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Abstract
Flood early warning systems mitigate damages and loss of life and are an economically efficient
way of enhancing disaster resilience. The use of continental scale flood early warning systems is
rapidly growing. The European Flood Awareness System (EFAS) is a pan-European flood early
warning system forced by a multi-model ensemble of numerical weather predictions. Responses
to scientific and technical changes can be complex in these computationally expensive continental
scale systems, and improvements need to be tested by evaluating runs of the whole system. It is
demonstrated here that forecast skill is not correlated with the value of warnings. In order to tell
if the system has been improved an evaluation strategy is required that considers both forecast
skill and warning value.

The combination of a multi-forcing ensemble of EFAS flood forecasts is evaluated with a new
skill-value strategy. The full multi-forcing ensemble is recommended for operational forecasting,
but, there are spatial variations in the optimal forecast combination. Results indicate that
optimizing forecasts based on value rather than skill alters the optimal forcing combination and
the forecast performance. Also indicated is that model diversity and ensemble size are both
important in achieving best overall performance. The use of several evaluation measures that
consider both skill and value is strongly recommended when considering improvements to early
warning systems.
1. Introduction

Flood Early Warning Systems (EWS) are vital for
enhancing disaster resilience (Guha-Sapir et al 2013,
Stephens et al 2015a, 2015b, Carsell et al 2004,
Coughlan de Perez et al 2016, Girons Lopez et al
2017), particularly for serious flooding in transna-
tional river basins (Emerton et al 2016, Eleftheriadou
et al 2015, Webster et al 2010). Although flood
forecasts are improving (Pappenberger et al 2011,
Collier 2016), EWS developers still face considerable
challenges (Pagano et al 2014, Wetterhall et al 2013,
Zia and Wagner 2015).

One of the most prominent challenges is under-
standing how best to evaluate scientific improvements
© 2017 IOP Publishing Ltd
within a computationally intensive operational fore-
casting environment. The complexities of these systems
mean that when small scientific or technical improve-
ments are made, the consequent improvements to the
forecasted variables and flood warnings are not
necessarily straightforward. For example improvements
in grid resolution, bias correction or additional data
assimilation do not always produce the expected results
because of feedbacks in the system (Kauffeldt et al 2015,
Adams and Pagano 2016, supplementary material:
section S1, figure S1 stacks.iop.org/ERL/12/044006/
mmedia). Thus the only way to comprehensively
evaluate improvements in such complex systems is
through an intensive set of numerical experiments
which run the whole system (as for weather forecasting
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systems see for example https://software.ecmwf.int/
wiki/display/FCST/TerminologyþforþIFSþtesting).

Another consideration is that decisions about the
utility of improvements to EWS are typically based on
an assessment of how physically consistent the system
is with respect to observations. This is measured in
terms of the quantitative skill of the system in
forecasting variables such as river discharge or water
level (Pappenberger et al 2015a, Robertson et al 2013,
Wanders et al 2014). However, investment decisions
about EWS instead consider the cost-benefit ratio of
predictions, such as the value of flood warnings issued
(Pappenberger et al 2015b). This reliance on skill
measures to evaluate system improvements may exist
because it is usual practice to evaluate system skill and
alternatives are simply not considered, or because
there is an inherent assumption that skill is correlated
with value (which it may not be) or because evaluating
the value of warnings is a very resource and data
hungry activity which is not easy to achieve.

In this paper this mismatch is addressed by
evaluating EWS improvements using traditional
measures of forecast skill and measures of the value
of the warnings, and a number of hybrid measures.
The EWS used is the European Flood Awareness
System (EFAS) which is an operational continental
scale flood EWS (Smith et al 2015, 2016). A large set of
reforecasts from EFAS is used to evaluate a system
improvement that has never been previously objec-
tively and fully tested in EFAS: the implementation of a
multi-model Numerical Weather Prediction (NWP)
forcing framework. Such a framework should theo-
retically provide a better estimation of uncertainty and
an improved predictive distribution than a single
forcing approach (Ajami et al 2006, Zsótér et al 2016).
2. Methods

In this paper, the whole integrated EFAS EWS is used to
demonstrate a new skill-value evaluation strategy in the
testing of the implementation of a multi-forcing
framework. The experiment uses a large set of flood
forecasts generatedwith a 2 year EFAS reforecast.Multi-
forcing approaches use forecast combination techni-
ques, which require the estimation of weights for each
individualflood forecast, or ensemble offlood forecasts.
All possible permutations of theNWP forcings available
toEFASareoptimized inorder to test thehypothesis that
the full multi-model forcing provides the highest
forecast skill and highest warning value (figure 1).
The weights are optimized using five evaluation
measures which range from traditional river discharge
skill evaluation through to evaluating flood warning
value (section 2.2). A sensitivity analysis is then
undertaken in order to evaluate the impact of the
model forcingcombinationsonEFASperformance.The
combinations are evaluated relative to one another,
again using evaluation measures ranging from river
2

discharge skill through tofloodwarning value (figure 1).
Following best practice for sensitivity testing (Saltelli
et al2008),first a LeaveOneoutComparison (LOOC) is
undertaken followed by an Add One In Comparison
(AOIC) (section 2.3). In order to avoid confusion in
such a complex analysis, when the evaluation measures
are used for optimization they are referred to as
Methods 1–5, and when the evaluation measures are
used for the sensitivity analysis the method names
(CRPS, SEDI, etc) are used (see figure 1).

2.1. The European Flood Awareness System (EFAS)
EFAS produces probabilistic flood warnings up to
15 days ahead as part of the Copernicus Emergency
Management Service (Bartholmes et al 2009, Smith
et al 2015, 2016, Thielen et al 2009). EFAS was
developed by the European Commission to contribute
to better flood risk management in advance of and
during flood crises across Europe. The system provides
both National authorities and the European Commis-
sion with pan-European overviews of forecasted floods
with the aim of improving coordination of aid and
acting as a complementary source of information for
national systems. The system is now forced with NWP
forecasts that are both global and regional, determin-
istic and ensemble-based. The hydrological model is
LISFLOOD (Van Der Knijff et al 2010) which is setup
over the European domain on a 5� 5 km grid and also
for 768 river catchments, which are used in the
operational EFAS for monitoring and post-processing.
The forecasts are bias-corrected and post-processed at
the locations where real-time hydrological observa-
tions are available (Smith et al 2016). Further details
on the EFAS NWP forcings, flood warning decision
rules and performance are provided in the supple-
mentary material section S2.

When the EFAS has a system upgrade, a
‘reforecast’ is produced in order to evaluate the new
changes to the system. Reforecasting is also known as
hindcasting or retrospective forecasting and involves
computing forecasts with the new EFAS configuration
for past dates. The most recent reforecast for EFAS was
produced in January 2014 (ECMWF 2014, Salamon
2014) and covers the 2 year period January 2012 to
December 2013. The reforecasts used in this study are
issued daily, looking up to 10 d ahead for the whole
European domain. Here forecast lead times of 3–10 d
are used in the analysis, as EFAS is a medium-range
forecasting system that is designed for forecasts of lead
times of 3 days and longer.

The NWP forcings for EFAS could be combined in
a number of different ways (figure 1, table 1). It is
assumed in the operational EFAS that the full multi-
forcing combination (configuration 15) provides the
best system performance but hitherto this has not
been tested. As spatially distributed observed dis-
charge data are not available, and the quality and
coverage of station observations over the European
domain are very unequal (Smith et al 2016), the river

http://https://software.ecmwf.int/wiki/display/FCST/Terminology&x002B;for&x002B;IFS&x002B;testing
http://https://software.ecmwf.int/wiki/display/FCST/Terminology&x002B;for&x002B;IFS&x002B;testing
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Figure 1. An overview of the experimental design for evaluating the implementation of multi-model forcings in the EFAS EWS. River
discharge forecasts are produced by forcing EFAS with different NWP models (‘Forecasts’). These forecasts are then combined in all
possible permutations; the weightings for each combination are calculated by optimizing the past 90 d of forecasts against proxy
observations using 5 different methods (1:CRPS, 2:CRPS-lagged, 3:SEDI, 4:Hit Rate and 5:Value). This then produces a large set of
combined forecasts which are evaluated against one another in a sensitivity analysis. The evaluation measures used in the sensitivity
analysis are CRPS, SEDI, Hit Rate and Value. In order to avoid confusion in such a complex analysis, when the evaluationmeasures are
used for optimization they are referred to as methods 1–5, and when the evaluation measures are used for the sensitivity analysis the
method names (CRPS, SEDI, etc) are used.
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discharge observations used in this study to evaluate
the reforecasts are proxies, derived from routing
observed rainfall through the hydrological model (as
per Pappenberger et al 2008, 2015). As the same
model is used for observations and the predictions,
this also allows us to control for a number of other
uncertainties.
2.2. Forecast improvement: combination and
optimization
First the flood forecasts are combined, requiring the
estimation of weights for each individual forecast or
ensemble of forecasts in order to optimise the output
of the systems against the proxy observations. This is
done for each of the 768 river catchments.

The river discharge forecasts from different NWP
are combined using nonhomogeneous Gaussian
regression, NGR (Gneiting et al 2005) (equation (1)).

ys;t jf 1;s;t ; . . . ; f M ;s;t∼Nðw þ g1;s;t f 1;s;t þ . . .

þ gM ;s;t f M ;s;t ; hþ y1;s;t s1;s;t þ . . .

þ yM;s;t sM ;s;tÞ ð1Þ

ys,t: discharge at location s and lead time t.
3

fi,s,t: mean of the ith ensemble forecast (in case of
ensemble forecast)/forecast value (in case of deter-
ministic forecast) at location s and lead time t

M: number of systems
w,g: bias correction parameters
h,y: spread correction parameters
si,s,t: the standard deviation of the ith ensemble

forecast. In the case where only a deterministic forecast
is used this is replaced by the forecast value.

The parameters of the NGR can be estimated by
optimising an evaluation measure on the past 90 d of
forecasts. Here five different evaluation measures are
used for this optimization stage. These have been
selected to cover the range from a traditional skill
based evaluation measure (method 1) through to a
monetary value based score (method 5), with hybrid
scores in between (methods 2–4).

2.2.1. Optimization method 1: optimization using
continuous rank probability score (CRPS) (for each
lead time), CRPS
Method 1 considers the skill of river discharge and
optimizes the CRPS (Hersbach 2000) for each lead
time. The NGR is optimized independently for each



Table 1. Configurations of NWP forcings available to produce
EFAS forecasts. All possible permutations are evaluated. DWD
refers to the deterministic, high-resolution forecast issued by the
Deutsche Wetterdienst. ECMWF-Highres refers to the
deterministic, high resolution forecast issued by the European
Centre for Medium-range Weather Forecasts (ECMWF). ECMWF-
ENS refers to the ensemble forecast issued by the ECMWF.
COSMO-LEPS refers to the ensemble forecast issued by the
COSMO Consortium. (Details are provided in Smith et al 2016).

Configuration DWD ECMWF-

Highres

ECMWF-

ENS

COSMO-

LEPS

1 •

2 •

3 •

4 •

5 • •

6 • •

7 • •

8 • •

9 • •

10 • •

11 • • •

12 • • •

13 • • •

14 • • •

15 • • • •
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lead time and location using the analytical formula for
the CRPS given in Grimit et al (2006).

2.2.2. Optimization method 2: optimization using
continuous rank probability score (CRPS) for lagged
forecasts, CRPSl
Warning decisions in EFAS are based on lagged
forecasts. Consecutive forecasts are required to issue
an alert as this provides a better false alarm rate (see
supplementary material S2). The CRPS is optimized
using a NGR formulation which contains not only the
most recent forecast, but also forecasts issued 3–10
days beforehand increasing the number of ensemble
systems i used in equation (1). This method is hence
closer to the relevant decision rules (Cloke and
Pappenberger 2008).

2.2.3. Optimization method 3: optimization using
the symmetric extreme dependency index, SEDI
In this method, the performance of warnings which
use lagged forecasts is scored in terms of hits, misses,
false alarms and correct rejections using a contin-
gency table and the decision framework shown in
table S2. Flood events are low frequency events and
so the Symmetric Extreme Dependency Index
(SEDI) is used (Ferro and Stephenson 2011, North
et al 2013):
4

SEDI ¼ logF� logH � log 1� Fð Þ þ log 1� Hð Þ
logF þ logH þ log 1� Fð Þ þ log 1� Hð Þ

ð2Þ

Where H is the hit rate:

H ¼ a

a þ c
ð3Þ

And F is the false alarm rate:

F ¼ b

b þ d
ð4Þ

where a, b, c, and d are the number of hits, the number
of false-alarms, the number of misses and the number
of correct rejections respectively. The SEDI ranges
from [�1, 1], taking the value of 1 for perfect forecasts
and 0 for random forecasts, therefore scores above 0
have some degree of skill.

2.2.4. Optimization method 4: optimization using
the hit rate
As false alarms have a low cost in early warnings (Dale
et al 2013), method 4 uses an objective scoring
function for optimization which focusses on the
number of hits and misses (the hit rate, equation (3))
for lagged forecasts as a proxy for monetary benefit.

2.2.5. Method 5: optimization using value
Pappenberger et al (2015) have estimated the
monetary value of the EFAS by calculating the avoided
flood damages of the early warnings and comparing
with the costs of implementation and running the
system. This required a large analysis involving details
of EFAS forecasts, the EU and national forecasting
context of EFAS, the flood alert decision rules, damage
data sets (Barredo (2009), the EM-DAT (EM-DAT
2014) emergency events database and complementary
information from the European Solidarity fund
application (EC 2014)), and the calculation of avoided
flood damages.

However, when making comparisons of various
setups within any one early warning system (in this
case EFAS), the monetary value can be evaluated using
an analysis of just the hits (correct forecasts)
(Pappenberger et al 2015). This is because the base
investment value in the system and the running costs
remain static, the false alarms can be neglected (as
above in method 4) and the total number of observed
flood events (hits þ misses) remains constant in the
evaluation dataset. Optimizing against the hits is
directly equivalent to optimizing against the value, and
thus the approach taken in Method 4 can be modified
to use only the hits in the optimization and will reflect
directly the monetary value (a in equation (3)).

2.3. Sensitivity analysis of forecast improvements
The optimised EFAS forecast sets are evaluated against
one another in order to understand the influence and



Table 2. Spearman Rank correlations between the different objective scoring functions: CRPSm , SEDI, Hit Rate and Value for all
5 optimization methods. All values shown are significantly different from 0 (p = 0.05).

Rank Correlation between scoring functions

Optimization Method CRPSm
vs

SEDI

CRPSm
vs

Hit Rate

CRPSm
vs

Value

SEDI

vs

Hit Rate

SEDI

vs

Value

Hit Rate

vs

Value

1 �0.48 0.04 0.07 0.68 �0.11 0.21

2 �0.39 0.18 0.07 0.60 �0.11 0.15

3 0.06 �0.08 �0.04 0.29 �0.10 0.20

4 0.12 0.01 �0.05 0.44 �0.17 0.08

5 �0.20 0.23 0.002 0.58 �0.12 0.15

Mean �0.18 0.08 0.01 0.52 �0.12 0.16
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contributions of the different input forcings. This
necessarily uses objective skill and value evaluation
measures based on CRPS, SEDI, Hit Rate and Value to
evaluate forecast performance (i.e. based on the same
evaluation measures used for the optimization, see
section 2.2 and figure 1). The mean of the CRPS for all
lead times above 3 d (CRPSm) is used for comparison
with other evaluation measures (lead times above 3 d
are selected in this calculation as EFAS is a medium-
range forecasting system that is designed for forecasts
of lead times of 3 d and longer). The CRPS-lagged
does not appear in this part of the analysis as this
requires weighting past forecasts, which requires
optimization.

The sensitivity analysis methodology follows rec-
ommendations from Saltelli et al (2008). First a ‘Leave
One Out Comparison’ (LOOC) is performed, in which
the combinations containing a particular forcing (or
group of forcings) are compared with the combinations
that do not contain the individual forcing (or group of
forcings) (the score reference). For example, and
referring to table 1, for theDWD forcing, combinations
1, 5, 6, 7, 11, 12, 13 (whichcontain theDWDforcing) are
compared with combinations 2, 3, 4, 8, 9, 10,14 (which
do not contain the DWD forcing).

Second, an ‘Add One In Comparison (AOIC)’ is
performed in which an individual forcing/group of
forcings is added to each combination and compared
to the combination without it (the score reference).
For example, and again referring to table 1, for the
group of forcings ‘ECMWF-ENS and COSMO-LEPS’,
combinations 13, 14 and 15 are compared with
combinations 1, 2 and 5.

In the sensitivity analysis, evaluation of the
different configurations is undertaken using ‘skill’
scores. Using one specified system configuration as the
reference, the individual scores are divided by
the reference score and thus normalised. The higher
the score the better, and anything above 0 indicates
‘skill’ of the forecast in relation to the reference. The
CRPS, thus becomes the CRPSS (Continuous Rank
Probability Skill Score) by dividing by the CRPS of the
reference configuration. The SEDI becomes the SEDIS
(Symmetric Extreme Dependency Index Skill Score)
by dividing by the SEDI of the reference configuration.
5

The Hit Rate becomes the Hit Rate Skill by dividing by
the Hit Rate of the reference configuration. The Value
becomes the Relative Value by dividing by the Value of
the reference configuration.
3. Results

Results are presented as an average over all of the 768
EFAS river catchments for the full reforecast data set.

3.1. Is an optimization method looking at both skill
and value required?
First, evidence is presented on the requirement to
consider both skill and value in the optimization
methods used to combine forecasts. The spearman
rank correlations between the methods are shown in
table 2, with the mean value of all optimization
methods provided in the bottom row. These demon-
strate the expected relationships between scores, in
that those that are most similar in terms of their
constructions tend to have the higher correlations, for
example, the relationships between the SEDI, Hit rate
and Value scores, the 3 scores that most represent
value. There is also some correlation between CRPSm
and SEDI. Correlations, however, are in general weak,
which is not surprising as the optimization methods
are a mix between continuous and threshold based
scores including various transformations. This high-
lights the necessity of considering both a range of
optimization methods and evaluation measures to
evaluate the system, and no one measure can fully
replace another.

The forecast performance for the CRPSm and
Value ranked between forcing combinations (num-
bered) for the 5 different methods of optimization
(shapes) is shown in figure 2. This also demonstrates
that skill and value are not well correlated and
therefore the importance of an evaluation strategy that
explicitly considers value as well as skill. The full
complexity of attempting multi-forcing combination
is shown by the variation in rankings between the
different methods for the different forcing combina-
tions. However, the full multi-model ensemble forcing
combination (No 15, shown in a circle) ranks high for
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both Value and CRPSm (although not quite the
highest). It also shows remarkable consistency between
all methods used for optimization and supports the
implementation of the full multi-forcing ensemble
combination at the European scale for EFAS.

3.2. Which NWP forcings have the greatest relative
contribution to improved forecast performance?
In order to understand the relative contribution of an
individual NWP model forcing to the EFAS forecast
performance, a comparison between all combinations
in which the forcing is used to the situations when the
forcing is not used is performed over all catchments,
for the whole reforecast dataset, employing the Leave
One Out comparison (LOOC) method. Table 3 shows
the mean and standard deviation (all forecast start
dates and river catchments) of the skill score values.
Values above 0 indicate a positive contribution to
forecast performance (i.e. making the forecasts better),
with higher numbers meaning an increasingly positive
contribution. Values lower than 0 indicating a negative
contribution (i.e. making the forecasts worse).
Although numerical values in the cells cannot be
directly compared with each other because they are
different optimization-evaluation combinations, larg-
er values indicate better performance and larger
standard deviations indicate greater space-time vari-
ability across forecasts and river catchments.
6

Results show that most of the combinations have a
positive contribution to EFAS performance regardless
of the skill/value score or optimization method used;
results for the DWD, ECMWF-Highres and ECMWF-
ENS nearly always show a positive contribution. This
provides good evidence for employing a multi-forcing
framework for EFAS.

The picture for COSMO-LEPS is more mixed and
does not add value to forecast performance in many
of the combinations. However, COSMO-LEPS results
also exhibit a very large variance which suggests that
the contribution is very variable across Europe. If
analysis is restricted to the Alpine area over which the
high resolution COSMO-LEPS is considered to
outperform lower resolution models, there is
significant improvement in the COSMO-LEPS score
(1 ± 1 as opposed to �1 ± 1 for method 1 and
CRPSSm) with little deterioration in the other scores
(3 ± 0.9 DWD; 2 ± 1 ECMWF-Highres; 3 ± 1
ECMWF-ENS 1 ± 1), indicating the value added
from the COSMO-LEPS forcing even though it
deteriorates the Europewide mean. This is an
important finding because it means that in some
areas there is a positive contribution to forecast
performance even though the spatio-temporal mean
is negative, and thus forcings to EFAS cannot be
discounted purely on a spatio-temporal mean of
performance.



Table 3. Relative contribution of the NWP forcings to EFAS forecast performance for the 5 optimization methods and 4 evaluation measures. Positive numbers represent a positive contribution to the forecast performance (i.e.
this forcing is making the forecasts better) and negative numbers represent a negative contribution to the forecast performance (i.e. this forcing is making the forecasts worse). Direct intercomparison of the values is not possible
because they are different optimization-evaluation combinations, but larger values indicate better performance and larger standard deviations indicate greater space-time variability across forecasts and river catchments.

DWD ECMWF-Highres ECMWF-ENS COSMO-LEPS

Optimization

Method

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

CRPSSm

(�10)
3 ± 1 2 ± 2 1 ± 2 1 ± 2 0 ± 2 2 ± 1 2 ± 2 1 ± 2 1 ± 2 1 ± 2 4 ± 1 3 ± 2 2 ± 2 2 ± 2 2 ± 2 �1 ± 1 �1 ± 3 1 ± 2 1 ± 3 0 ± 3

SEDIS

(�1000)
4 ± 11 0 ± 11 2 ± 5 2 ± 11 3 ± 283 4 ± 10 6 ± 10 5 ± 5 5 ± 12 1 ± 218 3 ± 14 8 ± 12 5 ± 6 6 ± 11 18 ± 208 �6 ± 15 �11 ± 12 �7 ± 13 �9 ± 17 262 ± 734

Hit Rate Skill

(�1000)
7 ± 33 0 ± 33 2 ± 32 2 ± 35 �13 ± 31 10 ± 20 14 ± 23 5 ± 10 6 ± 16 �8 ± 16 3 ± 27 15 ± 27 3 ± 9 5 ± 15 �5 ± 15 �21 ± 53 �24 ± 25 �9 ± 24 �13 ± 30 7 ± 21

Relative Value

(�100)
4 ± 12 3 ± 11 0 ± 8 0 ± 7 6 ± 10 2 ± 7 2 ± 8 0 ± 3 0 ± 3 6 ± 7 0 ± 8 0 ± 9 0 ± 3 0 ± 3 6 ± 6 3 ± 20 1 ± 12 5 ± 9 6 ± 9 �5 ± 8
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Figure 3. NWP forcing with the maximum contribution to EFAS forecast performance gain per river catchment (a) CRPS (b) value.
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If the analysis considers river catchments indi-
vidually and looks for a maximum value from any of
the catchments (rather than the mean over all
catchments) then for Relative value and method 3
the following values are achieved: 33 (DWD), 17
(ECMWF-Highres),22(ECMWF-ENS),100(COSMO),
which are significantly larger than the numbers in
table 3. There are thus very strong spatial dependen-
cies in the scores achieved for different combinations
of forcings. There are also variations depending on
the optimization method and the evaluation methods
used. To highlight this figure 3 shows for each EFAS
river catchment, the NWP forcing with the maximum
positive contribution to EFAS forecast performance
for the CRPS (a) and the Value (b). Each colour
represents a different forcing and the spatial
variability across the catchments is clearly shown.
Considering the dark red colour which represents the
DWD forcing as an example, those catchments in
which EFAS forecasts improve the most when the
DWD is added are shaded. Although there is some
overlap between figures 3(a) and (b) in this shading,
there are also substantial differences in the catch-
ments shaded. This indicates that there would be
significant gains to be achieved in flood forecast
performance by using particular forcing combina-
tions for individual river catchments, and also that
these gains should be evaluated in terms of both skill
and value as the results differ substantially. The
resulting patterns are necessarily complex because of
the spatial variability in the hydrological regimes of
the river catchments as they respond to the variations
in the performance of the numerical weather forecasts
(i.e. river discharge responds non-linearly to changes
in rainfall and varies between catchments). The
8

impact of spatial variability in the optimal forcing
combinations for EFAS should be explored further in
future research.

3.3. Which NWP forcing most improves forecast
performance when added to an existing
configuration?
To evaluate which forcing is the most beneficial when
added to an existing configuration, the Add One In
Comparison (AOIC) method is used. Figure 4 shows
the improvements in forecast performance when a
forcing is added to an existing configuration. First, it
should be noted that these results demonstrate the
value of multi-forcing ensembles. With increasingly
large configurations the skill and the value continues
to increases (i.e. the lines are not horizontal), although
this effect is smaller for Relative Value (bottom row)
than for CRPSS (top row). This is true for the addition
of all forcings and for all optimization methods. This
supports the implementation of a multi-forcing
framework and suggests it provides an improved
predictive distribution than a single forcing approach.
It also suggests that the monetary benefit of the EFAS
as calculated by Pappenberger et al (2015) would be
lower without the full multi-forcing ensemble.

Figure 4(a) (left column) shows the improvements
in CRPSSm and Relative Value from adding an
additional forcing to an existing configuration (for all
optimization methods). As would be expected, the
larger the multi-forcing ensemble the less added value
an individual forcing has. ECMWF-ENS contributes
considerably more in terms of CRPSSm performance
than any other NWP model. In terms of relative value
gain the picture is less clear, with DWD and ECMWF-
Highres adding the most value to the multi model
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Figure 4. ((a)—left column) Improvements through adding forcings to an existing configuration for Method 1. The top figure shows
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system. This suggests that model diversity is of greater
importance for improving the hit rate but ensemble
size is more important for improving the CRPS. Figure
4(b) compares the different optimization methods
focusing on the ECMWF-ENS forcing. Method 1 and
2 perform similarly, considerably outperforming
method 3 and 4 in CRPSSm as well as Relative Value.
Additional skill gain in CRPSSm and Relative Value is
very similar in a systemwhich uses 3 or 4 forcings (size
of original configuration 2 or 3). Given the substantial
resource and political costs of adding any additional
forcing into a continental scale flood forecasting
system in terms of implementation and maintenance,
one conclusion from these results could be that adding
a 4th forcing is not worthwhile. However given the
high correlation in the physics between the ECMWF
models, additional diversity by incorporating other
NWP forcings remains an attractive option (Hagedorn
et al 2012).

4. Conclusions

This work has demonstrated that when evaluating the
impacts of scientific and technical improvements to
flood early warning systems the correlation between
the skill of forecast variables and the value of warnings
is not high and an evaluation strategy that considers
both components is necessary. This will also be true
for other earth system modelling and forecasting
systems.

Here a new skill-value strategy has been tested on
multi-forcing optimization of the European Flood
Awareness System (EFAS). The full multi-forcing
ensemble achieves a good flood forecast performance
in both skill of river discharge forecasts and value of
warnings and this configuration is recommended for
operational forecasting and warning at the European
Scale, but spatial variations are evident when looking
at individual river catchments. Optimization of
forecasts based on value rather than skill alters the
9

optimal forcing combination and the forecast perfor-
mance. Results indicate that a multi-model forcing
framework provided an improved predictive distribu-
tion over a single model approach. In this evaluation
adding more than 2 NWPs to a multi-forcing
ensemble only brought small benefits in terms of
score values, although, it should also be remembered
that achieving diversity in NWP forcing models is also
important for improving forecast hits, and the
ensemble size is important for improving forecast
skill. It should also be noted that the full multi-forcing
framework brings the most benefit in forecast
performance which indicates that the monetary
benefit of the EFAS would be lower without the full
multi-forcing ensemble.

Where possible the use of a full suite of skill-value
evaluation methods is strongly recommended. Those
evaluating modelling and forecasting systems with only
one skill based evaluationmethoddue to computational
or other resource constraints, should consider the
diversity of performances found in this study and that
system skill may not reflect system value.
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