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Time of Emergence’ (ToE), which characterizes when significant signals of climate 

change will emerge from existing variability, is a useful and increasingly common 

metric1-3. However, a more useful metric for understanding future climate change in the 

context of past experience may be the ratio of climate signal to noise (S/N) – a measure 

of the amplitude of change expressed in terms of units of existing variability. Here, we 

present S/N projections in the context of emergent climates (termed ‘unusual’, 

‘unfamiliar’ and ‘unknown’ by reference to an individual’s lifetime), highlighting 

sensitivity to future emissions scenarios and geographical and human groupings. We 

show how for large sections of the world’s population, and for several geopolitical 

international groupings, mitigation can delay the onset of ’unknown‘ or ’unfamiliar’ 

climates by decades, and perhaps even beyond 2100. Our results demonstrate that the 

benefits of mitigation accumulate over several decades, a key metric for such benefits is 

reducing S/N, or keeping climate as familiar as possible, and that a relationship exists 

between cumulative emissions and patterns of emergent climate signals. Timely 

mitigation will therefore provide the greatest benefits to those facing the earliest 

impacts, many of whom are alive now. 

Main Text 

We illustrate the effect of S/N on the degree of unfamiliarity that a new climate has using a 

Gaussian distribution as an example (see methods). The curves in Figure 1a show the 

relationship between climates passing different integer S/N values (denoted as SN1, SN2, 

SN3 respectively) compared to a “base” period. Panel 1a shows that at SN1, temperatures are 

unusual, but not unfamiliar – in the sense that they overlap with the base period 

approximately 62% of the time, and that years warmer than the new mean would have been 

experienced once every 6 years or so under the base climate – hence we denote SN1 as the 
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threshold for an “unusual” climate. At SN2 the overlap drops to 32%, implying that the 

coldest three years out of every ten in the warmer climate are the same as the warmest three 

years out of ten in the base period, but importantly the mean is warmer than 98% of base 

period years – hence SN2 is denoted “unfamiliar” in that the new climate would occur as a 1-

in-44 year event under the older base climate. By SN3 the overlap between coldest projected 

years and warmest base period years is only 13%, but the new mean climate is warmer than 

99.9% of the base years; this mean climate state is “unknown” in the sense that it would be 

experienced on average once every 740 years in the base climate, i.e. far beyond a human 

lifetime.  

Recent work4,5 considered the fraction of the global population crossing particular integer 

S/N values in future.  Panels 1b and 1c compare this global population-based metric with 

fraction of global surface area passing SN1 (pink curve); SN2; (red curve) and SN3 (maroon) 

for RCP4.5. Thick central curves mark the middle of the CMIP5 ensemble; bands represent 

the 16-84% range of CMIP5 ensemble members. The vast majority of communities can 

expect to experience “unfamiliar” climates by 2060, even if TCR is low. If TCR is high, then 

the vast majority of human communities will experience unknown climates, i.e. S/N > 3, by 

the 2040s.  

Panel 1d highlights that the rate of emergence is faster for human populations than for surface 

area in each RCP; in other words climates change faster where people live than where they do 

not. Approximately 50% of the global population can expect to experience unfamiliar 

climates (relative to 1986-2005) by approximately 2030 and unknown climates by mid-

century. Under the median RCP4.5 scenario, only 20% of people avoid living in unknown 

climates by 2100; as we show later, these people live in the extra-tropics. 
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Increasing S/N values implies increasing damages from climate change, a point amplified  if , 

as many people argue6-9, climate change damages are convex functions of temperature 

change. This effect is likely to be more pronounced if change is fast than if societies have 

more time to adjust10. Where climate change impacts are sigmoidal11 rather than convex, 

impacts may asymptote to a fixed value beyond some S/N level. However, even if this is the 

case the geographical sequencing of emergence with time is still robust. Although important 

institutional and geographical details may change the picture for certain regions and impacts, 

in general this suggests an urgent need to begin investing in adaptive capacity in those 

regions which are expected to experience unknown climates earliest. 

These regions are highlighted in Figure 2, which shows conventional maps and population-

weighted cartograms of late 21st-century (henceforth L21C) S/N values for the representative 

concentration pathway RCP4.5. The cartograms distort geographical shapes  by weighting the 

size of grid boxes by the number of people who live in that grid box, and are a novel way of 

differentiating human dimensions of climate emergence from geographical dimensions12. For 

example, while Figure 2a shows that some areas of the tropics are likely to experience 

unknown climates by L21C2, Figure 2c emphasises that these regions are home to a 

significant fraction of the world’s population, such as Malaysia/Indonesia, Western India, 

West Africa and Central America. Consistent with Figure 1d, Figure 2 shows that under the 

RCP4.5 scenario, a greater fraction of population than area experiences “unknown” climates 

by L21C, and that these people are predominantly in the tropics – a result that is more clearly 

displayed in cartograms than conventional maps. 

Under RCP4.5 the range in emergence values by the end of the century is mainly associated 

with uncertainties in the climate response (defined using Transient Climate Response, or 

TCR), with a smaller contribution from the amplitude of simulated variability, which affects 
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the estimated S/N values3. Some caution should be exercised in interpreting the very high 

S/N values in the tropics – models sometimes underestimate aspects of variability (issues 

discussed extensively in the Climate Model Evaluation Chapter of the most recent IPCC 

assessment)13  and, coupled with the already small annual variability in tropical temperatures, 

this may inflate simulated tropical S/N values. However, it should be stressed that while the 

details of extremely high tropical S/N values should be interpreted cautiously, it does not 

affect our main conclusions, which are based on S/N values of 2-3, i.e. unfamiliar and 

unknown climates. 

Figure 3 shows S/N in the RCP8.5 and RCP2.6 scenarios, and the effect of mitigating 

emissions from the former to latter scenario for the 16th and 84th percentile of the CMIP5 

ensemble. Figure 3 shows that under RCP 2.6, S/N has a high chance of staying below 3 over 

most parts of the world, in contrast to RCP 8.5, in which most areas are likely to exceed 

S/N=3 and experience “unknown climates” by L21C (Figure 3). The bottom two rows show 

where mitigating can make the greatest difference. Even in a low-TCR world, significant 

mitigation reduces L21C S/N by 3 or more for large groups of people in the tropics. We 

suggest that a key measure of successful mitigation should involve keeping climate as 

‘familiar’ as possible, and that the difference plots of Figure 3 represent a reasonable model 

of mitigation benefits measured in this manner. Interestingly, the qualitative patterns of the 

lower two rows of Figure 3 emerge if we compare any pairwise set of RCPs, implying that a 

relationship exists between S/N and cumulative emissions of carbon, and that this 

relationship is essentially a matter of pattern scaling (on sufficiently large spatial scales), as is 

the case with other temperature-based climate variables14.  Even though we are uncertain 

about the emissions trajectory under a world without climate policy and a world with a strong 

climate policy, we can be confident that the basic patterns summarized in Figure 3 describes 
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the benefits of mitigation in terms of the emergence of climate change signals above 

variability. 

The evolution of S/N in time highlights the speed at which large groups of countries start to 

experience ’unknown’ or ’unfamiliar’ climates. Figure 4 considers such a selection of 

international groups with spatial scales large enough to be represented in GCMs, but with 

very diverse economic and social characteristics: “AOSIS”- the Association of Small Island 

States; “ASEAN” - the Association of South-East Asian Nations; “LDCs” - countries 

considered to be  least developed (the “bottom billion”15,16); “GEMs” - Global Emerging 

Markets17 (those G20 countries not in the OECD90 group17); “OECD90” (all member 

countries of the Organization for Economic Cooperation and Development as of 1990). The 

curves in Figure 4 show cumulative distributions of population experiencing successive 

values of S/N, grouped by the above international groups, and by RCP scenario. 

The gains from mitigating from RCP 8.5 (red) to RCP 2.6 (blue) are shown on the right hand 

side column in orange. The blue curves in Figure 4 corresponding to RCP2.6 can also be 

considered a proxy for the minimum level of emergent temperature change to which people 

will have to adapt, unless mitigation strategies even more aggressive than those considered in 

RCP 2.6 are adopted. What is clear is that with levels of mitigation equivalent to RCP2.6, 

most people’s climates in OECD90 and GEM can be prevented from ever becoming 

“unknown”. Additionally, even though this is not the case for tropical groupings such as 

ASEAN and AOSIS, mitigation is arguably just as important here, if not even more, since the 

difference between S/N ~ 4 under RCP2.6 and S/N > 10 under RCP8.5 represents a very 

large amount of change-in-the-context-of-variability avoided. 

Even if RCP8.5 is too pessimistic to warrant being considered the starting point for 

mitigation the overall pattern of emergence avoided by mitigation (i.e. the benefits of 
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mitigation) still resembles a scaled version of the right-hand column of Figure 4 irrespective 

of the exact details of the scenario used to portray worlds without climate mitigation. More 

extensive results for regional economic groups, security-related groups, and climate 

negotiation blocs are presented in the Supplementary Information (Figure S5). 

The larger values of S/N in groups such as AOSIS (Figure 4a) compared to OECD90 (Figure 

4i) imply that the former grouping experiences earlier emergence of unusual or unfamiliar 

climates than the latter. Such relatively early change is likely to affect other places through 

economic, security or political spillover effects, especially where early climate impacts 

contribute to security and humanitarian issues in vulnerable countries or where trade in goods 

vulnerable to climate change is significant. Such groupings can be thought of as earliest 

common denominators of emergent change: patterns of emergent climate change within them 

affect those groups where ToEs are much later, depending on the strengths of the interactions 

between such groups. 

Policymakers and scholars are sometimes under the mistaken impression that benefits of 

mitigation are remote: “[t]he time lag is at the very least longer than the lifetime of any adult. 

The upshot is that no one who is asked to curtail activities to reduce greenhouse gas 

concentrations will be likely to live long enough to enjoy the benefits of that curtailment”18; 

and “Mitigation will have global benefits but, owing to the lag times in the climate and 

biophysical systems, these will hardly be noticeable until around the middle of the 21st 

century” (IPCC AR4 TS 5.2). Our analysis demonstrates that vast numbers of potential 

beneficiaries of climate policy are alive today: assuming that climate emergence scales 

approximately with cumulative emissions, in a high carbon future (RCP 8.5), today’s young 

adults in the OECD90 group for example can expect to find only one year in two familiar 

from their childhoods by mid-century. For citizens of AOSIS or the LDCs, the picture is 
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starker still. However, emergence everywhere is greatly reduced and delayed under a low 

carbon future, such as RCP2.6. Our analysis shows that near-term mitigation initiatives can 

prevent many climates from becoming radically different from those experienced in the 

recent past, that such effects happen well within a human lifetime, and that this is especially 

true for those whose communities would otherwise change fastest. In other words, many of 

the long-term benefits of mitigation can be internalized by many people alive today. 

 

Methods 

This study compares ensembles of models from the CMIP5 experiment run under 

representative concentration pathway (RCP) scenarios15. We estimate S/N for near-surface air 

temperature following previous published methods3 (and Kirtman et al. 2013, IPCC AR5 

Chapter 11), using the CMIP5 simulations for the 25 models which ran each of RCP2.6, 4.5 

& 8.5 scenarios, and presented relative to a baseline climate of 1986-2005.  

To obtain the 16th and 84th percentile, models are ordered from low to high, and we select the 

model which comes closest to representing a 16th and 84th percentile rank. So for the 25 

models used for the figures (which had data across all 3 RCPs), we have selected the models 

which were ranked numbers 4 and 21 (with 1 being lowest S/N, 25 being highest). This is 

done at each grid point.  

Signals are diagnosed by calculating the global mean surface air temperature (SAT) and 

fitting a 4th-order polynomial (GMST), then regressing gridpoint SAT against smoothed 

GMST using the whole time-series to derive a smoothed gridpoint signal which is 

proportional to the global mean. The 1986-2005 mean is then removed from the smoothed 

gridpoint data. The N term is the standard deviation of annual mean temperatures in the 

control runs at each grid point.3 
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Note that warming before 1986-2005 would add to the S/N values shown in this analysis. 

Population and national boundary data are from the CIESIN dataset. We overlay the national 

boundary mask from CIESIN on the population dataset to obtain the number of residents in 

each 1/4° grid box (both the population data and the national boundary data have this 

resolution). Where there are multiple countries within a dataset we apportion the population 

evenly between them. This introduces small inaccuracies, but these are negligible at the inter-

national and normalized scales on which the paper focuses. We then aggregate the 

appropriate national population data onto the lower resolution grid of the climate model 

output. We do this for each of the CMIP5 models for which data are available under the three 

scenarios considered here. This gives us both a number of people (in each climate model grid 

box) and a S/N (for each climate model grid box and year) for each model, for each scenario. 

Population changes over timescales relevant to this analysis, but there is uncertainty 

surrounding exactly how and where it will change the most. The presented analysis assumes 

2015 population levels throughout, but we repeated the analysis for the 2000 distribution of 

population to consider how recent demographic change interacts with emergent climate 

change (see Figure S7). Essentially the results are very similar under both population 

distributions. 

An important caveat is that natural variability places significant limits on our ability to give 

detailed estimates of exactly when climates cross integer S/N values, with both the simulation 

of natural variability and the models’ ability to capture anthropogenic change playing a role 

in determining the time of emergence of climate signals17. In particular we note that global 

temperatures did not warm as fast as the mean of the CMIP5 models in the early 21st 

Century18, likely due to natural radiative forcings not included in the simulations, internal 

climate variability, a relatively low TCR, or a combination thereof. This slowdown implies 

that, on average, the very earliest projected emergence dates are likely to be slightly delayed. 
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Figure 1: Schematic of the first four successive integer S/N values for a Gaussian distribution 
(panel a). Also shown in panel (a) are the fraction of the new distribution at successive 
integer S/N values which remains from the original distribution. Overlap between the base 
distribution and the distribution at successive standard deviation shifts of integer S/N values 
are shown as the grey segments – note that these are cumulative, i.e. in a shift from the base 
to the first S/N threshold the overlap includes all the grey segments. Panel (b) shows the 
cumulative fraction of the world’s surface area passing S/N1-3 under RCP4.5; panel (c) 
shows the cumulative fraction of the world’s population passing S/N1-3 under RCP4.5. Panel 
(d) shows the median rate at which cumulative fraction of global surface area passes SN1-3 
compared with the median rate at which the cumulative fraction of the global population 
passes these thresholds.  
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Figure 2: Maps (top row) of modelled annual mean S/N for the median (central column), and 
16th (left-hand column) and 84th (right-hand column) percentiles of the CMIP5 models under 
the RCP4.5 scenario, and corresponding population-based cartograms (bottom row). 
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Figure 3: Top row:  maps of modelled annual mean S/N values for the end of the 21st Century 
(2071-2100) for the 16th and 84th percentiles of the RCP2.6 scenario. Second row: as for the 
top row but for the RCP8.5 scenario. Third row: RCP8.5 minus 2.6, or, the S/N avoided by 
mitigation from RCP8.5 to 2.6. Bottom row: As for the third row, but displayed as 
population-based cartograms to better illustrate the human dimension of avoiding high values 
of S/N. Not all modelling groups ran all scenarios, so in this analysis we have only 
considered those models which ran both RCP 8.5 and RCP 2.6 (a total of 25 models), so that 
we would be making a like for like comparison in terms of ensemble members (see Figure  
S3). The data are displayed on a common scale. 
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Figure 4: S/N values versus cumulative fraction of population in different international 
groups under RCP2.6 (blue), RCP8.5 (red) and the difference between these (orange – 
displayed in right hand column). Median values are shown as central solid lines; bands 
represent the 16th-84th percentile of models in the CMIP5 ensemble. Additional groups are 
shown in the Supplementary information. 
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