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Existence and Uniqueness for Four-Dimensional Variational
Data Assimilation in Discrete Time∗

Jochen Bröcker†

Abstract. Variational techniques for data assimilation, i.e., estimating orbits of dynamical models from obser-
vations, are revisited. It is shown that under mild hypotheses a solution to this variational problem
exists. Using ideas from optimal control theory, the problem of uniqueness is investigated and a
number of results (well known from optimal control) are established in the present context. The
value function is introduced as the minimal cost over all feasible trajectories starting from a given
initial condition. By combining the necessary conditions with an envelope theorem, it is shown that
the solution is unique if and only if the value function has a derivative at the given initial condition.
Further, the value function is Lipschitz and hence has a derivative for almost all (with respect to the
Lebesgue measure) initial conditions. Several examples are studied which demonstrate that points
of nondifferentiability of the value function (and hence nonuniqueness of solutions) are nevertheless
to be expected in practice.
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1. Introduction. Data assimilation is a term used in atmospheric physics and geosciences
and refers to methods whereby series of observations are employed to reconstruct states or
orbits of relevant dynamical models. Said differently, possible states or orbits are determined
which are consistent with a given dynamical model on the one hand and given observations on
the other hand. Operational weather forecasting centers carry out data assimilation on a daily
basis in order to find initial conditions for the simulation of future weather, and assimilation
of historical weather observations into state-of-the-art weather models (known as reanalyses)
is an important scientific approach to gain insight into past and long-term weather patterns.
Many different approaches to data assimilation exist, based on very different philosophies and
premises. For an overview of data assimilation techniques from an atmospheric physics point
of view, see, e.g., [10, 12, 8].

Variational approaches have gained widespread attention both within the atmospheric
physics community and in other brances of science. The basic idea of what is known as weakly
constrained four-dimensional variational assimilation, or WC-4DVar, is to find a series of
model states by minimizing a cost functional which quantifies both the deviations from the
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observed data as well as the misfit with the given model. Depending on the cost functional and
the assumptions, the solution may have a deeper probabilistic interpretation as a maximum
likelihood or maximum aposteriori estimate (see also equation (1) below and the discussion
thereafter). Given a probabilistic interpretation of the cost function, there is the possibility
of analyzing the problem further in a statistical framework, for instance (as one referee sug-
gested), by using the model errors to test the goodness of fit of a particular dynamical system.
This is beyond the scope of this article, but see, for instance, [2] for a study along these lines.

In terms of references, an early paper on discrete time WC-4DVar in atmospheric sciences
is [6]; see also [12]. In [5], the authors consider assimilation into models with infinite dimen-
sional state space and provide a rigorous derivation of the maximum aposteriori estimator. In
the engineering community, essentially the same technique has been known for much longer.
In [11, Chap. 5, sect. 3], the approach is discussed for both discrete and continuous time; [14]
considers both cases from a control point of view, calling it the optimal servomechanism (there
are minor differences). The maximum a posteriori estimator for continuous time diffusions
has been analyzed rigorously in [16, 17]. The present paper will deal exclusively with discrete
time, the continuous time situation being considered in a forthcoming paper.

To formulate the problem in mathematical terms, fix a number n ∈ N as the length of our
assimilation window. Let E, the state space, be a finite dimensional vector space with some
norm ‖.‖. We will use boldface letters to denote elements of En, like x := (x1, . . . , xn), where
xk ∈ E for each k = 1, . . . , n. Consider a sequence of mappings fk : E → E, k = 1, . . . , n, our
time dependent model. A given candidate trajectory x = (x1, . . . , xn) can always be written as

xk = fk(xk−1) + uk, k = 1, . . . , n,

for certain uk, k = 1, . . . , n which could be termed “model error” and a certain initial condi-
tion x0 ∈ E. A common way to quantify the total model misfit of a candidate trajectory x is
via a functional of the form 1

2

∑n
k=1 u

T
kBkuk, where the Bk, k = 1, . . . , n, are positive definite

matrices.
Regarding the misfit with respect to the observations, if the state of the model at time

k = 1, . . . , n is estimated to be x, then often the error of this estimate with respect to the
observations yk taken at time k has the form (h(x)− yk)TGk(h(x)− yk) or similar, where h :
E → Rd is some function mapping the state space of the model into the space of observations,
and Gk is some appropriate positive semidefinite quadratic form on Rd, for each k = 1, . . . , n.

Combining the misfit with respect to the model and with respect to the observations in
the forms mentioned above, we would arrive at the following example for a cost function:

(1)
1

2

n∑
k=1

(h(xk)− yk)TGk(h(xk)− yk) +
1

2

n∑
k=1

uTkBkuk.

For an interpretation of this cost function in the context of maximum a posteriori estimation,
see [11, Chap. 5, sect. 3]. We will be able to deal with more general cost functions though.
Assume that for each k = 1, . . . , n we are given a function Lk : E × E → R≥0 called the
running costs at time k. We formulate our basic problem as follows.
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Problem 1 (WC-4DVAR). Minimize the objective function A : En × En → R≥0 given by

(2) A(x,u) =
n∑
k=1

Lk(xk, uk)

over elements (x,u) ∈ En × En satisfying the constraint

(3) xk = fk(xk−1) + uk for k = 1, . . . , n

for some fixed initial condition x0 = ξ ∈ E.

The x1, . . . , xn and u1, . . . , un will be referred to, respectively, as the states and controls
from now on. Note that the dependence on the observations is only implicit in the time
dependence of the running costs. Although our analysis will focus mainly on the problem as
stated in Problem 1, we shall mention a variant which will briefly be discussed at the end of
the paper:

Problem 2 (WC-4DVAR with background error). Minimize the objective function A :
En+1 × En+1 × E → R≥0 given by

(4) A(x,u, ξ) =

n∑
k=1

Lk(xk, uk) + ψ(u0 − ξ)

over elements (x,u) ∈ En+1 × En+1 satisfying the constraint

xk = fk(xk−1) + uk for k = 1, . . . , n,

x0 = u0.
(5)

The additional term ψ(u0− ξ) in the objective function is referred to as background error;
here ψ : E → R≥0 is a nonnegative function and ξ is a fixed element in E known as the
background state.

Our main results regarding these two variants of the problem are exactly the same (for
precise hypotheses and statements see the respective sections). In section 2, we will state our
main hypotheses and prove that Problem 1 has global minimizers for every ξ ∈ E (Propo-
sition 2.2). In order to analyze uniqueness, we consider the value function (Definition 3.2),
defined as V (z) := inf A(x,u), where the infimum is taken over all (x,u) which satisfy the
constraints with initial condition z. Theorem 3.3 shows that a global minimizer for initial
condition ξ ∈ E is unique if the value function is differentiable at ξ. We can show that the
set of points where the value function fails to be differentiable has Lebesgue measure zero
(see Corollary 3.6 and the discussion preceeding it); we cannot, however, altogether exclude
the existence of such points. We expand on this by showing that uniqueness of global min-
imizers and differentiability of the value function is in fact an equivalence (Theorem 3.4).
Further, we discuss two examples in section 4, a simple function minimization and a small
data assimilation problem), where corners in the value function (and hence nonuniqueness of
global minimizers) do occur for certain initial conditions ξ ∈ E. In section 5 we discuss the
necessary modifications in our analysis to obtain the same results for Problem 2, that is, with
background error.
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2. Existence of solutions. In addition to the conditions mentioned in the introduction,
we impose the following hypotheses.

Hypothesis 1. The mappings fk : E → E, k = 1, . . . , n, have continuous first derivatives
Dfk(x) for every k = 1, . . . , n and x ∈ E which are nonsingular in x.

Hypothesis 2. The running costs Lk : E × E → R≥0, k = 1, . . . , n, have continuous first
partial derivatives.

Hypothesis 3. For each k = 1, . . . , n and x ∈ E and λ ∈ E the equation

0 = D2Lk(x, u)− λT

has a unique solution uk(x, λ).

Here and in the following, we use the symbol Dn to denote the partial derivative of a
mapping with respect to the nth argument. Similarly, D denotes the total derivative.

Hypothesis 4. For all k = 1, . . . , n and x ∈ E, we have the estimate

Lk(x, u) ≥ φ(u),

where φ : E → R is bounded below and has bounded level sets (an example would be φ(u) =
a‖u‖2 − b for some a, b > 0).

Hypothesis 5. The function ψ : E → R≥0 has continuous first derivatives and we have the
estimate

ψ(u) ≥ φ(u),

where φ is as in Hypothesis 4.

Hypothesis 6. For each v, ξ ∈ E the equation v = Dψ(x − ξ) has a unique solution x =
x(v, ξ).

We note that the objective function displayed in (1) has running costs

Lk(x, u) =
1

2
(h(x)− yk)TGk(h(x)− yk) +

1

2
uTBku

which satisfy Hypotheses 2, 3, and 4 if the matrices Bk, k = 1, . . . , n, are positive definite, the
matrices Gk, k = 1, . . . , n, are nonnegative definite, and h has continuous first derivatives. We
stress, however, that Hypotheses 2, 3, and 4 do not imply that the running costs Lk are in
any way “nearly quadratic.” For instance, running costs of the form Lk(x, u) = ak(x) + ‖u‖r
for some r > 1, with suitable functions ak, would also satisfy these hypotheses.

Definition 2.1. An element (x,u) ∈ En × En satisfying the constraint with some initial
condition ξ ∈ E will be referred to as admissible with respect to ξ (or simply admissible if ξ
is specified). An element (x∗,u∗) ∈ En × En which is admissible with respect to some ξ ∈ E
will be referred to as a minimizer of Problem 1 with respect to ξ if A(x∗,u∗) ≤ A(x,u) for
any other (x,u) ∈ En × En which is admissible with respect to ξ.
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It is clear that for any given u ∈ En and ξ ∈ E we can use the constraints (3) to generate
a (uniquely defined) x ∈ En so that (x,u) is admissible with respect to ξ. That is, there
exists a mapping X : E × En → En so that x = X(ξ,u). Further, we can define a function
J : E × En → R≥0 by

J(ξ,u) := A(X(ξ,u),u),

that is, we use the mapping X to eliminate x from the objective function.

Proposition 2.2. For any ξ ∈ E, there exists a minimizer of Problem 1 with respect to ξ.

Proof. It is clear that finding a minimizer of Problem 1 with respect to ξ is equivalent to
solving the unconstrained problem of minimizing J(ξ,u) over all u ∈ En. Indeed, if u∗ is a
minimizer of J(ξ,u) for some ξ, then (x∗,u∗) with x∗ := X(ξ,u∗) is a minimizer of Problem 1
with respect to ξ. To minimize J(ξ,u) over u, we need to consider only those u for which
J(ξ, 0) ≥ J(ξ,u). Since J is continuous, those u form a closed set Uξ. On the other hand,
J(ξ,u) ≥

∑n
k=1 φ(uk) by Hypothesis 4, which means for u ∈ Uξ that

J(ξ, 0) ≥
n∑
k=1

φ(uk).

By the properties of φ we obtain that Uξ is bounded and hence compact, but a continuous
function on a compact set attains its minimum. Although this is a standard fact, we will
give a proof which puts Corollary 2.3 into context. A minimizing sequence is a sequence
{(u(n), n ∈ N} in Uξ so that J(ξ,u(n)) is monotone decreasing in n and converges to inf J(ξ,u).
Such a sequence clearly exists (although its actual construction might be nontrivial). Since
Uξ is compact, there is a subsequence (which we do not relabel) converging to some u∗. It
then follows from continuity that

J(ξ,u∗) = J
(
ξ, lim
n→∞

u(n)
)

= lim
n→∞

J
(
ξ,u(n)

)
= inf J(ξ,u).

We remark that the proof uses merely Hypothesis 4 as well as the continuity of the fk’s and
Lk’s (which is of course implied by Hypotheses 1 and 2). The following corollary underlines
the importance of the uniqueness of minimizers.

Corollary 2.3. If a minimizer (x∗,u∗) of Problem 1 with respect to ξ is unique, then any
minimizing sequence converges to it.

Proof. Any subsequence of your favorite minimizing sequence is still a minimizing se-
quence and hence (by the proof of Proposition 2.2) has a subsubsequence which converges to
a minimizer which must be (x∗,u∗). This implies that your favorite minimizing sequence also
converges to it.

3. Uniqueness of solutions. We now investigate the uniqueness of minimizers. A very
important concept in this analysis will be the value function, which plays a prominent role in
the calculus of variations [7, 4] and optimal control theory [9, 1]. We will basically recover
well-known results for the value function in the special setup considered in this paper. As
part of our analysis, we need to consider the classical necessary conditions for a minimizer,
involving the method of Lagrange multipliers.
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Proposition 3.1. If (x∗,u∗) ∈ En×En is a minimizer of Problem 1 with respect to ξ, then
there exists λ∗ ∈ En so that the triple (x∗,u∗,λ∗) satisfies the conditions

λTk = λTk+1Df(xk)−D1Lk(xk, uk) for k = 1, . . . , n,(6)

xk = fk(xk−1) + uk for k = 1, . . . , n,(7)

0 = D2Lk(xk, uk)− λTk for k = 1, . . . , n,(8)

λn+1 = 0, x0 = ξ.(9)

Proof. The differentiability conditions on the Lk and f imply that the method of Lagrange
multipliers can be applied (see, e.g., [3]), implying that there exists a λ∗ ∈ En so that the
function

L(x,u,λ) := A(x,u) +

n∑
k=1

λTk (xk − fk(xk−1)− uk) ,

where x0 = ξ, has a critical point at (x∗,u∗,λ∗). A simple calculation then gives (6), (7),
(8), (9).

The necessary conditions (6), (7), (9) provide 2n coupled equations for the 2n (times the
dimension of E) unknowns (x∗,λ∗) if we regard u∗ as an auxilliary variable defined by rela-
tion (8) in view of Hypothesis 3. These equations cannot be solved by simply regarding them
as difference equations and iterating them forward (or backward), since the initial conditions
are not fully specified. We know from section 2 though that there exists at least one solu-
tion to the necessary conditions which corresponds to a global minimizer. We will see that
under certain conditions, the property of being a global minimizer implies that λ1 must have
a specific value (which depends on ξ). But thanks to Hypothesis 1 there can be at most one
solution to the necessary conditions with x0 = ξ and λ1 being equal to some specified element
in E, and it follows that such a minimizer must be unique.

But even in this situation, there might exist further solutions to the necessary conditions
corresponding, for instance, to local minima or other nonminimal critical points. The existence
of such solutions cannot be ruled out by our approach.

The following function will be important in our analysis.

Definition 3.2. The value function V : E → R≥0 is defined as

V (z) := inf A(x,u),

where the inf is over all elements (x,u) ∈ En×En which are admissible with respect to initial
condition x0 = z ∈ E.

As we consider V as a function of the initial condition, we use the symbol z for generic
initial conditions in E. Further, we fix an arbitrary point ξ ∈ E as a specific initial condition
we want to investigate the value function at.

From the very definition of the value function, it follows that

(10) V (z) ≤ A(x,u)
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for any (x,u) admissible with respect to z, while we have equality in (10) if and only if
any (x,u) is a minimizer with respect to z. Now assume that (x∗,u∗) is a minimizer with
respect to ξ. We modify this minimizer by considering an element (x′,u′) ∈ En × En with
x′1 = x∗1, . . . , x

′
n = x∗n and also u′2 = u∗2, . . . , u

′
n = u∗n, but u′1 = u∗1 + f(ξ)− f(z), where z ∈ E

is a generic initial condition. Thus, we can consider (x′,u′) and also A(x′,u′) as a function
of z. More explicitly, we have

A(x′,u′) = A(x∗,u∗)− L1(x
∗
1, u
∗
1) + L1(x

∗
1, u
∗
1 + f(ξ)− f(z)) =: α(z).

Since (x′,u′) is still admissible with respect to z, but not necessarily a minimizer, it follows
from (10) and the discussion that

V (z) ≤ A(x′,u′) = α(z)

for all z ∈ E, with equality if z = ξ. This implies that if V has a derivative at ξ, it must be
equal to Dα(ξ) = −D2L(x∗1, u

∗
1)Df(ξ) = −λ∗T1 Df(ξ). We arrive at the following conclusion

(which is basically the envelope theorem; see, e.g., [13]).

Theorem 3.3. If (x,u) is a minimizer with respect to the initial condition x0 = ξ ∈ E and
the value function V has a derivative at ξ, then this minimizer is unique, and

(11) λ∗T1 = −DV (ξ)Df(ξ)−1.

We emphasize again that even uniqueness of the minimizer does not rule out the existence
of further solutions to the necessary conditions. We have just proved that only one of them
can correspond to a minimizer.

Now that we have solved one problem, the next one immediately presents itself: When is
the value function differentiable? The rest of the paper will essentially be concerned with this
question. First, we show that differentiability is not only sufficient but actually necessary for
uniqueness of minimizers.

Theorem 3.4. If there is only one minimizer (x∗,u∗) of Problem 1 with respect to ξ, then
V is differentiable at ξ and in fact D1J(ξ,u∗) = DV (ξ).

This follows very easily from Danskin’s theorem [4, p. 204], but the proof requires some
nonsmooth analysis machinery. Here is a simplified proof which will serve our much more
humble needs.

Proof. Take a sequence xk ∈ E, k ∈ N, with xk → ξ, and for every k, let u(k) be a
minimizer of J(xk,u) with respect to u . As xk is convergent, it is bounded (by R, say). As
discussed in the proof of Proposition 2.2 we can assume that each u(k) satisfies the bound

J(xk, 0) ≥
∑n

l=1 φ(u
(k)
l ). On the other hand, J(z, 0) is continuous on the compact set {z ∈

E, ‖z‖ ≤ R} and hence bounded by some S > 0 depending on R. Hence
∑n

l=1 φ(u
(k)
l ) ≤ S,

so we can assume that u(k) is bounded as well. We recall that u∗ is the unique minimizer of
J(ξ,u), and assert that

(12) u(k) → u∗.
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Indeed, taking any subsequence of (xk,u
(k)) (which we do not relabel), we still have that

xk → ξ and u(k) minimizes J(xk,u). As u(k) is bounded, there is a subsubsequence converging
to some u′. Because V and J are continuous, we can now take limits in the equality V (xk) =
J(xk,u

(k)), obtaining V (ξ) = J(ξ,u′). This shows that u′ minimizes J(ξ,u) and hence
u′ = u∗. This proves our claim (12).

We will now show that D1J(ξ,u∗) = DV (ξ). Because V (ξ) ≤ J(ξ,u(k)) we have that

V (xk)− V (ξ) ≥ J
(
xk,u

(k)
)
− J

(
ξ,u(k)

)
= D1J

(
zk,u

(k)
)

(xk − ξ)

for some zk on the line connecting xk with ξ. This gives

V (xk)− V (ξ)−D1J
(
ξ,u(∗)

)
(xk − ξ) ≥

(
D1J

(
zk,u

(k)
)
−D1J

(
ξ,u(∗)

))
(xk − ξ)

and hence

lim inf
k→∞

(
V (xk)− V (ξ)−D1J

(
ξ,u(∗)

)
(xk − ξ)

)/
‖(xk − ξ)‖ ≥ 0.

On the other hand, because V (xk) ≤ J(xk,u
∗) we have

V (xk)− V (ξ) ≤ J(xk,u
∗)− J(ξ,u∗) = D1J(zk,u

∗)(xk − ξ)

for some zk on the line connecting xk with ξ. This gives

V (xk)− V (ξ)−D1J
(
ξ,u(∗)

)
(xk − ξ) ≤

(
D1J (zk,u

∗)−D1J
(
ξ,u(∗)

))
(xk − ξ)

and hence

(13) lim sup
k→∞

(
V (xk)− V (ξ)−D1J

(
ξ,u(∗)

)
(xk − ξ)

)/
‖(xk − ξ)‖ ≤ 0.

With this result and Theorem 3.3 in mind, the question of differentiability of the value
function becomes even more important. We always hope that real-world problems “tend to
be” smooth, but value functions are one of the many important exceptions. In the remainder
of the present section, we will demonstrate that V fails to be differentiable only on a set
of volume zero. This makes precise our previous statement that minimizers are unique for
“most” initial conditions.

Proposition 3.5. Let R be a positive constant. Then for any z1, z2 in E with ‖z1‖ ≤ R,
‖z2‖ ≤ R we have

|V (z1)− V (z2)| ≤ L‖z1 − z2‖,

where L is a constant depending only on R.

Proof. The function J has a continuous derivative with respect to the first argument and
hence

(14) |J(z1,u)− J(z2,u)| ≤ ‖D1J(ζ,u)‖‖z1 − z2‖
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for some point ζ ∈ E with ‖ζ‖ ≤ R by the mean value theorem. Considering for the moment
only u’s so that

∑n
k=1 φ(uk) ≤ S with some S > 0, we know from Hypothesis 4 that this is a

bounded set and hence ‖D1J(ζ,u)‖ ≤ L for some L depending on R and S only. Using this
in (14), we obtain

(15) |J(z1,u)− J(z2,u)| ≤ L‖z1 − z2‖

with L depending on R and S.
It is clear that V (z) = infu∈En J(z,u), and we will now prove that it is sufficient to

consider the inf only over those u for which
∑n

k=1 φ(uk) ≤ S, where S is a sufficiently large
constant depending on R. A similar argument was used in the proof of Theorem 3.4; for a
given z ∈ E, it suffices to minimize over those u that satisfy

∑n
k=1 φ(uk) ≤ J(z, 0), while

J(z, 0) is continuous on the compact set {z ∈ E, ‖z‖ ≤ R} and hence bounded by some
S > 0 depending on R. We have established that V is the infimum of functions that satisfy
relation (15) with L depending on R only, and it is easy to see that V must satisfy this relation
as well.

Using Rademacher’s theorem [7], we obtain the following.

Corollary 3.6. The points where the value function V fails to be differentiable have Lebesgue
measure zero in E.

Notwithstanding this fact, our examples in the next section will demonstrate that value
functions for perfectly smooth problems can exhibit points of nondifferentiability, and it seems
that the existence of such points cannot be ruled out without much more stringent structural
assumptions. Having said this, it is fairly easy to see that Problem 1 has a unique solution
if the function J(x0,u) could somehow be shown to be strictly convex in u. For then, if u(1)

and u(2) were two distinct global minimizers with value, say, J0, any t ∈]0, 1[ would give rise
to the contradiction

J
(
x0, t · u(1) + (1− t) · u(2)

)
< t · J

(
x0,u

(1)
)

+ (1− t) · J
(
x0,u

(2)
)

= J0.

But even if A is convex in (x,u), the dependence of x on u for any admissible pair will involve
the dynamics f , rendering J a nonconvex function of u in general.

An important exception is the case of linear dynamics (i.e., the functions fk are linear) and
a cost function of the form (1) with the hk being linear as well. As is well known, Problem 1
then has a unique solution for all x0 = ξ, and the value function is in fact a quadratic function,
the coefficients of which are obtained by solving a matrix valued difference equation of Riccatti
type backward in time. For details, see, for example, [14, Ex. 6.2-8], dealing with the closely
related optimal regulator, or [15, Exer. 8.2.7.].

4. Examples. In this chapter we will further illustrate the concept of the value function
in the context of a very simple analytic example as well as a small data assimilation problem.
In particular, it will be seen that the value function might exhibit points of nondifferentiabil-
ity even in perfectly smooth situations. The notorious nonsmoothness of value functions in
variational calculus and optimal control is of course a well-known phenomenon; see, e.g., [4].
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Analytic example. Consider the function

γ : [0, 1]× R→ R; γ(ξ, x) =
1

4
x4 − 1

3
x3 · (2ξ − 1) +

1

2
x2 · ξ(ξ − 1)

which we want to minimize over x ∈ R, where ξ is a parameter. The derivative factorizes as
D2γ(ξ, x) = x(x− ξ + 1)(x− ξ), and it is easily seen that for all ξ ∈ [0, 1], the function has a
local maximum at x = 0 and two local minima at x = ξ − 1 and x = ξ. For ξ < 1

2 the former
is the global minimum and for ξ > 1

2 the latter. In particular, the minimizer is not unique
at ξ = 1

2 . An elementary calculation reveals that the value function V (ξ) = infx γ(ξ, x) is
given as

V (ξ) =


1

12
(ξ − 1)4 +

1

6
(ξ − 1)3 if ξ ≤ 1

2
,

1

12
ξ4 − 1

6
ξ3 if ξ ≥ 1

2
.

The value function is Lipschitz continuous but not differentiable everywhere, even though the
original problem statement leaves very little to be desired in terms of regularity. Figure 1
shows the value function V as well as γ as a function of ξ (sic) for several values of x. Let
us fix a value x0 and assume that it happens to be a minimizer for γ if ξ = ξ0. We can
see that the function ξ → γ(ξ, x0) “touches” the value function from above at ξ = ξ0, since
V (ξ0) = γ(ξ0, x0) but V (ξ) ≤ γ(ξ, x0) for other values of ξ (because x0 is not necessarily a
minimizer for other ξ). In other words, the function ξ → γ(ξ, x0) − V (ξ) has a minimum at
ξ = ξ0, which implies that D1γ(ξ0, x0)−DV (ξ0) = 0 or

(16) D1γ(ξ0, x0) = DV (ξ0),

Figure 1. The value function V as a function of ξ (thick line), showing the concave corner at ξ = 0.5. The
function γ(·, x) is shown for several values of x (thin line; ordinates are scaled), touching the value function
from above. For ξ = 0.1, 0.3, 0.7, and 0.9, the minimizer is unique (−0.9,−0.7, 0.7, and 0.9, respectively), and
the value function is differentiable at these points. For ξ = 0.5, there are two minimizers x = ±0.5, and both
γ(·, 0.5) and γ(·,−0.5) touch the value function from above, giving rise to the concave corner.
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provided that V has a derivative at ξ0. Equation (16) is known as the envelope theorem, and it
provides a necessary condition for a minimizer in addition to the usual condition D2γ(ξ0, x0)
= 0. The reader will realize that this is exactly the argument behind (11).

Our example, however, demonstrates that V need not have a derivative for all ξ but
can develop concave corners. Let X0 be the set of all minimizers of γ(ξ0, x) for fixed ξ0.
If D1γ(ξ0, x) varies across X0, then V cannot be differentiable as this would contradict the
envelope theorem. The value function then has, roughly speaking, “several derivatives” as
several functions with different derivatives touch V from above. Conversely, if V has a concave
corner at ξ0, then we can at least not exclude that several functions with different derivatives
touch V from above, giving rise to several minimizers.

Numerical example. Next we will consider a numerical example, involving data assimi-
lation into a two-dimensional nonlinear system. We use the notation of sections 1 and 2. In
this example, E = R2, and an objective function as in (1) is used with h(x(1), x(2)) = (x(1))2.
The dynamics is given by

(17) f : R2 → R2, x→

(
x(2) − a · exp

(
−
(
x(1)

)2) · x(1)
b · x(1)

)

with parameters a = 3.5, b = 0.3. The observations were generated using the modified dy-
namical system

(18) f̃ := f +

(
1
0

)
,

which we have not analyzed in any depth, but it seems to create a complex attractor shown
in Figure 2.

An initial condition was sampled from this attractor and an orbit (w1, . . . , wn) of length
n = 6 was generated. Putting yk = h(xk) + s · rk for k = 1, . . . , 6 gave the observations, where

Figure 2. The attractor for the dynamical system in (18), approximated by an orbit of 500 points.
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Figure 3. The value function V (ζ, ζ) as a function of ζ (thick line), showing the concave corner at ζ = 0.
The function J(·,u) is shown for several values of u (thin line), touching the value function from above at
those ζ for which u is a minimizer. The minimizer is unique for ζ = ±0.17,±0.09, and the value function
is differentiable at these points. For ζ = 0, there are two minimizers u1,u2 (with u1 = −u2), and both
J(·,u1), J(·,u2) touch the value function from above, giving rise to the concave corner.

the rk are independent standard normal random variables and s ∼= 0.45 is about 0.2 times the
empirical standard deviation of h(xk). The initial condition ξ in the constraint (3) is two-
dimensional, but in order to better illustrate the results, we investigated the initial conditions
ξ = (ζ, ζ) with ζ ∈ [−2, 2]. The functions J and V will be presented as functions of this
parameter ζ.

Before looking at the results, however, we note that if (x,u) is an admissible solution
with respect to some initial condition ξ = (ζ, ζ), then (−x,−u) is an admissible solution with
respect to the initial condition −ξ = (−ζ,−ζ). Further, both solutions provide exactly the
same value of the objective function, implying that if (x,u) is an optimal solution with respect
to ξ = (ζ, ζ), then (−x,−u) is optimal for the initial condition −ξ = (−ζ,−ζ). In particular,
if (x,u) is an optimal solution with respect to ζ = 0 (i.e., ξ = 0), then so will be (−x,−u),
that is, we can expect the problem to have multiple solutions for ζ = 0.

The objective function was minimized using a standard Nelder–Mead Simplex algorithm
as implemented in the Octave (or MATLAB) fminsearch function, which was able to find the
minimum in all cases with minimal problems. Figure 3 shows the function J(·,u) for several
values of u (thin line), touching the value function from above at those ζ for which u is a
minimizer (ζ = ±0.17,±0.09, and ζ = 0 are shown as examples). The minimizer is unique
for ζ 6= 0, and the value function is differentiable at these points. For ζ = 0, there are two
minimizers u1,u2 (with u1 = −u2), and both J(·,u1), J(·,u2) touch the value function from
above, giving rise to the concave corner.

5. Discussion of 4DVar with background error. In this section, we will briefly sketch
the modifications necessary to prove that our main conclusions hold for Problem 2 as well.
It is evident that for any given u ∈ En we can use the constraints (5) to define a mapping
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X : En → En so that x = X(u) jointly with u ∈ En satisfies the constraints (we will now call
the pair (x,u) admissible). We define a function J : E × En → R≥0 by

J(ξ,u) := A(X(u),u, ξ),

that is, we use the mapping X to eliminate x from the objective function. For the proof of
Proposition 2.2, note that we again only need to consider only those u for which J(ξ, 0) ≥
J(ξ,u), but J(ξ,u) ≥

∑n
k=1 φ(uk) + φ(u0− ξ) by Hypotheses 4 and 5, which means J(ξ, 0) ≥

φ(uk) for all k = 1, . . . , n and also J(ξ, 0) ≥ φ(u0 − ξ). Since φ has bounded level sets, there
exists S > 0 so that S ≥ ‖uk‖ for all k = 1, . . . , n and also S ≥ ‖u0 − ξ‖ or S + ‖ξ‖ ≥ ‖u0‖.
We again obtain that Uξ is bounded and hence compact. The necessary conditions remain
the same, apart from the boundary conditions (9) which read as

(19) λn+1 = 0, 0 = −λT1 Df(x0) + Dψ(x0 − ξ).

The value function is simply defined as the infimum

V (z) = inf A(x,u, ξ)

over all admissible pairs (x,u). If (x∗u∗) is a minimizer with respect to ξ ∈ E and the value
function has a derivative at z = ξ, the envelope theorem gives

DV (ξ) = −Dψ(x∗0 − ξ).

Using the necessary conditions (with boundary conditions (19)) and Hypothesis 6, we can
conclude as before that the minimizer must be unique. All other results of the paper apply
with the same proofs.
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