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Abstract12

The standing stock of phytoplankton carbon is a fundamental property of oceanic13

ecosystems, and of critical importance to the development of Earth System models for14

assessing global carbon pools and cycles. Some methods to estimate phytoplankton15

carbon at large scales from ocean-colour data rely on the parameterization of carbon-16

to-chlorophyll ratio, which is known to depend on factors such as the phytoplankton17

community structure, whereas other methods are based on the estimation of total par-18

ticulate organic carbon (POC), and rely on the assumption that a known fraction of19

POC is made up of phytoplankton carbon. The carbon-to-chlorophyll ratio is also used20

in marine ecosystem models to convert between carbon and chlorophyll, a common re-21

quirement. In this paper we present a novel bio-optical algorithm to estimate the carbon-22

to-chlorophyll ratio, and the standing stocks of phytoplankton carbon partitioned into23

various size classes, from ocean colour. The approach combines empirical allometric24

relationships of phytoplankton size structure with an absorption-based algorithm for es-25

timating phytoplankton size spectra developed earlier. Applying the new algorithm to26

satellite ocean-colour data from September 1997 to December 2013, the spatio-temporal27

variations of carbon-to-chlorophyll ratio and phytoplankton carbon across various size28

classes are computed on a global scale. The average annual stock of phytoplankton car-29

bon, integrated over the oceanic mixed-layer depth, is estimated to be ∼0.26 gigatonnes,30

with the size-partitioned stocks of 0.14 gigatonnes for picoplankton, 0.08 gigatonnes for31

nanoplankton and 0.04 gigatonnes for microplankton. The root-mean-square error and32

the bias in the satellite-derived estimates of picoplankton carbon, when compared with33

corresponding in situ data, are found to be 36.23 mgC m−3 and−13.53 mgC m−3, respec-34
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tively, on individual pixels. The regional uncertainties in the estimates of phytoplankton35

carbon are calculated to be less than the relative uncertainties in other satellite-derived36

products, for most parts of the global ocean, and can amplify only for certain oceano-37

graphic regions. Although the new estimates of phytoplankton are of the same order38

of magnitude as those based on existing models, our study suggests that a consensus39

is yet to be built on the accurate sizes of the phytoplankton carbon pools; improved40

satellite chlorophyll products, and better estimates of inherent optical properties would41

be essential pre-requisites to minimising the uncertainties.42

Keywords43

Phytoplankton carbon; carbon-to-chlorophyll ratio; ocean colour; carbon-based size class;44

picoplankton, nanoplankton, microplankton; phytoplankton size spectra.45

1 Introduction46

Although the standing stock of the autotrophic biomass (phytoplankton) in the ocean is only47

a small fraction (less than 1%) of the Earth’s photosynthetic biomass, approximately half48

(∼50 gigatonnes C) of the global annual carbon-fixation is accounted for by the oceanic au-49

totrophs through primary production (Falkowski, 2012; Field et al., 1998). Therefore, for50

understanding, estimating and monitoring the carbon dynamics in the ocean, it is impor-51

tant to be able to make accurate measurements of the standing stocks of phytoplankton52

carbon. However, major complexities in carbon estimation arise from phytoplankton commu-53
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nity composition; for example, the carbon content of a phytoplankton cell varies with species54

and its morphological characteristics (e.g., large vs small cell size); it also depends on the55

ambient light and nutrient conditions (Marañón, 2008; Marañón et al., 2013; Menden-Deuer56

and Lessard, 2000). Another level of complexity in estimating phytoplankton carbon accu-57

rately arises from uncertainties in parameterising the carbon-to-chlorophyll ratio (χ), which58

is used to convert phytoplankton-carbon biomass to chlorophyll biomass in ecosystem mod-59

els for comparison with satellite-derived chlorophyll data, and also in satellite algorithms60

for estimating phytoplankton carbon from chlorophyll data (Sathyendranath et al., 2009).61

A standard product from ocean-colour remote sensing is chlorophyll concentration (e.g.,62

http://oceandata.sci.gsfc.nasa.gov/; https://www.oceancolour.org/). Marine biogeochemical63

and ecosystem models (e.g., http://pft.ees.hokudai.ac.jp/maremip/index.shtml), on the other64

hand, deal with phytoplankton biomass in carbon units and use a carbon-to-chlorophyll ra-65

tio. The magnitude of carbon-to-chlorophyll ratio can vary over two orders of magnitude66

depending on phytoplankton community composition and environmental conditions (Geider,67

1987; Geider et al., 1998; Sathyendranath et al., 2009), and hence it may lead to significant68

uncertainties in the conversions between the two measures. Furthermore, the retrieval of69

phytoplankton carbon from remote sensing of ocean colour is also affected by the presence of70

particulates, other than phytoplankton that contribute to the water-leaving radiance captured71

by the sensors. Dissolved constituents such as coloured dissolved organic materials (CDOM)72

that absorbs strongly in the blue wavelengths can also affect the remotely-sensed ocean colour73

and interfere with chlorophyll-a retrievals, particularly in coastal and high latitudes. Owing74

to these complexities, the estimation of phytoplankton carbon from remote sensing is recog-75
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nised as a non-trivial task, and it is essential to improve satellite-based algorithms for use in76

carbon-cycle research (Behrenfeld et al., 2005; Kostadinov et al., 2016; Sathyendranath et al.,77

2009).78

Nevertheless, algorithms have been developed to compute particulate organic carbon79

(POC) in the ocean from remotely-sensed ocean colour. For example, Stramski et al. (2008)80

derived a band-ratio algorithm that uses the blue-to-green band ratio of remote-sensing re-81

flectance to calculate the concentration of POC. This algorithm can then be used to compute82

phytoplankton carbon by assuming a constant ratio of phytoplankton carbon to POC in the83

ocean (Stramski et al., 2008). Behrenfeld et al. (2005) derived an empirical relationship to84

compute phytoplankton carbon from particulate backscattering coefficients by assuming a85

fixed ratio of 30% between phytoplankton carbon and POC. More recently, Kostadinov et al.86

(2016) developed an algorithm to compute phytoplankton carbon from particulate backscat-87

tering coefficient using allometric relationships for the POC particle size distribution and88

assuming that the fraction of carbon in the living phytoplankton relative to that of POC is89

1/3. Kostadinov et al. (2016) also computed the absolute and the fractional carbon biomass in90

three size classes of phytoplankton, i.e., picoplankton (with diameter 0.5-2 µm), nanoplank-91

ton (with diameter 2-20 µm) and microplankton (with diameter 20-50 µm), under these92

assumptions. Although the existing algorithms may provide a mutually comparable estimate93

(in order of magnitude) of total phytoplankton carbon in the global ocean, the underlying94

assumption of a constant ratio of phytoplankton carbon and POC imposes significant un-95

certainties in regional estimates of phytoplankton carbon and its spatial distributions. This96
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is important because the ratio of phytoplankton carbon to POC varies over a wide range,97

from 14% to 85%, across a variety of oceanographic regions (Behrenfeld et al., 2005; DuRand98

et al., 2001; Eppley et al., 1992; Gundersen et al., 2001; Kostadinov et al., 2016; Oubelkheir99

et al., 2005; Redalje and Laws, 1981; Stramski et al., 2008). Furthermore, with the excep-100

tion of Kostadinov et al. (2016), current algorithms are limited in their ability to retrieve101

the carbon-based classification of phytoplankton functional types (PFT) or phytoplankton102

size classes (PSC), though many methods are available to estimate the fractional chlorophyll103

distribution across PFTs and PSCs (e.g., IOCCG, 2014). Given the importance and wide104

applications of satellite-based PFTs, it is important to improve our understanding on phyto-105

plankton carbon stocks in various PSCs and PFTs, through developing new algorithms based106

on complementary bio-optical variables.107

In this paper, we present a new bio-optical algorithm to estimate phytoplankton carbon108

from remotely-sensed ocean-colour data, designed by targeting the photosynthetic phyto-109

plankton cells directly. The algorithm builds on Roy et al. (2013), where we developed a110

semi-analytical method to compute the exponent of the phytoplankton size spectrum from111

the specific-absorption coefficient of phytoplankton (which depends on chlorophyll concentra-112

tion and total absorption by phytoplankton), and derived the equivalent spherical diameter113

of phytoplankton cells and the fractions of chlorophyll in any size class of phytoplankton,114

in particular, those for picoplankton, nanoplankton and microplankton. Here, the method115

is extended for computing carbon-to-chlorophyll ratio from ocean colour applicable to any116

size class of phytoplankton, by combining analytically the allometric relationships between117
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phytoplankton cell size and carbon content with the size-spectrum algorithm of Roy et al.118

(2013, 2011), and implementing them to estimate phytoplankton carbon in any size class.119

The method is applied to ocean-colour data for the period 1997-2013, and is validated using120

the available in situ data. Results are discussed in relation to the applicability of this method121

to obtain independent remote-sensing-based measurements of phytoplankton carbon, and the122

carbon budget, according to phytoplankton size. The results pave the way to improved im-123

plementation of carbon-based growth models using satellite data for computation of primary124

production in various PSCs.125

2 Data126

We used a continuous time series of ocean-colour data on global scale produced by127

the European Space Agency’s Ocean Colour Climate Change Initiative (OC-CCI) project128

(http://www.esa-oceancolour-cci.org) through systematically merging the available satellite129

data from three major sensors: NASA-SeaWiFS, NASA-MODIS-Aqua and ESA-MERIS. For130

temporal consistency of OC-CCI products, and for algorithms selected for processing them,131

please see Belo Couto et al. (2016); Brewin et al. (2015); Müller et al. (2015). We used the132

global 4-km, level-3 mapped products from OC-CCI, the details of which can be found in133

http://www.esa-oceancolour-cci.org (also in, Sathyendranath et al., unpublished ms). Fur-134

ther, to validate the new algorithm we used a global dataset on pico-phytoplankton carbon135

compiled by Buitenhuis et al. (2012) that included flow cytometry data obtained since the late136

1980s during cruises throughout most of the world ocean, as a contribution to the MARE-137
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DAT World Ocean Atlas of Plankton Functional Types database. The details of the database138

can be found in Buitenhuis et al. (2012) and in http://doi.pangaea.de/10.1594/PANGAEA.139

We extracted a subset of this database to cover the time period from September 1997 to140

December 2013, over which the satellite-based ocean-colour data were available. We further141

obtained mixed-layer depths from Monthly Isopycnal & Mixed-layer Ocean Climatology (MI-142

MOC, Schmidtko et al., 2013, http://www.pmel.noaa.gov/mimoc/), and remapped those to143

OC-CCI 4-km grids using nearest-neighbour interpolation (using MATLAB2015b interpola-144

tion routine).145

3 Development of the bio-optical algorithm146

3.1 Exponent of phytoplankton size spectra (ξ) from their absorp-147

tion coefficients aph(λ) following Roy et al. (2013)148

The exponent of the phytoplankton size spectrum (ξ) can be computed from the absorption149

coefficient of phytoplankton at 676 nm, aph(676), using a method developed by Roy et al.150

(2013). For the completeness of the methodology of this paper, we briefly describe below the151

principal steps for retrieval of ξ, without fully reproducing it from Roy et al. (2013). In this152

method, it was assumed that the particle size distribution of phytoplankton cells follows the153

power law, so the number of phytoplankton cells per unit volume of seawater with a particle154

diameter of D was expressed as N(D) = kD−ξ, with ξ as the exponent of the phytoplank-155

ton size spectrum, and k a constant related to the abundance of the total population. A156
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relationship was then derived between the concentration of chlorophyll-a (B in mg Chlm−3)157

within a diameter range [Dmin, Dmax] of phytoplankton cells and the exponent of the phyto-158

plankton size spectrum, by considering that the concentration of chlorophyll-a within the size159

interval (diameter range [Dmin, Dmax]) would be a product of the number of phytoplankton160

cells within that size class, the volume of each cell, and the intracellular concentration of161

chlorophyll-a (ci). The quantity ci (mg Chl-a m−3) was parameterised as : ci = c0D
−m, with162

the parameters c0 = 3.9 × 106 (mg Chl-a m−2.94) and m = 0.06 (dimensionless), which were163

estimated earlier by Roy et al. (2011) using the in situ measurements published by Maranón164

et al. (2007). The concentration of chlorophyll-a (B in mg Chlm−3) within the set diameter165

range was then expressed as a function of ξ as follows:166

B =
∫ Dmax

Dmin

[(
π

6
D3
)
(c0D

−m)
(
kD−ξ

)]
dD =

(
π

6
k c0

)
D4−ξ−m
max −D4−ξ−m

min

4− ξ −m
, (1)

with the parameters k, co and m described as above.167

Next, the specific absorption coefficient of chlorophyll-a (a∗chl, as distinct from the specific168

absorption of phytoplankton a∗ph) was expressed as a function of the cell diameter (D). To do169

so, phytoplankton absorption coefficient (aph) at 676 nm was considered with the assumption170

that at this wavelength the contribution from auxiliary pigments, and substances other than171

chlorophyll-a would be negligible (Roy et al., 2011). At this wavelength, the specific absorption172

coefficient of the cell material of phytoplankton was assumed to be equal to a∗ci, the specific-173

absorption coefficient of chlorophyll-a inside the cell, with units of m2 (mg Chl-a)−1 (Roy et al.,174

2011); and following Duyens (1956), the theoretical value of the chlorophyll-specific absorption175

of phytoplankton cells of diameter D was expressed as: a∗chl (676, D) = [3 a∗ciQa(ρc)]/2ρc, with176

9



Qa as the dimensionless absorption efficiency of a cell given by Qa (ρc) = 1+[2 exp (−ρc)]/ρc+177

2[exp (−ρc) − 1]/ρ2
c , and ρc as the dimensionless optical thickness of the cell given by ρc =178

ρc(676, D) = a∗ci(676) c0D
1−m. The observed absorption coefficient of chlorophyll-a at 676 nm179

due to the phytoplankton cells in the prescribed diameter range was then expressed as:180

achl(676) =
∫ Dmax

Dmin

[(
π

6
D3
)
(c0D

−m)
(
kD−ξ

)
× a∗chl (676, D)

]
dD. (2)

Using Eqs. (1) and (2), the specific absorption of chlorophyll-a at 676 nm, due to phytoplank-181

ton cells in the diameter range [Dmin, Dmax], was obtained as:182

a∗chl(676) =
achl(676)

B
=

1

B

∫ Dmax

Dmin

[(
π

6
D3
)
(c0D

−m)
(
kD−ξ

)
a∗chl (676, D)

]
dD

=
4− ξ −m

D4−ξ−m
max −D4−ξ−m

min

∫ Dmax

Dmin

[
D3−ξ−m × a∗chl (676, D)

]
dD. (3)

Note that, a∗chl (676, D) on the right-hand side of the above equation is the theoretical value183

of the specific-absorption coefficient of chlorophyll-a at 676 nm, expressed as a function of184

the equivalent spherical diameter D of phytoplankton, as described above based on Roy185

et al. (2011). For remote-sensing applications, a∗ph(676) is obtained from ocean colour by186

an algorithm for inherent-optical properties (IOP), for example, the Carder et al. (1999)187

algorithm as implemented in Roy et al. (2013). Further, from a∗ph(676), the quantity a∗chl(676)188

is calculated using the method of Roy et al. (2011). The quantity ξ is then estimated from189

Eq. (3) numerically, by using a non-linear optimization algorithm. For further details on the190

methodology, parameterisation and optimization algorithm associated with the retrieval of ξ,191

the reader is referred to Roy et al. (2013, 2011).192
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3.2 Relating ξ to phytoplankton carbon and carbon-to-chlorophyll193

ratio (χ) using allometric relationships194

Allometric relationships appear to hold for phytoplankton communities, as well as for other195

organisms (Marañón, 2008; Marañón et al., 2013; Menden-Deuer and Lessard, 2000; Peters,196

1983; Strathmann, 1967). Menden-Deuer and Lessard (2000) have reported allometric rela-197

tionships between the cellular content of phytoplankton carbon (Ccell) and cell volume (Vcell)198

for morphologically different dinoflagellates, diatoms and other protist groups. The allometric199

relationships take the following canonical form:200

Ccell = a V b
cell, (4)

where Vcell is the volume of a phytoplankton cell expressed in µm3, Ccell is expressed in201

pgC cell−1, and the quantities a and b are constants, which should ideally remain unchanged202

for a given ecological community. The concentration of phytoplankton carbon (Ctotal, in203

mgCm−3) contained in the cells within a diameter range [Dmin, Dmax] can then be expressed204

as:205

Ctotal =
∫ Dmax

Dmin

[number of cells]× [carbon content within a cell] dD,

=
∫ Dmax

Dmin

(
kD−ξ

) [
10−9 a

(
1018 π

6
D3
)b ]

dD,

= 10−9 k a
(
1018 π

6

)b (D3b−ξ+1
max −D3b−ξ+1

min

3b− ξ + 1

)
. (5)

We note that the values 10−9 and 1018 are associated with the conversions of units from206

picogram to mg, and m3 to µm3, respectively. In the special case when ξ → (3b + 1),207

the denominator in Eq. (5) goes to zero; so, to avoid division by zero, a limit of Ctotal →208
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[
10−9 k a

(
1018 π

6

)b
loge

(
Dmax

Dmin

)]
, is used. Equations (1) and (5) relate ξ to the concentration209

of total phytoplankton chlorophyll (B, mgm−3) and the total phytoplankton carbon (Ctotal,210

mgm−3), respectively, from which the carbon-to-chlorophyll ratio (χ) of the mixed population211

can be calculated as212

χ =
Ctotal
B

=
10−9 a (1018 π/6)

b

(π/6) c0

(
D3b−ξ+1
max −D3b−ξ+1

min

D4−ξ−m
max −D4−ξ−m

min

) (
4− ξ −m
3b− ξ + 1

)
. (6)

We note that the only unknown parameter k appearing in both Eqs. (1) and (5) cancels out213

within the expression of carbon-to-chlorophyll ratio (6). Once the exponent ξ is computed214

from Eq. (3) following the description in the previous section, χ can be computed directly215

from Eq. (6). Therefore, the total phytoplankton carbon can be calculated simply as,216

Ctotal = χB =
10−9 a (1018 π/6)

b

(π/6) c0

(
D3b−ξ+1
max −D3b−ξ+1

min

D4−ξ−m
max −D4−ξ−m

min

) (
4− ξ −m
3b− ξ + 1

)
B. (7)

It is clear that the estimates of phytoplankton carbon, using the above equations for χ217

and Ctotal, would depend on accurate parameterisation of the allometric relationship between218

phytoplankton cell volume and cellular carbon. However, the allometric parameters a and b219

are reported to vary across phytoplankton groups (Menden-Deuer and Lessard, 2000). So,220

the estimates of mixed phytoplankton carbon would be biased if the allometric parameters221

corresponding to any one phytoplankton group were used (Fig. 1a). More explicitly, according222

to Menden-Deuer and Lessard (2000), if the allometric relationship for protists (green line223

in Fig. 1a) were used, phytoplankton carbon would be underestimated for small cells and224

overestimated for large cells; if that for diatoms (blue line in Fig. 1a) were used, phytoplankton225

carbon would be underestimated for large cells; and finally, if that for dinoflagellate (yellow226

line in Fig. 1a) were used, phytoplankton carbon would be overestimated for small cells.227
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Figure 1: Reported and derived allometric relationships between phytoplankton carbon and
their cell size. (a) Allometric carbon of diatoms (blue), dinoflagellates (yellow) and protists
(green) reported by Menden-Deuer and Lessard (2000); and the allometric carbon for mixed
phytoplankton a function of their cell volume derived by regression; the regressed median
(a = 0.54, b = 0.85), and the lower (a = 0.25, b = 0.83) and upper (a = 0.76, b = 0.82)
bounds are shown by red solid line, and two black-dotted lines respectively. (b)-(c) Derived
relationship between carbon-to-chlorophyll ratio χ and phytoplankton size: (b) χ as a function
of phytoplankton cell diameter for a homogenous population, calculated from Eq. (6) and the
relationship between ξ to average cell diameter derived in Roy et al. (2013); and (c) χ as a
function of the exponent of phytoplankton size spectrum ξ calculated from Eq. (6). In (b) and
(c), the red lines represent the median of the allometric relationship shown in (a); and the
grey areas represent the ranges of χ corresponding to the regressed minimum and maximum
shown as black-dotted lines in (a). 13



Therefore, for calculating cellular carbon of mixed phytoplankton operationally, the allo-228

metric parameters need to be established, which is not straight-forward. In a recent study,229

Kostadinov et al. (2016) considered an approach in which four different allometric relation-230

ships reported by Menden-Deuer and Lessard (2000) were used for two different parts of the231

phytoplankton size spectrum. However, the allometric relationship is scale-free (as known232

from allometric studies based on other species, e.g., Peters, 1983), and therefore, the al-233

lometric parameters should remain unchanged across the size range of the phytoplankton234

community. But deriving a new allometric relationship for phytoplankton based on in situ235

data, applicable to all oceanographic regions and across all size ranges of mixed phytoplank-236

ton, is out of the scope of this study, which aims at making a first estimate of phytoplankton237

carbon using reported allometric relationships, and the new method. So, from an operational238

perspective, we considered the various estimates of ‘a’ and ‘b’ reported by Menden-Deuer and239

Lessard (2000) as independent observations, and derived, as described below, a continuous240

allometric relationship with a view to applying them to mixed populations, assuming that241

the populations are combinations of the phytoplankton groups for which the allometric re-242

lationships were reported by Menden-Deuer and Lessard (2000). In this approach, we first243

computed phytoplankton carbon over a broad range of cell volumes using the allometric rela-244

tionships reported for protists, diatoms and dinoflagelletes, respectively (shown by the green,245

blue and yellow dots, respectively in Fig. 1a). We next computed the median, minimum and246

maximum of the three estimates of phytoplankton carbon, at each size, over the same range247

of cell volumes (see, Fig. 1a). We then derived three allometric relationships between cell248

volume and the median, minimum and maximum estimates of phytoplankton carbon, respec-249
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tively, using linear regression (the median is shown by solid red line, and the minimum and250

maximum by dotted back lines in Fig. 1a). As expected, the revised allometric parameters,251

corresponding to the regressed median (a = 0.54, b = 0.85, r2 > 0.95), minimum (a = 0.25,252

b = 0.83, r2 > 0.95) and maximum (a = 0.76, b = 0.82, r2 > 0.95), differed from the reported253

allometric parameters corresponding to any particular phytoplankton group. However, the254

regressed median line (red) in Fig. 1a would represent an approximate allometric relationship255

for which the estimates of mixed-phytoplankton carbon would always be within the range of256

estimates based on single phytoplankton groups. Furthermore, the minimum and maximum257

estimates of the phytoplankton carbon at any size would be represented by the lower and258

upper bounds for the allometric relationships (the dotted black lines in Fig. 1a) derived this259

way from the group-specific allometric relationships.260

The allometric parameters ‘a’ and ‘b’, derived by regression as above, can be incorporated261

into the expression for carbon-to-chlorophyll ratio χ (Eq. 6) to describe the variations of χ262

with phytoplankton size structure. For phytoplankton populations consisting of homogeneous263

cells of the same size, the variation of χ as a function of the cell size of the population is shown264

in Fig. (1b). When the population deviates from homogeneity and consists of cells of different265

sizes, χ varies as a function of the exponent of size spectrum according to Fig. (1c). The266

magnitude of χ decreases with increase in cell size (Fig. (1b, the black curve). For mixed267

populations, χ increases with the exponent of phytoplankton size spectrum ξ (Fig. (1c, the268

black curve). The shaded areas in Fig. (1b) and Fig. (1c) represent the lower and upper levels269

of χ corresponding to the regressed-minimum and maximum of the allometric relationship.270
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The figures (1b-1c) show that the carbon-to-chlorophyll ratio of phytoplankton will be at271

the higher end (e.g., χ>100) when the population is dominated by small cells, and would272

decrease to a significantly lower value (e.g., χ<20) if the population were dominated by large273

cells. These results are remarkably consistent, qualitatively, with empirically derived carbon-274

to-chlorophyll ratios, e.g., those in Sathyendranath et al. (2009).275

We next apply these relationships to derive analytical expressions for χ and phytoplankton276

carbon for any given size class of phytoplankton population. Although we have used the277

above allometric parameters for the rest of the calculations to obtain a first estimate of278

phytoplankton carbon by our method, any improvement on the allometric relationships based279

on new in situ data would improve our estimates of phytoplankton carbon, and it would be280

straight-forward to incorporate any new parameter estimates into our method.281

3.3 Carbon-to-chlorophyll ratio (χ) and fractions of carbon for any282

size class of phytoplankton283

Considering that the biomass of phytoplankton (in carbon units) is the sum of biomasses284

in n non-overlapping size classes, the carbon biomass Cij of a size class defined by the size285

(diameter) range [Di, Dj] with 0 ≤ i < j ≤ n, can be expressed as the product of the286

carbon-to-chlorophyll ratio χij and the chlorophyll concentration Bij of that size class. Using287

Eq. (6) and the expression for Bij from Roy et al. (2013), the carbon content of any size class288
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Cij can be expressed as,289

Cij = χij Bij = χij

D4−ξ−m
j −D4−ξ−m

i

D4−ξ−m
max −D4−ξ−m

min

 B. (8)

The total phytoplankton carbon can then be expressed as a sum of phytoplankton carbon290

from n size classes,291

Ctotal =
i=n−1, j=n∑
i=0, j=i+1

Cij =
B

D4−ξ−m
max −D4−ξ−m

min

i=n−1, j=n∑
i=0, j=i+1

[
χij

(
D4−ξ−m
j −D4−ξ−m

i

)]
, (9)

where the carbon-to-chlorophyll ratio χij of the size class [Di, Dj] follows directly from Eq. (6),292

χij =
10−9 a (1018 π/6)

b

(π/6) c0

D3b−ξ+1
j −D3b−ξ+1

i

D4−ξ−m
j −D4−ξ−m

i

 [4− ξ −m
3b− ξ + 1

]
. (10)

Further, the fractional phytoplankton carbon Fij within any size class [Di, Dj] can be com-293

puted as follows:294

Fij =
Cij
Ctotal

=
χij

(
D4−ξ−m
j −D4−ξ−m

i

)
∑i=n−1, j=n
i=0, j=i+1

[
χij

(
D4−ξ−m
j −D4−ξ−m

i

)] . (11)

In particular, if [D0, D1], [D1, D2] and [D2, D3] represent the ranges of cell diameters295

corresponding to picoplankton, nanoplankton and microplankton respectively, the carbon-to-296

chlorophyll ratio corresponding to the three size classes (χp, χn and χm) can be respectively297

computed using Eq. (10) as follows:298

χp =
10−9 a (1018 π/6)

b

(π/6) c0

[
D3b−ξ+1

1 −D3b−ξ+1
0

D4−ξ−m
1 −D4−ξ−m

0

] [
4− ξ −m
3b− ξ + 1

]
; (12)

299

χn =
10−9 a (1018 π/6)

b

(π/6) c0

[
D3b−ξ+1

2 −D3b−ξ+1
1

D4−ξ−m
2 −D4−ξ−m

1

] [
4− ξ −m
3b− ξ + 1

]
; (13)

and300

χm =
10−9 a (1018 π/6)

b

(π/6) c0

[
D3b−ξ+1

3 −D3b−ξ+1
2

D4−ξ−m
3 −D4−ξ−m

2

] [
4− ξ −m
3b− ξ + 1

]
. (14)
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Moreover, using equation (11) and equations (12-14), the fractions of carbon for picoplankton301

(Fp), nanoplankton (Fn) and microplankton (Fm) can be computed as follows:302

Fp =
χp
(
D4−ξ−m

1 −D4−ξ−m
0

)
[
χp
(
D4−ξ−m

1 −D4−ξ−m
0

)
+ χn

(
D4−ξ−m

2 −D4−ξ−m
1

)
+ χm

(
D4−ξ−m

3 −D4−ξ−m
2

)] ; (15)

Fn =
χn
(
D4−ξ−m

2 −D4−ξ−m
1

)
[
χp
(
D4−ξ−m

1 −D4−ξ−m
0

)
+ χn

(
D4−ξ−m

2 −D4−ξ−m
1

)
+ χm

(
D4−ξ−m

3 −D4−ξ−m
2

)] ; (16)

Fm =
χm

(
D4−ξ−m

3 −D4−ξ−m
2

)
[
χp
(
D4−ξ−m

1 −D4−ξ−m
0

)
+ χn

(
D4−ξ−m

2 −D4−ξ−m
1

)
+ χm

(
D4−ξ−m

3 −D4−ξ−m
2

)] . (17)

Consistent with the previous studies (Roy et al., 2013; Sieburth et al., 1978; Vidussi et al.,303

2001), the diameter bounds of pico-, nano-, and micro- size classes may be taken as D0 = 0.2304

µm, D1 = 2 µm, D2 = 20 µm, and D3 = 50 µm. Applying these limits to Eq. (10), the305

carbon-to-chlorophyll ratios of picoplankton, nanoplankton, and microplankton can be plot-306

ted as functions of the exponent of the phytoplankton size spectrum as in Fig. (2a). Com-307

pared with the carbon-to-chlorophyll ratio of the mixed population (black curve, Fig. 2a),308

carbon-to-chlorophyll ratio of picoplankton (blue curve, Fig. 2a) is always higher, but that309

of microplankton (red curve, Fig. 2a) is always lower, over the range values of ξ. On the310

other hand, the carbon-to-chlorophyll ratio of the nanoplankton (green curve, Fig. 2a) is less311

than that of the mixed population for low values of ξ, and is greater than that of the mixed312

population for the high values of ξ (Fig. 2a). The range of variation of carbon-to-chlorophyll313

ratio is the minimum for micro-size class, and maximum for pico-size group (Fig. 2a).314

The proportions of phytoplankton carbon corresponding to the three size classes, when315

plotted as functions of ξ (the solid blue, green and red lines corresponding to pico-, nano-316

and micro classes, respectively in Fig. 2b), have shapes similar to those obtained for the317
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Figure 2: Carbon-to-chlorophyll ratio χ and phytoplankton carbon derived for various size
classes of phytoplankton. (a) χ of mixed phytoplankton (black line, using Eq. 6), picoplankton
(blue line, using Eq. 12), nanoplankton (green line, using Eq. 13) and microplankton (red line,
using Eq. 14) plotted as functions of the exponent of phytoplankton size spectrum ξ. (b)
Size-fractionated phytoplankton carbon and chlorophyll plotted as functions of ξ. The solid
blue, green and red lines represent the fractions of phytoplankton carbon corresponding to
picoplankton (using Eq. 15), nanoplankton (using Eq. 16) and microplankton (using Eq. 17);
and the shaded area represents the corresponding ranges of carbon fraction. The dotted
blue, green and red lines represent fractions of chlorophyll corresponding to picoplankton,
nanoplankton and microplankton, as derived in Roy et al. (2013).
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chlorophyll-proportions (the dotted lines, Fig. 2b, based on Roy et al., 2013). However, over318

the range of ξ relevant for phytoplankton, the fraction of microplankton based on carbon is319

lower than that based on chlorophyll (the solid and dotted red lines, Fig. 2b); and the fraction320

of picoplankton based on carbon is higher than that based on chlorophyll (the solid and dotted321

blue lines, Fig. 2b). On the other hand, the fraction of nanoplankton based on carbon is higher322

than that based on chlorophyll for low values of ξ, but the relationship is reversed for higher323

values of ξ (the solid and dotted green lines, Fig. 2b). We also note that the uncertainties in324

allometric parameters result in relatively low uncertainties in the estimates of carbon-based325

fractions of pico, nano and micro size classes (the blue, green and red shaded areas associated326

with the corresponding solid lines in Fig. 2b indicate these uncertainties).327

4 Results and discussion328

4.1 Algorithm validation using in situ data329

Ideally, it would require a large global dataset of in situ phytoplankton carbon to validate the330

bio-optical method presented here. However, constraints on the availability of in situ data on331

phytoplankton carbon limit the possibilities for algorithm validation. Nevertheless, we have332

attempted a validation exercise using the available flow cytometry data on phytoplankton333

compiled and reported by Buitenhuis et al. (2012) as contribution to the MAREDAT World334

Ocean Atlas of Plankton Functional Types database. However, this database reported phy-335

toplankton carbon for the pico-size group only, from 1980 onwards, over the world ocean.336
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Therefore, the validation exercise presented here is limited to in situ data on pico-size class,337

and the statistics may not apply to phytoplankton carbon in other size classes or to the total338

phytoplankton carbon, which would be a sum of carbon in all size classes. To maximise the339

number of data points for validation, we have used the reported pico-carbon data over the340

entire period of satellite coverage i.e., from September 1997 to December 2013, consistent341

with the OC-CCI v2 satellite data. Given the short time-scale of phytoplankton turn over,342

the satellite and in situ match-up would be most optimal on a daily scale. Compared with343

the weekly or monthly products, the choice of daily products would minimise the possible344

uncertainties that might arise due to time differences between the in situ and satellite ob-345

servations. We thus computed pico-plankton carbon using our method on the daily maps,346

and retrieved the spatially matched-up data points, which provided ∼900 data points for347

validation of pico-carbon.348

The locations of the in situ measurements from the MAREDAT database taken for this349

study are shown in Fig. (3a), and the validation results are shown in Fig. (3b-d). On a350

linear scale, the Spearman’s correlation (ρ) between the in situ picoplankton carbon and the351

satellite-derived estimates of pico-carbon (in mgCm−3) computed by our method is 0.57, p <352

0.0001, where the root-mean squared error (RMSE) of the satellite-based estimates is 36.23353

mgC m−3. The data-density plot shows high density (red colour) of sample points below the354

1:1 line (black line in Fig. 3b) suggesting that the satellite-derived picoplankton carbon values355

are lower than the corresponding in situ estimates, and on a linear scale the bias is −13.53356

mgC m−3.357
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Figure 3: Validation of the computed phytoplankton carbon using in situ data. (a) Locations
of the in situ data, which is a part of in situ samples from MAREDAT within the range
of satellite coverage, i.e, 1997-2013. The compiled dataset represents in situ measurements
of carbon for small-phytoplankton, < 2 µm in diameter. Phytoplankton carbon for the
corresponding size range was computed using Eq. (8) and Eq. (10). (b) Comparison plot for
the observed and computed picoplankton carbon. The increased densities of the data points
around the 1:1 line are evident in the high density (red colour) close to the 1:1 line. Lower
densities are shown in blue. (c) Magnitudes of the relative error (in %) in estimation of pico-
carbon with respect to the reported in situ values presented for data quantiles. The black
line indicates the error percentages for the default in situ values, whereas the blue and red
lines show those for assumed 2 and 3 fold overestimation in the in situ calculations (these
possibilities in MAREDAT are discussed by Buitenhuis et al. (2012)). (d) Box plots of the
observed and satellite-derived values of picoplankton carbon corresponding to the default in
situ values, and in situ values with possibilities of 2 and 3 fold overestimations.
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The apparent underestimation of picoplankton carbon by the method presented here may358

be due to uncertainties in satellite input, the allometric parameterisation or the uncertain-359

ties in the in situ estimates. In particular, the in situ pico-carbon values in MAREDAT360

were calculated assuming a set of fixed values of carbon per cell for the three picoplankton361

species considered, and so the overall pico-carbon estimates from the in situ data are sub-362

ject to uncertainties related to the cell-to-carbon conversion factors. Buitenhuis et al. (2012)363

acknowledged that "there is considerable uncertainty in the conversion factors" (see Table 2364

in Buitenhuis et al. (2012) for the ranges of conversion factors) in the reported MAREDAT365

pico-carbon data, and further suggested that this factor may lead to significant overestima-366

tion of in situ picoplankton carbon, which on a global scale could contribute to "a 2-3 fold367

difference in the estimated picophytoplankton biomass" (Buitenhuis et al., 2012).368

Taking these uncertainties in the in situ estimates into consideration, we have investigated369

the uncertainty bounds for the satellite-based estimates: Fig. 3c shows three scenarios of the370

percentages of error in the satellite-derived estimates relative to the in situ values over the371

data quantiles. Corresponding to the default (reported) in situ estimates, the magnitude372

of the relative errors in satellite-derived estimates are < 34% for a quartile of the data,373

and < 72% for the three quartiles of the data (black line, in 3c). This scenario changes374

significantly if the possible uncertainties in the in situ values are taken into account: for375

example, corresponding to an overall 2-fold (or 3-fold) overestimation in the in situ data,376

satellite-derived estimates are < 18% (or < 35%) for a quartile of the data, and < 70% (or377

> 100%) for the three quartiles of the data (the blue and red lines, respectively, in 3c). Also,378
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the box plots (Fig. 3d) show that the median values and the spread and distributions of the379

estimated and in situ picoplankton values differ between the default in situ values and the380

alternative two scenarios: the median value of the estimated pico-carbon is lower than that for381

the default in situ estimates, but the difference reduces considerably if we take into account382

the possibilities of a 2-fold or 3-fold overestimation of the in situ pico-carbon, and in fact,383

corresponding to a 3-fold in situ overestimation, the median of the satellite estimates is higher384

than those for the in situ estimates (Fig. 3d).385

Therefore, our satellite-based estimates show underestimation of picoplankton carbon with386

respect to the reported in situ estimates, but the level of bias of the current estimates is also387

subject to the uncertainties in the carbon-per-cell conversion factors applied to the in situ388

data. The validation might also have been affected by the properties of the statistical dis-389

tribution of the quantities under comparison; for example, the in situ picoplankton-carbon390

data were computed in MAREDAT under the assumption of mean cell-to-carbon conversion391

factors, whereas the algorithm, by design, considered the median of a number of allometric392

relationships drawn from the literature for different taxa. So, the possibility of non-normality393

in the in situ picoplankton-carbon distribution would impose a systematic bias, when con-394

sidering the mean over the median. However, re-calculation of the in situ pico-carbon from395

MAREDAT database to explore the unknown error characteristics is beyond the scope of our396

study. The other sources of uncertainties in pico-carbon may also be associated with the un-397

certainties in the satellite input, e.g., here we have used OC-CCI-version-2 data, which have398

been re-processed with a view to reducing uncertainties. However, a new version of the data399
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(OC-CCI-version-3) has been released only recently, but we are yet to apply our method to400

the updated version of the data. We further note that the RMSE and bias values presented401

are based on picoplankton carbon data only, and uncertainties in phytoplankton carbon for402

other classes would require further investigation.403

4.2 C:Chl (χ) and phytoplankton carbon over global ocean404

The average carbon-to-chlorophyll ratios (χ) computed over the global ocean using composite405

monthly images from September 1997 to December 2013 vary over a wide range, from <20406

in the coastal or case-2 waters to >90 in the open ocean and case-1 waters (Fig. 4a). These407

results are consistent with our understanding that the low and high values of χ represent,408

respectively, the areas dominated by large and small phytoplankton. The annually-averaged409

standing stocks of phytoplankton carbon over the mixed layer vary from less than 1mgm−3
410

in the gyres to more than 500mgm−3 in the case-2 and coastal waters (Fig. 4b). The stock411

of phytoplankton carbon integrated over the mixed layer and globe is found to be ∼0.26412

GtC (Fig. 4b), with some monthly variation in the stock ranging from 0.24 to 0.29 GtC. The413

smallest stock is observed in June with ∼0.24 GtC and a maximum in September ∼0.29 GtC,414

with the autumn months having stocks of carbon greater than the annual average.415

In a recent study, Kostadinov et al. (2016) have shown that the estimates of annual stock416

of phytoplankton carbon depend on the estimation method, and can vary from 0.2 to 0.32417

GtC, with the minimum due to Stramski et al. (2008): ∼0.2 GtC, followed by the average418

of some CMIP5 models (Taylor et al., 2012): ∼0.22 GtC, Kostadinov et al. (2016): ∼0.24419
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Figure 4: Global distribution of C:Chl and phytoplankton carbon estimated over 1997-2013
using monthly OC-CCI data. (a) Annual climatology of C:Chl over 1997-2013. (b) Annual
climatology of phytoplankton carbon in the surface over 1997-2013. (c) Monthly climatology
of the global estimates of phytoplankton carbon (in gigaton, GtC) integrated over the mixed-
layer depth. Blue, green and red colours indicate the proportions of phytoplankton carbon
corresponding to pico-, nano- and micro- size groups.
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GtC (with a range of 0.2 to 0.3 GtC) and Behrenfeld et al. (2005): ∼0.32 GtC. Our estimate420

of ∼0.26 GtC (with a range of monthly variations between 0.24 and 0.29 GtC) is slightly421

higher than those of Stramski et al. (2008), the average result for CMIP5 models reported by422

Kostadinov et al. (2016), and the back-scattering-based method of Kostadinov et al. (2016),423

but is lower than that reported by Behrenfeld et al. (2005).424

4.3 Size-partitioned phytoplankton carbon over the global ocean425

Using the equations derived in Section 3.3, phytoplankton carbon can be partitioned into any426

number of size classes, and in particular, into the three broad size classes, e.g., pico, nano,427

and micro. The annual average of phytoplankton carbon in the three size classes expressed428

both as the percentages of total phytoplankton and in the units of mgC m−3 are shown in429

Fig. (5).430

The global distributions of the carbon-based phytoplankton size classes (i.e., the percent-431

ages of carbon in three size classes in Fig. 5a-c), are generally similar to the corresponding432

chlorophyll-based distributions reported in Roy et al. (2013). Pico-carbon stocks generally433

dominate over those of nano- and micro-carbon for most of the open oceans, including the434

gyres and the equatorial regions, with contributions ranging from ∼70% to more than 90%435

of total phytoplankton carbon (Fig. 5a). Converting the percentages into units of carbon,436

the concentration of picoplankton carbon in these areas is generally within the range of 1-10437

mgCm−3 (Fig. 5d). In most of the coastal waters and generally in the northern hemisphere,438

the pico-carbon stocks are around 10-20% of the total phytoplankton carbon (Fig. 5a); how-439
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Figure 5: Global average distribution of phytoplankton carbon corresponding to pico-, nano-
and micro- size groups estimated by averaging monthly values computed from OC-CCI data
for the period September 1997 - December 2013. Carbon-based size classes of phytoplankton:
Fractional (%) contributions of (a) picoplankton carbon, (b) nanoplankton carbon and (c)
microplankton carbon to total phytoplankton carbon. Estimates of the concentrations of (d)
picoplankton carbon, (e) nanoplankton carbon and (f) microplankton carbon in the surface
in mgm−3.
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ever, the range of pico-carbon may vary from 2mgCm−3 to more than 100mgCm−3 (Fig. 5d).440

The stocks of nano-plankton carbon are 10-15% of total phytoplankton carbon in equatorial441

gyres, and go up to 40-45% in the southern ocean, northern hemisphere and coastal oceans442

(Fig. 5b). These percentages account for ∼2-3mgm−3 of nano-carbon in the equatorial gyres,443

and ∼10-30mgCm−3 in the northern and southern oceans (Fig. 5e). The stocks of micro-444

carbon, on the other hand, are estimated to be less than 20% in most of the equatorial and445

southern ocean, except the coastal regions, and in the northern hemisphere, where its percent-446

age contribution goes up to 70-80% (Fig. 5c). In the coastal oceans and northern hemisphere,447

the concentration of micro-plankton carbon is estimated to be in the range 20-30mgCm−3,448

whereas in the equatorial gyres it is below 0.5mgCm−3 (Fig. 5f).449

The global distributions of the size-partitioned phytoplankton carbon can be spatially inte-450

grated over the mixed-layer depth to estimate their annual-mean stocks, which are ∼0.14GtC451

for picoplankton (with a monthly range of 0.13-0.16GtC), ∼0.08GtC for nanoplankton (with452

a monthly range of 0.07-0.09GtC) and ∼0.04GtC for microplankton (with a monthly range453

of 0.03-0.041GtC) (Fig. 4c). These stocks of carbon in the three size classes constitute ap-454

proximately 54% (with a monthly range of 53-62%), 31% (with a monthly range of 27-32%)455

and 15% (with a monthly range of 10-16%) of the global stock of phytoplankton carbon,456

respectively.457
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4.4 Sources and estimates of uncertainty458

The estimates of phytoplankton carbon from the bio-optical algorithm presented here would459

be subject to uncertainties from two sources: uncertainties associated with the remote sensing460

products (chlorophyll-a and phytoplankton absorption, and hence satellite-derived values of461

ξ); and the uncertainties in allometric parameterisation in the bio-optical model; but the two462

uncertainty sources are independent of each other. We consider an overall uncertainty in ξ463

arising from the uncertainties in satellite chlorophyll-a and phytoplankton absorption (based464

on the uncertainty calculations by Roy et al., 2013). We then compute from Eq. (7) the465

total relative sensitivity of the estimated phytoplankton carbon (i.e, ∆Ctotal

Ctotal
), as a combined466

function of the individual relative sensitivities ∆ξ
ξ
, ∆a

a
, and ∆b

b
. In the following, we apply the467

above sensitivity analysis to understand the uncertainties in the estimation. The uncertainties468

presented below should be interpreted as model-based uncertainties; and not as those based469

on the in situ observations (which was not possible due to lack of the size-partitioned data470

on phytoplankton carbon).471

The overall uncertainties in the estimates of phytoplankton carbon due to 0-25% un-472

certainties in ξ (chosen based on Roy et al., 2013) and 20% uncertainties in the allometric473

parameters a and b are presented on a contour map in Fig. (6a). The uncertainty level in474

phytoplankton carbon is typically <30% over the range of ξ typically encountered at sea,475

except for ξ values between 3.5 and 4, where the uncertainties can amplify up to 80-90%476

corresponding to >20% uncertainty in satellite-derived ξ values (Fig. 6a). In other words, for477

phytoplankton populations that are clearly dominated by either small cells (higher end of ξ)478
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Figure 6: Level of uncertainties in phytoplankton carbon computed by the method proposed
here. (a) Uncertainty in phytoplankton carbon estimates due to possible errors in estimating ξ
(the exponent of phytoplankton size spectrum) and b (the exponent of allometric carbon rela-
tionship). The overall uncertainties in the estimates of phytoplankton carbon are shown over
a possible uncertainty range 0-25% for ξ and an uncertainty level 20% for b. (b) Propagated
uncertainties in the estimates of phytoplankton carbon corresponding to 25% uncertainty in
ξ and 20% uncertainty in b over the global ocean for the period of 1997-2013.
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or large cells (lower end of ξ), the uncertainties in estimating phytoplankton carbon will be479

low (20-30%), but, for populations with no obvious dominance by large or small cells, the480

uncertainties can be high (>30%).481

On the global map, the propagation of uncertainties in phytoplankton carbon correspond-482

ing to the higher ends of uncertainties in ξ (say, 25%), a and b (say, 20%) is presented for483

1997-2013 (Fig. 6b). In most of the Northern hemisphere, in the subtropical gyres and in484

the coasts, the uncertainties in phytoplankton carbon are within a range of 20-40% (Fig. 6b).485

However, uncertainties in the Southern Ocean, and parts of Atlantic Ocean can go up to486

50-70% (Fig. 6b). The lower and upper levels of the annual stocks of phytoplankton carbon487

arising from regional-level uncertainties may vary between 0.12GtC and 0.35GtC; and those488

for pico-, nano- and micro- carbon may vary in the ranges of [0.07, 0.2], [0.03, 0.09] and [0.01489

0.04]GtC, respectively (Fig. 7). The monthly variations of the stocks are also remarkable:490

the possibility exists of pico-carbon stock being larger or smaller than the default estimates,491

whereas for microplankton-carbon, the uncertainties tend to lower the estimates, as evident492

when taking into account regional uncertainties in phytoplankton carbon (Fig. 7).493

5 Concluding remarks494

Estimates of total concentration of carbon in phytoplankton and its fractions in various phyto-495

plankton size classes from satellite-remote sensing can provide valuable information for ocean496

biogeochemical and carbon-cycle research. However, the work in this direction has been ham-497

pered by the absence of a remote-sensing signal that can be related directly to phytoplankton498
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Figure 7: Estimates of uncertainties in the monthly and annual standing stocks of phyto-
plankton carbon. Monthly and annual climatologies of the standing stocks of (a) picoplank-
ton carbon, (b) nanoplankton carbon, (c) microplankton carbon and (d) total phytoplankton
carbon, plotted along with their corresponding uncertainty ranges (represented by vertical
error bars) estimated assuming possible uncertainties in ξ and b parameterisation as in Fig. 6
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carbon. Only a small number of studies have addressed this problem, and all the methods499

proposed so far (Behrenfeld et al., 2005; Kostadinov et al., 2016; Stramski et al., 2008) have500

relied on relating POC to back-scattering or to remote-sensing reflectance, and then ascribing501

a fixed fraction of POC to phytoplankton. Though these approaches have met with reasonable502

success, their weakness lies in the natural variability in the ratio of phytoplankton carbon to503

POC, which the algorithms cannot account for.504

Here we present a novel bio-optical algorithm that uses the absorption coefficient of phyto-505

plankton from remote sensing along with the allometric relationship of cellular carbon content506

to compute carbon-to-chlorophyll ratio, the standing stocks of phytoplankton carbon, and the507

carbon-based proportions of phytoplankton size classes, in the global ocean. The basis of the508

method is the bio-optical algorithm developed by Roy et al. (2013) to compute the exponent509

of the phytoplankton size spectrum and the chlorophyll proportions at various size classes510

from the absorption coefficient of phytoplankton in the red part of the absorption spectrum.511

Extending the method of Roy et al. (2013), we have derived analytical expressions for combin-512

ing phytoplankton absorption from remote sensing with the allometric relationship between513

cell size and phytoplankton carbon. The new expressions enable computation of phytoplank-514

ton carbon from satellite remote sensing based on the bio-optical fingerprints of the living515

phytoplankton alone. By design, this absorption-based method does not rely on a systematic516

relationship between phytoplankton carbon and POC (such as a constant ratio), as required517

by the other methods that are available at present (Behrenfeld et al., 2005; Kostadinov et al.,518

2016). Instead, by combining the estimates of phytoplankton carbon, based on the absorption519
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coefficient of pigment-containing phytoplankton cells (presented here), with the estimates of520

POC from back-scattering or remote-sensing reflectances (Behrenfeld et al., 2005), we can521

arrive at independent estimates of the ratio of phytoplankton carbon to POC. Such estimates522

would be an immediate application of the method proposed here.523

We have used the new method to compute phytoplankton carbon in the global ocean524

on a monthly basis for the 1997-2013 period using OC-CCI time series data, and computed525

monthly climatologies of the standing stock of phytoplankton carbon in the mixed layer, and526

their annual averages. The new results are of the same order of magnitude, and comparable527

with, those reported earlier (Behrenfeld et al., 2005; Kostadinov et al., 2016; Stramski et al.,528

2008), though there are regional and seasonal differences. We have provided the RMSE and529

bias of the estimates with respect to the in situ measurements of the picopankton carbon, but530

due to the unavailability of in situ data, we have been unable to estimate the uncertainties,531

RMSE or bias for other phytoplankton size classes (e.g., micro- or nano- phytoplannkton).532

We also recognize that, as additional data become available, it would be interesting and533

useful to carry out extensive inter-comparisons among the various methods for estimating534

phytoplankton carbon.535

With the availability of a variety of satellite-derived products, it has become increasingly536

important to understand and quantify uncertainties associated with these products. For537

example, the Global Climate Observing System (GCOS) has provided requirements for accu-538

racy in ocean-colour data that can be used for climate studies (GCOS, 2011). Because our539

method for estimation of carbon is semi-analytical, it is possible, as shown here, to quantify540
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analytically the uncertainties in carbon estimates, provided that the uncertainties in satellite-541

derived chlorophyll and absorption coefficient are known. For illustration, we have provided542

estimates of the uncertainties corresponding to 30% overall uncertainty (GCOS requirement)543

in the satellite input, and we have identified the oceanographic regions where the carbon544

estimates will be less (or more) sensitive to uncertainties in the inputs. These calculations545

also provide insight into the error characteristics of phytoplankton carbon estimated by our546

method, and suggest that the errors do not generally amplify, and that they become less for547

more accurate retrievals of the satellite-based inherent optical properties. Another source of548

uncertainty is the allometric parametrisation, and any change in the allometric parameters549

would alter our estimates of phytoplankton carbon (as shown in the sensitivity results). How-550

ever, implementation of any improved allometric parametrisation within this method would551

be straight forward. Finally, we note that the uncertainties in the estimates of carbon in the552

coastal oceans and at high latitudes may be high due to several reasons, e.g., high concen-553

tration of CDOM, solar zenith angles, clouds or ice; and so this method, like many other554

ocean colour algorithms, will be generally applicable to open oceans. Further investigations555

should address its applicability to optically complex waters, and oceanic regions with complex556

phytoplankton community structure, e.g., blooms of large chain-forming diatoms.557

Acknowledgements558

We acknowledge the project team of Ocean Colour Climate Change Initiative for generating559

and sharing the merged datasets on chlorophyll and inherent optical properties. We also560

36



acknowledge the mission scientists and Principal Investigators and everyone associated with561

compilation of the MAREDAT dataset, and for making the data freely available. The research562

was funded by the European Space Agency’s Scientific Exploitation of Operational Missions563

Project Pools of Carbon in the Ocean (POCO). The work also benefited from the support564

of the National Centre for Earth Observation (NCEO) of Natural Environment Research565

Council, UK. The valuable comments and suggestions made by three anonymous reviewers566

have improved the paper.567

References568

Behrenfeld, M. J., Boss, E., Siegel, D. A. and Shea, D. M. (2005), ‘Carbon-based ocean569

productivity and phytoplankton physiology from space’, Global biogeochemical cycles 19(1).570

Belo Couto, A., Brotas, V., Mélin, F., Groom, S. and Sathyendranath, S. (2016), ‘Inter-571

comparison of oc-cci chlorophyll-a estimates with precursor data sets’, International Journal572

of Remote Sensing 37(18), 4337–4355.573

Brewin, R. J., Sathyendranath, S., Müller, D., Brockmann, C., Deschamps, P.-Y., Devred,574

E., Doerffer, R., Fomferra, N., Franz, B., Grant, M. et al. (2015), ‘The ocean colour climate575

change initiative: Iii. a round-robin comparison on in-water bio-optical algorithms’, Remote576

Sensing of Environment 162, 271–294.577

Buitenhuis, E. T., Li, W. K., Vaulot, D., Lomas, M. W., Landry, M., Partensky, F., Karl, D.,578

37



Ulloa, O., Campbell, L., Jacquet, S. et al. (2012), ‘Picophytoplankton biomass distribution579

in the global ocean’, Earth System Science Data 4(1), 37–46.580

Carder, K. L., Chen, F., Lee, Z., Hawes, S. and Kamykowski, D. (1999), ‘Semianalytic581

moderate-resolution imaging spectrometer algorithms for chlorophyll a and absorption582

with bio-optical domains based on nitrate-depletion temperatures’, Journal of Geophys-583

ical Research-Oceans 104(C3), 5403–5421.584

DuRand, M. D., Olson, R. J. and Chisholm, S. W. (2001), ‘Phytoplankton population dy-585

namics at the bermuda atlantic time-series station in the sargasso sea’, Deep Sea Research586

Part II: Topical Studies in Oceanography 48(8), 1983–2003.587

Duyens, L. (1956), ‘The flattering of the absorption spectrum of suspensions, as compared to588

that of solutions’, Biochimica et Biophysica Acta 19, 1–12.589

Eppley, R. W., Chavez, F. P. and Barber, R. T. (1992), ‘Standing stocks of particulate carbon590

and nitrogen in the equatorial pacific at 150 w’, Journal of Geophysical Research: Oceans591

97(C1), 655–661.592

Falkowski, P. (2012), ‘The power of plankton’, Nature 483, S17–S20.593

Field, C. B., Behrenfeld, M. J., Randerson, J. T. and Falkowski, P. (1998), ‘Primary594

production of the biosphere: integrating terrestrial and oceanic components’, Science595

281(5374), 237–240.596

GCOS, G. (2011), ‘Systematic observation requirements for satellite-based products for cli-597

mate. 2011 update supplemetnatl details to the satellite 39 based component og the imple-598

38



mentation plan for the global observing system for climate in support of the unfccc (2010599

update)’, Tech. rep., World Meteorological Organisation (WMO), 7 bis, avenue de la Paix,600

CH- 1211 Geneva 2, Switzerland.601

Geider, R. J. (1987), ‘Light and temperature dependence of the carbon to chlorophyll a ratio602

in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton’,603

New Phytologist 106(1), 1–34.604

Geider, R. J., MacIntyre, H. L. and Kana, T. M. (1998), ‘A dynamic regulatory model of605

phytoplanktonic acclimation to light, nutrients, and temperature’, Limnology and Oceanog-606

raphy 43(4), 679–694.607

Gundersen, K., Orcutt, K. M., Purdie, D. A., Michaels, A. F. and Knap, A. H. (2001),608

‘Particulate organic carbon mass distribution at the bermuda atlantic time-series study609

(bats) site’, Deep Sea Research Part II: Topical Studies in Oceanography 48(8), 1697–1718.610

IOCCG, ed. (2014), Phytoplankton functional types from Space., number 15, International611

Ocean-Colour Coordinating Group, Reports of the International Ocean-Colour Coordinat-612

ing Group (IOCCG).613

Kostadinov, T., Milutinovic, S., Marinov, I. and Cabré, A. (2016), ‘Carbon-based phytoplank-614

ton size classes retrieved via ocean color estimates of the particle size distribution’, Ocean615

Science Discussions 12, 561–575.616

Marañón, E. (2008), ‘Inter-specific scaling of phytoplankton production and cell size in the617

field’, Journal of Plankton Research 30(2), 157–163.618

39



Marañón, E., Cermeño, P., López-Sandoval, D. C., Rodríguez-Ramos, T., Sobrino, C., Huete-619

Ortega, M., Blanco, J. M. and Rodríguez, J. (2013), ‘Unimodal size scaling of phytoplankton620

growth and the size dependence of nutrient uptake and use’, Ecology letters 16(3), 371–379.621

Maranón, E., Cermeno, P., Rodrıguez, J., Zubkov, M. V. and Harris, R. P. (2007), ‘Scaling of622

phytoplankton photosynthesis and cell size in the ocean’, Limnol. Oceanogr 52(5), 2190–623

2198.624

Menden-Deuer, S. and Lessard, E. J. (2000), ‘Carbon to volume relationships for dinoflagel-625

lates, diatoms, and other protist plankton’, Limnology and Oceanography 45(3), 569–579.626

Müller, D., Krasemann, H., Brewin, R. J., Brockmann, C., Deschamps, P.-Y., Doerffer, R.,627

Fomferra, N., Franz, B. A., Grant, M. G., Groom, S. B. et al. (2015), ‘The ocean colour628

climate change initiative: Ii. spatial and temporal homogeneity of satellite data retrieval due629

to systematic effects in atmospheric correction processors’, Remote Sensing of Environment630

162, 257–270.631

Oubelkheir, K., Claustre, H., Sciandra, A. and Babin, M. (2005), ‘Bio-optical and biogeochem-632

ical properties of different trophic regimes in oceanic waters’, Limnology and oceanography633

50(6), 1795–1809.634

Peters, R. H. (1983), The Ecological Implications of Body Size, Cambridge University Press,635

Cambridge.636

Redalje, D. and Laws, E. (1981), ‘A new method for estimating phytoplankton growth rates637

and carbon biomass’, Marine Biology 62(1), 73–79.638

40



Roy, S., Sathyendranath, S., Bouman, H. and Platt, T. (2013), ‘The global distribution of639

phytoplankton size spectrum and size classes from their light-absorption spectra derived640

from satellite data’, Remote Sensing of Environment 139, 185–197.641

Roy, S., Sathyendranath, S. and Platt, T. (2011), ‘Retrieval of phytoplankton size from bio-642

optical measurements: theory and applications’, Journal of The Royal Society Interface643

8(58), 650–660.644

Sathyendranath, S., Brewin, R., Brockmann, C., Brotas, V., Ciavatta, S., Chuprin, A., Couto,645

A., Doerffer, R., Dowell, M., Grant, M., Groom, S., Horseman, A., Jackson, T., Krasemann,646

H., Lavender, S., Martinez Vicente, V., Mélin, Moore, T., Müller, D., Regner, P., Roy, S.,647

Steinmetz, F., Swinton, J., Taberner, M., Thompson, A., Valente, A., Zühlke, M., Brando,648

V., Feldman, G., Franz, B., Frouin, R., Gould, Jr, R., Hooker, S., Kahru, M., Mitchell,649

M., Muller-Karger, F., Sosik, H., Voss, K., Werdell, J. and Platt, T. (2016), ‘Creating650

an ocean-colour time series for use in climate studies: the experience of the ocean-colour651

climate change initiative’, Unpublished manuscript.652

Sathyendranath, S., Stuart, V., Nair, A., Oka, K., Nakane, T., Bouman, H., Forget, M.-H.,653

Maass, H. and Platt, T. (2009), ‘Carbon-to-chlorophyll ratio and growth rate of phyto-654

plankton in the sea’, Marine Ecology Progress Series 383(7), 73–84.655

Schmidtko, S., Johnson, G. C. and Lyman, J. M. (2013), ‘MIMOC: A global monthly isopyc-656

nal upper-ocean climatology with mixed layers’, Journal of Geophysical Research: Oceans657

118(4), 1658–1672.658

41



Sieburth, J. M., Smetacek, V. and Lenz, J. (1978), ‘Pelagic ecosystem structure: Het-659

erotrophic compartments of the plankton and their relationship to plankton size fractions660

1’, Limnology and Oceanography 23(6), 1256–1263.661

Stramski, D., Reynolds, R. A., Babin, M., Kaczmarek, S., Lewis, M. R., Röttgers, R., Scian-662

dra, A., Stramska, M., Twardowski, M., Franz, B. et al. (2008), ‘Relationships between the663

surface concentration of particulate organic carbon and optical properties in the eastern664

south pacific and eastern atlantic oceans’, Biogeosciences 5(1), 171–201.665

Strathmann, R. (1967), ‘Estimating the organic carbon content of phytoplankton from cell666

volume or plasma volume’, Limnology and Oceanography 12(3), 411–418.667

Taylor, K. E., Stouffer, R. J. and Meehl, G. A. (2012), ‘An overview of cmip5 and the668

experiment design’, Bulletin of the American Meteorological Society 93(4), 485–498.669

Vidussi, F., Claustre, H., Manca, B. B., Luchetta, A. and Marty, J.-C. (2001), ‘Phyto-670

plankton pigment distribution in relation to upper thermocline circulation in the eastern671

mediterranean sea during winter’, Journal of Geophysical Research: Oceans (1978–2012)672

106(C9), 19939–19956.673

42


