Wigner's theorem on Grassmann spaces

[thumbnail of WM.pdf]
Preview
Text - Accepted Version
· Available under License Creative Commons Attribution Non-commercial No Derivatives.
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Geher, G. P. (2017) Wigner's theorem on Grassmann spaces. Journal of Functional Analysis, 273 (9). pp. 2994-3001. ISSN 0022-1236 doi: 10.1016/j.jfa.2017.06.011

Abstract/Summary

Wigner's celebrated theorem, which is particularly important in the mathematical foundations of quantum mechanics, states that every bijective transformation on the set of all rank-one projections of a complex Hilbert space which preserves the transition probability is induced by a unitary or an antiunitary operator. This vital theorem has been generalised in various ways by several scientists. In 2001, Molnár provided a natural generalisation, namely, he provided a characterisation of (not necessarily bijective) maps which act on the Grassmann space of all rank-n projections and leave the system of Jordan principal angles invariant (see [17] and [20]). In this paper we give a very natural joint generalisation of Wigner's and Molnár's theorems, namely, we prove a characterisation of all (not necessarily bijective) transformations on the Grassmann space which fix the quantity TrPQ (i.e. the sum of the squares of cosines of principal angles) for every pair of rank-n projections P and Q.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/70779
Identification Number/DOI 10.1016/j.jfa.2017.06.011
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Publisher Elsevier
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar