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Abstract 21	

A key debate in ecology centres on the relative importance of niche and neutral processes in 22	

determining patterns of community assembly with particular focus on whether ecologically 23	

similar species with similar functional traits are able to coexist. Meanwhile, molecular studies are 24	

increasingly revealing morphologically indistinguishable cryptic species with presumably similar 25	

ecological roles. Determining the geographic distribution of such cryptic species provides 26	

opportunities to contrast predictions of niche versus neutral models. Discovery of sympatric 27	

cryptic species increases alpha diversity and supports neutral models, while documentation of 28	

allopatric/parapatric cryptic species increases beta diversity and supports niche models. We tested 29	

these predictions using morphological and molecular data, coupled with environmental niche 30	

modelling analyses, of a fig wasp community along its 2700 km latitudinal range. Molecular 31	

methods increased previous species diversity estimates from eight to eleven species, revealing 32	

morphologically cryptic species in each of the four wasp genera studied. Congeneric species pairs 33	

that were differentiated by a key morphological functional trait (ovipositor length) coexisted 34	

sympatrically over large areas. In contrast, morphologically similar species, with similar 35	

ovipositor lengths, typically showed parapatric ranges with very little overlap. Despite parapatric 36	

ranges, environmental niche models of cryptic congeneric pairs indicate large regions of potential 37	

sympatry, suggesting that competitive process are important in determining the distributions of 38	

ecologically similar species. Niche processes appear to structure this insect community and 39	

cryptic diversity may typically contribute mostly to beta rather than alpha diversity.  40	

  41	
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Introduction 42	

Ecologists have long sought to explain patterns of biodiversity and community assembly. A 43	

prominent recent debate has centred on the relative importance of ‘neutral’ (Hubbell 2001) versus 44	

‘niche’ (e.g. Chesson 2000, Chase and Leibold 2003) processes that influence both species 45	

diversification and coexistence (e.g. Matthews and Whittaker 2014). In neutral models, observed 46	

patterns of species abundance and coexistence are stochastic outcomes unlinked to ecological 47	

functional traits. In contrast, diversity under niche models results from competitive and adaptive 48	

processes that lead to more stable patterns of community assembly. Importantly, niche models 49	

predict that localised coexistence of competing species should be limited by their ecological 50	

similarity (Macarthur and Levins 1967), while neutral models do not, providing us with testable 51	

alternative hypotheses.   52	

 Over the last 10-15 years, molecular investigation of biodiversity has increased rapidly 53	

and revealed extensive cryptic species diversity (Kress et al. 2015). Cryptic species exist when 54	

several reproductively isolated groups are genetically distinguishable within a single formally 55	

described species, or undescribed but recognisable “morphospecies”. Such cryptic species are 56	

likely to be ecologically very similar, due to lack of divergence in morphological functional traits 57	

and close relatedness. Consequently, cryptic species should coexist often in sympatry if neutral 58	

community assembly predominates, but rarely if niche processes are more important. This 59	

provides an excellent framework in which to test neutral versus niche processes. To date, we 60	

know little about how cryptic diversity is structured locally and distributed geographically. 61	

 However, two recent studies do support the idea that cryptic or near-identical species may 62	

competitively exclude each other. For example, Voda et al. (2015) found that pairs of cryptic 63	
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butterfly species in the western Mediterranean are less likely to co-occur than non-cryptic 64	

congeners, suggesting that ecological similarity limits local coexistence. Similarly, DNA 65	

barcoding showed that morphospecies of rolled-leaf beetles consist of species-complexes 66	

adjacently distributed along altitudinal gradients (Garcia-Robledo et al. 2016). However, neither 67	

study specifically investigated whether the identified cryptic species display any functional trait 68	

divergence or have ecologically diversified according to resource requirements. 69	

 Furthermore, identifying non-sympatric distributions of ecologically similar species does 70	

not necessarily indicate that niche processes are determining patterns of co-existence. For 71	

example, it is believed that the majority of speciation events are not driven by niche divergence 72	

but rather by genetic differentiation between geographically isolated allopatric populations 73	

(Coyne and Orr 2004), often followed by secondary contact that might leave sister species co-74	

occurring in sympatry (e.g. Pigot et al. 2016). However, specific conditions have been proposed 75	

that should be typically viewed as supporting a hypothesis of competitive exclusion among 76	

ecologically similar, closely related species (Anderson et al. 2002, Gutierrez et al. 2014). These 77	

include focal species showing parapatric ranges with narrow contact zones, and the use of 78	

ecological niche models (ENMs) to identify regions of potential sympatry coupled with 79	

numerical inequities in species abundance across identified regions (Anderson et al. 2002, 80	

Darwell et al. 2016).  81	

 Testing whether pairs/sets of cryptic species are typically sympatric or allopatric also has 82	

important implications for food web structure. Sympatric cryptic species contribute noise to our 83	

understanding of ecological food webs. For example, some recent studies have found that one 84	

supposed resource-generalist species actually comprises multiple resource-specialist cryptic 85	

species (Hebert et al. 2004, Smith et al. 2007). Meanwhile, at a community level, Smith et al. 86	
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(2011) found that DNA barcoding of the 100+ arthropod enemies of the spruce budworm not 87	

only increased measures of species richness but also reduced estimates of food web connectance 88	

(May 1973). However, studies highlighting coexisting cryptic species often focus on only one or 89	

a few neighbouring sites (e.g. Molbo et al. 2003, Wellborn and Cothran 2004, Montero-Pau and 90	

Serra 2011, Smith et al. 2011) and local patterns may not be representative of interactions across 91	

species’ geographic ranges. 92	

The implications of cryptic species coexistence patterns also ramify to the 93	

macroecological level of regional biodiversity patterns. Essentially, sympatric cryptic species 94	

contribute to local diversity (‘alpha diversity’ – sensu Whittaker 1972), but allopatric (or 95	

parapatric) cryptic species contribute to geographic diversity across sites (‘beta diversity’). 96	

Testing for these alternative patterns helps to evaluate total (‘gamma’) diversity and clarifies 97	

which species actually interact at a local scale. This is key to understanding the interplay between 98	

biodiversity and ecological function, as well as the ecological and coevolutionary dynamics of 99	

species interactions (Paine 2002, Duffy et al. 2007, Smith et al. 2011, Rooney and McCann 100	

2012). 101	

 Exploring these issues first requires correct delimitation of species (Cristescu 2014), 102	

which is difficult for many invertebrates, because diversity is high and many species are 103	

undescribed. In addition, intraspecific phenotypic variation can be very high (Cook et al. 1997, 104	

Xiao et al. 2010, Puniamoorthy et al. 2012) and cryptic species further complicate the situation. 105	

Consequently, investigations of insect community ecology and biodiversity increasingly 106	

recognise the need to include barcoding and/or related molecular techniques alongside 107	

morphological and ecological data (Blaxter 2003, Hebert et al. 2003, Hebert and Gregory 2005, 108	

Acs et al. 2010). This is certainly true for communities of insect herbivores and their associated 109	
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parasitoid enemies that constitute perhaps 20% of global species diversity (Price 1980, May 110	

1990). 111	

 The multitrophic insect communities hosted by Ficus (Moraceae) fruits (figs) are a 112	

valuable emerging model for studies of insect community ecology and evolution (e.g. Hawkins 113	

and Compton 1992, Kerdelhue et al. 2000, Xiao et al. 2010, Segar et al. 2013, Segar et al. 2014). 114	

Ficus is a globally distributed, largely tropical, plant genus of >750 species, famous for its classic 115	

mutualism with fig- pollinating wasps (Chalcidoidea: Agaonidae). However, most of the insect 116	

species are non-pollinating fig wasps (NPFW) and either gall fig tissue (hereafter “gallers”) or 117	

parasitise other wasp larvae (hereafter “parasitoids”). These fig wasp communities are restricted 118	

to the well-defined resource of the fig fruit, involve insects that are almost all specific to a single 119	

Ficus species, and are therefore geographically defined by the range of the host plant.  120	

 The several thousand species of fig wasps globally belong to diverse chalcid wasp 121	

lineages (Rasplus et al. 1998, Cook and West 2005), but can be categorised into five functional 122	

groups (Segar et al. 2014): pollinators; small and large gallers; and small and large parasitoids. At 123	

the level of individual insects, pollinators are typically more common than non-pollinators, while 124	

gallers and parasitoids typically far outnumber large ones (Segar et al. 2014). Within these 125	

communities, ovipositor length is a key functional trait as it mediates the ability to lay eggs in 126	

resources (seeds or insect larvae) in different fig tissue layers (al-Beidh et al. 2012), or in figs at 127	

different stages of growth. In other words, ovipositor length is a key axis for niche differentiation 128	

(Weiblen and Bush 2002, Proffit et al. 2007, Segar et al. 2013). As fig wasps show very high host 129	

plant specificity, communities on different fig species are largely independent (Cook and Segar 130	

2010), although some notable exceptions occur (McLeish et al. 2010, McLeish and van Noort 131	

2012). However, cryptic pollinator (Molbo et al. 2003, Haine et al. 2006, Darwell et al. 2014) and 132	
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non-pollinator species (Bouteiller-Reuter et al. 2009, Zhou et al. 2012) have been reported 133	

recently and widespread fig wasp communities provide opportunities to test the impact of cryptic 134	

species on community ecology and biodiversity patterns.  135	

 Here, we focus on two fig wasp functional groups (small gallers and parasitoids) hosted 136	

by a single fig species (Ficus rubiginosa) with a wide latitudinal range. Wasps in these functional 137	

groups comprise 85% of all non-pollinator wasps developing in F. rubiginosa figs (Segar et al. 138	

2014), so are both ecologically important and amenable to dense sampling. In addition, they have 139	

long external ovipositors - a key functional trait that can be measured and used to assess 140	

ecological divergence (e.g. Weiblen & Bush 2002). Our specific aims are to:  141	

1) Use wide geographic sampling, combined with morphological and molecular taxonomy to 142	

establish the number of small galler and parasitoid wasp species hosted by F. rubiginosa.  143	

2) Test if cryptic species that do not differ in key functional traits (ovipositor length and body 144	

size) are largely sympatric, representing hidden alpha diversity, or allopatric/parapatric (replacing 145	

each other across geographic sites), representing hidden beta diversity.  146	

3) Test if closely related (congeneric) species that do differ in these key functional traits coexist 147	

locally or show geographical replacement. 148	

4) Use ENMs to determine the geographic extent of potential sympatry for focal species pairs of 149	

interest.  150	

 151	

  152	
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Methods	153	

Study system 154	

 The endemic Australian fig, Ficus rubiginosa, occupies a ca. 3000 km coastal belt that 155	

stretches from northern Queensland (tropical) to southern New South Wales (Mediterranean 156	

climate) in diverse habitats including eucalypt scrub, vine thicket and rainforest (Dixon et al. 157	

2001). In addition to its five genetically delimited pollinator species (Darwell et al. 2014), 158	

morphological and molecular investigation has identified at least 15 NPFW species, comprising 159	

11 genera from six families and subfamilies (Segar et al. 2014). The small galler and small 160	

parasitoid functional groups comprise species from four genera: Sycoscapter, Philotrypesis, 161	

Watshamiella (all Sycoryctinae) and Eukobelea (Sycophaginae). For the three sycoryctine 162	

genera, different ecological niches can be inferred. Sycoscapter (parasitoids) and Philotrypesis 163	

(inquilines) appear to be ecologically differentiated according to host attack strategy (Tzeng et al. 164	

2008, Zhai et al. 2008). Meanwhile, some Watshamiella species have been shown to be hyper-165	

parasitic, reliant on other parasitoid wasp taxa to pierce fig fruit walls in order to gain oviposition 166	

access (Compton et al. 2009). Finally, the sycophagine Eukobelea is thought to be a flower galler 167	

and as such should not compete directly with sycoryctine parasitoids (Segar et al. 2014). 168	

 In three of the four genera, there are distinct morphospecies that differ substantially in 169	

either ovipositor length (Sycoscapter and Watshamiella) or colour (yellow and black 170	

Philotrypesis) (Segar et al. 2014). Philotrypesis morphospecies may be ecologically 171	

differentiated as some yellow (non-pigmented) fig wasps are known to disperse nocturnally 172	

(Warren et al. 2010). Further, in Sycoscapter there are two genetically described cryptic species 173	

within the “short” morphospecies (Bouteiller-Reuter et al. 2009).  174	
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Field sampling	175	

	 Most sampling was conducted in Queensland during Apr-Sep 2009 along the eastern 176	

seaboard between Brisbane (26° 46S, 153°02E) and Dimbulah (17° 01S, 145°19E) in the 177	

Atherton Tablelands. Some inland sampling was carried out around Forty Mile Scrub (18° 06S, 178	

144°49E) and Chillagoe (17° 10S, 144°31E). Other sampling occurred in the Townsville and 179	

Brisbane regions in 2007-8, while sampling in New South Wales (NSW) has been conducted 180	

sporadically before 2008 and also in 2012-14. 181	

For all taxa, we attempted to sample individuals from many sites across the host plant 182	

range and include only one individual per morphospecies per fig in our analyses. Overall, 183	

samples were taken from >500 fig syconia from 166 sites. Near-ripe figs were placed into 184	

hatching jars with mesh lids that allowed air flow, while preventing overheating and wasp escape. 185	

After 48h each fig and all its exited wasps were placed into 70% ethanol. Alternatively, figs were 186	

placed directly into alcohol and wasps were dissected out at a later date.  187	

 188	

Molecular methods  189	

 We extracted DNA using a Chelex method (West et al. 1998) and then amplified one 190	

mitochondrial (cytb) and one nuclear (ITS2) marker. mtDNA is employed regularly in animal 191	

molecular species delimitation (e.g. barcoding), and nuclear ITS2 provides a complementary 192	

nuclear marker for species delimitation in Hymenoptera (Xiao et al. 2010). Sample sizes used for 193	

molecular analyses are detailed in Table 2. Sequencing was conducted on individuals from across 194	

the entire host plant range (see supplementary information for further details).  195	

We first attempted to sequence all wasps using the CP1-CB2 cytb primer set (CP1 - GAT 196	

GAT GAA ATT TTG GAT C and CB2 - ATT ACA CCT CCT AAT TTA TTA GGA AT; Harry 197	
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et al. 1998), which amplifies a fragment of about 600 bp. However, this did not amplify all taxa, 198	

and so the shorter (ca. 400 bp) CB1-CB2 fragment was employed for these species (CB1 - TAT 199	

GTA CTA CCA TGA GGA CAA ATA TC; Jermiin and Crozier 1994). The nuclear internal 200	

transcriber spacer 2 (ITS2) region was sequenced for all taxa using the primers ITS2F (ATT CCC 201	

GGA CCA CGC CTG GCT GA) and ITS2R (TCC TCC GCT TAT TGA TAT GC) (ITS2F - 202	

ATT CCC GGA CCA CGC CTG GCT GA and ITS2R - TCC TCC GCT TAT TGA TAT GC; 203	

White et al. 1990).  204	

PCR amplification was conducted using a Techne Touchgene gradient machine with the 205	

following conditions: 1) CP1-CB2: 3 min at 94°C, 40 cycles of 30s at 92°C, 60s at 48°C, 1 min 206	

30s at 72°C, and 10 min at 72°C. 2) CB1-CB2: 3 min at 94°C, 30 cycles of 15 s at 95°C, 20 s at 207	

45°C, 30 s at 72°C, and 10 min at 72°C. 3) ITS2: 5 min at 94°C, 35 cycles of 30 s at 94°C, 40 s at 208	

55°C, 40 s at 72°C, and 10 min at 72°C. Subsequent ethanol purification and sequencing, by 209	

BigDyeTM terminator cycling and a 3730xl DNA analyser, were conducted by Macrogen Inc.  210	

 211	

Sequence data analysis 212	

 Chromatogram quality was assessed using Finch TV Version 1.4.0 and sequences edited 213	

and aligned using BioEdit (Hall 1999) with final adjustments by eye. Bayesian methods were 214	

used to construct phylogenies using MrBayes (Ronquist and Huelsenbeck 2003), after choosing 215	

the best model of nucleotide substitution for each gene with MrModeltest in PAUP* (Swofford 216	

2002). Log-likelihood ratio tests selected the GTR+I+G model for both the nuclear and mtDNA 217	

datasets. ITS2 sequences were trimmed at either end because it is difficult to identify sequence 218	

start and end points due to the presence of indels (e.g. Li et al. 2010, Xiao et al. 2010). 219	
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Species were delimited as clearly defined congruent clades (with ≥0.95 p-values for at 220	

least one marker) from separate cytb and ITS2 phylogenies using the phylogenetic species 221	

concept (PSC; Eldredge and Cracraft 1980). To corroborate PSC species delimitation we 222	

investigated cytb data with jMOTU software (Jones et al. 2011). This software produces a 223	

frequency distribution of pairwise genetic distances, and an inflection point in this distribution 224	

represents the “barcoding gap” between species, and thus identifies molecular operational 225	

taxonomic units (MOTUs). Assessment of pairwise Kimura-2-parameter (K2P; Kimura 1980) 226	

genetic distances between putative congeneric species was performed to further investigate PSC 227	

delimitation. For Philotrypesis ‘yellow’, sequencing of cytb in many individuals revealed two 228	

species. However, within each species there was almost no sequence variation, so only a few 229	

individuals were sequenced for ITS2, which supported cytb analyses by revealing two species.  230	

 231	

Morphological analyses 232	

 We used ANCOVA to explore morphological differentiation between genetically 233	

delimited congeneric species focusing on two key functional traits – ovipositor length, which 234	

determines at what stage or what depth a wasp may lay eggs into the fig, and body size (using 235	

hind tibia length as an index). We refer to the ratio between these two traits as “relative 236	

ovipositor length” (ROL). These analyses were performed in R (R Core Team 2015). For further 237	

comparison of pairs of congeneric species, we also calculated a “disimilarity index”, where DI = 238	

(ROLA – ROLB) / ROLA between species A with the higher ROL and congeneric species B with 239	

the lower ROL.  240	

 241	

 242	
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Environmental niche models 243	

 To evaluate signatures of competitive exclusion and identify regions of potential 244	

sympatry we filtered locality data for each molecularly delimited species to include the maximum 245	

number of locations that were at least 10 km apart (Anderson and Raza 2010, Boria et al. 2014). 246	

This reduces sampling biases from non-uniform sampling efforts. For environmental data, we 247	

used the 19 WorldClim bioclimatic variables at 30” resolution (=0.86 km2 pixels) (Hijmans et al. 248	

2005; <http://biogeo.berkeley.edu/worldclim/worldclim.htm >). The WorldClim data are derived 249	

from precipitation, temperature and seasonality records and are a standard dataset for baseline 250	

predictions of species’ geographic distributions. 251	

 We used Maxent version 3.3.3k which uses the maximum entropy algorithm to calculate 252	

ENMs (Phillips et al. 2006, Phillips and Dudik 2008). To ensure the correct model was fitted and 253	

avoid model overfitting, we used the ‘ENMeval’ package (Muscarella et al. 2014) in R (R 254	

development team) to determine the optimal feature class (FC) and regularisation multiplier 255	

(RM) settings. FC and RM settings were obtained by choosing the settings that returned a ΔAICc 256	

score of zero (Muscarella et al. 2014). For each species, models were evaluated using only 257	

environmental data from the subject species’ range by creating a mask variable delimited by the 258	

‘minimum convex polygon’ around all species’ locations and a 0.5º buffer zone in the R package 259	

adehabitatHR (Calenge 2006). To partition occurrence localities into testing and training bins 260	

(folds) for k-fold cross-validation, we used the ‘checkerboard1’ option for species with greater 261	

than 25 localities (i.e. >10km apart) and the ‘jackknife’ option for species with between 15-25 262	

localities (Muscarella et al. 2014). Additionally, the ‘ENMeval’ package struggles to evaluate 263	

optimal models for species with less than 15 locality records (here Sycoscapter ‘short’ southern 264	
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species; Philotrypesis ‘yellow’ species 1; Philotrypesis ‘black’ southern species; Eukobelea both 265	

species); for these species we used the default settings in Maxent (under these circumstances it is 266	

likely that the ENM models are over-fitted and therefore represent conservative estimates of 267	

species’ potential ranges; Muscarella et al. 2014). ENMs across the entire study region were run 268	

in Maxent with a 10% training threshold rule which rejects the lowest 10% of predicted values 269	

(Pearson et al. 2007). This allows the transformation of probabilistic ENMs into binary 270	

predictions of suitable vs. non-suitable climatic conditions at each pixel. These ENMs were then 271	

overlaid for particular species pairs of interest. 272	

 273	

Results 274	

Sequencing results 275	

 Sequences were obtained from 307 and 194 individuals for cytb and ITS2, respectively. 276	

We found no evidence of pseudogenes or heteroplasmy (see Table 1; Supplementary Information 277	

for further details). According to our species delimitations, mitochondrial K2P pairwise distances 278	

range from 0-7.24% within species and 2.75-16.00% between different species in the same 279	

genus. The corresponding values for ITS2 data are 0-11.25% and 0.93-48.90% respectively. The 280	

high ITS2 values reflect large indels that contribute greatly to distances between species, whereas 281	

the aligned nucleotide regions of these species are far less divergent.  282	

 283	

Species delimitation 284	

 Our PSC and jMOTU analyses strongly support the existence of 11 small galler and 285	

parasitoid species associated with Ficus rubiginosa. The previous figure was eight species and 286	
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our analysis adds three cryptic species in the genera Philotrypesis and Eukobelea (Table 2). All 287	

individuals sequenced for both genes were unambiguously placed into congruent cytb and ITS2 288	

clades (Figure S1) and node support values for all posited species were high (p≥0.95) for at least 289	

one marker. Similarly, PSC species delimitation was congruent with MOTU identification for 290	

cytb data (Figure S2). The congruence of results across nuclear and mtDNA markers for all 291	

individuals sequenced supports reproductive isolation of our identified species and provides no 292	

evidence for hybridisation. Critically, this includes all sympatric congeneric individuals from 293	

different species. In addition, where we recognise congeneric morphospecies (e.g. Watshamiella 294	

‘long’ and ‘short’) that differ in functional traits, these morphospecies are also congruent with 295	

molecular species divisions (see below). 296	

	297	

Relationships between sympatric co-occurrence and degree of morphological similarity 298	

 Sympatric congeneric species (i.e. Sycoscapter ‘long’ and ‘short’, two Philotrypesis 299	

‘yellow’ and Watshamiella ‘long’ and ‘short’; Figure 1, Table 3) generally have significantly 300	

different ROLs; i.e. they are functionally differentiated. In contrast, congeneric species with 301	

ROLs described by the same simple regression model are essentially parapatric. Consequently, 302	

dissimilarity indices (DI) are consistently higher for congeneric species that are sympatric (0.190-303	

0.327) and lower (0.005-0.072) for those that are allopatric (Table 3). 304	

 There are also some more nuanced aspects of these patterns, but these do not compromise 305	

the strong general patterns. First, both the Sycoscapter ‘short’ and Eukobelea congeneric pairs 306	

occupy largely parapatric northern and southern ranges, but have small contact zones around 307	

Brisbane in the centre of the host plant range. In addition, the ‘southern’ species of each pair also 308	

has a disjunct small northern refuge at Forty Mile Scrub. Also, the two virtually parapatric 309	
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Philotrypesis ‘black’ species (one ‘northern’ individual was found in New South Wales – figure 310	

1d) actually have significantly differentiated ROLs. However, their DI (0.072) is still very low, 311	

suggesting little functional differentiation compared to widespread sympatric pairs that have DI 312	

>0.19. Typically, ovipositor length in congeneric pairs with statistically differentiated ROLs is 313	

~1mm compared to ~0.1mm in Philotrypesis ‘black’ (Figure 1d; indicating that the 314	

discriminative statistical power of the ANCOVA test is high).  315	

 316	

Species distribution models 317	

 For morphologically indistinguishable (i.e. cryptic) congeneric species pairs, SDMs 318	

typically show large regions of potential sympatry indicated by overlapping models (Figure 1). 319	

For Sycoscapter ‘short’ (Figure 1b), the ‘southern’ species is predicted to be climatically adapted 320	

to the entire east coast of Australia including the extensive regions of Queensland where it is not 321	

found. For Philotrypesis ‘black’ (Figure 1d), the ‘northern’ species is expected to be found across 322	

the entirety of the east coast including the southern regions where it is typically excluded. For 323	

Eukobelea (Figure 1f), ‘the southern’ species appears climatically adapted to the entire east coast 324	

including the northern regions from which it is excluded. Finally, for morphologically 325	

distinguishable, sympatric congeners, ENMs predict wide-ranging regions of species overlap 326	

(Figures 1a,c,e). In summary, ENM analyses show that the ranges of cryptic species are far 327	

smaller than expected based on abiotic factors, suggesting a major role for biotic interactions. 328	

 329	

  330	
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Discussion 331	

As molecular investigation into the scale and structure of global biodiversity continues we will 332	

begin to form a more nuanced picture of the patterns and ecological significance of cryptic 333	

diversity (Smith et al. 2007, Smith et al. 2011). A fundamental issue is to understand the major 334	

processes that determine community assembly and the geographic relationships between pairs of 335	

cryptic species can provide important evidence on the relative impact of niche versus neutral 336	

processes in community assembly. In particular, we can test if ecologically similar cryptic species 337	

coexist or exclude each other at community and geographic scales (e.g.Voda et al. 2015). Our 338	

study of a multitrophic insect community that harbours extensive cryptic diversity offers a 339	

comprehensive view of a complex community across a wide geographic range and uses the 340	

uncovered diversity to test the key predictions about coexistence.  341	

 342	

Cryptic species, functional trait divergence and local coexistence 343	

 Our molecular species delimitation strongly supports the existence of two small galler and 344	

nine small parasitoid species. This is a marked increase over a previous estimate of eight species 345	

in total, which already recognised two cryptic species in Sycoscapter (Segar et al. 2014). It also 346	

means that all four genera are now known to include morphologically similar but genetically 347	

distinct species, emphasising that cryptic diversity is a significant component of total diversity.  348	

 Niche theory posits that competing species should only coexist locally in sympatry if they 349	

diverge along some ecological trait axes or exhibit differential responses to one or more of 350	

resource availability, temporal or spatial heterogeneity, or predation. In contrast, neutral models 351	

predict communities that are assembled more stochastically and that ecologically similar species 352	
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will often coexist. Within three (Sycoscapter, Philotrypesis and Watshamiella) of our four study 353	

genera we found co-occurring species with marked differences in a key functional trait - 354	

ovipositor length (Figure 1a,c,e). This correlates with niche differentiation because wasps with 355	

different ovipositor lengths can lay eggs into different tissue layers of in figs or at different stages 356	

of fig development (Proffit et al. 2007, Segar et al. 2014).   357	

 In contrast, cryptic congeneric species that lack this (or other obvious) trait divergence 358	

tend not to coexist locally and, though widely distributed, are predominantly allopatric (Figure 359	

1b,d,f). For example, the two Sycoscapter ‘short’ species, Philotrypesis ‘black’ and Eukobelea 360	

each comprise two species clearly identified by molecular taxonomy, but with low DIs and no or 361	

only subtle differences in ROLs. In Philotrypesis ‘black’, ANCOVA analyses statistically 362	

distinguished the species-specific ROLs; however, the low DI coupled with a visual inspection of 363	

data showing overlapping clouds of points suggests that their ROLs represent functionally similar 364	

ecological roles. For these three species pairs, the lack of differentiated ROLs and DIs suggest 365	

similar attack strategies on figs that, through limiting similarity, would hinder local coexistence.  366	

 In the case of Philotrypesis ‘yellow” there is some nuance to the overall picture. Although 367	

both species co-occur widely in Queensland, species 1 appears absent from southern Queensland 368	

and northern NSW. However, this could potentially be a sampling artefact as collection effort 369	

was not as intense in these regions. Moreover, we have only found a small number of 370	

Philotrypesis ‘yellow’ wasps in the furthest north parts of New South Wales (Figure 1c), 371	

suggesting that these yellow species are predominantly tropical and do not extend to the higher 372	

latitudes of southern NSW. We also note that the intermediate sympatry/allopatry of the two 373	

Philotrypesis ‘yellow’ mirrors their intermediate dissimilarity indices (DI) that lie between the 374	

two extremes for allopatric and sympatric congeneric pairs. 375	
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 376	

Ecological processes determining species coexistence 377	

 Although the allopatric/parapatric geographic distributions of our cryptic congeneric 378	

NPFW species support a hypothesis of limiting similarity hindering local coexistence, these 379	

patterns are also consistent with a model of allopatric speciation with subsequent secondary 380	

contact (Coyne and Orr 2004). However, as these species’ northern and southern ranges typically 381	

display narrow contact zones around Brisbane (excluding a single incursion into southern regions 382	

by a ‘northern’ Philotrypesis ‘black’ individual and the consistently anomalous Forty Mile Scrub 383	

region – see later Discussion), the latter hypothesis rests on the supposition that we are viewing 384	

the point in evolutionary history when these cryptic pairs, unlike the morphologically 385	

distinguishable congeners in this community, are undergoing secondary reconnection before 386	

developing more sympatric ranges. These patterns, along with our ENMs indicating large areas of 387	

potential sympatry with one of a pair of species largely absent, fulfil the required conditions 388	

proposed by Anderson et al (2002) to indicate competitive exclusion among ecologically similar, 389	

closely related species. Moreover, recent findings from this community showing that Sycoscapter 390	

‘long’ forms a single unbroken population across the range of F. rubiginosa (Sutton et al. 2016) 391	

suggests that the geographic ranges of these NPFWs are most likely determined by adaptive or 392	

competitive processes rather than being the result of sedentary range expansion. Additionally, 393	

although patterns of allopatric speciation followed by secondary contact may be common (e.g. 394	

Pigot et al. 2016), such studies do not typically test whether secondarily coexisting species are in 395	

direct competition for resources. For the small NPFW community occupying F. rubiginosa, we 396	

can confidently infer that all species are restricted to targeting the uniform resources entombed in 397	

the fig syconium as recent work indicates these species are all host specific (Darwell 2013). 398	
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 399	

Do cryptic species increase alpha or beta diversity?  400	

 Our findings suggest that detection of cryptic species increases beta diversity (geographic 401	

turnover of species) with little effect on alpha diversity in any given site or region. This implies 402	

that local alpha diversity may change little across the host plant range, but more detailed 403	

quantitative studies are needed to test this hypothesis. If the link between cryptic and beta 404	

diversity proves general across other taxa, features such as local food web dynamics and 405	

ecological functioning and stability (Rooney and McCann 2012) may be similar across ranges 406	

despite considerable cryptic diversity. Assessing patterns of beta diversity is a key research area 407	

in ecology (e.g. Graham and Fine 2008) and we show here the need to combine comprehensive 408	

geographic sampling with molecular revelation of cryptic species to reveal true biodiversity 409	

patterns. Moreover, our findings that functionally equivalent congeneric species do not typically 410	

co-occur suggests that niche-based models of community assembly better explain species 411	

coexistence among the small NPFWs of F. rubiginosa compared to predictions originating from 412	

neutral theory (Hubbell 2001).  413	

 414	

The importance of widespread geographic sampling 415	

 Although some empirical studies (Molbo et al. 2003, Wellborn and Cothran 2004, 416	

Montero-Pau and Serra 2011) suggest that ecologically similar cryptic species may coexist, 417	

extrapolation from studies with limited geographic sampling is risky. For example, in both 418	

Sycoscapter ‘short’ and Eukobelea, two cryptic species co-occur around Brisbane. Indeed, this is 419	

where the two cryptic Sycoscapter ‘short’ species were first detected (Bouteiller-Reuter et al. 420	

2009) in a single population and at similar frequencies (Cook et al. 2015). We might therefore 421	
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predict that they co-occur widely. However, the Brisbane region represents a tiny fraction of their 422	

overall ranges (as revealed by this study) and our comprehensive sampling reveals a northern and 423	

a southern species that are widely parapatric but have a narrow overlap zone in the middle of the 424	

host plant range. This could be a case of allopatric speciation with limited secondary contact 425	

following range expansion. As such, one species may eventually outcompete the other in this 426	

zone or localised coexistence may continue as competitive exclusion is never realised due to 427	

ongoing immigration from neighbouring populations (e.g. Darwell et al. 2014). A recent 428	

population genetic study showed that Sycoscapter ‘long’ is effectively one large population 429	

throughout the host plant range, with only weak isolation-by-distance (Sutton et al. 2016). This 430	

suggests substantial dispersal and wide gene flow in at least some Sycoscapter wasps, as also 431	

reported for many fig-pollinating wasps, which would impede the formation of allopatric species 432	

pairs on the same host plant.  433	

Similar north-south clinal patterns of cryptic diversification have been noted in the 434	

pollinators of F. rubiginosa (Darwell et al. 2014). The Burdekin gap, located just south of 435	

Townsville, is a well-documented major biogeographical barrier (Joseph and Moritz 1994). In 436	

fig-wasps, one of the pollinator species associated with F. rubiginosa is found almost exclusively 437	

around Townsville, whilst this study support a similar scenario for one of the yellow 438	

Philotrypesis species. This region has been noted as a transitional zone for species displacement 439	

in Drosophila (Schiffer et al. 2004, van Heerwaarden et al. 2009). The McPherson range around 440	

Brisbane is another recognised major biogeographical barrier (Edwards and Melville 2010), and 441	

Sycoscapter ‘short’, Philotrypesis ‘black’ and Eukobelea seem to divide here. At a gross level 442	

this Queensland-NSW split equates to a tropical-Mediterranean biome division straddling the 443	

geographic range of this fig species and may explain many species’ boundaries in this study. Of 444	
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further intrigue is that the north-south split in Sycoscapter ‘short’ and Eukobelea is not absolute. 445	

In both genera, the ‘southern’ species also occurs at one site (Forty Mile Scrub) in inland 446	

northern Queensland; a single ‘southern’ Sycoscapter was also found nearby (~100km away) in 447	

the Atherton Tablelands.  The habitat at Forty Mile Scrub is remnant vine thicket, which was 448	

previously widespread and is distinctive from the eucalypt scrub habitat where the other samples 449	

were collected. Furthermore, the F. rubiginosa trees there are hemiepiphytic ‘stranglers’ rather 450	

than the more common lithophytic rock-dwelling forms, and have notably larger figs (CTD, pers. 451	

ob.). Thus, Forty Mile Scrub may favour otherwise southern-adapted species due to idiosyncratic 452	

ecological circumstances and adds to the overall impression that alpha and beta diversity patterns 453	

for small NPFWs inhabiting F. rubiginosa are driven by adaptive responses to a variety of 454	

ecological and climatic factors which together support a dominant role for niche processes in 455	

determining community assembly. 456	

  457	
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Table 1. Summary characteristics of cytb and ITS2 sequence data. Pairwise intraspecific and interspecific 458	
distances are given using Kimura’s two parameter algorithm (K2P). Sequence length is given in nucleotide base 459	
pairs. 460	
 461	
 cytb ITS2 
Genus Intraspecific 

K2P (%) 
Interspecific 

K2P (%) 
Sequence 

length 
Intraspecific 

K2P (%) 
Interspecific 

K2P (%) 
Sequence 

length 
Sycoscapter 0-4.13 6.25-14.29 351 0-4.63 2.58-8.66 303-380 
Philotrypesis 0-7.24 2.75-16.00 394 0-6.67 2.24-12.78 320-358 
Watshamiella 0-2.06 4.03-7.77 692 0-3.73 0.93-5.67 300-348 
Eukobelea 0-3.93 6.96-10.12 663 0-11.25 21.44-48.90 520-565 
 462	
 463	
 464	
Table 2. Species diversity estimates for small non-pollinating chalcid wasp taxa associated with F. rubiginosa 465	
as discriminated by molecular phylogenetic methods before and after current study. Known morphologically 466	
determinant characters indicated in parentheses (s-short ovipositor, l-long ovipositor, y-yellow, b-black; §-congeneric 467	
species distinguishable by ovipositor-hind tibia allometry); Sample sizes shown for each delimited species. 468	
  469	
Wasp taxon Previous findings Current data Sample size (N) 
Sycoscapter 3 (s,s,l§) 3 (s,s,l§) 31, 32, 17 
Philotrypesis 2 (y,b) 4 (y§,y§,b,b) 44, 77, 21, 15 
Watshamiella 2 (s§,l§) 2 (s§,l§) 27, 46 
Eukobelea 1 2 25, 23 
Total 8 11 360 
 470	
 471	

Table 3. ANCOVA results, dissimilarity indices and relationship to congeneric co-occurrence in small NPFW 472	
species found on F. rubiginosa. ANCOVA: the minimum adequate model method of Crawley (2007) is employed; 473	
ov~tib indicates a model with no factorial parameters; ov~tib+spp indicates a model with separate intercepts and a 474	
single slope; ov~tib*spp indicates a model with separate intercepts and slopes. P-values indicate statistical support of 475	
the favoured model over the hierarchically simpler model. Dissimilarity indices range between 0.005-0.072 for 476	
allopatric species pairs and 0.190-0.327 for species pairs found in sympatry. See figure 1 for ANCOVA plots. 477	
 478	

 Sycoscapter 
long and short 

Sycoscapter 
short 

Philotrypesis 
black 

Philotrypesis 
yellow 

Watshamiella 
long and short 

Eukobelea 

Sympatric Yes No No Yes Yes No 
Dissimilarity Index 0.324 0.024 0.072 0.190 0.327 0.005 
Minimum model ov~tib*spp ov~tib ov~tib+spp ov~tib+spp ov~tib+spp ov~tib 
P-value <2e-16 1.42e-09 1.395e-12 <2e-16 <2e-16 7.48e-11 
Adjusted R2 R2=0.944 R2=0.520 R2=0.848 R2=0.928 R2=0.955 R2=0.668 
F-statistic F3,83=482.6 F1,49=55.25 F2,28=84.39 F2,76=553.2 F2,70=781.2 F1,38=79.51 

  479	
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Figure legend 480	

Figure 1. ANCOVA plots for ovipositor – hind tibia allometries for six congeneric species 481	
pair comparisons (left-hand panel) and associated species abundance distribution maps 482	
plotted on top of overlaid species distribution models (ENMs) (right-hand panel). Figure 1a 483	
shows comparisons of Sycoscapter ‘long’ versus both ‘short’ species combined and figure 1b 484	
shows comparisons of both Sycoscapter ‘short’ species only; figures 1c and 1d show 485	
comparisons of Philotrypesis species pair colour morphs thought to be nocturnal (yellow) and 486	
diurnal (black) dispersers; figures 1e and 1f show comparisons of Watshamiella (‘long’ and 487	
‘short’ ovipositor) and Eukobelea congeneric pairs. Individual ENMs for species pairs follow the 488	
same blue and orange colour species coding; thus, overlapping regions of potential sympatry are 489	
coloured brown.  490	
  491	
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Figure 1a – Sycoscapter ‘long & short’ 492	

 493	

  494	
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Figure 1b – Sycoscapter ‘short’ 495	

 496	

  497	
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Figure 1c – Philotrypesis ‘yellow’ 498	

 499	

  500	
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Figure 1d – Philotrypesis ‘black’ 501	

 502	

  503	
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Figure 1e – Watshamiella  504	

  505	
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Figure 1f – Eukobelea 506	

507	
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