Everitt, R. G. (2018) Efficient importance sampling in low dimensions using affine arithmetic. Computational Statistics, 33 (1). pp. 1-29. ISSN 1613-9658 doi: 10.1007/s00180-017-0729-z
Abstract/Summary
Despite the development of sophisticated techniques such as sequential Monte Carlo, importance sampling (IS) remains an important Monte Carlo method for low dimensional target distributions. This paper describes a new technique for constructing proposal distributions for IS, using affine arithmetic. This work builds on the Moore rejection sampler to which we provide a comparison.
Altmetric Badge
| Item Type | Article |
| URI | https://reading-clone.eprints-hosting.org/id/eprint/70160 |
| Identification Number/DOI | 10.1007/s00180-017-0729-z |
| Refereed | Yes |
| Divisions | Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics > Applied Statistics |
| Publisher | Springer |
| Download/View statistics | View download statistics for this item |
Downloads
Downloads per month over past year
University Staff: Request a correction | Centaur Editors: Update this record
Download
Download