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Abstract In this study, we demonstrate skillful spring forecasts of detrended September Arctic sea
ice extent using passive microwave observations of sea ice concentration (SIC) and melt onset (MO). We
compare these to forecasts produced using data from a sophisticated melt pond model, and find sim-
ilar to higher skill values, where the forecast skill is calculated relative to linear trend persistence. The
MO forecasts shows the highest skill in March–May, while the SIC forecasts produce the highest skill in
June–August, especially when the forecasts are evaluated over recent years (since 2008). The high MO
forecast skill in early spring appears to be driven primarily by the presence and timing of open water
anomalies, while the high SIC forecast skill appears to be driven by both open water and surface melt pro-
cesses. Spatial maps of detrended anomalies highlight the drivers of the different forecasts, and enable us
to understand regions of predictive importance. Correctly capturing sea ice state anomalies, along with
changes in open water coverage appear to be key processes in skillfully forecasting summer Arctic sea ice.

1. Introduction

Arctic sea ice has decreased markedly over recent decades, and arguably the most recognizable indicator
of this has been the rapid reduction in Arctic sea ice extent (SIE). Arctic SIE has declined across all seasons,
with the strongest decline observed in September, the end of the summer melt season [e.g., Serreze et al.,
2007]. It is widely expected that Arctic SIE will continue to decline over the coming decades, resulting in a
seasonally ice-free Arctic sometime this century [e.g., Stroeve et al., 2012]. The role of internal variability in
modulating the downward trend in SIE could be significant, and is still highly uncertain [e.g., Swart et al.,
2015, Jahn et al., 2016].

Increasing access to the Arctic marine environment has heightened the demand for more accurate seasonal
sea ice forecasts [Eicken, 2013], and the rapid September SIE declines have prompted myriad investiga-
tions into summer sea ice predictability [e.g., Guemas et al., 2016, and references therein]. Previous studies
have demonstrated strong correlation between spring Arctic sea ice-ocean conditions and September SIE,
but no skill in seasonal forecasts (3 months or greater lead time) of detrended SIE [e.g., Lindsay et al., 2008;
Blanchard-Wrigglesworth et al., 2011]. Furthermore, a compilation of community sea ice forecasts produced
by the Sea Ice Outlook (SIO) organized by the Study of Environmental Arctic Change (SEARCH) demon-
strated that forecasts of summer SIE are unreliable [Stroeve et al., 2014a], and are only slightly more skillful
than assuming a simple linear trend. Stroeve et al. [2014a] also found that simple statistical forecasts often
out-performed forecasts derived from more complex, dynamical sea ice models.

A recent study by Schröder et al. [2014], however, demonstrated skillful statistical forecasts of detrended
September SIE based on spring melt pond coverage simulated using an explicit melt pond scheme [Flocco
et al., 2012] included in the Los Alamos sea ice model (CICE) (the forecast model is referred to as MP herein).
The skill is thought to be due to a positive albedo feedback mechanism promoting sea ice loss: melt pond
formation reduces the surface albedo, causing further absorption of solar radiation, and increased ice melt
and melt pond formation [e.g., Curry et al., 1995; Perovich and Polashenski, 2012].
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The MP forecast utilizes a spatial correlation weighting prediction scheme first introduced for seasonal SIE
predictions by Drobot et al. [2006] and adopted by Lindsay et al. [2008]. Briefly, grid cells of the chosen spring
parameter (melt pond coverage in the MP model) are detrended and weighted based on their correla-
tion with detrended September SIE. Drobot et al. [2006] demonstrated an increase in predictive skill using
weighted indices over simple pan-Arctic averages.

In this study, we further explore the potential for skillful spring forecasts of September SIE using observa-
tions of spring sea ice conditions. We re-assess the potential for skillful SIE forecasts using passive microwave
ice concentration data [Cavalieri et al., 1996, updated 2015], and also explore the use of spring melt onset
(MO) data, derived from the same passive microwave sensor [Markus et al., 2009] as a further predictor of
September SIE. Declines in sea ice have been linked with earlier sea ice MO [Stroeve et al., 2014b], and while
the idea of MO as a summer sea ice predictor has been discussed in recent studies [e.g., Kapsch et al., 2014,
Mortin et al., 2016], the data have yet to be fully assessed for its predictive capabilities. We also update the
MP forecasts to 2016 and compare the skill of each forecast against linear trend persistence, arguably a fairer
test of forecast skill than the detrended climatology often used in predictability studies [e.g., Schröder et al.,
2014].

2. Data and Methods

2.1. Sea Ice Data

In this study, we utilize sea ice concentration (SIC) and MO data, both derived using passive microwave
brightness temperature (T b) estimates obtained from the Nimbus-7 Scanning Multichannel Microwave
Radiometer (SMMR, 1978–1987), the Defense Meteorological Satellite Program (DMSP) F8, F11, and F13
Special Sensor Microwave/Imagers (SSM/Is, 1987–2008), and the DMSP F17 Special Sensor Microwave
Imager/Sounder (SSMIS, 2009 to present). The F18 SSMIS sensor is also used for T b estimates in May/June
2016, following the failure of DMSP F17. The SIC and MO data (1979–2015 climatology and 2016
raw/anomaly) are shown in Figure 1.

Monthly SIC data from January 1979 to April 2015 are derived from T b using the NASA Team sea ice algo-
rithm [Cavalieri et al., 1996, updated 2015]. Near-real time (NRT) daily concentration data are available from
May 2015 to the present day using the same NASA Team processing of T b [Maslanik and Stroeve, 1999,
updated daily], from which monthly mean SICs are computed. The data are provided on a 25 km× 25 km
polar stereographic grid.

MO data from 1979 to 2016 (also on a 25 km× 25 km polar stereographic grid) are updated from Stroeve et al.
[2014b] and Markus et al. [2009]. MO estimates are based primarily on the sensitivity of T b to liquid water
content in the overlying snow cover. The data give the day of the year for each grid cell when continuous
melt has begun (an early MO estimate is also produced). The full algorithm description is given in Markus
et al. [2009]. To include the changing areal coverage of open water in the MO data, all open water grid cells
are set to the minimum MO date (day 75). Another dataset is produced where the open water grid cells are
masked (MOmask). To produce forecasts using varying seasonal lead times, we express the MO data as the
day before a given forecast date (e.g., the May forecast uses data up to day 151, the end of May). All MO
days after this are then set to 0 (i.e., ice that has not melted). Note that both concentration and MO datasets
contain the same time varying pole hole, depending on the passive microwave sensor used, which broadly
translates to a pole hole north of 84.5oN (1979–June 1987), 87.2oN (July 1987–December 2007), 89.2oN
(2008 onwards).

We correlate the SIC and MO data with September Arctic SIE produced by the National Snow and Ice Data
Center (NSIDC) Arctic Sea Ice Index, version 2 [Fetterer et al., 2016] using NASA Team ice concentration data.

2.2. Methods

We use the spatial detrending/weighting method utilized by Schröder et al. [2014] and described in more
detail by Drobot et al. [2006] and Drobot [2007] to include, and weight, only grid cells that correlate (his-
torically) with September Arctic SIE. Note that a more detailed explanation of this forecast methodology
is given in the Supporting Information (Text S1). For each forecast, the gridded SIC/MO data from all years
prior to the given forecast year are detrended (at least 3 years of data are needed to calculate a trend in
each grid cell). We calculate the Pearson product moment correlation coefficient (r) between the detrended
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Figure 1. (a) June ice concentration using the NASA Team algorithm for the 1979–2015 climatology (left), 2016 (middle), and the 2016
anomaly from climatology (right); (b) as in (a) but for the day of continuous melt onset.

SIC/MO data (of the given forecast month, for each grid cell) and detrended September SIE (again only using
data prior to the given forecast year). For the SIC (MO) data, negative (positive) r-values are set to 0. The
method used here and in Schröder et al. [2014] differs from Drobot et al. [2006] in that only data preceding
the given forecast year are included in the weighting calculation, and these weightings are thus updated
each year.

The detrended gridded data from all years prior to the given forecast year are multiplied by the spatial
weightings (r-values) and averaged across the pan-Arctic domain. A least-squares linear regression model
is fit from this time series and the detrended SIE data. To produce a September SIE forecast, the SIC/MO
data are detrended (spatially) using linear trend persistence, multiplied by the spatial weightings and aver-
aged. This mean detrended/weighted forecast value is applied to the linear regression model to forecast
the detrended September SIE anomaly. The forecast skill is given by

S =
1 − 𝜎

2
ferr

𝜎2
anom

where 𝜎anomis the root mean squared error (RMSE) of the September SIE anomaly from linear trend per-
sistence, and 𝜎ferr is the RMSE of the forecast. The forecast skill metric used in this study thus provides the
skill of the forecast model relative to linear trend persistence. We initialize the forecasts in 1985. For SIC,
we use the mean, monthly SIC (focusing on May/June, but also provide forecast skill from earlier and later
months). For MO, we use the MO date at the end of the relevant forecast month, and assume no information
regarding MO past this date.

We compare the SIC/MO forecasts with the updated May and June MP forecasts (up to 2016) and skill val-
ues calculated using the method described above. Note that the June MP forecast is produced using data
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integrated from the start of May to the end of June (June 25th). We also assess the potential improvement in
forecast skill from the combination of these spring forecast variables through multivariate linear regression,
similar to the approach of Lindsay et al. [2008].

3. Results and Discussion

3.1. Assessing Spring Forecast Skill

The June forecasts of September SIE using SIC, MO, and MP data are shown in Figure 2. Based on the RMSE
of the detrended September SIE anomaly (from linear trend persistence), 𝜎anom = 0.64 million km2, and the
RMSE of the forecasts, 𝜎ferr = 0.48 (SIC), 0.57 (MO), 0.55 (MP) million km2, the skill values for all three models
are positive: S= 0.44 (SIC), 0.20 (MO), 0.27 (MP), demonstrating clear seasonal forecast skill from all three
models. The skill values from all three models at different forecast lead times are shown in Figure 3 (the
importance of lead time is discussed later in the section). The May forecast skill values are lower than the
June forecasts, but are still positive for all three models (the May forecasts are shown in Figure S1), with
the MO model now slightly more skillful (S= 0.19) than the SIC model (S= 0.14) at this longer forecast lead
time. The skill values in May for SIC and MO are still higher than the MP skill (S= 0.11). As noted by Schröder
et al. [2014], these positive skill values are remarkable when compared against the negative skill values of
detrended SIE reported by Lindsay et al. [2008].

Figure 2. September sea ice extent (SIE) observed (black) and forecast using June
sea ice concentration (SIC, blue), melt onset (MO, red, day 181) and melt pond (MP,
green, May 1st–June 25th) forecast models. The SIE anomaly (bottom panel) is the
anomaly compared to the SIE expected from linear trend persistence, 𝜎anom is the
observed root mean squared error (RMSE) from linear trend persistence and 𝜎ferr is
the RMSE for each forecast (1985–2016) in units of million km2.

Figure 3 also shows the various fore-
cast skills evaluated over the period
2008–2016, after the 2007 minimum
and the start of the SEARCH SIO.
For context, a simple estimate of the
forecast skill based on the median
June SIO forecasts of September SIE
(2008–2016) results in a skill value
of around zero (S= 0.03). Compared
to the longer evaluation period, the
June skill values are higher for the SIC
forecasts (S= 0.59), but lower for the
MP (S= 0.23) and MO (S=−0.07). The
strong decline in the MO forecast skill
is in part due to the 2016 forecast
error (discussed later). Note also that
𝜎anom for this period is slightly higher at
0.65 million km2.

To test whether the recent forecast skill is benefitting from the longer training time period from which the
spatial trends and weightings are calculated, we also experimented with training the SIC forecast model
with data from 2000 onwards (instead of 1979), and the June skill values (for forecasts since 2008) decreased
(S= 0.51 compared to 0.59), suggesting that higher skill in recent years is partially due to increased training
of the forecast models. It is also thought that the strong interannual SIE variability experienced in the last
several years means that linear trend persistence is less effective as a simple forecast estimate than it was
in earlier decades, and the detrended anomalies are becoming more significant. This is expected from a
thinner Arctic ice pack that is more responsive to atmospheric (and oceanic) forcing variability [e.g., Holland
et al., 2006].

3.2. Forecast Skill as a Function of Lead Time

To further understand the impact of lead time on the September SIE forecasts, we produced multiple fore-
casts with lead times from March to August for both SIC and MO models, as shown in Figure 3 and sum-
marized in Table 1. Analyzing first the 1985–2016 skill, the SIC forecasts show increasing skill from March
(0.10) to August (0.59). The forecast skill increases significantly between May and June (0.14–0.44), show-
ing that this transitionary period, where surface melt may be manifesting as concentration decreases, is an
important time period for the SIC forecast model. The MO forecast skill is slightly higher than SIC in March
to May (S= 0.22–0.19), but does not show any significant increase with shorter lead times. In general, the
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(a)

(b)

Figure 3. September Arctic sea ice extent forecast skill as a function of forecast
month evaluated using (a) all years of forecasts (1985–2016), and (b) recent
forecast years (2008–2016). Along with sea ice concentration (SIC), melt onset (MO)
and melt pond (MP) forecast skill, the forecast skill is also shown for unweighted
sea ice concentration (SICuw), unweighted melt onset (MOuw) and melt onset with
open water masked (MOmask).

results show that the MO model has
higher forecast skill in March–May,
but the SIC forecasts have the best
skill in June–August over this longer
assessment period. The March MO skill
(S= 0.22) is perhaps the most skill-
ful forecast of detrended September
SIE currently available at this long
(6 month) lead time. It appears that
knowledge of when, not just where,
regions became ice free is providing
the high skill, as discussed more in the
following section.

For the 2008–2016 forecast skill
(Figure 3b), SIC has the highest skill
across all months (S= 0.13 in March to
0.80 in August). The MO forecast skill
is lower across all months, and even
declines with lead time after May, sug-
gesting MO is not as good a predictor
of recent September SIE variability as
it was in previous decades.

We also carried out multivariate regres-
sions using combinations of the SIC,
MO, and MP data (the skill values are
shown in Figure S2). In general the
multivariate regressions provided neg-
ligible, or even small declines in skill,
except for the SIC/MP forecast, which

showed a small increase in the 1985–2016 (June) and 2008–2016 (May and June) skill compared to the SIC
forecast skill. The general lack of significant increase in skill across the multivariate regressions may be due to
overfitting of these limited range datasets [also found and discussed in Kapsch et al. 2014], so more sophis-
ticated methods of combining these datasets may be needed to increase overall skill, e.g., by accounting
for open water/ice edge anomalies directly in the MP model.

3.3. Exploring the Mechanisms Promoting Forecast Skill

It is noteworthy that the forecast skill using simple observational sea ice state information, especially SIC,
is higher than the MP forecast skill. Obviously one might also expect sea ice observations to provide more
reliable information than a sea ice model, albeit a sophisticated one, as the results are not prone to errors
in the model physics or inaccurate reanalyses. The SIC and MO forecasts utilize information regarding the

Table 1. September Arctic Sea Ice Extent Forecast Skill (S) as a Function of Forecast Month (Rows) Using Sea Ice Con-
centration (SIC), Melt Onset (MO), and Melt Pond (MP) Data, Evaluated Over All Forecast Years (1985–2016, Left) and
Recent Forecast Years (2008–2016, Right)

SIC MO MP

March 0.10/0.13 0.22/0.12 —

April 0.16/0.27 0.20/0.12 —

May 0.14/0.30 0.19/0.06 0.11/0.17

June 0.45/0.60 0.21/−0.04 0.27/0.23

July 0.49/0.60 0.20/−0.12 —

August 0.59/0.80 0.21/−0.11 —

PETTY ET AL. SEPTEMBER ARCTIC SEA ICE FORECASTS 5
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Figure 4. Detrended anomalies (anom) of sea ice concentration (SIC), melt onset (MO) and melt pond fraction (MP) data in June, used to
drive the 2012/2013 forecasts. Note that a negative melt onset anomaly signifies melting earlier in the year. The hatchings indicate
regions where the correlation coefficient (r) between the detrended springtime forecast variable and September sea ice extent (spatial
weightings) for all years prior to the forecast year is greater than 0.3.

changing coverage (and timing in the MO case) of open water, whereas the MP forecast only uses simu-
lated surface melt pond information where there is ice each year. To explore this idea, we also carried out
a forecast using the MO data, but where the open water grid cells were masked (MOmask). This resulted in
significantly lower skill values, including negative skill values before May (shown in Figure 3), implying that
the inclusion of the variable open water coverage is driving the positive skill, and is thus a crucial process
to capture for skillful spring forecasts, especially earlier in the year. The MO forecast provides added infor-
mation over the SIC forecast as it says when (how long before the end of the given forecast month), not just
where, grid cells became ice free. The increase in the MOmask skill from March to June implies that increased
knowledge of the pan-Arctic MO is driving the increase in skill, however. The SIC forecast, however, includes
the changing fraction of open water, not just whether a grid cell is ice free. The high skill in the SIC forecasts
is also likely driven by the inclusion of surface melt in the SIC data, and the implicit detection of melt ponds
(May onwards), which can be interpreted as open water by the passive microwave sensor [e.g., Kern et al.,
2016]. The SIC forecast therefore likely incorporates elements of the surface melt feedback described earlier
with respect to the MP forecast. Consequently, it is perhaps unsurprising that SIC would provide the most
skillful forecasts, especially at shorter lead times.

The skill in both MO and SIC forecasts thus appears to be driven, in-part, by capturing the location of the
spring ice edge and an open water positive feedback loop within the ice pack (in the SIC forecast): increased
open water due to sea ice loss reduces the surface albedo, causing further absorption of solar radiation
and sea surface temperature increases, driving increased open water [e.g., Perovich et al., 2007]. The timing
of ice retreat will determine how long the open water has been exposed to solar heat absorption, giving
rise to warmer sea surface temperatures [Steele and Dickinson, 2016] and additional sea ice melt. This is
thought to be the dominant mechanism driving the high skill in the MO forecast, especially in early spring,

PETTY ET AL. SEPTEMBER ARCTIC SEA ICE FORECASTS 6
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(a)

(b)

Figure 5. Spatial weightings used in the 2016 May (a) and June (b) sea ice concentration (SIC), melt onset (MO), and melt pond (MP) forecasts. The weighting indicates the correlation
coefficient (r) between the springtime forecast variable and September sea ice extent.

as the timing of ice retreat is well correlated with the timing of MO [Stroeve et al., 2016]. The SIC model,
however, is benefitting from combined knowledge of open water and an additional surface melt/melt pond
feedback mechanism, especially later in spring. Note that to impact the summer ice pack, these spring open
water/surface temperature anomalies must have non-local effects through, e.g., a northward advection of
surface temperature anomalies (from the increased solar radiation absorption) increasing basal/lateral ice
melt, or changing ice drift patterns (a weakening of the ice pack and increased ice drift into regions of higher
melt potential).

3.4. The Physical Drivers of High Forecast Skill

Figure 4 shows the detrended anomalies and spatial weightings used to generate the June forecasts in 2012
(2013), an anomalously low (high) September SIE year. Figure 4 clearly shows negative SIC anomalies in the
Barents, Kara and southeastern Beaufort seas in 2012, but positive anomalies in the southeastern Beaufort
and Kara Sea in 2013. The spatial weightings (hatched regions in Figure 4) show more extensive regions of
historical correlation with September SIE (prior to 2012/2013) for the SIC than for the MO forecasts, which
may also be contributing to the increased skill (i.e., there is more data being used to drive the SIC forecasts).
Note that complete spatial weighting maps are shown in Figure 5 (using all data up to 2015) highlighting the
variability in weightings across the three forecasts. Figure 5 also shows how the regions of high correlation
increase from the May to June forecasts in the SIC and MP forecasts, but not in the MO forecast. The large
region of high (r > 0.3) spatial weighting north of the Beaufort Sea and the Canadian Archipelago in the
SIC model appears after 2007, when strong spring SIC declines in the region coincided with the record low
September SIE that year. It is interesting to note that the spatial weightings and anomalies in the MP forecast
are located predominantly within the Central Arctic region (in both 2012 and 2013). In contrast, the SIC and
MO forecast models show stronger weightings/anomalies in the peripheral seas: the result of anomalies
around the spring sea ice edge.

To test the impact of the spatial weighting scheme on the forecast skill, we also produced forecasts where
the detrended SIC/MO forecast data were not weighted based on past correlation with September SIE
(SICuw and MOuw). The spatial weightings provide an increase in skill for all months of the MO forecasts
and for the March–May SIC forecasts, but interestingly, for the July/August SIC forecasts, the unweighted
method’s skill is higher (for both the 1985–2016 and 2008–2016 skill, as shown in Figure 3). While this
was somewhat surprising, it does make physical sense. The spatial weightings are needed earlier in spring

PETTY ET AL. SEPTEMBER ARCTIC SEA ICE FORECASTS 7
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Figure 6. As in Figure 4, but for the data used to drive the 2015/2016 forecasts.

to remove grid cells from the averaging process that have experienced anomalies that are unimportant
for September SIE, e.g., regions unlikely to melt out by the end of summer. However, in late spring/early
summer, SIC anomalies are more likely to have a significant impact on the end of summer sea ice state
even if these anomalies occur in regions that have not experienced sea ice anomalies before, or that are
historically uncorrelated with September SIE. Including these new regions may allow us to better capture
unprecedented extremes in September SIE. This raises a general difficulty facing sea ice forecasting: coping
with the rapid declines in Arctic sea ice and the lack of historical equivalence to the anomalous behavior
exhibited in recent years.

3.5. Remarks on the 2016 Forecasts

2016 has been an exceptional year in the Arctic, with record high surface temperatures [e.g., Cullather et al.
2016] and record low Arctic SIE observed throughout much of winter and spring [e.g., http://www.ncdc
.noaa.gov/sotc/summary-info/global/201606]. While in recent years the three individual forecast models
(SIC/MO/MP) all seem to broadly agree on the expected interannual variability in September SIE, e.g., the
anomalously low (high) SIE in 2012 (2013), the models offered contrasting forecasts for 2016. Using data up
to June 2016, the SIC and MO models forecast an anomalously low (potentially record low) September SIE of
3.5 M km2 (MO) and 4.1 M km2 (SIC), which are below that expected from linear trend persistence. Figure 6
shows the detrended anomalies and spatial weightings used to generate the 2016 (and 2015) forecasts,
with the spatial patterns of SIC and MO anomalies similar to 2012; low SIC and early MO/ice retreat (earlier
than any other year in the satellite record) suggesting low SIE. The MP model, however, forecast (in June)
a September SIE of 5.2 M km2, similar to the 2015 MP forecast, and above that expected from linear trend
persistence. A relatively cold and cloudy June appeared to hinder the formation of melt ponds, suggesting
a higher September SIE than the SIC and MO model. Note that the SIC and MP May/June forecasts were
submitted to the SEARCH SIO.

PETTY ET AL. SEPTEMBER ARCTIC SEA ICE FORECASTS 8
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Figure 7. Alaskan September sea ice extent (SIE) observed (black) and forecast
using June sea ice concentration (SIC, blue). The SIE anomaly (bottom panel) is the
anomaly compared to the SIE expected from linear trend persistence, 𝜎anom is the
observed root mean squared error (RMSE) from linear trend persistence, and 𝜎ferr is
the RMSE of the forecast (1985–2016) in units of million km2.

The observed September SIE was
recently reported by the NSIDC
as 4.72 M km2, slightly above that
expected from linear trend persistence
and in-between the three June fore-
casts. Note that the May MP forecast
of 4.5 M km2 was, in fact, closer to
the observed value than any of the
spring forecasts presented in this
study, while the July SIC forecast was
4.4 M km2, showing reasonable con-
vergence towards the observed SIE.
The September Arctic sea ice pack was
observed to be low in concentration
over a large swath of the Central Arctic
following two cyclones that entered
the Arctic in August (https://nsidc.org/
arcticseaicenews/2016/09/arctic-sea-

ice-nears-its-minimum-extent-for-the-year/). This ice pack will have the same SIE as a more consolidated
ice pack spanning the same total area, highlighting a general difficulty with forecasting SIE. Forecasts
arguably should not be judged based on 1 year alone, but 2016 clearly highlights that we are still unable
to produce consistently accurate September Arctic SIE forecasts despite our high forecast skill.

3.6. Towards Regional Forecasting

An Alaskan SIE was also solicited from the SIO in 2016 (covering the Beaufort/Chukchi/Bering seas defined
by the NSIDC region mask used in Stroeve et al. [2014b] and shown in Figure S3). To briefly explore the ability
of our approach for producing skillful regional forecasts we trained and forecast September Alaskan SIE
using the SIC data. The forecast model (using June SIC data) is shown in Figure 7. The Alaskan SIE forecast
skill is high for both 1985–2016 (S= 0.40) and 2008–2016 (S= 0.78) assessment periods, while the 2016
forecast of Alaskan SIE (0.30 M km2) was the closest to the observed value (0.27 M km2) of the four forecasts
submitted to the SIO. While regional forecasting was not a primary focus of this paper, the skillful Alaskan
SIE forecast is promising and suggests more localized forecasts could be provided based on stakeholder
needs.

4. Conclusions

It is clearly impossible to perfectly forecast September SIE in spring, due to the impact of unknown summer
weather conditions that impact sea ice variability through thermodynamic and dynamic processes [e.g.,
Serreze et al., 2016]. In this study, however, we have demonstrated skillful spring forecasts of detrended
September SIE using passive microwave observations of SIC and MO within a simple linear regression model
framework. These forecast skill values are similar or higher than the skill values found using melt pond data
simulated by a sophisticated melt pond model. The MO forecast shows higher skill in the March–May fore-
casts (compared to the SIC and MP models), with the positive forecast skill in March perhaps the highest
forecast skill of detrended September SIE found at this lead time. The SIC model shows the highest skill in
the June–August forecasts, especially when assessed over recent years (since 2008). The SIC data is available
near-real time and may have been overlooked as a source of skillful seasonal sea ice forecasts.

The spatial maps of detrended anomalies provide a useful means of understanding the drivers of spring-
time forecasts of September SIE, and enable us to highlight regions of predictive importance—e.g., the
Beaufort, Barents, and Kara seas. Spatially weighting the data for forecasts made before June provides a
significant increase in skill (through including only regions of historical correlation with September sea ice),
while our results also suggest using unweighted spatial data can improve the skill of forecasts made after
June (capturing unprecedented anomalies). While the melt pond forecast skill appears to be driven by a
surface albedo feedback mechanism, the ice concentration and MO forecast skill appear to benefit from
incorporating changes in the location of the spring ice edge and an additional open water positive feedback
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loop within the ice pack (in the SIC forecast), especially later in spring. Correctly capturing sea ice state
anomalies, along with changes in the ice edge location/coverage thus appear key to increasing seasonal
summer sea ice forecast skill (e.g., the open water information missing from the melt pond forecast model).
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