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Degrees of strongly special subvarieties and
the André–Oort conjecture

By Christopher Daw at London

Abstract. In this paper we give a new proof of the André–Oort conjecture under the
generalised Riemann hypothesis. In fact, we generalise the strategy pioneered by Edixhoven,
and implemented by Klingler and Yafaev, to all special subvarieties. Thus, we remove ergodic
theory from the proof of Klingler, Ullmo and Yafaev and replace it with tools from algebraic
geometry. Our key ingredient is a lower bound for the degrees of strongly special subvarieties
coming from Prasad’s volume formula for S-arithmetic quotients of semisimple groups.

1. Introduction

Definition 1.1. Given a set † of special subvarieties of a Shimura variety S , we denote
by † the subset

S
V 2† V of S .

This paper is concerned with the following conjecture:

Conjecture 1.2 (André–Oort). Let S be a Shimura variety and let † be a set of spe-
cial points in S . Every irreducible component of the Zariski closure of † in S is a special
subvariety.

For the definition of Shimura varieties, special points and special subvarieties we refer
the reader to the introduction of [9]. The current paper is complementary to the aforementioned
article in the following sense: Klingler and Yafaev consider the above conjecture with † re-
placed by a set of special subvarieties, rather than just points. Via extra machinery developed
by Ullmo and Yafaev [19], the authors prove the conjecture, assuming the generalised Riemann
hypothesis (GRH), by repeatedly replacing the elements of † with higher dimensional special
subvarieties. They rely on a lower bound, obtained by Ullmo and Yafaev, on the degree of the
Galois orbit of a special subvariety. As one ranges through the elements of †, this bound is
either bounded from above or tends to infinity. In the case that it tends to infinity, the authors
are able to proceed using their generalisation of a method pioneered by Edixhoven that com-
pares Galois orbits and Hecke correspondences. Though technical, the proof relies on a simple
geometric idea.
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82 Daw, Degrees of strongly special subvarieties and the André–Oort conjecture

In the case that the lower bound is bounded for all elements in †, Klingler and Yafaev
appeal to a result by Ullmo and Yafaev [19], generalising the equidistribution of strongly
special subvarieties demonstrated by Clozel and Ullmo [4]. Our motivation was to remove this
element of the proof, thus eliminating the dependency on the extremely deep and complicated
theorems of Ratner. In this paper, we achieve this aim, thus reproving the following theorem
of Clozel and Ullmo:

Theorem 1.3. Let Z be a subvariety of a Shimura variety S . There exists a finite set

¹V1; : : : ; Vkº of positive dimensional, strongly special subvarieties Vi � Z such that, if V � Z

is a positive dimensional, strongly special subvariety, then V � Vi for some i 2 ¹1; : : : ; kº.

Therefore, under the GRH, we are able to prove the André–Oort conjecture solely via
the geometric strategy of Edixhoven. In fact, the case dealt with here is less technical and does
not depend on the GRH. We employ similar tools from algebraic geometry and the theory of
reductive groups over local fields. The main ingredient is the following lower bound for the
degrees of strongly special subvarieties. We refer the reader to Sections 2, 3, 4 and 6 for the
relevant definitions and explanations.

Theorem 1.4. Let .G; X/ be a Shimura datum such that G D Gad and fix a connected

component XC of X . Fix a faithful representation

� W G ,! GLn

and let K be a neat compact open subgroup of G.Af / such that K is the product of compact

open subgroups Kp �G.Qp/. There exist positive constants c and ı such that, if V is a strongly

special subvariety of SK.G; X/, defined by .H; XH /, then

degLK
V > c �….H; KH /ı :

This bound replaces the lower bound on the degrees of Galois orbits used in [9].
Otherwise, the strategy is largely similar, though somewhat simplified in this case since
we will not need an analogue of [9, Lemma 9.2.3]. Given a strongly special subvariety V ,
contained in an irreducible subvariety Z, one obtains a lower bound for the degree of V in
terms of a product of ‘bad’ primes (see Theorem 1.4). One then obtains a ‘good’ prime p,
small compared to the degree of V , such that there exists a ‘suitable’ Hecke correspondence T

at p satisfying V � T .V /. Thus, V is contained in the intersection Z \ T .Z/. However, if
the dimension of Z is only one greater than that of V , comparing their degrees leads one
to realise that the intersection Z \ T .Z/ cannot be proper. Therefore, since Z is irreducible,
it must be contained in T .Z/. In this case, a geometric argument implies that there exists
a strongly special subvariety V 0 � Z such that V ¨ V 0. On the other hand, if the intersec-
tion Z \ T .Z/ is proper, one chooses an irreducible component containing V and repeats the
above procedure.

This result represents the full generalisation of a strategy tested in [5] for removing
ergodic theory from the proof of the André–Oort conjecture. However, we also hope that the
bounds presented here will lead to useful developments in the wider world of the Zilber–Pink
conjectures.

Brought to you by | Bodleian Libraries of the University of Oxford

Authenticated

Download Date | 5/15/17 11:18 AM



Daw, Degrees of strongly special subvarieties and the André–Oort conjecture 83

2. Generalities

Unless stated otherwise, all varieties (except for linear algebraic groups) will be defined
over C and identified with their set of C-points. We will denote by Af the ring of finite
(rational) adeles and by yZ the product of Zp over all primes p.

For any algebraic group G, we will denote by Gad the quotient of G by its centre. If G is
defined over Qp and � is a faithful representation, we will consider G as a subgroup of GLn;Qp

.
For such a subgroup, we will denote by GZp

the Zariski closure of G in GLn;Zp
. We will say

that G is unramified if it is quasi-split and splits over an unramified extension of Qp. If G

and � are defined over Q, then the previous definitions make sense for GQp
and �Qp

for any
prime p. A subgroup Kp � G.Qp/ is called hyperspecial if there exists a smooth reductive
group scheme G over Zp such that GQp

D GQp
and G.Zp/ D Kp (see [2, Section 4.6]). By

a reductive group scheme, we mean a group scheme with reductive fibres.
Given an algebraic torus T over a field k and a representation

� W T ,! GLn;k;

let l=k be a Galois extension such that Tl splits. One obtains a decomposition ln D
L

� V�,
summing over characters � W Tl ! Gm;l of T , where V� is the l-subspace on which Tl acts
via �. We refer to those characters � such that V� ¤ ¹0º as the characters intervening in ln.
The characters of T form a free Z-module X�.T / equipped with an action of Gal.l=k/. After
choosing a basis for X�.T /, one may refer to the coordinates of a character � 2 X�.T /.

Let X be a complete irreducible variety and let L be a line bundle on X with topological
first Chern class

c1.L/ 2 H 2.X; Z/:

Given an irreducible subvariety V of X , we define the degree of V , with respect to L, as
in [9, Section 5.1], by

degL V WD c1.L/dim V \ ŒV � 2 H0.X; Z/ D Z;

where ŒV � 2 H2 dim V .X; Z/ denotes the fundamental class of V and \ denotes the cap product
between H 2 dim V .X; Z/ and H2 dim V .X; Z/. We will also put

Z

V

c1.L/dim V WD degL V:

When the variety X is a disjoint union of irreducible components Xi , the function degL is
defined as the sum

P
i degLjXi

.

3. Reductions

Consider a Shimura datum .G; X/, a connected component XC of X , and a compact
open subgroup K of G.Af /. We will write ShK.G; X/ for the corresponding Shimura variety
and denote by SK.G; X/ the image of XC � ¹1º in ShK.G; X/. Recall that the André–Oort
conjecture is equivalent for all choices of K.

We will write ShK.G; X/ for the Baily–Borel compactification of ShK.G; X/ (as
defined in [9, Proposition 5.3.1]) and LK for the corresponding ample line bundle (as de-
fined in [9, Proposition 5.3.2])). For an irreducible subvariety V of ShK.G; X/ we will denote
by V the Zariski closure of V in ShK.G; X/. We will write degLK

V for degLK
V .
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84 Daw, Degrees of strongly special subvarieties and the André–Oort conjecture

We denote by Xad the Gad.R/-conjugacy class of morphisms from S WD ResC=RGm;C

to Gad
R

that contains the image of X . Then .Gad; Xad/ is a Shimura datum, referred to as the
adjoint Shimura datum. The image Kad of K in Gad.Af / is a compact open subgroup and we
have an induced morphism

ShK.G; X/! ShKad.G
ad; Xad/:

By [8, Proposition 2.2], V is special if and only if its image Vad is special. Hence, for the
purposes of the André–Oort conjecture, we may assume that G D Gad.

Let ˛ 2 G.Af / and let T˛ be the associated Hecke correspondence on ShK.G; X/.
By the definition of a special subvariety, V is special if and only if one (or, equivalently,
all) of the irreducible components of T˛.V / is (are) special. In particular, in order to prove
the André–Oort conjecture, it suffices to consider sets of special subvarieties † such that the
Zariski closure of † in ShK.G; X/ is irreducible and contained in SK.G; X/.

In this paper, we will often have an inclusion of Shimura data .G1; X1/ � .G2; X2/

and a compact open subgroup K1 WD K2 \G1.Af / of G1.Af /, where K2 is a compact open
subgroup of G2.Af /. Thus, we obtain a morphism

� W ShK1
.G1; X1/! ShK2

.G2; X2/

and, by [19, Lemma 2.2], if K2 is neat, � is generically injective. In this case, we will use the
same symbol for a subvariety of ShK1

.G1; X1/ and its image in ShK2
.G2; X2/.

4. Choosing a measure

Consider a special subvariety V of SK.G; X/. By [19, Lemma 2.1], there exists a Shimura
subdatum .H; XH / of .G; X/ and a connected component XC

H of XH contained in XC

such that H is the generic Mumford–Tate group on XH and V is the image of XC
H � ¹1º

in ShK.G; X/. We will denote by KH the intersection K \H.Af / and by �H the intersec-
tion H.Q/C \KH , where H.Q/C is the stabiliser of XC

H in H.Q/. Thus, V is the image
of �H nXC

H in ShK.G; X/. We refer to .H; XH / as the Shimura datum defining V and we say
that V is strongly special if the image of H in Gad is semisimple.

The space XC
H is isomorphic to H ad.R/C=K1, where K1 is a maximal compact

subgroup of H ad.R/C. Let h denote the Lie algebra of H ad.R/C and let h� denote the dual
of h. Any real, non-zero, left-invariant differential form ! of maximal degree r on H ad.R/C

corresponds to an element of
Vr

h�.
Since h admits a Cartan decomposition k ˚ p, where k is the Lie algebra of K1 and p

is the tangent space of XC
H at the point K1, we can write ! D !k ^ !p, where !k and !p

correspond to real multilinear forms on k and p, respectively. In this paper, we will always
choose !k so that, with respect to the measure it determines, the volume of K1 is one.

Consider the unique (up to isomorphism) R-anisotropic form H c of H ad, i.e. the real
algebraic group H c isomorphic to H ad over C such that H c.R/ is compact. Then H c.R/ is
a connected, maximal, compact subgroup of H c.C/ containing a copy of K1 and the quotient
LXH WD H c.R/=K1 is called the compact dual of XC

H . It contains XC
H as an open subset.

Considering multilinear forms on the complexification hC WD h˝C, the form ! extends
C-linearly to a complex, left-invariant differential form !C on H ad.C/. As in [13, Proportion-
ality Theorem 3.2], the Lie algebra of H c.R/ inside hC is equal to k ˚ ip. We will always
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Daw, Degrees of strongly special subvarieties and the André–Oort conjecture 85

choose !p so that, with respect to the measure determined by !C , the volume of H c.R/ or,
equivalently, any maximal compact subgroup of H ad.C/, is one. Therefore, the volume of LXH

is also one.
We will denote by � the Haar measure on H ad.R/C determined by !. We will also

denote by � the volume measure on XC
H determined by !p. When we consider the volume

measures induced on arithmetic quotients of either H ad.R/C or XC
H , we will again use �.

5. Degrees of strongly special subvarieties

In order to prove Theorem 1.4, we will prove the following theorem, relating the degree
of a special subvariety to its volume:

Theorem 5.1. Let .G; X/ be a Shimura datum, let XC be a connected component of X ,

and let K be a neat compact open subgroup of G.Af /. There exists a constant c1 such that,

if V is a special subvariety of SK.G; X/, defined by .H; XH /, then

degLK
V > c1 � �.�H nXC

H /:

In this paper, a constant will be taken to mean a positive real number.

Proof. By [9, Corollary 5.3.10],

degLK
V � degLKH

V

and, for the remainder of this section, V will refer to the connected component �H nXC
H

of ShKH
.H; XH /.

Consider a smooth compactification V
sm

of V , thus providing a canonical birational map

� W V
sm
! V ;

as in the proof of [13, Proposition 3.4 (b)]. By [9, Proposition 5.3.2 (1)], the exterior product
�dim XH of the cotangent bundle � on XH descends to ShKH

.H; XH / and extends uniquely
to an ample line bundle on V (this is the restriction of LKH

). By [13, Proposition 3.4 (b)],
the pullback ��

LKH
of LKH

to V
sm

is the unique extension E of [13, Main Theorem 3.1].
Of course, �dim XH is the restriction of the exterior product L�dim XH of the cotangent bundle L�
on the compact dual LXH . By [13, Proportionality Theorem 3.2], we have

deg��LKH
V

sm
D .�1/dim XH � �.�H nXC

H / �

Z

LXH

c1. L�dim XH /dim XH :

However, since � is birational, the projection formula (see [9, Section 5.1]) implies that

deg��LKH
V

sm
D degLKH

V:

Furthermore, up to isomorphism, the number of Hermitian symmetric spaces corresponding to
Shimura subdata of .G; X/ is finite. Therefore,

.�1/dim XH �

Z

LX
C

H

c1. L�dim XH /dim XH ;

may assume only finitely many positive values.

Brought to you by | Bodleian Libraries of the University of Oxford

Authenticated

Download Date | 5/15/17 11:18 AM



86 Daw, Degrees of strongly special subvarieties and the André–Oort conjecture

6. Volumes of strongly special subvarieties

In this section, we prove a lower bound for the volume of a strongly special subvariety,
concluding the proof of Theorem 1.4. First, however, suppose that G is a reductive group
over Q and L is a finite Galois extension over which G is split. Since almost all places of L

are unramified over Q, it follows that GQp
is split over an unramified extension for almost all

primes p. Furthermore, by [17, Lemma 4.9 (ii)], GQp
is quasi-split for almost all primes p.

Therefore, we let †.G/ denote the finite set of primes p such that GQp
is not unramified.

Suppose that K is a compact open subgroup of G.Af /, equal to a product of compact
open subgroups Kp � G.Qp/; fix a faithful representation G ,! GLn. By [9, Section 4.1.5],
Kp D GZp

.Zp/ for almost all primes p. Thus, by [18, Section 3.9.1], Kp is hyperspecial for
almost all p. Therefore, we let †.K/ denote the finite set of primes p such that Kp is not
hyperspecial. Finally, we let †.G; K/ denote the set of primes belonging to either †.G/

or †.K/ and we let ….G; K/ denote their product.

Theorem 6.1. Let .G; X/ be a Shimura datum such that G D Gad and let XC be a con-

nected component of X . Fix a faithful representation

� W G ,! GLn

and let K be a neat compact open subgroup of G.Af /, equal to a product of compact open

subgroups Kp � G.Qp/. There exist constants c2 and ı such that, if V is a strongly special

subvariety of SK.G; X/, defined by .H; XH /, then

�.�H nXC
H / > c2 �….H; KH /ı :

In this section, we will use the term uniform to mean depending only on .G; X/, K and �.
Note that, since KH is neat, �H injects into H ad.R/C and so acts freely on XC

H .
Let ad W H ! H ad denote the natural map. Since K1 has volume one with respect to the
measure determined by !k, we have

�.�H nXC
H / D �.ad.�H / nH ad.R/C/:

Since H is semisimple, we have a central isogeny � W eH ! H , where eH is simply
connected and whose centre we denote Z �H . We denote by Z � Z �H the kernel of � . Note that,
by [10, Proposition 1.4.5], the maximal split tori (resp. parabolic subgroups) of eH are in
bijection via this morphism with the maximal split tori (resp. parabolic subgroups) of H .
Therefore, †.eH/ D †.H/.

Since � is finite, and therefore proper,

eKH WD ��1
Af

.KH /

is a compact open subgroup of eH.Af / and we let

e�H WD eH.Q/ \ eKH ;

which is equal to ��1.�H /. Since KH is necessarily a product of compact open subgroups
KH;p � H.Qp/, eKH is also a product of compact open subgroups eKH;p � eH.Qp/. Let Km

�H
be a maximal compact open subgroup of eH.Af / containing eKH and let

�m
�H WD

eH.Q/ \Km
�H :

Again Km
�H

is a product of maximal compact open subgroups Km
�H;p
� eH.Qp/.
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By [11, Theorem 5.2], eH.R/ is connected and so acts on H ad.R/C through ad ı � .
Therefore, we have two finite projections

ad.�H / nH ad.R/C  ad ı �.e�H / nH ad.R/C ! ad ı �.�m
�H / nH ad.R/C

yielding the equality

�.ad.�H / nH ad.R/C/ D
Œad ı �.�m

�H
/ W ad ı �.e�H /�

Œad.�H / W ad ı �.e�H /�
� �.ad ı �.�m

�H / nH ad.R/C/:

Lemma 6.2. There exists a uniform constant c3 such that

Œad ı �.�m
�H / W ad ı �.e�H /� > c3ŒKm

�H W
eKH �:

Proof. Consider the surjective map

�m
�H ! ad ı �.�m

�H /=ad ı �.e�H /:

Since e�H D ��1.�H /, the kernel is equal to

.ad ı �/�1.ad ı �.��1.�H /// \ �m
�H ;

which is readily seen to be Z �H .Q/ � ��1.�H /. Therefore, we turn our attention to Œ�m
�H
W e�H �.

Write

Km
�H D

na

iD1

ki
eKH ;

where ki 2 Km
�H

. By strong approximation (as in [11, Theorem 4.16]), applied to eH , each ki

can be written as qik
0
i , where qi 2 eH.Q/ and k0

i 2
eKH . Therefore, in the above, we may

replace ki with qi . Intersecting both sides with eH.Q/ we obtain

�m
�H D

na

iD1

qi
e�H ;

and so qi 2 �m
�H

.

Lemma 6.3. There exist uniform constants c4 and C such that

Œad.�H / W ad ı �.e�H /� < c4C j†.H;KH /j:

Proof. Consider the surjective map

�H ! ad.�H /=ad ı �.e�H /:

The kernel is equal to
ad�1.ad ı �.e�H // \ �H ;

which is readily seen to be

.�.e�H / �ZH .Q// \ �H D �.e�H / � .ZH .Q/ \ �H /;

where ZH is the centre of H , whose order is uniformly bounded by the proof of [19, Lem-
ma 2.4]. Therefore, we turn our attention to Œ�H W �.e�H /�.
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Recall that Galois cohomology yields an exact sequence

eH.Q/! H.Q/! H 1.Gal.Q=Q/; Z.Q//:

Therefore, �.e�H / n �H embeds as a subgroup of the Abelian group H 1.Gal.Q=Q/; Z.Q//.
On the other hand, �.e�H / n �H embeds into

�.eKH / nKH D
Y

p

�.eKH;p/ nKH;p

and, again, Galois cohomology tells us that, for all primes p,

�.eKH;p/ nKH;p ,! H 1.Gal.Qp=Qp/; Z.Qp//:

However, now consider a prime p such that HQp
is unramified and KH;p is hyper-

special. Since eH Qp
is also unramified, it follows that eH.Qp/ also possesses hyperspecial

subgroups by [18, Section 3.8.2]. Therefore, by [18, Section 3.8.1], there exist smooth reductive
group schemes eH and H over Zp, the generic fibres of which are eH Qp

and HQp
, such that

KH;p D H.Zp/ and eH.Zp/ is a hyperspecial subgroup of eH.Qp/. By [20, Lemma 2.3.1],
the central isogeny �Qp

extends uniquely to a central isogeny �Zp
W eH! H. Therefore, the

kernel Z of �Zp
is a finite group scheme of multiplicative type such that ZQp

D ZQp
. Over

a finite Galois extension F of Q, ZF is isomorphic to a product of roots of unity, whose orders
we denote n1; : : : ; nr . Therefore, by [7, Exposé X, Lemme 4.1], if p is coprime to the ni ,
ZFp

is smooth.
Therefore, by [15, Lemma 6.5], for any prime p … †.H; KH / and coprime to the ni ,

we have an exact sequence

eH.Zp/! H.Zp/! H 1.Gal.Qun
p =Qp/; Z.Zun

p //;

where Qun
p is the maximal unramified extension of Qp and Zun

p is its ring of integers. However,
since eKH;p clearly contains eH.Zp/ and, by [18, Section 3.8.2], eH.Zp/ is maximal among
compact subgroups of eH.Qp/, we have eH.Zp/ D eKH;p.

By [6, Theorem 5.1], the degree ŒF W Q� is bounded in terms of the dimension of any
maximal torus of eH containing Z, which is itself bounded by a uniform constant. By the proof
of [19, Lemma 2.4], the order of Z is also bounded by a uniform constant and so the same
can be said of jH 1.Gal.F=Q/; Z.F //j. Therefore, we may consider the image of the quotient
�.e�H / n �H in H 1.Gal.Q=F /; Z.Q//, whose image in H 1.Gal.Qp=F�/; Z.Qp// is con-
tained in H 1.Gal.Qun

p =F�/; Z.Zun
p // for all places � of F lying above a prime p … †.H; KH /

coprime to the ni .
We identify the three previous cohomology groups with the groups

rY

iD1

.F �/ni n F �;

rY

iD1

.F �
� /ni n F �

� and
rY

iD1

.O�
F�

/ni nO
�
F�

and choose a uniformiser �� 2 F at each place � lying above a prime p 2 †.H; KH / or
dividing one of the ni . Therefore, the image of

�.e�H / n �H !

rY

iD1

.F �/ni n F �

is contained in the subgroup generated by O
�
F and the �� . Now, O

�
F is a finitely generated

Abelian group whose rank and torsion subgroup are uniformly bounded and, since the ni are
bounded by the order of Z, we are done.
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We now appeal to Prasad’s formula.

Lemma 6.4. There exist uniform constants c5 and ı1 such that

�.ad ı �.�m
�H / nH ad.R/C/ > c5 �….eH; Km

�H /ı1 :

Proof. Let

e! WD 1

jZ �H j
!�;

where !� is the pullback of ! to eH.R/. Denote by e� the measure determined by e! on eH.R/

and its arithmetic quotients. By [11, Proposition 5.1], eH.R/! H ad.R/C is surjective. On the
other hand, the kernel of the map

�m
�H n

eH.R/! ad ı �.�m
�H / nH ad.R/C

is �m
�H
\Z �H .R/ nZ �H .R/. It follows from the proof of [19, Lemma 2.4] that

�.ad ı �.�m
�H

/ nH ad.R/C/

e�.�m
�H
n eH.R//

is greater than a uniform constant.
Since eH is simply connected, it is a direct product H1 � � � � �Hs of quasi-simple,

simply connected subgroups. We can write e! D !1 ^ � � � ^ !s , where !i is a real, non-zero,
left-invariant differential form of maximal degree on Hi .R/. Since ad ı � is surjective, of
degree jZ0j and proper, the preimage of a maximal compact subgroup of H ad.C/ is a maximal
compact subgroup of eH.C/, whose volume with respect to the measure determined by e!C is
one. The !i are, therefore, determined up to multiplication by a non-zero multiplicative con-
stant. We choose this constant so that the volume of any maximal compact subgroup of Hi .C/

is one. We denote the measures determined on the Hi .R/ by �i . Since Km
�H

is maximal, it is
a product of maximal compact open subgroups

Km
Hi
� Hi .Af /;

each a product of maximal compact open subgroups Km
Hi ;p � Hi .Qp/. Hence,

e�.�m
�H n

eH.R// D

sY

iD1

�i .�
m
Hi
nHi .R//;

where �m
Hi
WD Hi .Q/ \Km

Hi
.

By [21, Section 3.3], each Hi is of the form ResKi =QH 0
i , where Ki is a totally real

number field and H 0
i is a simply connected, absolutely quasi-simple group. Now,

Hi .Qp/ D ResKi =QH 0
i .Qp/ D H 0

i .Ki ˝Q Qp/ D
Y

�jp

H 0
i .Ki;�/;

where the product runs over the places � of Ki lying above p and Ki;� is the completion of Ki

with respect to the valuation determined by � . Thus, Km
Hi ;p is a product of maximal compact

open subgroups Km
H 0

i
;�
� H 0

i .Ki;�/.
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Since Hi .R/ D
Q

�j1 H 0
i .Ki;�/, we can write

!i D ^�j1!i;� ;

where !i;� is a real, non-zero, left-invariant differential form of maximal degree on H 0
i .Ki;�/.

We choose the !i;� so that the volume of any maximal compact subgroup of H 0
i .C/ is one.

Note that, by [16, Section 3.5], for each archimedean place � of Ki , the Haar measure �i;�

determined by !i;� on H 0
i .R/ is precisely that defined in [16, Section 3.6]. Therefore, by

[16, Theorem 3.7],

�i .�
m
Hi
nHi .R// D D

1
2

dim H 0
i

Ki
� jNKi =Q.�Li =Ki

/j
si
2 �

 
riY

j D1

mi;j Š

.2�/mi;j C1

!ŒKi WQ�

� �Ki
.H 0

i / � �i ;

where

� DKi
is the absolute value of disc.Ki /,

� Li is the splitting field of the quasi-split inner form Hi of H 0
i ,

� NKi =Q is the norm on Ki ,

� �Li =Ki
is the relative discriminant of Li over Ki ,

� si is the integer defined in [16, Section 0.4],

� ri is the absolute rank of Hi ,

� the mi;j are the exponents of the simple, simply connected, compact real-analytic Lie
group of the same type as Hi ,

� �Ki
.H 0

i / D 1 is the Tamagawa number of H 0
i (see [16, Section 3.3]),

� �i is the product, over all finite places � of Ki , of local factors �i;� .

Note first that dim H 0
i , si , ri , the mi;j and ŒKi W Q� are all positive integers, with the

possible exception of si when Li D Ki , in which case it becomes irrelevant. It is also worth
noting that they are all uniformly bounded.

Recall that �Li =Ki
is an ideal in OKi

with the property that the prime ideals dividing it
are precisely those that ramify in OLi

, i.e. those places � of Ki such that Hi;Ki;�
does not split

over an unramified extension of Ki;� . Its norm NKi =Q.�Li =Ki
/ is divisible by precisely those

primes p such that there exists a place � lying above p and dividing �Li =Ki
.

By [16, Section 2.10], �i;� > 1 for all non-archimedean places � of Ki . Furthermore, if

� H 0
i;Ki;�

is not quasi-split,

� Km
H 0

i
;�

is not special,

or

� H 0
i;Ki;�

splits over an unramified extension of Ki;� and Km
H 0

i
;�

is not hyperspecial,

then
�i;� � q

ri;� C1

i;� � .qi;� C 1/�1;

where qi;� is the cardinality of the residue field ki;� of Ki;� and ri;� � 1 is the rank of Hi;Ki;�

over the maximal unramified extension of Ki;� . Therefore, let †i be the set of primes p such
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that, for some place � of Ki lying above p, either of the following holds:

� H 0
i;Ki;�

is not quasi-split,

� H 0
i;Ki;�

does not split over an unramified extension of Ki;� ,

� Km
H 0

i
;�

is not a hyperspecial subgroup of H 0
i .Ki;�/.

Then there exist uniform constants c6 and ı2 such that

�i .�
m
Hi
nHi .R// > c6D

1
2

dim H 0
i

Ki
�
Y

p2†i

pı2 :

However, recall that

Hi;Qp
D
Y

�jp

ResKi;�=Qp
H 0

i;Ki;�
:

Therefore, by [1, Section 6.19], the set †.Hi / is contained in the union of †i and the set of
primes p dividing DKi

. On the other hand, suppose that Km
H 0

i
;�

is a hyperspecial subgroup
of H 0

i .Ki;�/ for each place � of Ki lying above a prime p.
For each such subgroup, there exists a smooth group scheme H0

i;OKi;�

over OKi;�
with

generic fibre H 0
i;Ki;�

such that

� H0
i;ki;�

is reductive,

� H0
i;Oki;�

.OKi;�
/ is equal to Km

H 0
i
;�

.

Let

Hi;Zp
WD

Y

�jp

ResOKi;�
=Zp

H0
i;OKi;�

:

Then, the generic fibre of Hi;Zp
is Hi;Qp

and Hi;Zp
.Zp/ D Km

Hi ;p. Furthermore, if p does not
divide DKi

, then

Hi;Fp
D
Y

�jp

ResOKi;�
˝Zp Fp=Fp

H0
i;OKi;�

˝Zp Fp
D
Y

�jp

Reski;�=Fp
H0

i;ki;�

is a reductive group over Fp. Therefore, the set †.Km
Hi

/ is also contained in the union of
the †i and the set of primes p dividing DKi

, from which we conclude there exists a uniform
constant ı3 such that

�i .�
m
Hi
nHi .R// > c6 �….Hi ; Km

Hi
/ı3 :

However, the union of the †.Hi / is equal to †.H/ and the union of the †.Km
Hi

/ is equal
to †.Km

�H
/.

We will require the following lemma in the proof of Lemma 6.6 and also to obtain suitable
Hecke correspondences:

Lemma 6.5. Let T be a maximal torus of HQp
. There exists a basis of X�.T / such

that the coordinates of the characters of T intervening in Q
n

p are bounded in absolute value by

a uniform constant.
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Proof. By the proof of [3, Proposition 2.1], since H is the generic Mumford–Tate
group on XH , there exists a dense set of special points X 0

H in XH such that, for x 2 X 0
H ,

the Mumford–Tate group MT.x/ of x is a maximal torus in H . Choose an x 2 X 0
H and let

M WD MT.x/. Denote by L the splitting field of M and by RL the torus ResL=QGm;L.
The reciprocity morphism rx W RL !M corresponding to x (see [11, p. 104]) is surjec-

tive and induces an embedding
X�.M/ ,! X�.RL/:

Enumerate the elements � 2 Gal.L=Q/, thereby producing a basis B WD ¹b�º of X�.RL/.
By [23, Section 2], with respect to this basis, the characters of M intervening in Q

n
have

coordinates bounded in absolute value by a uniform constant.
Since any two maximal tori of HQp

are conjugate by an element of H.Qp/, we may
conjugate rx;Qp

by an element of H.Qp/ to obtain a surjective morphism

r 0
x;Qp

W RL;Qp
! T

Qp
:

Thus, we obtain an embedding

X�.T
Qp

/ ,! X�.RL;Qp
/

such that, with respect to the basis B, the coordinates of the characters of T intervening in
Q

n

p are uniformly bounded in absolute value. Since our representation was faithful, these char-
acters generate X�.T Qp

/ and so there are only finitely many possibilities for this submodule
of X�.RL; Qp

/. For each such possibility, choose a basis for X�.T Qp
/ and consider the maxi-

mum of the absolute values of coordinates of the characters intervening in Q
n

p with respect to
these bases.

Lemma 6.6. There exist uniform constants c7 and c8 such that, for any p … †.eH; Km
�H

/

greater than c7, such that eKH;p ¨ Km
�H;p

,

ŒKm
�H;p
W eKH;p� > c8p:

Proof. We will imitate the proof of [19, Proposition 3.15]. Let p … †.eH; Km
�H

/ be
a prime. Since

Km
�H;p
� eH.Qp/

is hyperspecial and HQp
is unramified, there exist smooth reductive group schemes eH and H

over Zp, the generic fibres of which are eH Qp
and HQp

, such that

Km
�H;p
D eH.Zp/:

By [20, Lemma 2.3.1], the central isogeny �Qp
extends uniquely to a central isogeny

�Zp
W eH! H

and we denote the kernel Z.
The map

eKH;p n eH.Zp/! KH;p nH.Zp/

is injective. However, recall from the proof of Lemma 6.3 that the cokernel is no larger than
H 1.Gal.Qun

p =Qp/; Z.Zun
p //. Furthermore, if F is the splitting field of Z and � is a place of F

lying above p, the kernel of the restriction map to H 1.Gal.Qun
p =F�/; Z.Zun

p // is uniformly
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bounded. However, as we have seen, H 1.Gal.Qun
p =F�/; Z.Zun

p // is itself uniformly bounded.
Therefore, it suffices to show there exist uniform constants c7 and c8 such that

ŒH.Zp/ W KH;p� > c8p

whenever p > c7.
Let T be a maximal torus of H. The group .KH;p \ T.Zp// n T.Zp/ is a subset of

KH;p nH.Zp/ and so the previous lower bound for the size of this group would suffice. Let T

denote the generic fibre of T and note that, by [18, Section 3.8.2], the hyperspecial subgroup
T.Zp/ is the maximal compact subgroup of T .Qp/. Therefore, if Kp D GZp

.Zp/, a condition
satisfied for all primes p greater than a uniform constant, TZp

is only a torus if

KT;p WD GLn.Zp/ \ T .Qp/ D KH;p \ T .Qp/ D KH;p \ T.Zp/

is equal to T.Zp/.
We claim that it is possible to choose T such that TZp

is not a torus. In particular, since,
by [7, Exposé XXII, Section 8], every semisimple element of H is contained in a maximal
torus, we are claiming that H.Zp/ nKH;p contains a semisimple element. To see this, note that,
by [7, Exposé XXII, Corollaire 1.10], the functor of maximal tori of H is representable by H=N,
where N is the normaliser of a maximal torus in H. By [7, Exposé XXII, paragraph following
Lemme 4.5], and by [7, Exposé XXI, Proposition 5.9], the universal maximal torus T of H (see
[7, Exposé XXII, Section 8]) has the same dimension as H. However, the morphism u W T! H

is quasi-finite. Hence, by [7, Exposé XXII, Proposition 8.1], the semisimple elements of H

constitute a constructible set of dimension dim H, which therefore contains a Zariski open set.
On the other hand, H.Zp/ nKH;p is open in H.Zp/ for the p-adic topology and so the claim
follows.

By [15, Section 3.3, p. 134], every maximal compact subgroup of GLn.Qp/ is conjugate
to GLn.Zp/ by an element of GLn.Qp/. Hence, there exists a g 2 GLn.Qp/ such that

T.Zp/ D gGLn.Zp/g�1 \ T .Qp/:

Let T0 ´ g�1Tg. Hence, GLn.Zp/ \ T0.Qp/ is a maximal compact open subgroup Km
T0;p

of T0.Qp/ and, since KT;p D GLn.Zp/ \ T .Qp/, conjugation by g�1 establishes a bijection

KT;p n T.Zp/$ .g�1GLn.Zp/g \ T0.Qp// nKm
T0;p:

The latter index is the size of the orbit Km
T0;p � g

�1Zn
p in the space of lattices of Qn

p . Note that

Km
T0;p D T0;Zp

.Zp/:

Since T splits over an unramified extension of Qp, so too does T0 and so, by [18, Section 3.8.2],
Km

T0;p is a hyperspecial subgroup. Therefore, T0;Zp
is a torus.

By [7, Exposé X, Lemme 4.1], there is a canonical isomorphism

X�.T0;Qp
/ Š X�.T0;Fp

/

identifying the characters intervening in Q
n

p and F
n

p . Thus, with respect to the image of the
basis obtained using Lemma 6.5, the coordinates of the characters of T0;Fp

intervening in F
n

p

are bounded in absolute value by a uniform constant.
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Therefore, by [8, Lemma 4.4.1], for all subspaces W of F
n

p , the group of connected com-
ponents of the stabiliser of W in T0; Fp

is of order bounded by a uniform constant. Since TZp

is not a torus, T0;Zp
does not fix the lattice g�1Zn

p in the sense of [8, Section 3.3]. Therefore,
[8, Proposition 4.3.9] implies that there exists a uniform constant c8 such that the size of the
orbit T0;Zp

.Zp/ � g�1Zn
p is greater than c8p.

Lemma 6.7. There exists a uniform constant c9 such that, if p … †.eH; eKH / is a prime

greater than c9, then p … †.H; KH /.

Proof. Since HQp
is unramified and eKH;p is hyperspecial, there exist smooth reductive

group schemes eH and H over Zp, the generic fibres of which are eH Qp
and HQp

, such that

eKH;p D eH.Zp/:

Therefore, H.Zp/ is a hyperspecial subgroup of H.Qp/. By [20, Lemma 2.3.1], the central
isogeny �Qp

extends uniquely to a central isogeny �Zp
W eH! H.

Let Km
H;p be a maximal compact open subgroup containing KH;p. Therefore, Km

H;p con-
tains the image of eKH;p. Since, by [18, Section 3.8.2], eKH;p is maximal, [14, Proposition 3.3]
implies that

Km
H;p D H.Zp/:

Since eKH;p D eH.Zp/, the map

eH.Zp/! KH;p nH.Zp/

is trivial and we have seen that the cokernel is uniformly bounded. On the other hand, the
proof of Lemma 6.6 shows that, if p is greater than a uniform constant and KH;p ¨ H.Zp/,
then ŒH.Zp/ W KH;p� is at least a uniform constant times p.

Proof of Theorem 6.1. Recall that

�.�H nXC
H / D

Œad ı �.�m
�H

/ W ad ı �.e�H /�

Œad.�H / W ad ı �.e�H /�
� �.ad ı �.�m

�H / nH ad.R/C/:

Therefore, by Lemmas 6.2 and 6.3, we have

�.�H nXC
H / > c3c�1

4 C �j†.H;KH /j � ŒKm
�H W

eKH � � �.ad ı �.�m
�H / nH ad.R/C/;

so, by Lemma 6.4,

�.� nXC
H / > c3c�1

4 c5C �j†.H;KH /j � ŒKm
�H W

eKH � �….eH; Km
�H /ı1 :

Lemma 6.6 implies that there exist uniform constants c10 and ı4 such that

�.� nXC
H / > c10C �j†.H;KH /j �….eH; eKH /ı4 :

Therefore, the result follows from Lemma 6.7.

Proof of Theorem 1.4. Follows from Theorem 5.1 and Theorem 6.1.
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7. Choosing a suitable Hecke correspondence

In this section, we prove an analogue of [9, Theorem 8.1], demonstrating the existence
of suitable Hecke correspondences. Recall that, if .G; X/ is a Shimura datum, Gad decom-
poses into a product of simple factors, which we denote Gi . Thus, Xad decomposes into
a product of factors Xi and, if XC is a connected component of X , then it decomposes into
a product of factors XC

i . If Kad is equal to a product of compact open subgroups Ki � Gi .Af /,
then SKad.G

ad; Xad/ is equal to the product of the SKi
.Gi ; Xi /. If K is a compact open sub-

group of G.Af /, equal to the product of compact open subgroups Kl of G.Ql/, we will use
the notation Kp to denote the product

Q
l¤p Kl .

Theorem 7.1. Let .G0; X 0/ be a Shimura datum such that G0 D G0ad, let K 0 be a neat

compact open subgroup of G0.Af /, equal to a product of compact open subgroups K 0
p

of G0.Qp/, and fix a faithful representation

� W G0 ,! GLn:

There exist positive integers k and f such that, if

� V is a strongly special subvariety of SK0.G0; X 0/, defined by .H; XH /,

� p … †.H; KH / is a prime such that K 0
p D G0

Zp
.Zp/,

� .G; X/ is a Shimura subdatum of .G0; X 0/ such that V is contained in SK.G; X/, where

K WD K 0 \G.Af /,

then there exist a compact open subgroup

Ip � Kp WD K 0
p \G.Qp/

and an element ˛ 2 G.Qp/ such that

� ŒKp W Ip� � pf ,

� if I � K is the compact open subgroup KpIp � G.Af /,

� W ShI .G; X/! ShK.G; X/

is the natural morphism, and eV � SI .G; X/C is an irreducible component of ��1.V /,

then eV � T˛.eV /,

� for every k1; k2 2 Ip, the image of k1˛k2 generates an unbounded subgroup of Gi .Qp/

for each i ,

� ŒIp W Ip \ ˛Ip˛�1� < pk .

In this section, we will use the term uniform to mean depending only on .G0; X 0/, K 0

and �. Firstly, we will deal with the matter of including a strongly special subvariety in its
image under a Hecke correspondence:

Lemma 7.2. There exists a uniform integer A such that, for any ˛ 2 H.Af /,

V � T˛A.V /:
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Proof. By definition, the subvariety V is the image of XC
H � ¹1º in ShK.G; X/. Thus,

consider a point .x; 1/ 2 V with x 2 XC
H . Let

� W eH ! H

be the simply connected covering, whose degree we denote d , and consider an ˛ 2 H.Af /.
Therefore, for any positive integer A divisible by d , there exists an element ˇ 2 eH.Af /

such that �.ˇ/ D ˛A. By strong approximation applied to eH , ˇ D qk, where q 2 eH.Q/

and k 2 ��1.K/. Note that, since � is proper, ��1.K/ is a compact open subgroup of eH.Af /.
Since eH.R/ is connected, �.q/ 2 H.R/C and �.q/ � x 2 XC

H .
Thus, consider the point

.�.q/ � x; �.ˇ// 2 T˛A.V /:

By the previous discussion, this is equal to .x; 1/. Since d is bounded by a uniform integer D,
setting A D DŠ finishes the proof.

In order to find suitable Hecke correspondences, we will also need the following two
results on maximal split tori:

Lemma 7.3. Let p … †.H; KH / be a prime such that K 0
p D G0

Zp
.Zp/. Then there

exists a maximal split torus S � HQp
such that SZp

is a torus.

Proof. Since p … †.H; KH /, there exists a smooth reductive group scheme H over Zp

such that HQp
D HQp

and H.Zp/ D KH;p. Let S be a maximal split torus of H and let S

denote its generic fibre. By [18, Section 3.8.1], SZp
is a torus if

SZp
.Zp/ WD GLn.Zp/ \ S.Qp/ D KH;p \ S.Qp/

is equal to S.Zp/. However, since KH;p D H.Zp/, it follows that SZp
.Zp/ contains S.Zp/

and so, by [18, Section 3.8.2], they are equal.

Lemma 7.4. Assume HQp
is quasi-split and let S � HQp

be a maximal split torus.

There exists a basis of X�.S/ such that the coordinates of the characters of S that intervene

in Qn
p are uniformly bounded in absolute value.

Proof. Let T � HQp
be the centraliser of S in HQp

. Since HQp
is quasi-split, T is

a maximal torus of HQp
. By [22, Section 7.4], there exists an isogeny T ! S � A, where A is

the maximal anisotropic subtorus of T , and the degree d of this isogeny is bounded
by ŒLT W Q�dim T , where LT is the splitting field of T . Note that dim T is bounded by the
absolute rank of G and that, by [6, Theorem 5.1], ŒLT W Q� is bounded in terms of the dimen-
sion of T .

Consider the map of characters

' W � 7! �S C �A W X
�.T /! X�.S/˚X�.A/

induced by the inclusions S � T and A � T . The characters of S intervening in Qn
p are

precisely the �S such that � 2 X�.T / intervenes in Q
n

p .
Now consider the embedding

� W X�.S/˚X�.A/ ,! X�.T /
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induced by the above isogeny. By Lemma 6.5 there exists a basis ¹e1; : : : ; erº of X�.T / such
that the coordinates of the characters of T intervening in Q

n

p are bounded in absolute value by
a uniform constant B 0. Given a character of T , its coordinates increase in absolute value by at
most a factor of d under � ı '.

Thus, let ¹�iº be the characters of T intervening in Q
n

p and let ¹�i;S C �i;Aº be their
images in X�.S/˚X�.A/. Write the image of �i;S C �i;A under � as

rX

j D1

ni;j ej :

Hence, jni;j j < B WD dB 0 for all i and j and ni;j D ni;S;j C ni;A;j , where

rX

j D1

ni;S;j ej and
rX

j D1

ni;A;j ej

are the images of the �i;S and �i;A under �, respectively. Therefore, either jni;S;j j < B for
all i and j , or there exist i and j such that jni;S;j j � B , in which case ni;S;j and ni;A;j are of
opposite signs.

Assume the latter, letting �i denote the corresponding character and letting ni;S;j denote
the coefficient with absolute value at least B . Since our representation of T was defined
over Qp, for each � 2 Gal.Qp=Qp/, ��i also intervenes. Since S is split,

��i;S D �i;S for every � 2 Gal.Qp=Qp/.

Therefore, the image of ��i in X�.S/˚X�.A/ varies over �i;S C ��i;A and, since A is
anisotropic, X

�2Gal.Qp=Qp/

��i;A D 0:

Thus, there exists a � 2 Gal.Qp=Qp/ such that the coefficient of ej corresponding to the image
of ��i;A under � is of the opposite sign to ni;A;j . But then this coefficient is of the same sign
as ni;S;j , which implies that the sum of these two coefficients has absolute value greater than
or equal to B , which is a contradiction.

Therefore, with respect to the basis ¹e1; : : : ; erº of X�.T /, the coordinates of the char-
acters of S intervening in Qn

p are bounded in absolute value by B . Since our representation
is faithful, these characters generate X�.S/ and so, as a submodule of X�.T /, there are only
finitely many possibilities for X�.S/. For each such possibility, choose a basis and consider
the maximum of the absolute values of the coordinates of the characters intervening in Qn

p .

Proof of Theorem 7.1. By Lemma 7.3, since p … †.H; KH /, we can find a non-trivial,
maximal, split torus S � HQp

such that SZp
is a torus. Furthermore, by Lemma 7.4, there is

a basis of X�.S/ such that the coordinates of the characters intervening in Qn
p are uniformly

bounded in absolute value. Let �i W G ! Gi denote the natural morphisms. By [13, SV3],
it follows that Si WD �i .S/ is a non-trivial, split torus.

As K 0
p D G0

Zp
.Zp/, the compact open subgroup Kp WD K 0

p \G.Qp/ of G.Qp/ is equal
to GZp

.Zp/ and

ŒKp W Kp \ ˛Kp˛�1� D ŒKp W Kp \ ˛GZp
.Zp/˛�1� for any ˛ 2 S.Qp/:
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98 Daw, Degrees of strongly special subvarieties and the André–Oort conjecture

By [8, Lemma 7.4.3], for qi D �i jS and e D A (the positive integer given by Lemma 7.2), there
exist a uniform constant k0 and an element ˛ 2 S.Qp/ such that no �i .˛/ lies in a compact
subgroup of Si .Qp/ and

ŒKp W Kp \ ˛AGZp
.Zp/˛�A� < pk0

:

Next we define Ip following [9, Section 8.3.2]. Since S is a split torus and SZp
is a torus,

it follows that GZp
.Zp/ D Kp is in good position with respect to S (using the terminology

of [9, Section 4.1.6]).
Let f be the constant, defined in [9, Lemma 8.1.6 (b)], for the group G0. We claim that

there exists an Iwahori subgroup I 1
p of G.Qp/ such that

ŒKp W Kp \ I 1
p � < pf :

To see this we let K1
p be any maximal compact subgroup of G.Qp/ containing Kp. Since Kp is

in good position with respect to S , so too is K1
p . Thus, by [9, Lemma 8.1.6 (b) (i)], there exists

an Iwahori subgroup I 1
p � K1

p in good position with respect to S satisfying ŒK1
p W I

1
p � < pf .

Thus,
ŒKp W Kp \ I 1

p � < pf :

Let S 0 be a maximal split torus of GQp
containing S such that I 1

p is in good position
with respect to S 0. Let M be the centraliser of S 0 in GQp

. Let B be the (extended) Bruhat–Tits
building of G and A � B the apartment of B associated to S 0.

The group M.Qp/ acts on A as follows: we denote by

ordM WM.Qp/! X�.M/Qp

the homomorphism characterised by

hordM .m/; �i D ordp.�.m// for all � 2 X�.M/Qp
,

where ordp is the normalised additive valuation on Q�
p and X�.M/Qp

(resp. X�.M/Qp
)

denotes the group of cocharacters (resp. characters) of M defined over Qp. Let ƒ � X�.M/Qp

be the free Z-module ordM .M.Qp//. Then M.Qp/ acts on A via ƒ-translations.
Let Km

p be a special compact subgroup containing I 1
p and let x 2 A be the unique special

vertex fixed by Km
p . Recall the element ˛ 2 S.Qp/ chosen above. The vector ordM .˛/ 2 ƒ is

non-trivial. Let C be the chamber of A fixed pointwise by I 1
l

(it contains x in its closure).
Consider the chamber C 0 D C C ordM .˛/. Let C � A be the unique Weyl chamber with
apex x containing C 0. Finally, let I 2

p be the Iwahori subgroup of G.Qp/ fixing the unique
chamber of C containing x in its closure.

Define Ip as the intersection Kp \ I 1
p \ I 2

p . Since I 2
p stabilises a chamber in A it is also

in good position with respect to S 0 and, therefore, S . Thus, Ip is in good position with respect
to S . It follows from [9, Lemma 8.1.6 (b) (ii)] that

ŒKp W Ip� D ŒKp W Kp \ I 1
p \ I 2

p �

� ŒK1
p W I

1
p \ I 2

p �

< pf ;

which is the first condition of Theorem 7.1. By Lemma 7.2, we have eV � T˛A.eV /, which is
the second condition of Theorem 7.1.

Brought to you by | Bodleian Libraries of the University of Oxford

Authenticated

Download Date | 5/15/17 11:18 AM



Daw, Degrees of strongly special subvarieties and the André–Oort conjecture 99

Let S 0
i WD �i .S

0/ and denote by Mi WD �i .M/ its centraliser. Let Ci be the unique
chamber of the Bruhat–Tits building Bi of Gi;Qp

fixed by the Iwahori subgroup �i .I
2

p / and
let xi be the vertex in the closure of Ci fixed by �i .K

m
p /. Finally, let Ci be the unique Weyl

chamber of the apartment Ai corresponding to S 0
i with apex xi and containing Ci .

For Mi we have a homomorphism

ordMi
WMi .Qp/! X�.Mi /Qp

;

defined analogously to ordM . We denote the image ordMi
.Mi .Qp/ by ƒi . Thus, Mi .Qp/ acts

on Ai by ƒi -translations. We denote by ƒC
i � ƒi the positive cone stabilising Ci . By virtue

of our choice of I 2
p , since �i .˛/ does not lie in a compact subgroup of Si .Qp/, it follows

that ordMi
.�.˛// lies in ƒC

i n ¹0º. Hence, ordMi
.�i .˛

A// must also belong to ƒC
i n ¹0º. Thus,

by [9, Proposition 8.1.4], for any k1; k2 2 I 2
p (in particular for any k1; k2 2 Ip), �i .k1˛Ak2/

generates an unbounded subgroup of Gi .Qp/. This is the third condition of Theorem 7.1.
Finally, from the previous discussion we have

ŒIp W Ip \ ˛AIp˛�A� D ŒIp W Ip \ ˛AKp˛�A� � ŒIp \ ˛AKp˛�A W Ip \ ˛AIp˛�A�

� ŒKp W Kp \ ˛AKp˛�A� � ŒKp W Ip�

� ŒKp W Kp \ ˛AGZp
.Zp/˛�A� � ŒKp W Ip�

� pk0Cf WD pk :

This is the fourth condition of Theorem 7.1.

8. The geometric criterion

In this section, we explain the procedure via which we replace strongly special sub-
varieties with higher dimensional, strongly special subvarieties given the existence of suitable
Hecke correspondences:

Theorem 8.1. Let .G; X/ be a Shimura datum and let K � G.Af / be a neat compact

open subgroup, the product of compact open subgroups Kp � G.Qp/. Let XC be a connected

component of X and let V be a special subvariety of SK.G; X/. Suppose that V is properly

contained in a Hodge generic, irreducible subvariety Z of SK.G; X/ and assume that there

exist a prime p and an ˛ 2 G.Qp/ such that

� Z � T˛.Z/,

� for every k1; k2 2 Kp, the element k1˛k2 generates an unbounded subgroup of Gi .Qp/

for each i .

Then Z contains a special subvariety V 0 containing V properly. Moreover, if V is strongly

special, then V 0 is strongly special.

This theorem is very similar to [9, Theorem 7.2.1] and the proof here is nearly a carbon
copy of the proof found in there. Our situation is slightly simplified by the fact that Z is geo-
metrically irreducible. Ensuring that V 0 properly contains V is where we require the stronger
condition on ˛.
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Lemma 8.2. If the conclusion of Theorem 8.1 holds for all Shimura data .G; X/ with G

semisimple of adjoint type, then it holds for all Shimura data.

Proof. Consider the situation in Theorem 8.1. We have a finite morphism of Shimura
varieties

f W ShK.G; X/! ShKad.G
ad; Xad/:

Let Zad be the image of Z under this morphism. Similarly, let Vad be the image of V . Thus,
Vad is a special subvariety of SKad.G

ad; Xad/.
Let ˛ad denote the image of ˛ in Gad.Qp/. The inclusion Z � T˛.Z/ implies that

Zad � T˛ad.Zad/:

As Kad is a product of compact open subgroups Kad;p � Gad.Qp/, the second condition of
Theorem 8.1 implies the analogous condition for ˛ad and Kad;p.

As irreducible components of the preimage of a special subvariety by a finite morphism
of Shimura varieties are special, it is enough to show that Zad contains a special subvariety V 0

ad
containing Vad properly.

Thus, in this section, we henceforth assume that G is semisimple of adjoint type.
We fix a Z-structure on G by choosing a finitely generated free Z-module W , choosing
a faithful representation

� W G ,! GL.WQ/

and taking the Zariski closure of G in GL.W /. We may choose � in such a way that K

is contained in GL.WyZ/. This canonically induces a Z-variation of Hodge structures F on
ShK.G; X/ and, in particular, on SK.G; X/ (see [8, Section 3.2]).

Let z be a Hodge generic point of the smooth locus Zsm of Z. Let �1.Zsm; z/ be the
topological fundamental group of Zsm at the point z. We choose a point x 2 X lying above z.
This choice canonically identifies the fibre at z of the locally constant sheaf underlying F

with the Z-module W . The action of �1.Zsm; z/ on this fibre is described by the monodromy
representation

� W �1.Zsm; z/! �1.SK.G; X/; z/ D G.Q/C \K ,! GL.W /:

Since Z is Hodge generic in ShK.G; X/, the Mumford–Tate group of FjZsm at z is G.
Thus, by [12, Section 1.4], given that the group G is adjoint, the group �.�1.Zsm; z// is Zariski
dense in G. Having fixed a prime p (as in Theorem 8.1), [9, Proposition 4.2.1] implies that the
p-adic closure of �.�1.Zsm; z// in G.Zp/ is a compact open subgroup K 0

p � Kp.
We have a Galois, pro-étale cover

�Kp
W ShKp .G; X/! ShK.G; X/;

with group Kp, as defined in [9, Section 4.1.3]. Let eZ be an irreducible component of the
preimage of Z in ShKp .G; X/ and let eV be an irreducible component of the preimage of V

in eZ. By [9, Lemma 7.2.3], we have

Lemma 8.3. The variety eZ is stabilised by the group K 0
p and the set of irreducible

components of ��1
Kp

.Z/ is naturally identified with the finite set Kp=K 0
p.
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The inclusion Z � T˛.Z/ implies that eZ is an irreducible component of ��1
Kp

.T˛.Z//.
However, these components are of the form eZ � k1˛k2 for k1; k2 2 Kp. Therefore, there exist
k1; k2 2 Kp such that eZ D eZ � k1˛k2.

Corollary 8.4. Let Up be the group generated by K 0
p and k1˛k2. The variety eZ is

stabilised by the group Up.

We now conclude the proof of Theorem 8.1. Again, let �i W G ! Gi denote the natural
morphisms. By the condition placed on ˛, the group �i .Up/ is unbounded in Gi .Qp/ for all i .
Let G1;Qp

D
Q

i Hi be the decomposition of G1;Qp
into simple factors. Up to renumbering,

we can assume that the projection of Up to H1.Qp/ is unbounded in H1.Qp/. Let

� W eH 1 ! H1

be the universal cover of H1. We have ([9, Lemma 7.2.6]):

Lemma 8.5. The group Up \H1.Qp/ contains the group �.eH 1.Qp// with finite index.

Let Kp;1 be the compact open subgroup �1.Kp/ of G1;Qp
and let Kp;>1 be the projection

of K to

G>1;Qp
WD

Y

i>1

Gi;Qp
:

As Up is an open subgroup of G.Qp/, it contains a compact open subgroup of G1;Qp
and,

in particular, a compact open subgroup Up;1 of Kp;1 \
Q

i>1 Hi .Qp/. Similarly, Up contains
a compact open subgroup Up;>1 of Kp;>1. By the previous lemma, Up contains the unbounded
subgroup �.eH 1.Qp// � Up;1 � Up;>1. We make the definition ([9, Definition 7.2.7]):

Definition 8.6. We replace Up by its subgroup �.eH 1.Qp// � Up;1 � Up;>1. We denote
by V 0 the Zariski closure of �Kp

.eV � Up/.

Since eZ is stabilised by the group Up, the variety V 0 is a subvariety of Z. Therefore,
let Ki WD �i .K/ and let K be the neat compact open subgroup

Q
i Ki . We have the natural

finite morphism

f W ShK.G; X/! ShK.G; X/

of Shimura varieties and we let V
0 WD f .V 0/ and V WD f .V /. The proof of [9, Lemma 7.2.8]

demonstrates that

V
0 D SK1

.G1; X1/ � V
0
>1;

where V
0
>1 is the special subvariety of

Q
i>1 SKi

.Gi ; Xi / given by the projection of V
0.

Hence, V
0 is a strongly special subvariety of SK.G; X/ and, therefore, since f is a finite

morphism of Shimura varieties, V 0 is a strongly special subvariety of SK.G; X/. Furthermore,
after possibly renumbering the Gi (which we are free to do due to the condition placed on ˛),
we may assume that V

0 properly contains V . Therefore, V is properly contained in V 0, which
concludes the proof of Theorem 8.1.
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9. Proof of Theorem 1.3

In this section we will prove Theorem 1.3. In fact, we will prove the following, equivalent
statement:

Theorem 9.1. Let S be a Shimura variety and let † be a set of strongly special sub-

varieties contained in S . Let Z be an irreducible component of the Zariski closure of † in S .

Then Z is a strongly special subvariety of S .

Lemma 9.2. Theorem 9.1 is equivalent to Theorem 1.3.

Proof. Consider the situation described in Theorem 9.1. If we assume that Theorem 1.3
holds, then there exists a finite set ¹V1; : : : ; Vkº of strongly special subvarieties contained in Z

such that, for every V 2 †, V is contained in one of the Vi . Therefore, † is contained in the
union of the Vi , which is itself contained in Z. Since Z is an irreducible component of the
Zariski closure of †, it must be equal to one of the Vi , proving Theorem 9.1.

Now consider the situation described in Theorem 1.3 and consider the set † of all
strongly special subvarieties of S contained in Z. If we assume that Theorem 9.1 holds,
the Zariski closure of † is a union of finitely many strongly special subvarieties V1; : : : ; Vk .
Thus, any strongly special subvariety contained in Z is contained in one of the Vi , proving
Theorem 1.3.

Note that, in order to prove Theorem 9.1, we may assume that the elements of † are of
equal dimension. We first prove Theorem 9.3, following the proof of [9, Theorem 9.2.1]:

Theorem 9.3. Let .G0; X 0/ be a Shimura datum such that G0 D G0ad and fix a faithful

representation
� W G0 ,! GLn:

Let K 0 be a neat compact open subgroup of G0.Af /, equal to a product of compact open

subgroups K 0
p � G0.Qp/, such that K 0 � GLn.yZ/. Let k and f be the positive integers given

by Theorem 7.1.

Let † be a set of strongly special subvarieties contained in SK0.G0; X 0/. Assume that the

elements of † are of equal dimension d and that the Zariski closure Z of † is irreducible. For

each V 2 †, let .HV ; XV / be the Shimura subdatum defining V and put …V WD ….HV ; KH /.

Let .G; X/ be a Shimura subdatum of .G0; X 0/ such that Z is contained and Hodge

generic in SK.G; X/, where K WD K 0 \G.Af /. Let r WD dim Z � d > 0 and make one of the

following assumptions:

� The …V are bounded as V ranges through †.

� For each V 2 †, there exists a prime p not dividing …V such that K 0
p D G0

Zp
.Zp/ and

p.kC2f /�2r

� .degLK
Z/2r

< c �…ı
V :

Then, for each V 2 †, Z contains a strongly special subvariety of SK0.G0; X 0/ containing V

properly.

In this section, we will use the term uniform to mean depending only on .G0; X 0/, K 0

and �.
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Proof. Firstly, we consider the case that, as V ranges through †, …V is bounded. That
is to say, the primes dividing any given …V belong to a fixed, finite set, whose product we
denote ….

By Theorem 7.1, for any prime p not dividing … such that K 0
p D G0

Zp
.Zp/, there exists

a compact open subgroup

Ip � Kp WD K 0
p \G.Qp/ D GZp

.Zp/

and an element ˛ 2 G.Qp/ satisfying the four requirements of Theorem 7.1, for each V 2 †.
However, in this case we will choose these objects slightly more precisely: recall that, by
Lemma 7.3, for each V 2 †, there exists a non-trivial, maximal, split torus SV � HV;Qp

such
that SV;Zp

is a torus. Since SV is split, it is conjugate via an element of GLn.Qp/ to a subtorus
of the diagonal matrices. By Lemma 7.4, after possibly replacing † by a Zariski dense sub-
set, we may assume that this torus is fixed, i.e. that the SV are all conjugate by elements
of GLn.Qp/ to a fixed torus S WD SV0

for some V0 2 †. Let Ip � Kp and ˛ 2 G.Qp/ be the
objects given by Theorem 7.1 applied to V0.

Now consider another V 2 † and let g 2 GLn.Qp/ be such that gSV g�1 D S . Since
SV;Zp

is a torus, S stabilises the lattice gZn
p . Therefore, by [8, Lemma 3.3.1], since SZp

is
a torus, there exists an element c 2 ZG.S/.Qp/ such that gZn

p D cZn
p , where ZG.S/ is the

centraliser of S in G. Therefore, there exists an element k 2 GLn.Zp/ such that g D ck and
so the SV are all conjugate by elements of GLn.Zp/. If we further assume that p is a prime
such that GFp

is smooth, the final paragraph of the proof of [8, Proposition 7.3.1] explains that,
again, after possibly replacing † by a Zariski dense subset, we may assume that the SV are all
conjugate by elements of Kp and, therefore, by elements of Ip.

Therefore, for each V 2 †, we let gV 2 Ip be such that SV D gV Sg�1
V . It follows

that Ip and ˛V WD gV ˛g�1
V satisfy the requirements of Theorem 7.1 applied to V . Furthermore,

if we let I � K be the compact open subgroup KpIp � G.Af /, then the Hecke correspon-
dences T˛V

on ShI .G; X/ all coincide with T˛.
Let

� W ShI .G; X/! ShK.G; X/

be the induced morphism of Shimura varieties and let eZ be an irreducible component of the
preimage ��1.Z/. For each V 2 †, let eV � SI .G; X/ be an irreducible component of the
preimage ��1.V / contained in eZ. Each eV is a strongly special subvariety of SI .G; X/ defined
by the Shimura subdatum .HV ; XV /. Denote the set of the eV by e†. By the second requirement
of Theorem 7.1, we have eV � T˛.eV / for every eV 2 e†. Hence, e† is contained in eZ \ T˛.eZ/

and, therefore, eZ � T˛.eZ/.
As ˛ satisfies the third requirement of Theorem 7.1, we can apply Theorem 8.1 to this ˛

and conclude that, for each eV 2 e†, there exists a special subvariety eV 0 � eZ containing eV
properly whose image in ShK0.G0; X 0/ is strongly special. As � preserves the property of
being special, exhibiting a special subvariety V 0 � Z containing V properly is equivalent to
exhibiting a special subvariety eV 0 � eZ containing eV properly.

Thus, we consider the case that …V is unbounded as V ranges through †. Hence, we may
assume that …V is larger than any uniform constant. We proceed by induction on r . Consider
first the case r D 1 and let V 2 †.

By the second assumption of Theorem 9.3, there exists a compact open subgroup Ip �Kp

and an element ˛ 2 G.Qp/ satisfying the four requirements of Theorem 7.1 applied to V .
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Let I � K be the compact open subgroup KpIp � G.Af / and let

� W ShI .G; X/! ShK.G; X/

be the induced morphism of Shimura varieties. It follows from the first requirement of
Theorem 7.1 that the degree of � is bounded above by pf .

Let eV � SI .G; X/ be an irreducible component of the preimage ��1.V /. It is a strongly
special subvariety of SI .G; X/ defined by the Shimura subdatum .HV ; XV / of .G; X/. By the
projection formula (see [9, Proposition 5.3.2 (1)]) and Theorem 1.4,

degLI
eV � degLK

V > c �…ı
V :

Let eZ be an irreducible component of the preimage ��1.Z/ containing eV . Thus, eZ is
Hodge generic in ShI .G; X/ and

degLI
eZ � pf � dZ :

As � preserves the property of being special, exhibiting a special subvariety V 0 � Z

containing V properly is equivalent to exhibiting a special subvariety eV 0 � eZ containing eV
properly.

By the second requirement of Theorem 7.1, we have eV � T˛.eV /. Hence, eV � eZ\T˛.eZ/.
Given their dimensions, if eZ and T˛.eZ/ intersect properly, then eV is an irreducible component
of the intersection. Thus,

c �…ı
V < degLI

eV � degLI
.eZ \ T˛.eZ//

� .degLI
eZ/2 � ŒIp W Ip \ ˛Ip˛�1�

< pkC2f � d2
Z ;

contradicting the second assumption of the theorem. Therefore, the intersection cannot be
proper. Thus, eZ � T˛.eZ/ and, since ˛ satisfies the second condition of Theorem 8.1, there
exists a special subvariety eV 0 � eZ containing eV properly whose image in ShK0.G0; X 0/ is
strongly special.

Therefore, we consider the case r > 1. Suppose that the conclusion of Theorem 9.3
holds for all subvarieties V and Z of ShK.G; X/ as in the statement of Theorem 9.3 such
that 0 < dim Z � d < r and consider the case that dim Z D d C r . We have eV , eZ, a compact
open subgroup I � K and an ˛ 2 G.Qp/, constructed as in the case r D 1, where

degLI
eV > c �…ı

V and degLI
eZ � pf � dZ :

Suppose that eZ � T˛.eZ/. In this case we can apply Theorem 8.1 to deduce that there
exists a special subvariety eV 0 � eZ containing eV properly whose image in ShK0.G0; X 0/ is
strongly special.

Therefore, suppose that the intersection eZ \ T˛.eZ/ is proper. By the second require-
ment of Theorem 7.1, eV � eZ \ T˛.eZ/. Choose an irreducible component eY � SI .G; X/ of
eZ \ T˛.eZ/ containing eV and denote its image in ShK.G; X/ by Y . Thus, Y is irreducible
and satisfies rY WD dim Y � d < r . To show that rY > 0 it suffices to check that eV is not
a component of eZ \ T˛.eZ/. However, if this were true, we would have

c �…ı
V < pkC2f � d2

Z ;

as in the case r D 1, contradicting the second assumption of Theorem 9.3.
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Let .P; XP / be a Shimura datum of .G; X/, defining the smallest special subvariety
of SI .G; X/ containing eY . Let XC

P � XC be the corresponding connected component of XP .
Define KP WD K \ P.AF / and IP WD I \ P.Af /. We have the commutative diagram

ShIP
.P; XP /

q
����! ShI .G; X/

??y�

??y�

ShKP
.P; XP /

q
����! ShK.G; X/.

Let eV P be an irreducible component of q�1.eV / contained in SIP
.P; XP /; let VP WD �.eV P /.

LeteY P � SIP
.P; XP / be an irreducible component of q�1.eY / containing eV P . In partic-

ular, eY P is a Hodge generic subvariety of SIP
.P; XP /. Define YP WD �.eY P /, a Hodge generic

subvariety of SKP
.P; XP /.

We have

degLKP
YP � degLIP

eY P � degLI
eY � degLI

.eZ \ T˛.eZ// < pkC2f � d2
Z ;

where the first inequality comes from the projection formula, the second comes from [9, Pro-
position 5.3.10], the third is due to the fact that eY is an irreducible component of eZ \ T˛.eZ/,
and the last inequality was demonstrated previously.

Lemma 9.4. The data P , XP , XC
P , KP , VP and YP satisfy the conditions of Theo-

rem 9.3 (in place of G, X , XC, K, V and Z, respectively).

Proof. Firstly, note that the image of VP in ShK0.G0; X 0/ is strongly special since it is
still defined by the Shimura datum .HV ; XV /. Let

rP WD dim YP � dim VP :

Thus, rP D rY > 0. We must verify that P , XP , XC
P , KP , VP and YP satisfy the second

condition of Theorem 9.3 for the same prime p.
From the above inequalities we have

p.kC2f /�2rP
� .degLKP

YP /2rP
� p.kC2f /�2rP C1

� d2rP C1

Z

and, as rP C 1 � r , we deduce from the second assumption of Theorem 9.3 that

p.kC2f /�2rP
� .degLKP

YP /2rP
< c �…ı

V :

As rP < r , by the induction hypothesis, we can apply Theorem 9.3 to P , XP , XC
P , KP ,

VP and YP . Thus YP contains a special subvariety V 0
P , which contains VP properly and whose

image in ShK0.G0; X 0/ is strongly special. This implies that Z contains a special subvariety V 0,
which contains V properly and whose image in ShK0.G0; X 0/ is strongly special.

Therefore, in order to prove Theorem 9.1, it suffices to prove the following lemma:

Lemma 9.5. Let V 2 †. There exists a uniform constant c11 such that, if …V > c11,

then there exists a prime p not dividing …V such that K 0
p D G0

Zp
.Zp/ and

p.kC2f /�2r

� .degLK
Z/2r

< c �…ı
V :
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Proof. By a theorem of Chebyshev, there exist absolute positive constants c12 and c13

such that the number of primes �.x/ less than a given real number x � 2 is bounded below
by c12

x
log x

and above by c13
x

log x
. Therefore, for any fixed 
 > � > 0,

�.…


V /�

…


V

log …


V

� …

��
V :

If we denote by !.…V / the number of primes dividing …V , we have the trivial estimate

!.…V / �
log …V

log 2
� …�

V :

Note that K 0
p D G0

Zp
.Zp/ holds for all primes p greater than a uniform constant. There-

fore, if we set


 D
ı

.k C 2f /2r
� � > 2� > 0;

provided …V is larger than a uniform constant, we can find a prime p satisfying the require-
ments of the lemma.

10. The André–Oort conjecture

We will prove the following theorem, which appears as [9, Theorem 1.2.2]. The differ-
ence between our proof and the one appearing there is that ours does not depend on any results
from ergodic theory.

Theorem 10.1. Let .G; X/ be a Shimura datum and let K be a compact open subgroup

of G.Af /. Let † be a set of special subvarieties in ShK.G; X/ and let Z be an irreducible

component of the Zariski closure of † in ShK.G; X/. We make one of the following assump-

tions:

� Assume the generalised Riemann hypothesis for CM fields.

� Assume that there exists a faithful representation G ,! GLn such that, with respect to

this representation, the generic Mumford–Tate groups MTV of the V 2 † lie in one

GLn.Q/-conjugacy class.

Then Z is a special subvariety of ShK.G; X/.

Proof. Fix a connected component XC of X . We may assume that Z lies in the con-
nected component SK.G; X/. Now, [9, Theorem 2.5.3] produces a dichotomy: either the subva-
rieties V have Galois orbits whose degrees are bounded from below by an invariant unbounded
as we range through † or there exists a finite set ¹T1; : : : ; Trº of subtori of G, anisotropic
over R, such that each V 2 † is Ti -special for some i 2 ¹1; : : : ; rº (see [19, Definition 3.1 and
Definition 3.2] for the definition of T -special).

If the former occurs then [9, Theorem 3.2.1] implies Theorem 10.1. Otherwise, we may
assume that every V 2 † is T -special for some fixed subtorus T of G such that TR is
anisotropic. Thus, by [19, Lemma 3.3 and Lemma 3.5], there exist q 2 G.Q/, � 2 G.Af /

and, for each V 2 †, a qT q�1-Shimura subdatum .HV ; XV / of .G; X/, where HV is the
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generic Mumford–Tate group of XV , such that V is the image of XC
V � ¹�º in SK.G; X/

(see [19, Definition 3.1] for the definition of a T -Shimura subdatum). Hence, after replacing Z

by an irreducible component of its image under a suitable Hecke correspondence, we may
assume that each V is a standard T -special subvariety of SK.G; X/, associated to a T -Shimura
subdatum .HV ; XV /, with H D MT.XV / (see [19, Definition 3.2] for the definition of a stan-
dard T -special subvariety).

Thus, by [19, Lemma 3.6 and Lemma 3.7], for every V 2 †, .HV ; XV / is a Shimura
subdatum of a fixed T -Shimura subdatum .L; XL/. Therefore, we may assume that † is con-
tained in SL.Af /\K.L; XL/. Let .Lad; XL;ad/ be the adjoint Shimura datum and let KL be
a compact open subgroup of Lad.Af / containing the image of L.Af / \K. Thus, we have an
induced morphism of Shimura varieties

f W ShL.Af /\K.L; XL/! ShKL
.Lad; XL;ad/:

Let V ad be the image of V under f . Since T is the connected centre of HV and T is
contained in the centre of L, V ad is defined by a Shimura subdatum .H 0

V ; X 0
V / of .Lad; XLad/

such that H 0
V is semisimple. Since, by [8, Proposition 2.2], Z is special if and only if its image

under f is special, we have reduced Theorem 10.1 to Theorem 1.3.
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