(R) ≤ 1. For similar
reasons, we have ‖P⊥M‖BMO(R)→BMO(R) ≤ 1 and ‖P⊥M‖H1(R)→H1(R) ≤ 1

We remark that in E, the equality

(4) P⊥M(f) =
∑
I∈DcM

〈f, ψI〉ψI

is to be interpreted in its Schauder basis sense,

lim
M ′→∞

‖P⊥M(f)−
∑

I∈DM′\DM

〈f, ψI〉ψI‖E = 0.

Note that according to Theorem 2.11, an operator T : E → E, is
compact if and only if

lim
M→∞

‖P⊥M ◦ T‖ = 0,

where ‖ · ‖ is the operator norm.
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2.3. The space CMO(R). We provide now the definition and main
properties of the space to which the function T (1) must belong if T is
compact.

Definition 2.15. We define CMO(R) as the closure in BMO(R) of
the space of continuous functions vanishing at infinity.

We note that CMO(R) equipped with the norm ‖ · ‖BMO is a Banach
space. The next lemma gives two characterizations of CMO(R): the
first in terms of the average deviation from the mean, and the second
in terms of a wavelet decomposition. See [11] for the first, and [8] for
the second characterization.

Lemma 2.16. i) f ∈ CMO(R) if and only if f ∈ BMO(R) and

(5) lim
M→∞

sup
I /∈IM

1

|I|

∫
I

∣∣∣f(x)− 1

|I|

∫
I

f(y)dy
∣∣∣dx = 0

ii) f ∈ CMO(R) if and only if f ∈ BMO(R) and

(6) lim
M→∞

sup
Q⊂R

( 1

|Q|
∑

I /∈ DM
I ⊂ Q

|〈f, ψI〉|2
)1/2

= 0,

where the supremum is calculated over all intervals Q ⊂ R.

As a consequence of previous Lemma, (ψI)I∈D is a Schauder basis
for CMO(R). We will mainly be using the latter formulation.

Remark 2.17. Considering the comment after Definition 2.12, we see
that the preceding lemma is also true if we, in line with [11], replace
IM by I ′M consisting of those intervals I such that 2−M ≤ |I| ≤ 2M

and |c(I)| ≤M/2, and DM by D′M = I ′M ∩ D.

We note that the remarks about equality (4) work well for the spaces
Lp(R), H1(R), and also CMO(R), but not for BMO(R). The latter
space is not separable and so, it does not contain an unconditional
basis. However, the characterization of the norm in BMO(R) by a
wavelet basis implies that for every f ∈ BMO(R) we have the equality

f =
∑
I∈D

〈f, ψI〉ψI

with convergence in the weak* topology σ(BMO(R), H1(R)). This, in
turn, implies the quality

(7) P⊥M(f) =
∑
I∈DcM

〈f, ψI〉ψI

with convergence in the same topology, which is interpreted as

lim
M ′→∞

∣∣∣〈P⊥M(f), g〉 −
∑

I∈DM′\DM

〈f, ψI〉〈ψI , g〉
∣∣∣ = 0

for all g ∈ H1(R). See [9] and [1] for proofs and more details.
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2.4. Main results. We now give the statement of the main result in
the paper and also the results in [13] which we will need.

Theorem 2.18. Let T be a linear operator associated with a standard
Calderón-Zygmund kernel.

Then, T extends to a compact operator from L∞(R) into CMO(R) if
and only if T is associated with a compact Calderón-Zygmund kernel, T
satisfies the weak compactness condition and T (1), T ∗(1) ∈ CMO(R).

Moreover, with the extra assumption T (1) = T ∗(1) = 0, T is compact
from BMO(R) into CMO(R).

The analog result appearing in [13] is the following Theorem.

Theorem 2.19. Let T be a linear operator associated with a standard
Calderón-Zygmund kernel.

Then, T extends to a compact operator on Lp(R) for 1 < p < ∞ if
and only if T is associated with a compact Calderón-Zygmund kernel, T
satisfies the weak compactness condition and T (1), T ∗(1) ∈ CMO(R).

We now state the key ingredient in the proof of Theorem 2.19 and
also Theorem 2.18: the so-called bump Lemma, which describes the
action of the operator over functions adapted to two different intervals.

Given two intervals I and J , we will denote Kmin = J and Kmax = I
if |J | ≤ |I|, while Kmin = I and Kmax = J otherwise.

Proposition 2.20. Let K be a compact Calderón-Zygmund kernel with
parameter δ. Let N sufficiently large depending on δ and 0 < θ < 1,
0 < δ′ < δ depending on N .

Let T : SN → S ′N be a linear operator associated with K satisfy-
ing the weak compactness condition with parameter N and the special
cancellation condition T (1) = 0 and T ∗(1) = 0.

Then, there exists Cδ′ > 0 such that for every ε > 0, all intervals
I, J and all mean zero bump functions ψI , ψJ , L2-adapted to I and J
respectively with order N and constant C > 0, we have

|〈T (ψI), ψJ〉| ≤ Cδ′C ec(I, J)
1
2

+δ′ rdist(I, J)−(1+δ′)
(
F (I1, . . . , I6;MT,ε)+ε

)
where I1 = I, I2 = J , I3 = 〈I, J〉, I4 = λ1K̃max, I5 = λ2K̃max, I6 =
λ2Kmin with λ1 = |Kmax|−1diam(I ∪ J), λ2 = (|Kmin|−1diam(I ∪ J))θ

and K̃max is the translate of Kmax with the same centre as Kmin.

3. Endpoint estimates

In this section, we extend the study of compactness for singular in-
tegral operators to the endpoint case. Namely, we characterize those
Calderón-Zygmund operators that extend compactly as maps from
L∞(R) to CMO(R).
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3.1. Necessity of the hypotheses. The necessity of the hypotheses
of Theorem 2.18 is a direct consequence of the following result.

Proposition 3.1. Let T be a linear operator associated with a standard
Calderón-Zygmund kernel. If T is compact from L∞(R) into CMO(R)
then, T is compact on Lp(R) for 1 < p <∞.

Proof. Since T is bounded from L∞(R) into CMO(R) and it is associ-
ated with a standard Calderón-Zygmund kernel, by [7] page 49, T is
bounded on Lp(R) for all 1 < p < ∞. Therefore, by interpolation, T
is compact on Lp(R). �

Whence, since in particular T is compact on L2(R), by the results
in [13] we have that the hypotheses of Theorem 2.18 are satisfied, that
is, T is associated with a compact Calderón-Zygmund kernel, satisfies
the weak compactness condition and T (1), T ∗(1) ∈ CMO(R).

3.2. Wavelet basis. We devote the first part of this subsection to
describe the way to choose a wavelet basis of Lp(R) and H1(R) and
how we use this basis to decompose the operators under study. In order
to do this, we will use the results contained in the books [3] and [6].

For every function ψ and every dyadic interval I = 2−j[k, k + 1],
j, k ∈ Z, we denote

ψI(x) = Tl(I)D2
|I|ψ(x) = 2j/2ψ(2jx− k),

where l(I) = min{x : x ∈ I}.

Theorem 3.2. Let ψ ∈ L2(R) with ‖ψ‖L2(R) = 1. Then, {ψI}I∈D is
an orthonormal wavelet basis of L2(R) if and only if∑

k∈Z

|ψ̂(ξ + k)|2 = 1 ,
∑
k∈Z

ψ̂(2j(ξ + k))ψ̂(ξ + k) = 0

for all ξ ∈ R and all j ≥ 1.

Definition 3.3. For any function f : R → C, we say that a bounded
function W : [0,∞) → R+ is a radial decreasing L1-majorant of f if
|f(x)| ≤ W (|x|) and W satisfies the following three conditions: W ∈
L1([0,∞)), W is decreasing and W (0) <∞.

Theorem 3.4. Let ψ ∈ L2(R) differentiable and such that {ψI}I∈D is
an orthonormal basis of L2(R). We further assume that ψ and its de-
rivative ψ′ have a common radial decreasing L1-majorant W satisfying∫ ∞

0

xW (x)dx <∞.

Then, the system (ψI)I∈D is an unconditional basis for Lp(R) with 1 <
p <∞ and for H1(R).
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Now, for our particular purposes, we will take ψ satisfying the hy-
potheses of previous theorems with the additional condition that ψ ∈
CN(R) and it is adapted to [−1/2, 1/2] with constant C > 0 and order
N . Then, we remark the crucial fact that for every interval I ∈ D, ev-
ery wavelet function ψI is a bump function adapted to I with the same
constant C > 0 and the same order N . Several examples of construc-
tions of systems of wavelets with any required order of differentiability
can also be found in [6].

In the described setting, the continuity of T with respect the topology
of SN(R), allows to write

〈T (f), g〉 =
∑
I,J∈D

〈f, ψI〉〈g, ψJ〉〈T (ψI), ψJ〉

for every f, g ∈ S(R), where the sums run over the whole family of
dyadic intervals in R and convergence is understood in the topology of
SN(R). Furthermore, since

〈PM(T (f)), g〉 = 〈T (f), PMg〉 =
∑
I∈D

∑
J∈DM

〈f, ψI〉〈g, ψJ〉〈T (ψI), ψJ〉,

we have that

(8) 〈P⊥M(T (f)), g〉 =
∑
I∈D

∑
J∈DcM

〈f, ψI〉〈g, ψJ〉〈T (ψI), ψJ〉

where the summation is performed as in equation (4).

3.3. Boundedness of a Martingale transform. We now study a
new Martingale transform. Its definition and the proof of its bounded-
ness on Lp(R) for 1 < p < ∞ appear in the preprint [10]. We include
here the endpoint result.

Definition 3.5. Let (ψI)I∈D be a wavelet basis of L2(R). Given k ∈ Z
and n ∈ N, n ≥ 1, let Tk,n be the operator defined by

Tk,n(f)(x) =
∑
I∈D

∑
J∈Ik,n

〈f, ψJ〉ψI(x),

where for each fixed dyadic interval I, Ik,n is the family of all dyadic
intervals J such that |I| = 2k|J | and n ≤ rdist(I, J) < n+ 1.

We remind that for every dyadic interval I and each n ∈ N there are
2max(e,0)+1 dyadic intervals J such that |I| = 2e|J | and n ≤ rdist(I, J) <
n+1. This implies that the cardinality of Ie,n is comparable to 2max(e,0).

In the proposition below, we prove boundedness of this modified
Martingale operator.

Proposition 3.6. Let k ∈ Z and n ∈ N, n ≥ 1. Then, Tk,n is bounded
on BMO(R). Moreover,

‖Tk,nf‖BMO(R) . 2
|k|
2 (log(n+ 1) + max(−k, 0) + 1)

1
2‖f‖BMO(R)
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with implicit constant independent of f , k and n.

Remark 3.7. By duality and the fact that T ∗k,n = T−k,n, we have that

Tk,n is also bounded on H1(R) with

‖Tk,nf‖H1(R) . 2
|k|
2 (log(n+ 1) + max(k, 0) + 1)

1
2‖f‖H1(R)

Proof. Since for any given f ∈ S(R),

‖Tk,nf‖BMO(R) = sup
Q⊂R

(
|Q|−1

∑
I⊂Q

∣∣∣ ∑
J∈Ik,n

〈f, ψJ〉
∣∣∣2 ) 1

2
,

where the supremum is calculated over all intervals Q ⊂ R, we will
show that∑

I⊂Q

∣∣∣ ∑
J∈Ik,n

〈f, ψJ〉
∣∣∣2(9)

. 2|k|(log(n+ 1) + max(−k, 0) + 1)‖f‖2
BMO(R)|Q|.

In order to compute the double sum, we use an argument that dis-
tinguishes between large and small scales (k ≥ 0 and k ≤ 0), with a
slightly different argument in each case.

We first assume k ≥ 0. In this case, the cardinality of Ik,n is compa-
rable to 2k and so, every interval I ∈ D is associated with 2k different
intervals J ∈ Ik,n. Therefore, by Cauchy’s inequality, the contribution
of those intervals collected in the sum in (9) can be bounded by

(10)
∑
I⊂Q

2k
∑
J∈Ik,n

|〈f, ψJ〉|2 = 2k
∑
j∈N

∑
I∈Qj

∑
J∈Ik,n

|〈f, ψJ〉|2,

where Qj = {I ∈ D : I ⊂ Q, 2−(j+1)|Q| < |I| ≤ 2−j|Q|}.
Now, we separate again into two different cases: when J ⊂ 3Q and

when J * 3Q.
1) In the first case, we start by showing that the intervals J in the

inner sum of (10) only appear at most four times. This will be clear
once we prove that given I ∈ D and J ∈ Ik,n there exist at most four
different intervals I ′ ∈ D, I ′ 6= I, such that J ∈ I ′k,n.

If J ∈ Ik,n ∩ I ′k,n then |I| = 2k|J | = |I ′|. Now, we denote In =
(I+n|I|)∪(I−n|I|). Since k ≥ 0, we have that J ⊂ In∩I ′n 6= ∅. Then, if
n > 1, this implies rdist(I, I ′) = 2n and so, I ′ = I+n|I| or I ′ = I−n|I|.
On the other hand, if n = 1, this implies rdist(I, I ′) ∈ {1, 2} and so,
I ′ = I + |I|, I ′ = I − |I|, I ′ = I + 2|I| or I ′ = I − 2|I|.

Therefore, the terms in the inner sum of (10) corresponding to this
case can be bounded by a constant times

2k
∑
J⊂3Q

|〈f, ψJ〉|2 . 2k‖f‖2
BMO(R)|Q|,

which is compatible with the stated bound.
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2) In the second case, for those intervals I, J such that I ⊂ Q and
J * 3Q, we have diam(I ∪ J) > |Q|. Then, for every I ∈ Qj we get

n+ 1 > rdist(I, J) =
diam(I ∪ J)

|I|
>
|Q|
|I|
≥ 2j,

where we have used that |J | ≤ |I|.
We now show that, for every j, the union of the disjoint intervals

J ∈ Ik,n when varying I ∈ Qj has measure at most 2|Q|. For fixed I,
the union of the disjoint intervals J ∈ Ik,n measures 2|I|. Moreover, the
union of the disjoint intervals I ∈ Qj measures at most |Q|. Therefore,

|
⋃
I∈Qj

⋃
J∈Ik,n

J | ≤
∑
I∈Qj

∑
J∈Ik,n

|J | ≤ 2
∑
I∈Qj
|I| ≤ 2|Q|.

This way, the relevant contribution of this case to the sum in (10)
can be bounded by

2k
log(n+1)∑
j=0

∑
I ∈ Qj
J ∈ Ik,n

|〈f, ψJ〉|2 . 2k‖f‖2
BMO(R)

log(n+1)∑
j=0

∣∣∣ ⋃
I ∈ Qj
J ∈ Ik,n

J
∣∣∣

. 2k‖f‖2
BMO(R)

log(n+1)∑
j=0

|Q| = 2k(1 + log(n+ 1))‖f‖2
BMO(R)|Q|,

which is the desired bound when k ≥ 0.

For k ≤ 0 we reason as follows. The cardinality of Ik,n is now essen-
tially one and there are at most 2j intervals I ∈ Qj. But now, up to
2−k different intervals I of fixed size in the sum (9) are associated with
the same interval J and so, with the same coefficient 〈f, ψJ〉. Then, if
we denote Qj

k,n = {J ∈ Ik,n : I ∈ Qj}, we have that the terms in the
sum (9) corresponding to this case can be bounded by

(11)
∑
j∈N

∑
J∈Qjk,n

min(2j, 2−k)|〈f, ψJ〉|2,

where now the intervals J ∈ Qj
k,n appearing in the sum are pairwise

different. Moreover, since |I| = 2k|J | and 2−(j+1)|Q| < |I| ≤ 2−j|Q| we
get 2j+k ≤ |Q|/|J | < 2j+k+1.

We separate the study into the same two cases as before: J ⊂ 3Q
and J * 3Q.

1) When I ⊂ Q and J ⊂ 3Q we have

n ≤ rdist(I, J) =
diam(I ∪ J)

|J |
≤ 3|Q|
|J |

< 2j+k+4
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Therefore, j > log n− k − 4 ≥ −k − 4 and so, the contribution of the
intervals in this case to the sum (11) can be bounded by∑

−k−4<j≤−k

∑
J ∈ Qjk,n
J ⊂ 3Q

2j|〈f, ψJ〉|2 +
∑
−k≤j

∑
J ∈ Qjk,n
J ⊂ 3Q

2−k|〈f, ψJ〉|2

. 2−k
∑
J⊂3Q

|〈f, ψJ〉|2 . 2−k‖f‖2
BMO(R)|Q|.

2) On the other hand, for those J such that J * 3Q we have that

n+ 1 > rdist(I, J) =
diam(I ∪ J)

|J |
>
|Q|
|J |
≥ 2j+k

and so j < log(n+ 1)− k. Then, the contribution to sum (11) can be
estimated by

log(n+1)+|k|∑
j=0

min(2j, 2−k)
∑

J∈Qjk,n

|〈f, ψJ〉|2

≤
log(n+1)+|k|∑

j=0

min(2j, 2−k)‖f‖2
BMO(R)

∣∣∣⋃
J∈Qjk,n

J
∣∣∣.(12)

We now calculate the measure of the union of those intervals J ∈
Qj
k,n. If j ≥ −k then, from the different 2j possible intervals I ∈ Qj,

up to 2−k of them are associated with the same interval J . Then, the
union of those intervals J has measure 2j

2−k
|J | ≤ |Q|. On the other

hand, when j < −k, there is only a single interval J associated with
all intervals I ∈ Qj, which measures |J | ≤ |Q|2−(k+j). Then, the union
has measure at most max(2−k−j, 1)|Q| and thus, we bound (12) by

‖f‖2
BMO(R)

log(n+1)+|k|∑
j=0

2j min(1, 2−k−j) max(2−k−j, 1)|Q|

= ‖f‖2
BMO(R)

log(n+1)+|k|∑
j=0

2−k|Q|

= 2−k(log(n+ 1) + |k|+ 1)‖f‖2
BMO(R)|Q|.

This finishes the proof.

3.4. Sufficiency of the hypotheses: proof of endpoint compact-
ness. In this subsection, we prove compactness of singular integral
operators T as maps from L∞(R) to CMO(R).

To prove this result, we follow the scheme of the original proof of the
T (1) Theorem. Namely, we first assume that the special cancellation
property T (1) = T ∗(1) = 0 holds, and then we tackle the general
case with the use of paraproducts. Actually, we prove that under the
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special cancellation conditions the operator T extends compactly from
BMO(R) into CMO(R).

3.4.1. The special case: T (1) = T ∗(1) = 0. We start by proving the
main result under the special cancellation conditions.

Theorem 3.8. Let T be a linear operator associated with a compact
Calderón-Zygmund kernel satisfying the weak compactness condition
and the special cancellation conditions T (1) = 0 and T ∗(1) = 0.

Then, T can be extended to a compact operator from BMO(R) into
CMO(R).

Proof. Let (ψI)I∈D be a wavelet basis of L2(R) and H1(R) with L2-
normalized elements. Let PM be the lagom projection operator defined
by this basis. By the remarks at the end of Subsection 2.3, we have that
all functions in BMO(R) and H1(R) can be approximated by functions
in SN(R) with convergence in the weak* topology σ(BMO(R), H1(R))
and in the H1(R)-norm respectively.

Then, by Theorem 2.11 with E = CMO(R) equipped with the norm
of BMO(R), in order to show compactness of T , we need to check that
P⊥M(Tb) converges to zero in the operator norm ‖·‖BMO(R)→BMO(R) when
M tends to infinity. For this, it is enough to prove that 〈P⊥M(T (f)), g〉
tends to zero uniformly for all f, g ∈ SN(R) in the unit ball of BMO(R)
and H1(R) respectively.

For f, g ∈ SN(R), we recall

(13) 〈P⊥M(T (f)), g〉 =
∑
I∈D

∑
J∈DcM

〈f, ψI〉〈g, ψJ〉〈T (ψI), ψJ〉.

Since this inequality is understood as a limit, we can assume that the
sums run over finite but arbitrary in size families of dyadic intervals
and we will work to obtain bounds that are are independent of the
cardinality of the families.

We start by proving that for every ε > 0 there is M0 ∈ N such
that for any M > M0, we have F (I1, . . . , I6;MT,ε) . ε for Ii ∈ DcM .
This will follow as a consequence of the inequality F (I;MT,ε) . ε for
every I ∈ DcM . We note that the implicit constants only depend on the
admissible functions.

We first remind that by the definition of the weak compactness con-
dition, for ε > 0 there is MT,ε > 0 a constant such that for any interval
I and any φI , ϕI bump functions adapted to I with constant C > 0
and order N , we have

|〈T (φI), ϕI〉| ≤ C(FW (I;MT,ε) + ε).

We now show that there is M ′
0 ∈ N depending on ε such that for

any M > M ′
0, we have F (Ii;MT,ε) = F (I1, . . . , I6;MT,ε) . ε when all

Ii ∈ DcM .
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By the limit properties of the admissible functions in Definition 2.1,
we have that for fixed MT,ε > 0, there is M ′

0 ∈ N, depending on ε,MT,ε,
with M ′

0 > MT,ε, such that for any M > M ′
0, we get

LK(2M) + SK(2−M) +DK(M) < ε

and

LW (2M−MT,ε) + SW (2−(M−MT,ε)) +DW (M/MT,ε) < ε.

Let I ∈ DcM . The claim is proven by considering the following cases:

(1) If |I| > 2M then, since LK and LW are non-increasing, we have

F (I;MT,ε) . LK(|I|) + LW (|I|/2MT,ε)

≤ LK(2M) + LW (2M−MT,ε) . ε.

(2) If |I| < 2−M then, since SK and SW are non-decreasing, we have

F (I;MT,ε) . SK(|I|) + SW (2MT,ε |I|)
≤ SK(2−M) + SW (2−(M−MT,ε)) . ε.

(3) If 2−M ≤ |I| ≤ 2M with rdist(I,B2M ) > M then, as we saw in
the remark after Definition 2.12, |c(I)| > (M−1)2M . Therefore,

rdist(I,B
2
MT,ε ) ≥ 1 +

|c(I)|
max(|I|, 2MT,ε)

≥ 1 +
(M − 1)2M

max(2M , 2MT,ε)
≥M.

We can apply a similar reasoning to show that we also have
rdist(I,B) > M . Then, since DW is non-increasing, we have

F (I;MT,ε) . DK( rdist(I,B)) +DW (M−1
T,ε rdist(I,B

2
MT,ε ))

≤ DK(M) +DW (M/MT,ε) . ε.

Therefore, there is finally M0 ∈ N depending on ε such that for any
M > M0, we have

(1) F (Ii;MT,ε) = F (I1, . . . , I6;MT,ε) . ε when all Ii ∈ DcM
(2) M− δ

2 +M
3
2 2−M

δ
2 +

∑
e≥M 2−eδe1/2 < ε.

Now, for every ε > 0 and chosen M0 ∈ N, we are going to prove that
for all M > M0 we have

|〈P⊥2M(T (f)), g〉| . ε,

with the implicit constant depending on δ > 0 and the constant given
by the wavelet basis.

We first parametrize the terms in (13) according to eccentricity and
relative distance to obtain
(14)

〈P⊥2M(T (f)), g〉 =
∑
e∈Z

∑
n∈N

∑
J∈ Dc2M

∑
I∈Je,n

〈f, ψI〉〈g, ψJ〉〈T (ψI), ψJ〉,
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where for fixed eccentricity e ∈ Z, relative distance n ∈ N and every
given interval J ,

Je,n = {I : |I| = 2e|J |, n ≤ rdist(I, J) < n+ 1}.

By Proposition 2.20 we have

|〈T (ψI), ψJ〉| . 2−|e|(
1
2

+δ)n−(1+δ)(F (Ii;MT,ε) + ε),

where I1 = I, I2 = J , I3 = 〈I, J〉 , I4 = λ1K̃max, I5 = λ2K̃max

and I6 = λ2Kmin. with parameters λ1, λ2 ≥ 1 explicitly stated in
the mentioned Proposition. To simplify notation, we will simply write
F (Ii). We also note that the implicit constant might depend on δ and
the wavelet basis, but it is universal otherwise. Therefore,

|〈P⊥2M(T (f)), g〉| .
∑
e∈Z

∑
n∈N

2−|e|(
1
2

+δ)n−(1+δ)(15) ∑
J∈ Dc2M

∑
I∈Je,n

(
F (Ii) + ε

)
|〈f, ψI〉||〈g, ψJ〉|.

Now, in order to estimate (15), we divide the study into six cases:

(1) Ii /∈ DM for all i = 1, . . . , 6
(2) I ∈ DM
(3) 〈I ∪ J〉 ∈ DM

(4) I /∈ DM but λ1K̃max ∈ DM
(5) I /∈ DM but λ2K̃max ∈ DM
(6) I /∈ DM but λ2Kmin ∈ DM

1) In the first case we have F (Ii) < ε, and thus, we can bound the
contribution of the corresponding terms to (14) by

(16) ε
∑
e∈Z

∑
n∈N

2−|e|(
1
2

+δ)n−(1+δ)
∑

J∈ Dc2M

∑
I∈Je,n

|〈f, ψI〉||〈g, ψJ〉|.

Since as said, we consider that I and J run over finite families of
intervals, we can define f̃ =

∑
I |〈f, ψI〉|ψI and g̃ =

∑
J |〈g, ψJ〉|ψJ ,

so that 〈f̃ , ψI〉 = |〈f, ψI〉| and similarly for g̃. Then, for any interval
Q ⊂ R we have

‖PQ(f̃)‖2
L2(R) ≤

∑
I⊂Q

|〈f, ψI〉|2 = ‖PQ(f)‖2
L2(R),

where PQ(f) =
∑

I⊂Q〈f, ψI〉ψI is the classical projection operator de-

fined in (3). Therefore ‖f̃‖BMO(R) ≤ ‖f‖BMO(R) and, by a duality argu-
ment, we also have ‖g̃‖H1(R) ≤ ‖g‖H1(R).
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With this, we get for the inner sums in (16):∑
J∈ Dc2M

∑
I∈Je,n

|〈f, ψI〉||〈g, ψJ〉| ≤
∑
J ∈ D

∑
I∈Je,n

|〈f, ψI〉||〈g, ψJ〉|

=
∑
J ∈ D

∑
I∈Je,n

〈f̃ , ψI〉〈g̃, ψJ〉 =
〈
g̃,
∑
J∈D

∑
I∈Je,n

〈f̃ , ψI〉ψJ
〉

=
〈
g̃, Te,n(f̃)

〉
≤ ‖g̃‖H1(R)‖Te,n(f̃)‖BMO(R)

≤ 2
|e|
2 (log(n+ 1) + |e|+ 1)

1
2‖f̃‖BMO(R)‖g̃‖H1(R),

where the last inequality is due to Proposition 3.6. Notice also that
log(n+ 1) ≤ 2 log n ≤ 2δ−1nδ.

This way, (16) can be bounded by a constant times

ε
∑
e∈Z

∑
n∈N

2−|e|(
1
2

+δ)n−(1+δ)2
|e|
2 (nδ + |e|+ 1)

1
2‖f‖BMO(R)‖g‖H1(R)

. ε
∑
e∈Z

2−|e|δ|e|
1
2

∑
n≥1

n−(1+δ− δ
2

)‖f‖BMO(R)‖g‖H1(R)

. ε‖f‖BMO(R)‖g‖H1(R).

In the remaining cases, we will not use the smallness of F . Instead,
we will use the particular geometrical disposition of the intervals I and
J , which make either their eccentricity or their relative distance very
extreme. We recall that the intervals I and J in the sum (15) satisfy
|I| = 2e|J | and n ≤ rdist(I, J) < n+ 1.

2) We deal first with the case when I ∈ DM , that is, when 2−M ≤
|I| ≤ 2M and rdist(I,B2M ) ≤ M . Notice that, since F is bounded, we
can estimate F (Ii) + ε . 1.

Since J ∈ Dc2M , we separate the study into three cases: |J | > 22M ,
|J | < 2−2M and 2−2M ≤ |J | ≤ 22M with rdist(J,B22M ) > 2M .

2.1) In the case |J | > 22M , since 2e|J | = |I| ≤ 2M , we have 2e ≤
2M |J |−1 ≤ 2−M , that is, e ≤ −M . Therefore, the calculations devel-
oped in case 1) allow to bound the corresponding terms in (15) by∑

e ≤ −M

∑
n≥1

2−|e|(
1
2

+δ)n−(1+δ)
∑

J∈Dc2M

∑
I∈Je,n

|〈f, ψI〉||〈g, ψJ〉|

≤
∑

e ≤ −M

∑
n≥1

2−|e|(
1
2

+δ)n−(1+δ)2
|e|
2 (nδ + |e|+ 1)

1
2‖f‖BMO(R)‖g‖H1(R)

.
( ∑

e ≤ −M

2−|e|δ|e|
1
2

∑
n≥1

n−(1+ δ
2

)
)
‖f‖BMO(R)‖g‖H1(R)

. ε‖f‖BMO(R)‖g‖H1(R)

by the choice of M . This finishes this case.
2.2) The case |J | < 2−2M is symmetrical and amounts to changing

e ≤ −M by e ≥M in the previous case.
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2.3) In the case when 2−2M ≤ |J | ≤ 22M and rdist(J,B22M ) ≥ 2M ,
we have that |J | = 2k with −2M ≤ k ≤ 2M and |c(J)| ≥ (2M−1)22M .
Since I ∈ DM , we also have

M ≥ rdist(I,B2M ) = 2−Mdiam(I ∪ B2M )

≥ 2−M(2M−1 + |I|/2 + |c(I)|) ≥ 2−M(2M−1 + |c(I)|)
and then, |c(I)| ≤ (M − 1/2)2M . This implies

|c(I)− c(J)| ≥ |c(J)| − |c(I)|
≥ (2M − 1)22M − (M − 1/2)2M ≥M22M .

This way, since max(|I|, |J |) ≤ 22M , we get

n+ 1 > rdist(I, J) =
diam(I ∪ J)

max(|I|, |J |)
≥ |c(I)− c(J)|

max(|I|, |J |)
≥ 2−2MM22M = M.

Therefore, as in previous case, we bound the relevant terms in (15)
by a constant times∑

e ∈ Z

∑
n≥M−1

2−|e|(
1
2

+δ)n−(1+δ)
∑

J∈Dc2M

∑
I∈Je,n

|〈f, ψI〉||〈g, ψJ〉|

.
( ∑

e ∈ Z

2−|e|δ|e|
1
2

∑
n≥M−1

n−(1+ δ
2

)
)
‖f‖BMO(R)‖g‖H1(R)

.M− δ
2‖f‖BMO(R)‖g‖H1(R) < ε‖f‖BMO(R)‖g‖H1(R)

again by the choice of M .
3) Now, we deal with the case when 〈I, J〉 ∈ DM , that is, when

2−M ≤ |〈I, J〉| ≤ 2M and rdist(〈I, J〉,B2M ) ≤ M . Both inequalities
imply that 2−M ≤ diam(I ∪ J) ≤ 2M and |c(〈I, J〉)| ≤M2M .

Moreover, we have that c(〈I, J〉) = 1/2
(
c(I) + c(J) + α(|I| − |J |)

)
with α ∈ [−1, 1]. Then,

|c(I) + c(J)| ≤ 2|c(〈I, J〉)|+ ||I| − |J ||(17)

≤ 2M2M + |〈I, J〉| ≤ (2M + 1)2M

3.1) When |J | > 22M we have that |〈I, J〉| ≥ |J | > 22M implies
〈I, J〉 /∈ DM and so, we do not need to consider this case.

3.2) When 2−2M ≤ |J | ≤ 22M with rdist(J,B22M ) ≥ 2M , we have
that |c(J)| > (2M − 1)22M > M2M .

If sign c(I) = −sign c(J) we have

|〈I, J〉| = diam(I ∪ J) ≥ |c(I)− c(J)|
= |c(I)|+ |c(J)| > |c(J)| > M2M ,

which is contradictory with 〈I, J〉 ∈ DM .
Otherwise, if sign c(I) = sign c(J) we have

|c(I) + c(J)| = |c(I)|+ |c(J)| > M2M ,
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which is now contradictory with (17).
So, we do not need to consider this case either.
3.3) The remaining case is when |J | < 2−2M . If e ≥ 0 then,

n+ 1 > |I|−1diam(I ∪ J) = 2−e|J |−1|〈I, J〉| ≥ 2−e22M2−M = 2M−e.

Meanwhile, if e ≤ 0 we have

n+ 1 > rdist(I, J) = |J |−1diam(I ∪ J) ≥ 22M2−M = 2M .

Therefore, we bound the relevant part of (15) by a constant times∑
e ≥ 0

∑
n≥max(2M−e−1,1)

2−|e|(
1
2

+δ)n−(1+δ)
∑

J∈Dc2M

∑
I∈Je,n

|〈f, ψI〉||〈g, ψJ〉|

+
∑
e ≤ 0

∑
n≥2M−1

2−|e|(
1
2

+δ)n−(1+δ)
∑

J∈Dc2M

∑
I∈Je,n

|〈f, ψI〉||〈g, ψJ〉|

≤
( ∑

0 ≤ e ≤M − 1

2−|e|δ|e|
1
2

∑
n≥2M−e−1

n−(1+ δ
2

) +
∑
M ≤ e

2−|e|δ|e|
1
2

∑
n≥1

n−(1+ δ
2

)

+
∑
e ≤ 0

2−|e|δ|e|
1
2

∑
n≥2M−1

n−(1+ δ
2

)
)
‖f‖BMO(R)‖g‖H1(R)

.
( ∑
0 ≤ e ≤M − 1

2−eδ|e|
1
2 2−(M−e) δ

2 +
∑
M ≤ e

2−eδ|e|
1
2 + 2−M

δ
2

)
‖f‖BMO(R)‖g‖H1(R)

.
(

2−M
δ
2M

3
2 +

∑
M ≤ e

2−eδ|e|
1
2 + 2−M

δ
2

)
‖f‖BMO(R)‖g‖H1(R)

. ε‖f‖BMO(R)‖g‖H1(R)

by the choice of M .
6) We deal now with the case λ2Kmin ∈ DM , that is, 2−M ≤ |λ2Kmin| ≤

2M and rdist(λ2Kmin,B2M ) ≤M .
6.1) When |J | > 22M , we have two cases. Whenever e > 0 then,

Kmin = J and so, |λ2J | ≥ |J | ≥ 22M which is contradictory with
λ2J ∈ IM .

On the other hand, when e ≤ 0 we have Kmin = I and |I| ≤ |λ2I| ≤
2M . Then, 2e = |I|/|J | ≤ 2−M and so, e ≤ −M . Therefore, the
arguments of the case 2.1) show that the corresponding part of (15)
can be bounded by ε‖f‖BMO(R)‖g‖H1(R).

6.2) When 2−2M ≤ |J | ≤ 22M with rdist(J,B22M ) ≥ 2M , we have
|c(J)| > (2M − 1)22M . Now, we divide into the same two cases.

When e ≥ 0, we know Kmin = J and so, 2−M ≤ |λ2J | ≤ 2M with
rdist(λ2J,B2M ) ≤M . This leads to the following contradiction:

M ≥ rdist(λ2J,B2M ) > 2−M |c(J)| ≥ (2M − 1)2M .
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On the other hand, when e ≤ 0 we have Kmin = I and then, |c(I)| =
|c(λ2I)| ≤ (M − 1)2M . This implies |c(I)− c(J)| > M22M and

n+ 1 > rdist(I, J) ≥ |c(I)− c(J)|
|J |

≥M.

Then, the same arguments developed in the case 2.3) provide the bound
ε‖f‖BMO(R)‖g‖H1(R).

6.3) When |J | < 2−2M , we proceed as follows. If e ≥ 0, we have
Kmin = J and so, |λ2J | ≥ 2−M . This implies λ2 ≥ 2−M |J |−1 > 2M and

2M < λ2 =
(diam(I ∪ J)

|J |

)θ
=
( |I|
|J |

)θ
rdist(I, J)θ < 2eθ(n+ 1)θ

Meanwhile, if e ≤ 0, we have Kmin = I and then, |λ2I| ≥ 2−M . We
also have |I| ≤ |J | ≤ 2−2M . All this implies λ2 ≥ 2−M |I|−1 > 2M and

2M < λ2 =
(diam(I ∪ J)

|I|

)θ
=
( |J |
|I|

)θ
rdist(I, J)θ < 2−eθ(n+ 1)θ

Then, since θ < 1, we get n+1 > 2−|e|2
M
θ > 2−|e|2M and so, previous

arguments show that the relevant part of (15) can be bounded by( ∑
e ∈ Z

2−|e|δ|e|
1
2

∑
n≥2−|e|2M−1

n−(1+ δ
2

)
)
‖f‖BMO(R)‖g‖H1(R)

.
( ∑

e ∈ Z

2−|e|δ|e|
1
2 2|e|

δ
2 2−M

δ
2

)
‖f‖BMO(R)‖g‖H1(R)

. 2−M
δ
2‖f‖BMO(R)‖g‖H1(R) ≤ ε‖f‖BMO(R)‖g‖H1(R).

Finally, we note that similar type of calculations are enough to deal
with the two remaining cases 4) and 5). This completely finishes the
proof of Theorem 3.8.

3.5. The general case. For the proof of compactness in the general
case, that is, without the special cancellation conditions, we follow
the same scheme as in the proof of the classical T (1) theorem. When
b1 = T (1) and b2 = T ∗(1) are arbitrary functions in CMO(R), we
construct compact paraproducts Tb associated with compact Calderón-
Zymund kernels such that Tb1(1) = b1, T ∗b1(1) = 0. Then, the operator

T̃ = T − Tb1 − T ∗b2
satisfies the hypotheses of Theorem 3.8 and so, T̃ is compact from
BMO(R) to CMO(R). Finally, since the operators Tb1 and T ∗b2 are
compact from L∞(R) to CMO(R) by construction, we deduce that the
initial operator T is also compact from L∞(R) to CMO(R).

We remark that, as we will later see in full detail, the appropriate
paraproducts are exactly the same ones as in the classical setting, with
the only difference that the parameter functions bi belong to the space
CMO(R) instead of BMO(R).
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As in Proposition 3.9, we use a wavelet basis (ψI)I∈D of L2(R) and
H1(R) such that each ψI is an L2-normalized bump function supported
and adapted to I with constant C and order N .

We now denote by φ a positive bump function supported and adapted
to [−1/2, 1/2] with order N and integral one. Then, we have that
0 ≤ φ(x) ≤ C(1 + |x|)−N and |φ′(x)| ≤ C(1 + |x|)−N . Let (φI)I∈D be
the family of bump functions defined by φI = Tc(I)D1

|I|φ. Therefore,

each φI is an L1-normalized bump function adapted to I, that is, it
satisfies φI(x) ≤ C|I|−1(1+ |I|−1|x−c(I)|)−N and |φ′I(x)| ≤ C|I|−2(1+
|I|−1|x− c(I)|)−N .

Proposition 3.9. Given b ∈ CMO(R), we define the operator

Tb(f) =
∑
I∈D

〈b, ψI〉〈f, φI〉ψI ,

where ψI and φI are as described above.
Then, Tb and T ∗b are associated with a compact Calderón-Zygmund

kernel, and they are both compact from L∞(R) to CMO(R). Further-
more, 〈Tb(1), g〉 = 〈b, g〉 and 〈Tb(f), 1〉 = 0, for all f, g ∈ S(R).

Proof. In [13] we showed that Tb and T ∗b belong to the class of operators
for which the theory applies, that is, the integral representation of
Definition 2.5 holds with operator kernel satisfying the Definition 2.3
of a compact Calderón-Zygmund kernel.

For the proof of compactness of Tb, it is sufficient to verify that
〈P⊥M(Tb)(f), g〉 tends to zero for all f ∈ L∞(R) and g ∈ S(R) uniformly
in the unit ball of L∞(R) and H1(R) respectively. Since g ∈ H1(R),
we have P⊥M(g) =

∑
I∈DcM

〈g, ψI〉ψI .
We note that, by the classical T (1) theory, we already now that the

operator is bounded from L∞(R) to CMO(R) and so, the expression
Tb(f) is completely meaningful.

Moreover, since (ψI)I∈D can be chosen so that it is also a wavelet
basis on CMO(R) (see the comment in Lemma 2.16), we have P⊥M(b) ∈
BMO(R) and P⊥M(b) =

∑
I∈DcM

〈b, ψI〉ψI . With this,

〈P⊥M(Tb(f)), g〉 = 〈Tb(f), P⊥M(g)〉 =
∑
I∈D

〈b, ψI〉〈f, φI〉〈P⊥M(g), ψI〉

=
∑
I∈DcM

〈b, ψI〉〈f, φI〉〈g, ψI〉 =
∑
I∈D

〈P⊥M(b), ψI〉〈f, φI〉〈g, ψI〉

that is,

(18) 〈P⊥M(Tb(f)), g〉 = 〈TP⊥M (b)(f), g〉.

Then, boundedness of TP⊥M (b) from L∞(R) to BMO(R) implies

|〈P⊥M(Tb)(f), g〉| . ‖P⊥M(b)‖BMO(R)‖f‖L∞(R)‖g‖H1(R).
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Since limM→∞ ‖P⊥M(b)‖BMO(R) = 0, the inequality above finally proves
that Tb(f) is compact from L∞(R) into CMO(R).

The proof that Tb
∗ is compact from L∞(R) to CMO(R) is slightly

different since Tb
∗ does not satisfy the analogue to (18). Thus, we prove

instead the dual compactness for Tb. By (18) and boundedness of Tb
from H1(R) to L1(R), we have

|〈P⊥M(Tb)(f), g〉| = |〈(TP⊥M (b)(f), g〉| . ‖P⊥M(b)‖BMO(R)‖f‖H1(R)‖g‖L∞(R).

This proves that Tb is compact from H1(R) to L1(R) and so, by duality
T ∗b is compact from L∞(R) to BMO(R). But this obviously implies that
limM→∞ ‖P⊥M(T ∗b )(f)‖BMO(R) = 0 uniformly in the unit ball of H1(R)
and thus, the range of T ∗b is actually in CMO(R).

4. Compactness of a perturbation of the Cauchy
transform

In this section we apply our main theorem to demonstrate the com-
pactness of a certain perturbation of the Cauchy transform, for Lips-
chitz paths in the complex plane satisfying a CMO-condition. The ex-
ample illustrates with special clarity the scope and methodology of the
new theory since the computations involved are essentially variations
of the well known calculations pertaining to the study of the Cauchy
transform in the classical T (1)-theory. We note that a T (b)-theorem for
compactness in several dimensions is already under development, and
it could be of further use in the compactness theory of Cauchy-type
operators.

We start by giving the following definition.

Definition 4.1. We denote by L∞CMO(R) the closed subspace L∞(R) ∩
CMO(R) of L∞(R).

Let A : R → R be an absolutely continuous function such that
A′ ∈ L∞CMO(R), and let Γ ⊂ C be the curve given by the parametrization
z(t) = t + iA(t), t ∈ R. Given points z(x), z(t) ∈ Γ, we denote by
σz(x),z(t), τz(x),z(t) ∈ Γ the points

σz(x),z(t) = z

(
x− 1

4
(x− t)

)
, τz(x),z(t) = z

(
x− 3

4
(x− t)

)
,

lying in between z(x) and z(t) with respect to the parametrization of
Γ.

The application we present concerns a perturbation of the Cauchy
transform associated with Γ. Namely, define TΓ : Lp(Γ)→ Lp(Γ) by

TΓf(z) = 2

∫
Γ

f(w)

z − w + 2(σz,w − τz,w)
ds(w), f ∈ Lp(Γ), z ∈ Γ,
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where ds denotes the arc length measure on Γ. Note that if z = z(x)
and w = z(t), then

Re (z − w + 2(σz,w − τz,w)) = 2Re (z − w),

and

(19) Im (z − w + 2(σz,w − τz,w)) =

A(x)− A(t)− 2A(x− 1

4
(x− t)) + 2A(x− 3

4
(x− t))

In analogy with the Hilbert transform, we also introduce the operator
HΓ : Lp(Γ)→ Lp(Γ),

HΓf(z) =

∫
Γ

f(w)

Re (z − w)
ds(w), f ∈ Lp(Γ), z ∈ Γ.

One might surmise that there is a sufficient amount of cancellation in
(19) to cause TΓ − HΓ to be compact on Lp(Γ). We will apply the
results of this paper to prove exactly this when ‖A′‖∞ is sufficiently
small.

Proposition 4.2. Suppose that A : R → R is absolutely continuous,
and that A′ ∈ L∞CMO(R). Then, there exists an η > 0 such that TΓ−HΓ

is compact on Lp(Γ), 1 < p <∞, whenever ‖A′‖∞ < η.

Moving over to the real line, we have formally that

(20) (TΓf −HΓf)(z(t)) =
∞∑
n=1

(
−i
2

)n
Tn

(
f ·
√

1 + |A′|2
)

(t),

where Tn : Lp(R)→ Lp(R) is the operator associated to the kernel

Kn(x, t) =
(A(x)− A(t)− 2A(x− 1

4
(x− t)) + 2A(x− 3

4
(x− t)))n

(x− t)n+1
.

The expression for K1 is reminiscent of a double difference of A. Op-
erators associated to such kernels have received attention by Coifman
and Meyer [4]. Note that Kn is anti-symmetric for each n. In what
follows, we will prove that each Kn is a compact Calderón-Zygmund
kernel and that Tn satisfies the weak compactness condition with ap-
propriate bounds. Moreover, through an inductive procedure, we shall
compute Tn(1) and check its membership to CMO. This way, we will
deduce that Tn is compact and obtain the existence of a constant C > 0
such that ‖Tn‖Lp→Lp ≤ Cn‖A′‖n∞. Then, by setting η = 2/C, we will
have finally proven Proposition 4.2.

Note that we may write

Kn(x, t) =
1

x− t

∫ xt A′(z) dz

x− t
−

∫ x− 1
4

(x−t)
x− 3

4
(x−t) A

′(z) dz

1
2
(x− t)


n

.
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The inner expression can be interpeted as the difference of two averages
of A′. From the estimate

|fI − fJ | ≤
1

|J |

∫
J

|f − fI | dt ≤
2

|I|

∫
I

|f − fI | dt,

where J ⊂ I are two intervals such that |I| = 2|J | and fI denotes the
average of f on I, we deduce

(21) |Kn(x, t)| . 2n‖A′‖nBMO

1

|x− t|
.

Demonstrating the smoothness condition of Definition 2.3 is more
involved. Let x, t, t′ ∈ R with 0 < 2|t − t′| ≤ |x − t|. We denote
Gn(x, t) = (x− t)n+1Kn(x, t) for notational convenience and note that

Kn(x, t)−Kn(x, t′) =

Gn(x, t′)

(
(x− t′)n+1 − (x− t)n+1

(x− t)n+1(x− t′)n+1

)
+
Gn(x, t)−Gn(x, t′)

(x− t)n+1
.

Regarding the first term of this decomposition, there exists, by the
mean value theorem, a λ between t and t′, and therefore satisfying
|t− λ| < |t− t′|, such that

Gn(x, t′)

(
(x− t′)n+1 − (x− t)n+1

(x− t)n+1(x− t′)n+1

)
=

(n+ 1)
Gn(x, t′)

(x− t′)n
(x− λ)n

(x− t)n
t− t′

(x− t)(x− t′)
.

For M > 0, let

F1,n(M) = sup
Ix,t∈IcM

2|t−t′|≤|x−t|

∣∣∣∣Gn(x, t′)

(x− t′)n

∣∣∣∣ ,
where Ix,t is the interval with endpoints x and t, and IM is the set of
intervals I with center c(I) such that 2−M < |I| < 2M and |c(I)| <
M
2

. Clearly F1,n is decreasing, and from the assumption that A′ ∈
CMO in conjunction with the estimate (21) it follows that ‖F1,n‖∞ .
2n‖A′‖nBMO and limM→∞ F1,n(M) = 0. This gives us control of the first
term,∣∣∣∣Gn(x, t′)

(
(x− t′)n+1 − (x− t)n+1

(x− t)n+1(x− t′)n+1

)∣∣∣∣
. (n+ 1)

(
3

2

)n
F1,n (max (|log2(|x− t|)| , |x+ t|)) |t− t

′|
|x− t|2

.

To deal with the second term we will consider the cases n = 1 and
n ≥ 2 separately. Suppose first that n ≥ 2. Applying the mean value
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theorem, there exists a λ with

|A(t) + 2A(x− 1

4
(x− t))−2A(x− 3

4
(x− t))−λ| < |G1(x, t)−G1(x, t′)|

and such that

Gn(x, t)−Gn(x, t′)

(x− t)n+1
= n

G1(x, t)−G1(x, t′)

t− t′
(A(x)− λ)n−1

(x− t)n−1

t− t′

(x− t)2
.

At this point the condition A′ ∈ L∞ comes into play, since it is neces-
sary for estimating the first factor;∣∣∣∣G1(x, t)−G1(x, t′)

t− t′

∣∣∣∣ . ‖A′‖∞.
On the other hand, introducing

F2,n(M) = sup
Ix,t∈IcM

2|t−t′|≤|x−t|

∣∣∣∣A(x)− λ
x− t

∣∣∣∣n−1

,

we have that A′ ∈ CMO again implies that ‖F2,n‖∞ . 4n‖A′‖nBMO and
lim
M→∞

F2,n(M) = 0. Therefore,∣∣∣∣Gn(x, t)−Gn(x, t′)

(x− t)n+1

∣∣∣∣ .
n‖A′‖∞F2,n (max (|log2(|x− t|)| , |x+ t|)) |t− t

′|
|x− t|2

.

When n = 1, the previous argument fails. Instead, we pick a δ,
0 < δ < 1, and write∣∣∣∣G1(x, t)−G1(x, t′)

(x− t)2

∣∣∣∣ =

∣∣∣∣G1(x, t)−G1(x, t′)

t− t′

∣∣∣∣ |t− t′|1−δ|x− t|1−δ
|t− t′|δ

|x− t|1+δ
.

Define

F2,1(M) = sup
Ix,t∈IcM

2|t−t′|≤|x−t|

∣∣∣∣G1(x, t)−G1(x, t′)

t− t′

∣∣∣∣ |t− t′|1−δ|x− t|1−δ
.

It is clear that ‖F2,1‖∞ . ‖A′‖∞. We prove now that limM→∞ F2,1(M) =

0. For suppose that limM→∞ F2,1(M) = ` > 0. Then there exists a se-
quence (Mk) with Mk → ∞ and corresponding sequences (xk), (tk),
and (t′k) such that Ixk,tk ∈ IcMk

, 2|tk − t′k| ≤ |xk − tk|, and

(22)

∣∣∣∣G1(xk, tk)−G1(xk, t
′
k)

tk − t′k

∣∣∣∣ |tk − t′k|1−δ|xk − tk|1−δ
> `/2.

There could not exist a constant C > 0 such that

|tk − t′k|
|xk − tk|

≥ C



26 KARL-MIKAEL PERFEKT, SANDRA POTT, AND PACO VILLARROYA

for all k, for then∣∣∣∣G1(xk, tk)−G1(xk, t
′
k)

tk − t′k

∣∣∣∣ |tk − t′k|1−δ|xk − tk|1−δ
≤

21−δ

C

∣∣∣∣G1(xk, tk)−G1(xk, t
′
k)

xk − tk

∣∣∣∣→ 0, k →∞,

by the fact that A′ ∈ CMO. Hence it must be that

lim
k→∞

|tk − t′k|
|xk − tk|

= 0.

This also contradicts (22), however, since the first factor of the left
hand side is bounded, seeing as A′ ∈ L∞. By this contradiction we
conclude that limM→∞ F1,2(M) = 0.

Appealing to these estimates and the anti-symmetry of Kn we may
easily construct a set of admissible functions Ln, Sn and Dn so that the
conditions of Definition 2.3 are fulfilled with δ = 1 for n ≥ 2 and every
δ < 1 for n = 1. Hence, Kn is a compact Calderón-Zygmund kernel.

We turn now to the verification of the weak compactness condition.
For every compact interval I with center c(I), we introduce the kernel

KI
n(x, t) = |I|Kn(|I|x+ c(I), |I|t+ c(I)),

and note that
(23)

|KI
n(x, t)| ≤ 1

|x− t|
F3,n (max (|log2(|I||x− t|)| , ||I|(x+ t) + 2c(I)|)) ,

where

F3,n(M) = sup
Ix,t∈IcM

∣∣∣∣Gn(x, t)

(x− t)n

∣∣∣∣ .
As before it is clear that F3,n is a decreasing function with ‖F3,n‖∞ .
2n‖A′‖nBMO and limM→∞ F3,n(M) = 0. For φ ∈ S(R), we write φI(x) =

|I|−1/2φ
(
x−c(I)
|I|

)
. Given φ, ϕ ∈ S(R), we have by the anti-symmetry of

Kn that

2〈TnϕI , φI〉 =

∫
R2

Kn(x, t)(φI(x)ϕI(t)− φI(t)ϕI(x)) dx dt

=

∫
R2

KI
n(x, t)(φ(x)ϕ(t)− φ(t)ϕ(x)) dx dt.

Since |KI
n(x, t)| . 2n|x− t|−1 uniformly in I, there exists for each pair

(ϕ,φ) a constant Cϕ,φ depending only on a finite number of Schwarz
class seminorms, with the following property: for every ε > 0 there is
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an M ≥ 1, independent of ϕ and φ, such that∣∣∣∣∣∣∣
∫

{|x−t|>M}∪{|x−t|< 1
M
}∪{|x+t|>M}

KI
n(x, t)(φ(x)ϕ(t)− φ(t)ϕ(x)) dx dt

∣∣∣∣∣∣∣ ≤ 2nCϕ,φε.

To see this, simply note that

φ(x)ϕ(t)− φ(t)ϕ(x)

x− t
∈ S(R2)

is a Schwarz function of two variables. Furthermore, in view of (23)
we have

(24)

∣∣∣∣∣∣∣
∫

{ 1
M
<|x−t|<M}∩{|x+t|<M}

KI
n(x, t)(φ(x)ϕ(t)− φ(t)ϕ(x)) dx dt

∣∣∣∣∣∣∣
≤ CnC

′
ϕ,φF3,n

(
max

(
log2(

|I|
M

),− log2(|I|M),
rdist(I,D1)

M

))
,

for some constants Cn and C ′ϕ,φ, depending only on n and a finite
number of seminorms of ϕ and φ, respectively. Note in particular that
|x+ t| < M and |c(I)| > M |I| imply that

||I|(x+ t) + 2c(I)| > |c(I)| & rdist(I,D1)− 1

M
.

Together with the trivial facts that |I||x− t| > |I|/M and |I||x− t| <
|I|M when (x, t) lies in the domain of integration of (24), and that
rdist(I,D1)

M
≤ 2 when |c(I)| ≤ M |I|, we obtain the desired estimate in

(24) for an appropriate Cn. We conclude that Tn satisfies the weak
compactness condition. For future reference we also record the implied
bound on the weak boundedness constant of Tn present in the above
considerations. Namely

|〈TnϕI , φI〉| . 2n‖A′‖nBMOC
′
ϕ,φ.

Finally, we shall show that Tn(1) belongs to CMO by evaluating
it inductively in a principal value sense. The justifications for these
computations are analogous to those that appear in considerations of
Cauchy type operators in connection with the classical T (1) theory, see
for example Christ [2].

For x with |x| < r < R and ε > 0, integrate by parts to obtain that∫
|t|<R
|t−x|>ε

Kn(x, t) dt =
1

n

[
Gn(x, t)

(x− t)n

]t=R
t=−R

− 1

n

[
Gn(x, t)

(x− t)n

]t=x+ε

t=x−ε
+

∫
|t|<R
|t−x|>ε

Gn−1(x, t)

(x− t)n
(A′(t) +

1

2
A′(x− 1

4
(x− t))− 3

2
A′(x− 3

4
(x− t))) dt,
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with the understanding that G0 ≡ 1. Splitting the latter integral into
three parts according to its summands and making the linear changes
of variables x− t = 4(x− z) and x− t = 4

3
(x−w) in the last two terms

we find that

(25)

∫
|t|<R
|t−x|>ε

Kn(x, t) dt =
1

n

[
Gn(x, t)

(x− t)n

]t=R
t=−R

− 1

n

[
Gn(x, t)

(x− t)n

]t=x+ε

t=x−ε

+

∫
|t|<R
|t−x|>ε

Gn−1(x, t)

(x− t)n
A′(t) dt+

2

4n

∫
|x−4(x−z)|<R
|z−x|>ε/4

Gn−1(x, x− 4(x− z))

(x− z)n
A′(z) dz

− 2

(
3

4

)n ∫
|x− 4

3
(x−w)|<R

|w−x|>3ε/4

Gn−1(x, x− 4
3
(x− w))

(x− w)n
A′(w) dw

Since A′ ∈ CMO it is clear that the first two terms tend to zero,
uniformly for |x| < r, as ε→ 0 and R→∞.

Suppose now that n = 1. Seeing as r is arbitrary, we then find in
the limit that

T1(1) = H(A′) +
1

2
H(A′)− 3

2
H(A′) = 0.

where H denotes the usual Hilbert transform. Note that the Hilbert
transform is bounded as a map H : CMO→ CMO.

At this point we have verified the compactness of T1 on Lp, 1 <
p < ∞, and as a map T1 : L∞CMO → CMO. We now proceed with the
inductive step to prove the same for Tn, n ≥ 2. In this case passing to
the limit in (25) gives

(26) Tn(1) = Tn−1(A′) +
2

4n
T̃n−1(A′)− 2

(
3

4

)n
T̂n−1(A′),

where T̃n−1 and T̂n−1 are the operators associated to the kernels

K̃n−1(x, z) =
Gn−1(x, x− 4(x− z))

(x− z)n
,

K̂n−1(x,w) =
Gn−1(x, x− 4

3
(x− w))

(x− w)n
.

These kernels are very similar in character to Kn−1, and all computa-
tions performed up to this point can be repeated with minor modifica-

tions for them. In particular, K̃n−1 and K̂n−1 are compact Calderón-

Zygmund kernels, T̃n−1 and T̂n−1 satisfy the weak compactness condi-

tion, T̃1(1) = T̂1(1) = 0 and for n ≥ 2, both T̃n(1) and T̂n(1) are linear

combinations of Tn−1(A′), T̃n−1(A′) and T̂n−1(A′) with coefficients ex-
ponential in n.

Using these results and the fact that A′ ∈ L∞ ∩ CMO, we obtain
by induction that Tn : Lp → Lp, 1 < p < ∞ and Tn : L∞CMO → CMO
are compact maps for n ≥ 1. Furthermore, by inspecting the constants
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in the above calculations and appealing to classical T (1) theory [2],
we obtain bounds on the corresponding operator norms; there exists a
constant C > 0 such that

‖Tn‖Lp→Lp ≤ Cn‖A′‖n∞, ‖Tn‖L∞CMO→CMO ≤ Cn‖A′‖n∞.
We conclude that TΓ−HΓ : Lp(Γ)→ Lp(Γ) is compact when ‖A′‖∞ <
2/C, hence finishing the proof of Proposition 4.2. �
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