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Abstract 

In this paper, we report the synthesis and self-assembly of a novel thermoresponsive 

PNIPAM60-b-PDMS70-b-PNIPAM60 triblock copolymer in aqueous solution. The copolymer 

used a commercially available precursor modified with an atom-transfer radical 



polymerisation (ATRP) initiator to produce an ABA triblock copolymer via ATRP. Small-

angle neutron scattering (SANS) was used to shed light on the structures of nanoparticles 

formed in aqueous solutions of this copolymer at two temperatures, 25 and 40 °C. The PDMS 

block is very hydrophobic and PNIPAM is thermoresponsive. SANS data at 25 °C indicates 

that the solutions of PNIPAM-b-PDMS-b-PNIPAM copolymers form well defined 

aggregates with presumably core-shell structure below cloud point temperature. The 

scattering curves originating from nanoparticles formed at 40 °C in 100% D2O or 100% H2O 

were successfully fitted with the Beaucage model describing aggregates with hierarchical 

structure. 

 

1. Introduction. 

Copolymers that combine blocks with different properties and different sensitivities to 

external stimuli in one structure attract great attention in soft matter research due to their 

potential biomedical applications.1,2,3 They also have application in the field of 

nanoarchitectronics.4 New chemistry approaches have been tried along with physico-

chemical investigations of self-assembled structures including various types of micelles and 

vesicles, etc., formed by such copolymers. Small-angle X-ray and neutron scattering 

techniques can be used to take a “closer look” at the internal structures of nanoparticles. 

SAXS/SANS studies have been published on a variety of block copolymers such as the 

diblock copolymer poly(methoxy diethylene glycol acrylate)-block-polystyrene (PS),5 the 

diblock copolymer PS-PNIPAM6, deuterated polystyrene and poly(n-hexyl methacrylate) 

(PnHMA),7 poly(2-isopropyl-2-oxazoline)-b-poly(2-ethyl-2-oxazoline), 8 C18EO100
9, 

polyethylene oxide - poly(2-vinylpyridine)10, polyethylene oxide – PNIPAM,11,12 and 

PNIPAM – poly(n-butyl acrylate)13,14   and on triblock copolymers such as (LCP, poly(4-



cyanobiphenyl-4-oxyundecylacrylate)) 'A' endblock and a deuterated polystyrene 'B' 

midblock,15 PS-PMDEGA-PS,16,17 and PS-PNIPAM-PS18. The most studied class of 

temperature-responsive polymers are poly(ethylene oxide-block-propylene oxide-block-

ethylene oxide) PEO-PPO-PEO triblock copolymers known as Pluronics®.7 Detailed 

SAXS/SANS studies of nanoparticle structures formed in aqueous solution have been 

published for a variety of commercially available Pluronics® 19 such as L44,20 L64,21 

F127,22,23,24 P84,25 P85,26,27 P104,20 L62,28 L64,29 L81,16 F68,30 F87,16 and F88.16  

In our previous work, the internal structure of PNIPAM-b-PEG-b-PNIPAM nanoparticles 

formed in aqueous solutions was inspected by SANS upon increasing temperature.31 

Copolymers with deuterated (d-PEG) and hydrogenated central blocks (h-PEG) were 

synthesized to perform contrast variation experiments. Contrast variation experiments using 

SANS showed that the PNIPAM-b-PEG-b-PNIPAM copolymers below the cloud point 

existed as single polymer chains in a good solvent; a small portion of aggregates was also 

present in solution. In contrast, at higher temperatures, nanoparticles formed from PNIPAM-

b-PEG-b-PNIPAM copolymers had a non-uniform structure with “frozen” areas 

interconnected by single chains in a Gaussian conformation. Such “frozen” areas were 

attributed to PNIPAM domains interconnected with central PEG blocks that are uniformly 

distributed inside of a nanoparticle. 

In this article, we report a new copolymer with a central poly(dimethylsiloxane) (PDMS) 

block, which is considerably more hydrophobic than PEG. The substitution of hydrophobic 

PDMS for hydrophilic PEG may have several consequences. We can expect a significant 

shift of CPT to much lower values. Another shift that may be foreseen is a change in chain 

conformation. Unimolecular micelles or compacted macromolecular chains might occur in 

solution if PEG is substituted by PDMS.  



 The main goal of this paper was to investigate self-assembly behaviour of novel 

thermoresponsive triblock copolymer by dynamic light scattering and SANS and to compare 

this knowledge with that obtained about PNIPAM-b-PEG-b-PNIPAM in our previous study. 

 

 

2. Materials and methods 

2.1 Materials. 

Poly(dimethylsiloxane), bis(hydroxyalkyl)-terminated (PDMS – dihydroxy) (5.2 kDa); α-

bromoisobutyryl bromide (BIBB); tris(2-aminoethyl)amine (TREN); triethylamine; 

anhydrous tetrahydrofuran (THF); formic acid; formaldehyde; and N-isopropyl acrylamide 

(NIPAM) were purchased from Sigma-Aldrich (UK). Triethylamine was dried over 3 Å 

molecular sieves for 24 h prior to use. All other reagents were used without further 

purification. 

 

2.2 Methods 

2.2.1 Synthesis of the PDMS macroinitiator 

PDMS – dihydroxy (1.1 mM, 3.0 mL) and triethylamine (0.15 mL) were added to a dry, 

sealed, round-bottom flask containing THF (5.0 mL), with stirring. The solution was 

degassed by nitrogen bubbling for 20 min and then cooled to 0 °C in an ice-salt bath. BIBB 

(1.1 mMol, 0.13 mL) was then added dropwise, and the reaction was allowed to proceed 

overnight. The mixture was then filtered to remove triethylamine salts and filtered. The 

retentate was then washed with THF (2 x 25 mL), and all THF fractions were dried in vacuo 



to yield the PDMS macroinitiator (98% yield). 1H NMR (400 MHz, CDCl3, δ): 1.85 (s, CH3), 

0.00 (bs, Si-CH3) ppm. 

2.2.2. Synthesis of tris[2- (dimethylamino)ethyl]amine (ME6TREN) 

ME6TREN was synthesised using an Eschweiler-Clarke method,32 as in a previous 

publication.24 Briefly, formic acid (50 mL) was added to formaldehyde (50 mL) followed by 

cooling to 0 °C. TREN (4.7 mL) was subsequently added to the reaction mixture over 30 min. 

The reaction was then slowly brought to reflux, and the reaction was allowed to proceed for 

24 h. The mixture was then concentrated under vacuum, and sodium hydroxide solution (4 

M, 100 mL) was added. The product was then extracted twice into dichloromethane (75 mL) 

and concentrated in vacuo to yield a yellow liquid, ME6TREN (3.99 g, 54% yield). 1H NMR 

(400 MHz, CDCl3, δ): 2.64 (s, 6H), 2.38 (s, 6H), 2.27 (s, 18 H) ppm. 13C NMR (100 MHz, 

CDCl3, δ): 57 ((CH3)2NCH2), 53 (((CH3)2NCH2CH2), 46 (CH3) ppm.  

 

2.2.3. Synthesis of PNIPAM-b-PDMS-b-PNIPAM 

Copper(I) chloride (0.04 mMol, 4 mg) was added to a dried round-bottom flask and sealed in. 

The flask was then degassed with nitrogen for 15 min. NIPAM (5.3 mMol, 600 mg), 

ME6TREN (0.04 mMol, 10.7 μL), and PDMS macroinitiator (0.04 mMol, 100 mg) were 

added to a separate dry flask, followed by THF (5 mL). The sealed THF solution was then 

degassed by bubbling with nitrogen for 20 min. Using a degassed syringe, the THF solution 

was transferred to the flask containing copper (I) chloride. The reaction was then allowed to 

proceed overnight at room temperature. The product was then passed through neutral alumina 

to remove copper from the reaction. The resulting solution was dried in vacuo and then 

dissolved in deionised water and extensively dialysed (3.5-5 kDa MWCO membrane, 

Visking) against water. Yield: 55 %. 1H NMR (400 MHz, CDCl3, δ): 6.28 (bs, NH), 3.93 (bs, 



CH PNIPAM), 3.66 (br, CH2 PEG), 2.45-1.20 (bm, CH2CH2 PNIPAM), 1.07 (bs, CH3 

PNIPAM) ppm. Molecular weight of PNIPAM by NMR is 6.8 kDa (Figure S1).  

The copolymer was synthesised with a central PDMS block of 5.2 kDa and terminal 

thermosensitive 6.8 kDa blocks of PNIPAM as determined by NMR (Figure 1, Table 1).  

 

       Figure 1. Synthetic route to the PNIPAM-b-PDMS-b-PNIPAM triblock copolymers 

 

 

 

Table 1. Molecular weights of the PNIPAM-b-PDMS-b-PNIPAM triblock copolymer  

 

 

 

 

 

2.3. Dynamic light scattering 

The particle hydrodynamic radius, RH, and scattering intensity, IS, were measured at a 

scattering angle of  = 173° using a ZetasizerNano ZS instrument, model ZEN3600 (Malvern 

Instruments, U.K.) with a He-Ne laser of wavelength 633 nm. Correlation functions g2(t) 

Sample  Mn 

(kDa) 

Mn of PDMS 

block (kDa) 

Mn of PNIPAM 

block (kDa)   

N of PNIPAM 

block 

N of PDMS 

block 

MTC106 18.8 5.2 6.8 60 70 



were analysed by a regularized inverse Laplace transformation, which provides distributions, 

A(), of relaxation times  according to  

, 

where  is an instrumental factor. For the diffusion of nanoparticles in liquid, the 

hydrodynamic radius RH can be determined using the Stokes-Einstein equation 

, 

, 

where k is the Boltzmann constant, n the refractive index, and  the viscosity of the solvent. 

DLS measurements were performed for solutions of PNIPAM-b-PDMS-b-PNIPAM filtered 

with a 0.45 PVDF filter into a dust free cuvette. Measurements were repeated three times, and 

standard deviations were calculated for all measured parameters. The derived scattered 

intensity Is was calculated from these experiments. 

 

2.4. Small-angle neutron scattering (SANS)  

 

SANS experiments were performed at instrument D11 at the Institut Laue-Langevin (ILL) 

in Grenoble, France. The incident neutrons had a wavelength λ = 6.0 Å with a spread of 9%. 

A 3He gas detector with an area of 96 × 96 cm2 and a pixel size of 7.5 × 7.5 mm2 was used. A 

q-range from 0.0022 to 0.38 Å-1 was covered using three sample-to-detector distances: 1.2, 8, 

and 20 m. q is the momentum transfer, q = 4π×sin(θ/2)/λ, with θ being the scattering angle. 

Samples were mounted in quartz glass cells from Hellma Analytics with a neutron path of 1 

mm. At the end of each run, the sample transmission was measured. Boron carbide was used 

for measurement of the dark current, and H2O was used for the detector sensitivity and 

calibration of the intensity. The scattered intensity curves were azimuthally averaged and 

corrected for background scattering from the solvent-filled cell and parasitic scattering.  

      22 exp1   dττttAβtg

12 )(  qD 

   2sin4 0 nq 
HRkTD 6



Scattering from D2O was measured separately and subtracted from the solution scattering 

data.  

2.4.1 SANS SLD calculations 

 

To assess the scattering of newly synthesized PNIPAM-b-PDMS-b-PNIPAM copolymer 

the SLD values of each block were calculated. The PDMS block has an SLD value of 

0.63·109 cm-2, but PNIPAM has a one-order-of-magnitude-higher SLD value of 8.1·109 cm-2. 

We expect that in 100% D2O, both blocks will be visible, although scattering from PNIPAM 

block will dominate over the scattering from PDMS block.  

 

2.4.2 The Beaucage fitting model  

The SANS curves in D2O were fitted by the Beaucage model: 33,34,35  

𝐼𝐵𝐶(𝑞) = 𝐺𝑒𝑥𝑝 (−
𝑞2𝑅𝑔

2

3
) + 𝐵𝑒𝑥𝑝 (−

𝑞2𝑅𝑠𝑢𝑏
2

3
) (

[erf⁡(𝑞𝑅𝑠/√6)]
3

𝑞
)
𝑃

+ 𝐺𝑠𝑒𝑥𝑝 (−
𝑞2𝑅𝑠

2

3
) +

𝐵𝑠 (
[erf⁡(𝑞𝑅𝑠/√6)]

3

𝑞
)
𝑃𝑠

      

where G is the Guinier pre-factor of the larger structure, B is a pre-factor specific to the type 

of power-law scattering, Gs is the Guinier pre-factor of the smaller structure, Bs is a pre-factor 

specific to the type of power-law scattering, Rg is the size of large-scale structure, Rsub is the 

surface-fractal cut-off radius of gyration, Rs is the size of small subunits, P is the scaling 

exponent of the power law assigned to the larger structure Rg, and Ps is the scaling exponent 

of the power law assigned to the smaller structure Rs. 

 

3. Results and discussions 

3.1 Synthesis of PNIPAM-b-PDMS-b-PNIPAM 

 



PNIPAM-b-PDMS-b-PNIPAM was successfully synthesised by ATRP from a PDMS macroinitiator, 

and the structure was confirmed by NMR (Figure S1, supporting information). THF seems to be a 

suitable solvent for ATRP from PDMS macroinitiators, which is also suitable for many water-soluble 

monomers. Whilst there are a number of studies which graft PNIPAM to PDMS surfaces to modulate 

cell-attachment,37,36 this is the first reported synthesis of this block copolymer, to our knowledge. 

Indeed, there exist few examples of any PDMS-based block copolymers synthesised by ATRP. 

Poly(N,N-dimethylacrylamide)-b-PDMS-b-poly(N,N-dimethylacrylamide) has been synthesised by 

Xu et al38 for islet encapsulation.  PDMS-b-poly(2-(dimethylamino)ethyl methacrylate) is able to form 

micelles to deliver chemotherapy.39 Seo et al40 demonstrated that poly(2-methacryloyloxyethyl 

phosphorylcholine)-b-PDMS-b-poly(2-methacryloyloxyethyl phosphorylcholine) was able to modify 

PDMS surfaces. Finally, poly(glycidyl methacrylate)-b-PDMS-b-poly(glycidyl methacrylate) has 

been used to create nanocomposite paper.41  

 

3.2 Temperature behaviour of PNIPAM-b-PDMS-b-PNIPAM 

 

To evaluate the temperature behaviour of PNIPAM-b-PDMS-b-PNIPAM, dynamic light 

scattering experiments (DLS) were conducted in aqueous solutions in H2O. The cloud point 

value (CPT) was determined to be 30.0 ± 0.5 °C as the onset of a rapid increase in the derived 

scattered intensity Is (Figure 2a). This CPT value is somewhat lower that the CPT for pure 

PNIPAM (32 C). This discrepancy is clearly due to the presence of the hydrophobic PDMS 

block in the copolymer structure. The ability to reduce CPT by introducing a hydrophobic 

moiety has been reported previously for a variety of copolymers.42-44 The incorporation of 

hydrophilic PEG as a central block creates an opposing trend – a CPT value that increases, as 

was previously observed for PNIPAM-b-PEG-b-PNIPAM copolymer.27 Calculated intensity 

weighted distribution functions of the hydrodynamic radius Rh show a bimodal distribution at 

25 °C and a monomodal distribution at 40 °C (Figure 2b, inset). The volume-weighted 



hydrodynamic radius was chosen as a better representative to monitor temperature changes in 

comparison with the intensity-weighted Rh.  

 

 

 

Figure 2. Temperature dependence of the scattered intensity Is (a) and volume-weighted 

hydrodynamic radius (b) of the PNIPAM-b-PDMS-b-PNIPAM copolymer. Insets for the 

Figure 2b:  intensity-weighted distribution function for hydrodynamic radius at 20 and 40 oC. 

 

A peculiar feature can be observed in Figure 2b. The value for Rh of 10 nm is higher than 

we would expect for a molecularly dissolved polymer at low temperatures below CPT. It is 

not surprising, however, considering the strong hydrophobicity of the PDMS block. One can 

expect a preliminary self-organization of copolymers even below the CPT value. Larger 

structures with low polydispersity indices (<0.1) were observed by DLS at elevated 

temperatures, as could be expected due to the thermoresponsivity of PNIPAM (Figure S2, 

supporting information).  



SANS experiments could shed light on nanoparticle structures below and above CPT. 

 

3.2. SANS experiments for PNIPAM-b-PDMS-b-PNIPAM 

Figure 3 shows the SANS curves obtained for PNIPAM-b-PDMS-b-PNIPAM at two 

temperatures, 25 and 40 °C. As one can see, there is a strong variation in the SANS curves 

with both temperature.  

 

Figure 3. SANS data for the PNIPAM-b-PDMS-b-PNIPAM copolymer at two temperatures, 

25 oC and 40 oC in D2O. The red and blue lines are the fits by the Beaucage model.  

Several features should be noted for the SANS curves at 25 and 40 °C for the PNIPAM-b-

PDMS-b-PNIPAM system in D2O (Figure 3). The curve shows q-3.9 behaviour at 40 °C in a 

middle q range at 0.017-0.033 A-1. The most spectacular modification is witnessed at middle 

q range for 25 °C. A scaling exponent value decreases to the value of -2.5. Such finding can 

imply that the structure of aggregates that exist in solution below CPT is different from the 

aggregates above CPT. The scaling exponent value close to -4 is known as Porod 

behaviour,45 indicating the presence of compact objects with sharp boundaries in solution. 

Such findings corroborate with the DLS data described above. At a high q range at 0.065-0.3 

A-1, the scattered intensity has more gradual behaviour, with scaling exponents -1.7 and -2.3, 

for 25 and 40 °C, respectively. Such q dependence is usually attributed to macromolecular 
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chain conformations with excluded volume effects. The upturn at the lowest q visible for the 

SANS curve at 25 °C could be explained by the presence of fractal aggregates.  

To summarize, two different types of structures were revealed by inspecting SANS curves 

– large objects with sharp boundaries and smaller entities with a coil conformation. To 

account for this complexity, the Beaucage model was applied.33 It describes fractal 

aggregates consisting of smaller particles and was successfully applied for the study of a 

variety of soft matter systems.46-49 From the fitting procedure, we can conclude that the sizes 

of whole mass fractal aggregates at 25 and 40 °C for PNIPAM-b-PDMS-b-PNIPAM are 

consistent with DLS data — 38 and 150 nm (Table 2). The discrepancy could be attributed to 

different sensitivities of the methods; DLS provides information on Rh, whereas SANS 

provides Rg. The subunit size Rs also depends on temperature, at 0.9 vs 8.5 nm. 

Table 2. Comparison table of fitting parameters for SANS curves of PNIPAM-b-PDMS-b-

PNIPAM in 100% D2O at 25 and 40 °C. 

 PNIPAM-b-PDMS-b-PNIPAM 

Fitting parameter 

of Beaucage 

model 

T = 25 °C T = 40 °C 

G 5.4 5974 

B 1.3± 0.3 e-5 8.29 e-10 

Gs 6.2±0.3 e-3 3.76±0.01 

Bs 9 ± 2 e-4 2.6 ± 0.8 e-5 

Rg, nm 37.6±0.1 147.9±8.2 

Rsub, nm 4.9±0.1 12.6±0.9 

Rs, nm 0.9±0.1 8.5±0.1 

P 2.7±0.1 4.0±0.1 

Ps 1.6±0.2 2.28±0.01 

χ2 188 1877 

 

In D2O, the nanoparticle model for the PNIPAM-b-PDMS-b-PNIPAM copolymer can 

be described as follows: At 25 °C, a nanoparticle of overall radius of 38 nm, consisting of 

small 5.0 nm particles, which are arranged inside of a fractal with scaling exponent 2.7 



(surface fractal). Inside the small particles, they behave as swollen macromolecular coils in 

good solvent; the scaling exponent is 1.6  

At 40 °C, nanoparticles are much larger; Rg of 150 nm. They consist of smaller 

particles with 12.6 nm particles that are arranged inside of a fractal with a scaling exponent of 

4.0 (surface fractal). Inside the small particles, they behave as an almost Gaussian polymer; 

the scaling exponent is 2.3. 

CONCLUSION 

Novel thermoresponsive copolymers PNIPAM-b-PDMS-b-PNIPAM were synthesised from 

commercially available precursors using ATRP. Using small-angle neutron scattering, we 

were able to investigate in detail the internal structure of nanoparticles formed from novel 

thermoresponsive PNIPAM-b-PDMS-b-PNIPAM triblock copolymer in aqueous solutions. 

In contrast with previously reported copolymers with more hydrophilic central blocks, both 

PNIPAM-b-PDMS-b-PNIPAM copolymers form well-defined aggregates at room 

temperature. The best results were obtained by application of the Beaucage model describing 

the nanoparticles formed at 40 °C as an aggregate with a two-level hierarchical structure.  
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