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Abstract 27 

The Coupled Model Intercomparison Project (CMIP) is now moving into its sixth phase and 28 

aims at a more routine evaluation of the models as soon as the model output is published to the 29 

Earth System Grid Federation (ESGF). To meet this goal the Earth System Model Evaluation 30 

Tool (ESMValTool), a community diagnostics and performance metrics tool for the systematic 31 

evaluation of Earth system models (ESMs) in CMIP, has been developed and a first version (1.0) 32 

released as open source software in 2015. Here, an enhanced version of the ESMValTool is 33 

presented that exploits a subset of Essential Climate Variables (ECVs) from the European Space 34 

Agency’s Climate Change Initiative (ESA CCI) Phase 2 and this version is used to demonstrate 35 

the value of the data for model evaluation. This subset includes consistent, long-term time series 36 

of ECVs obtained from harmonized, reprocessed products from different satellite instruments for 37 

sea surface temperature, sea ice, cloud, soil moisture, land cover, aerosol, ozone, and greenhouse 38 

gases. The ESA CCI data allow extending the calculation of performance metrics as summary 39 

statistics for some variables and add an important alternative data set in other cases where 40 

observations are already available. The provision of uncertainty estimates on a per grid basis for 41 

the ESA CCI data sets is used in a new extended version of the Taylor diagram and provides 42 

important additional information for a more objective evaluation of the models. In our analysis 43 

we place a specific focus on the comparability of model and satellite data both in time and space. 44 

The ESA CCI data are well suited for an evaluation of results from global climate models across 45 

ESM compartments as well as an analysis of long-term trends, variability and change in the 46 

context of a changing climate. The enhanced version of the ESMValTool is released as open 47 

source software and ready to support routine model evaluation in CMIP6 and at individual 48 

modeling centers. 49 
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1 Introduction 50 

Earth system models (ESMs) are essential tools for improving our understanding of the climate 51 

system as well as for assessing the response of the climate system to different natural or 52 

anthropogenic perturbations. Understanding of the capabilities and limitations of ESMs is a 53 

cornerstone for the interpretation of model results as well as for improving the models and is 54 

obtained through a comprehensive evaluation of the models with observations. Both improved 55 

models and an improved process understanding of the climate are important steps towards 56 

reducing the uncertainties in projections of future climate change and providing more 57 

trustworthy information for policy guidance. The number of models participating in the Coupled 58 

Model Intercomparison Project (CMIP) that is internationally coordinating ESM simulations is 59 

growing and the models participating are increasing in complexity and resolution. Traceable 60 

evaluation of the CMIP model ensemble with observations is therefore a challenging task. 61 

The experimental design of the sixth phase of the Coupled Model Intercomparison Project 62 

(CMIP6) is now finalized. A central goal of CMIP6 is an improved and more routine evaluation 63 

of the participating climate models with observations (Eyring et al., 2016a). The CMIP 64 

Diagnostic, Evaluation and Characterization of Klima (DECK) experiments and CMIP historical 65 

simulations will provide the basis for the documentation of the model simulation characteristics. 66 

The aim is in particular to diagnose and improve the understanding of the origins and 67 

consequences of systematic model errors and inter-model spread. 68 

To support this goal, the Earth System Model Evaluation Tool (ESMValTool, Eyring et al., 69 

2016b) has been developed. The ESMValTool is a community diagnostics and performance 70 

metrics tool for systematic evaluation of Earth system models in CMIP, which has been 71 

developed by multiple institutions in several international projects. A first version of the 72 
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ESMValTool has been released as open source software in 2015 and is rapidly developing to 73 

include additional evaluation diagnostics and technical improvements. The ESMValTool will be 74 

- together with other software packages such as the Program for Climate Model Diagnostics and 75 

Intercomparison (PCMDI) metrics package (PMP, Gleckler et al., 2016) and the NCAR Climate 76 

Variability Diagnostic Package (CVDP, Phillips et al., 2014) that is included in the ESMValTool 77 

as a separate namelist - applied to CMIP6 results to provide a broad and comprehensive 78 

characterization of the CMIP6 models as soon as the output is published to the Earth System 79 

Grid Federation (ESGF). The foundation that will enable this is an efficient infrastructure 80 

(Eyring et al., 2016c) and the community-based experimental protocols and conventions of 81 

CMIP, including their extension to obs4MIPs (Teixeira et al., 2014; Ferraro et al., 2015) and 82 

ana4MIPs (https://www.earthsystemcog.org/projects/ana4mips/). 83 

The Climate Change Initiative of the European Space Agency (ESA CCI) is a large international 84 

effort that provides global, long-term satellite data sets to the climate community that can be 85 

used to evaluate and improve the models (Hollmann et al., 2013). The ESA CCI is exploiting a 86 

large number of satellite observations to create robust long-term global records of selected 87 

essential climate variables (ECVs; GCOS, 2010; Bojinski et al., 2014) from numerous satellites 88 

and instruments. In this study, a subset of the ESA CCI Phase 2 ECVs has been implemented 89 

into the ESMValTool. This enhanced version of the ESMValTool is then used to evaluate 90 

CMIP5 models. ESA CCI data sets implemented so far include sea surface temperature, sea ice, 91 

cloud, soil moisture, land cover, aerosol, ozone, and greenhouse gases. 92 

This paper is organized as follows: section 2 provides a brief description of the ESA CCI data 93 

used in this study to evaluate CMIP5 models. Section 3 summarizes the models and model 94 

simulations that are evaluated with the ESA CCI and other data, section 4 demonstrates the usage 95 



5 
 

of the implemented ESA CCI data in summary statistics applied to CMIP5 models by calculating 96 

relative space-time root-mean-square deviations (RMSDs) from climatological mean seasonal 97 

cycles of selected ECVs. A specific focus is placed on the consideration of uncertainty 98 

information provided with the ESA CCI data, which is displayed in extended Taylor diagrams 99 

(Taylor, 2001) that are widely used to assess the performance of large model ensembles in 100 

reproducing observed quantities. Further insights into the evaluation of CMIP5 models with ESA 101 

CCI data and comparisons of ESA CCI data with alternative observational data sets are presented 102 

in section 5. A summary and a discussion of the main results and conclusions are given in section 103 

6. 104 

2 Brief description of the ESA CCI data 105 

The datasets from the ESA CCI Phase 2 implemented into the enhanced version of the 106 

ESMValTool presented in this study are briefly described in the following. We would like to 107 

note that these datasets are only a subset of all CCIs available. It is planned to implement 108 

additional CCIs such as ocean color, sea level, ice sheets and fire as well as additional ECVs 109 

from the CCIs included here into future releases of the ESMValTool. 110 

2.1 Sea surface temperature 111 

The ESA CCI sea surface temperature (SST) data set (Merchant et al., 2014a,b) provides multi-112 

decadal products of SST derived from infrared brightness temperatures measured from satellites. 113 

SST products (Rayner et al., 2015) are generated at full sensor resolution (1 to > 4 km) and are 114 

averaged on a regular latitude-longitude grid (0.05°). A gap-filled (Level 4 SST analysis) product 115 

covering the time 1992-2010 is currently used with the ESMValTool diagnostics. The Level 4 116 

(L4) SST analysis is a daily 3-dimensional variational analysis of satellite data with a grid 117 

resolution of 0.05°. The analysis system is the Operational Sea surface Temperature and sea-Ice 118 
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Analysis (OSTIA) with improved covariance parameterization (Roberts-Jones et al., 2016). The 119 

L4 SST analysis has relatively good feature resolution, which is nonetheless lower than the grid 120 

resolution, and varies with the density of satellite coverage (Reynolds et al., 2013). Unlike the 121 

operational OSTIA products (Donlon et al., 2012) and the older OSTIA-based observational re-122 

processing (Roberts-Jones et al., 2012), no in situ data are used in this CCI product. The product 123 

represents the daily value of SST at a nominal depth of 20 cm, representative of the SST 124 

measured by drifting buoys and bucket observations. This is possible because the lower-level 125 

SST CCI products contain both the skin (radiometric) temperature of the ocean surface at the 126 

time of satellite observation estimated based on radiative transfer physics (e.g., Embury et al., 127 

2012a), and a turbulence-model-based adjustment to the 20 cm depth SST at a standardized time 128 

of day. The adjusted SST estimate is used as input to the L4 SST analysis. This means that the 129 

L4 SST analysis can be treated as independent of in situ data, and useful as a comparison point 130 

for the many SST products that are tuned to and/or incorporate in situ data. The standardization 131 

of the adjustment with respect to time of day is intended to reduce aliasing of the diurnal cycle 132 

into false long-term trends, as satellite overpass times vary (Embury et al., 2012b). All SSTs are 133 

provided with estimates of total uncertainty, and the L4 SST analysis product includes an 134 

operationally produced estimate of sea ice concentration (Good and Rayner, 2014). 135 

Merchant et al. (2014a,b) provide an assessment of the accuracy of this product by comparison 136 

with more than 2.4 million buoys from different observational networks. A global median 137 

difference against drifting buoys of +0.05 K is observed, with a standard deviation (including the 138 

~0.2 K uncertainty in the drifting buoy measurements) of 0.28 K. The comparison with Argo 139 

measurements at ~5 m depth (only from the latter part of the record) gives +0.04 K and 0.26 K 140 

respectively. Systematic regional errors on spatial scales of ~1000 km range from -0.5 K to +0.5 141 
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K, with positive bias of +0.09 K across equatorial regions overall (relative to measurements of 142 

the global tropical moored buoy array). Regions persistently affected by mineral atmospheric 143 

aerosol, particularly Saharan dust, appear negatively biased. 144 

2.2 Sea ice 145 

The ESA CCI sea ice data set provides observational data for sea ice concentration (sic) and sea 146 

ice thickness (sit) that are based on satellite retrievals for both Arctic and Antarctic sea ice. The 147 

sic data set is based on passive microwave data from Special Sensor Microwave Imager (SSM/I) 148 

covering the time period 1992 to 2008 and the Advanced Microwave Scanning Radiometer - 149 

Earth Observing System (AMSR-E) covering the time period 2003-2010 (Lavergne and Rinne, 150 

2014). The data sets are provided as daily gridded sic fields for both northern hemisphere and 151 

southern hemisphere on an equal area grid with 25 km grid spacing. Separate data sets for SSM/I 152 

and AMSR-E are available, where the SSM/I product is more mature, while the AMSR-E data 153 

can provide higher-resolution products. In addition, daily maps of total standard error and quality 154 

control flags are provided. The ESA CCI sea ice data set is built upon the algorithms and 155 

processing software originally developed at the EUMETSAT OSI SAF for their sic data set (RD-156 

11). The algorithm used to produce the sic data sets is based on an extensive algorithm 157 

intercomparison study (Ivanova et al., 2015), aiming at identifying the optimal algorithm for 158 

producing sic data sets. In their study, a systematic comparison of 30 algorithms was done for 159 

different ice conditions, seasons and regions. The result was an implementation of a new 160 

algorithm for sic retrieval. It is based on a combination of previous algorithms and use of 161 

dynamic tie points and atmospheric correction of input brightness temperatures. Error sources of 162 

the sic products are particularly related to the marginal ice zone, areas of thin ice, melt-ponds in 163 

the summer season (Kern et al., 2016) and land contamination in coastal regions. 164 
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So far, only sea ice concentration and its standard error from the ESA CCI sea ice data set have 165 

been implemented into the ESMValTool. Sea ice thickness data sets from radar altimeter are also 166 

developed in the CCI project, but a final data set is not yet available. The ice thickness retrieval 167 

is based on sea ice freeboard measurements from altimeter that are converted to thickness using 168 

the hydrostatic equilibrium assumption and a priori knowledge about snow thickness, snow and 169 

ice density and penetration depth of the radar signal (Kern et al., 2015). The first ice thickness 170 

data set from ENVISAT for the period 2002 to 2012 has been presented (Lavergne and Rinne, 171 

2014) as monthly mean thickness for the winter months in the Arctic. There are significant 172 

uncertainties in these results so far, which requires further studies to obtain a reliable product. 173 

Results from CryoSat thickness retrievals from 2010 to present, however, show promising results 174 

(e.g., Ricker et al., 2014, Kwok and Cunningham, 2015). 175 

2.3 Cloud 176 

The ESA CCI cloud data sets contain cloud property data retrieved from the passive satellite 177 

imager sensors AVHRR, MODIS, ATSR-2, AATSR and MERIS (Stengel et al., 2016a). 178 

Depending on the particular data set, time periods of 9 to 33 years between 1982 and 2014 are 179 

covered. In this study we used the Cloud_cci AVHRR-PM v2.0 data set (Stengel et al., 2016b), 180 

which is composed of data from AVHRR on-board NOAA-7, -9, -11, -14, -16, -18 and -19 and 181 

represents a nearly seamless time series from 1982 through 2014. The ESA CCI cloud data sets 182 

include cloud fraction (or cloud mask), thermodynamic phase, cloud top pressure (also converted 183 

to temperature and height), cloud optical thickness, cloud effective radius, cloud albedo and 184 

cloud liquid/ice water path. Various processing levels are available from Level 2 (pixel-based 185 

data) to daily sampled data (Level 3U) and monthly averages and histograms (Level 3C). All 186 

cloud properties are accompanied by pixel-based uncertainty estimates. While for most variables 187 
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these estimates are based on optimal estimation theory, cloud mask uncertainty is based on hit 188 

rate scores against measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization 189 

(CALIOP). All pixel level uncertainties are propagated in a mathematically consistent way into 190 

the Level 3C products. 191 

In this study monthly mean cloud fraction data (inferred from Level 3C data product with 0.5° 192 

resolution on a latitude-longitude grid) are used for comparison with CMIP5 model results. 193 

Cloud fraction represents the monthly summary of the results of Community Cloud retrieval for 194 

CLimate (CC4CL) cloud detection scheme (Sus et al., 2016; McGarragh et al., 2016). The 195 

monthly mean cloud detection uncertainty is also inferred from Level 3C products. 196 

CC4CL cloud detection results have been validated against CALIOP space-based lidar 197 

measurements, with a global Kuipers score of 0.66 and a global hit rate of 81% (Karl-Göran 198 

Karlsson, personal communication) demonstrating the high quality of the cloud detection in the 199 

AVHRR-PM v2.0 data set. 200 

It needs to be noted, that the Cloud_cci AVHRR-PM data set has a few limitations of which 201 

particularly the underrepresentation of optically very thin clouds (with optical thicknesses of 202 

below 0.15) and the sparse temporal sampling (twice a day for non-polar regions) is of relevance 203 

when using this data set for model evaluation. Particularly difficult conditions for cloud detection 204 

are polar night periods, for which the detection scores decrease significantly in the current 205 

version of the data set. Furthermore, the monthly cloud fraction data and the corresponding 206 

uncertainties of the Cloud_cci AVHRR-PM data set used in this study have not undergone any 207 

further processing such as satellite drift correction. 208 
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2.4 Soil moisture 209 

The ESA CCI soil moisture product is the first ever multi-decadal satellite-based soil moisture 210 

product and is currently available for the time period 1978-2015 on a daily basis and at a spatial 211 

resolution of 0.25°x0.25°. The ESA CCI product represents soil moisture of the first centimeters 212 

of the soil and has been generated by merging active and passive microwave-based soil moisture 213 

products from multiple satellite missions (Liu et al., 2011, 2012; Wagner et al., 2012). 214 

Dorigo et al. (2014) provide a comprehensive validation of the ESA CCI soil moisture using 932 215 

in situ observation sites from 29 different observing networks (Dorigo et al., 2011, 2013). 216 

Despite the large difficulties in validating coarse resolution satellite soil moisture products with 217 

in situ point like observations (Crow et al., 2012), they conclude that the ESA CCI soil moisture 218 

product has an average unbiased root-mean-square error (RMSE) of 0.05 m3 m-3. It was shown 219 

that trends in the CCI observations largely agree with those obtained from various reanalysis 220 

products as well as precipitation, and vegetation vigor observations (Albergel et al., 2012; 221 

Dorigo et al., 2012). In addition, over the last seven years the ESA CCI soil moisture data set has 222 

been used for the yearly State of the Climate Reports issued by the National Oceanic and 223 

Atmospheric Administration (NOAA; e.g., Dorigo et al., 2016). Within these studies strong 224 

similarities were found between the spatial annual anomalies of ESA CCI soil moisture, and the 225 

terrestrial water storage from the Gravity Recovery and Climate Experiment (GRACE; e.g., 226 

Willet et al., 2014). 227 

The ESA CCI soil moisture data set provides a multitude of quality flags and only soil moisture 228 

estimates considered reliable are used to create the data product. Snow covered areas and frozen 229 

ground are typically masked as well as dense or heterogeneously vegetated areas with high 230 
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optical depth that are not expected to provide reliable soil moisture estimates (Loew, 2008; 231 

Parinussa et al., 2011). 232 

2.5 Land cover 233 

The ESA CCI land cover time series is the first consistent 300 m global land cover data set 234 

providing a characterization of the land surface from 1998 to 2012. The ESA CCI land cover 235 

product (v1.6.1) corresponds to high resolution global land cover information representative of 236 

three 5-year periods, referred to as epochs, for 2000 (1998-2002), 2005 (2003-2007) and 2010 237 

(2008-2012). The three global land cover maps describe all the terrestrial areas by 22 land cover 238 

classes explicitly defined by a set of classifiers according to the United Nations Land Cover 239 

Classification System, each classifier referring to vegetation life form, leaf type and leaf 240 

longevity, flooding regime, non-vegetated cover types and artificiality (Di Gregorio, 2005). 241 

The whole archive of full (300 m) and reduced resolution (1000 m) MERIS data acquired from 242 

2003 to 2012 was first pre-processed and successfully fused as surface reflectance thanks to a set 243 

of improved algorithms for radiometric calibration, geometric and atmospheric corrections, and 244 

advanced cloud screening. A per pixel classification process, combining machine learning and 245 

unsupervised algorithms, was then applied to the full time series to serve as a baseline to derive 246 

land cover maps corresponding to each epoch. As temporal consistency was found as the most 247 

important requirement for the climate modeling community, a multi-year integration strategy 248 

was chosen for its better performance in reducing variability and improving stability (Bontemps 249 

et al., 2012). Detected from the full-resolution Satellite Pour l’Observation de la Terre (SPOT) 250 

vegetation time series (1998-2012), the land cover change corresponding to each epoch was 251 

applied through back- and up-dating methods but only concerning the main macroscopic changes 252 

observed for the forest classes (Li et al., 2016).  253 
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Inland open-water bodies and coastlines were mapped using wide-swath mode, image mode at 254 

medium-resolution (150 m) acquired by the Advanced Synthetic Aperture Radar sensor aboard 255 

ENVISAT satellite for a single period (2005-2010) (Santoro and Wegmüller, 2014) and then 256 

largely complemented with ancillary data. 257 

The accuracy of the 2010 land cover product was estimated to 74.1% using the 2308 samples 258 

globally distributed and interpreted by regional experts. Further information on the accuracy of 259 

the ESA CCI land cover product in comparison to other existing global land cover data sets is 260 

provided by Tsendbazar et al. (2015). 261 

In order to transform the ESA CCI land cover in Plant Functional Types (PFTs) distribution 262 

useable in ESMs, a CCI land cover user tool available from the visualization interface 263 

(http://maps.elie.ucl.ac.be/CCI/viewer/) can be used to apply a default or user-defined cross-264 

walking table converting each land cover class into the corresponding proportions of PFT at the 265 

pixel level. This conversion also includes an aggregation of the different PFT distribution to 266 

coarser resolution grid cell in various projection systems. 267 

In addition, the ESA CCI land cover products include information on the land surface seasonality 268 

at 1 km resolution which comprise climatological information of the vegetation greenness from 269 

Normalized Differenced Vegetation Index (NDVI) data as well as probabilities of snow and fire 270 

occurrences on a weekly basis at the pixel level. These were derived from SPOT vegetation daily 271 

observations from 1998 to 2012 as well from the corresponding MODIS time series. The inter-272 

annual variability of these land surface seasonality variables was also computed from these 15-273 

year time series on a weekly basis that can be used for comparison with models. 274 
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2.6 Aerosol 275 

The ESA aerosol CCI team produces several long-term aerosol data sets (Popp et al., 2016) in 276 

response to Global Climate Observing System (GCOS) requirements, including variables such as 277 

aerosol optical depth (AOD) (from two Along-Track Scanning Radiometers (ATSR), the 278 

MEdium Resolution Imaging Spectrometer (MERIS) and the POLarization and Directionality of 279 

the Earth’s Reflectances (POLDER) instrument), and stratospheric vertical extinction profiles 280 

(using stellar occultation by the Global Ozone Monitoring by Occultation of Stars (GOMOS) 281 

instrument). In response to the AEROCOM (http://aerocom.zmaw.de/) modeling community 282 

needs, also information on aerosol composition such as fine-mode AOD (from radiometers) or 283 

dust AOD (from the Infrared Atmospheric Sounding Interferometer IASI) and absorption AOD 284 

(from ATSR and POLDER) are derived from the retrieved mixing ratio of various aerosol 285 

components. All products include uncertainty estimates and are validated versus ground-based 286 

reference data (AERONET, Holben et al., 1998) by independent experts. For the retrieval of 287 

aerosol parameters from ATSR and IASI observations several algorithms are used, each of which 288 

applies different physical principles and mathematical methods and thus different solutions to the 289 

inversion problem. In the case of the ATSR radiometers, three algorithms (ADV from FMI, 290 

ORAC from Oxford University and RAL and SU from Swansea University) do perform very 291 

similarly, but with regional differences in both coverage and quantitative results, with none of 292 

them performing better than the others everywhere (de Leeuw et al., 2015). 293 

The ESA CCI aerosol product used in this paper is the 17-year climate data record including total 294 

AOD and fine mode AOD, both at 550 nm, produced by SU (version 4.21) using data from two 295 

similar sensors: the ATSR-2 on the European Remote Sensing Satellite 2 (ERS-2-ATSR-2), 296 

covering the time period 1995-2003, and the Advanced ATSR (AATSR) on ESA’s 297 
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Environmental Satellite (ENVISAT-AATSR, from 2002 to April 2012). Level 3 (L3) monthly 298 

mean data are used and only years with a full 12 months of data coverage are considered. 299 

Incomplete years from either platform (1995, 1996 and 2003) are not taken into account, 300 

restricting our analysis to the time period 1997-2011. The agreement of the data from the two 301 

ATSR instruments during the overlapping period 2002-2003 was found to be very good making 302 

it easy to combine the two data sets into a single time series. Here, we focus on total aerosol 303 

optical depth (od550aer), fine mode AOD (od550lt1aer), absorption optical depth at 550 nm 304 

(abs550aer) and AOD at 870 nm (od870aer). As an alternative observational data set, we use the 305 

L3 collection 6 data from the Moderate Resolution Imaging Spectroradiometer (MODIS; Levy et 306 

al., 2013) onboard Terra covering the time period 2003-2014. 307 

2.7 Ozone 308 

The ESA ozone CCI team produces a large number of L2 and L3 ozone data sets derived from 309 

various satellite sensors operating in nadir, limb and solar/stellar occultation geometries (see e.g. 310 

Miles et al., 2015; Lerot et al., 2014; Sofieva et al., 2013). In this work we use the total column 311 

ozone (toz) data sets which consist of combined and harmonized L3 data covering the time 312 

period between 1997 and 2010 (Coldewey-Egbers et al., 2015). Data from three 313 

platforms/instruments, the Global Ozone Monitoring Experiment (GOME) onboard the European 314 

Research Satellite 2 (ERS-2/GOME, 1996-2003), ENVISAT/SCIAMACHY (2003-2007), and 315 

GOME-2 onboard the Metop satellites (METEOP/GOME-2, 2007-2011) are provided as a 316 

merged gridded data set. 317 

In additions to the total ozone data sets, we also include the ESA CCI limb gridded profile data, 318 

which consist of merged L3 monthly and zonally averaged data covering the time period 2007-319 

2008 based on six different sensors, the MIPAS, SCIAMACHY, and GOMOS instruments 320 
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onboard the ESA ENVISAT platform, the Optical Spectrograph and InfraRed Imaging System 321 

(OSIRIS) and the Sub-Millimetre Radiometer (SMR) onboard of Odin, and the Atmospheric 322 

Chemistry Experiment (ACE) instruments on Canadian SciSat platform. 323 

The ozone CCI data sets used in this work have been extensively validated against ground-based 324 

networks of Dobson and Brewer total ozone spectrophotometers (Koukouli et al., 2015), as well 325 

as reference profile data sets from ozone sonde and lidar instruments (Hubert et al., 2016; 326 

Keppens et al., 2015). These studies have demonstrated that CCI total column ozone data sets 327 

closely match the accuracy and stability requirements defined by GCOS. Ozone profile data also 328 

comply with GCOS requirements but only in a limited range of altitudes, covering the mid- to 329 

upper stratosphere. In the upper-troposphere and lower stratosphere, the accuracy, precision and 330 

stability of current data sets are still to be improved. Validation studies concentrating on L3 331 

products have shown that the main source of uncertainty in gridded or merged data sets is related 332 

to the limited sampling of satellite instruments. This source of uncertainty is especially 333 

significant in polar spring conditions when the ozone field is characterized by a large variability 334 

in space and time. 335 

As an alternative reference data set for total ozone columns, we use data from the combined 336 

NIWA data set (Bodeker et al., 2005) covering the time period 1980-2010. 337 

2.8 Greenhouse gases (GHG): XCO2 338 

The ESA CCI GHG product XCO2 is retrieved from measurements of the two satellite 339 

instruments SCIAMACHY/ENVISAT (Bovensmann et al., 1999; Burrows et al., 1995) and 340 

TANSO-FTS/GOSAT (Kuze et al., 2009). XCO2 is a dimensionless quantity (unit: ppm) defined 341 

as the vertical column of CO2 divided by the vertical column of dry air (see Buchwitz et al. 342 



16 
 

(2005) for details). The XCO2 distribution, the number of observations, the reported XCO2 343 

uncertainty and the XCO2 standard deviation are available for 2003-2008 (land only) and 2009-344 

2014 (land and ocean). 345 

XCO2 is retrieved from radiance spectra in the near-infrared/short-wave infrared (NIR/SWIR) 346 

spectral range using (mostly) optimal estimation (Rodgers, 2000) retrieval algorithms. Each 347 

retrieval algorithm used to generate the corresponding Level 2 (L2) product has an underlying 348 

radiative transfer model and a number of fit parameters (the so-called state vector elements), 349 

which are iteratively adjusted until the simulated radiance spectrum gives an optimal fit to the 350 

observed radiance spectrum (considering, e.g., instrument noise and a priori knowledge of 351 

relevant atmospheric parameters). For details we refer to the Algorithm Theoretical Basis 352 

Documents (ATBDs) available from the GHG-CCI website (http://www.esa-ghg-353 

cci.org/sites/default/files/documents/public/documents/GHG-CCI_DATA.html) for each 354 

individual L2 data product. For the generation of the gridded L3 obs4MIPs product at monthly 355 

time resolution a spatial resolution of 5°x5° has been selected (instead of, e.g., 1°x1°) to ensure 356 

better noise suppression (note that the underlying individual satellite retrievals as contained in 357 

the L2 products are sparse due to very strict quality filtering). 358 

The gridded L3 obs4MIPs products have been generated from the individual sensor/algorithm L2 359 

XCO2 input data. In order to correct for the use of different CO2 a priori assumptions in the 360 

independently retrieved products, all products have been brought to a common a priori using the 361 

Simple Empirical CO2 Model (SECM) described by Reuter et al. (2012). After this, a gridded L3 362 

product is generated from each L2 product by averaging all soundings onto a 5°x5° monthly 363 

grid. Only those grid cells are further considered having a standard error of less than 2 ppm. The 364 

grid cell uncertainty is computed from the reported L2 uncertainties and a term accounting for 365 
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potential regional and temporal biases. To avoid potential discontinuities in the obs4MIPs time 366 

series, each L3 product has been offset corrected to have the same mean value of all overlapping 367 

grid boxes. The obs4MIPs XCO2 value in a given grid cell is computed as the mean of the 368 

individual L3 values. Finally a filtering procedure has been applied to remove “unreliable” grid 369 

cells considering the overall noise error originating e.g. from instrumental noise (1.6 ppm) and 370 

total uncertainty (1.8 ppm) of each cell. 371 

The obs4MIPs XCO2 product has been validated by comparison with ground-based XCO2 372 

retrievals from the Total Carbon Column Observation Network (TCCON, Wunch et al., 2011) 373 

using version GGG2014 as a reference (Wunch et al., 2015). In short, the following has been 374 

found: for XCO2 the mean difference (satellite minus TCCON) is 0.3 ppm and the standard 375 

deviation of the difference to TCCON is 1.2 ppm. The total uncertainty of the obs4MIPs product 376 

is therefore about 1.5 ppm (1-sigma, per monthly 5°x5° grid cell, obtained via linear adding 377 

instead of root-sum-square to be on the safe side). Details are given in Buchwitz and Reuter 378 

(2016). 379 

Due to the gridding / averaging process applied to generate obs4MIPs products detailed 380 

time/location information is not available in the obs4MIPs data product and also averaging 381 

kernels are not (yet) part of these products. Typically, however, the satellite XCO2 averaging 382 

kernel is close to unity. This is especially the case in the lower troposphere, where the CO2 383 

variability is typically largest. Therefore applying the averaging kernels typically changes the 384 

XCO2 values by less than 1 ppm (Dils et al., 2014) and other error sources are likely more 385 

relevant for using the obs4MIPs product such as the representativity error. A representativity 386 

error originates from the fact that the GHG field from the obs4MIPs data set are derived by 387 

averaging spatially and temporally sparse satellite observations, i.e., are not representative for the 388 
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“true” monthly mean value of a given grid cell. Note that the validation results reported in the 389 

previous paragraph have also been obtained without considering the averaging kernels. The 390 

differences given above include to some extent the representativity error as well as other error 391 

sources such as the uncertainty of the TCCON reference observations, which is 0.4 ppm (1-392 

sigma). It is recommended to use the reported overall uncertainty range of 0.3 ± 1.2 ppm (1-393 

sigma) and/or the reported uncertainties for each grid cell as given in the obs4MIPs product file. 394 

3 Models and simulations 395 

In this study we use output from almost 50 global climate models (Table 1) that participated in 396 

CMIP5 (Taylor et al. 2012). The model data were obtained from the World Climate Research 397 

Programme’s (WCRP) CMIP5 data archive made available through the Earth System Grid 398 

Federation. 399 

Table 1. CMIP5 coupled models used in this study (historical simulations extended beyond 2005 with 

RCP4.5 results). The models marked with asterisks (*) also provided model experiments with interactive 

ozone chemistry, models marked with daggers (†) also provided emission driven experiments with an 

interactive carbon cycle (historical emission driven simulations extended beyond 2005 with RCP8.5 

results). 

Model(s) Host Institute Resolution 
(atmosphere) 

References 

ACCESS1.0, 
ACCESS1.3 

CSIRO (Commonwealth Scientific and 
Industrial Research Organisation, Australia) 
and BOM (Bureau of Meteorology, 
Australia) 

1.9°x1.3°, L38 Bi et al. (2013) 

BCC-CSM1.1, 
BCC-CSM1.1-M 

Beijing Climate Center, China 
Meteorological Administration, China 

2.8°x2.8°, L26; 
1.1°x1.1°, L26 

Wu et al. (2010), Wu (2012) 

BNU-ESM† College of Global Change and Earth System 
Science (GCESS), BNU, Beijing, China 

2.8°x2.8°, L26 Ji et al. (2014) 

CanCM4, 
CanESM2† 

Canadian Center for Atmospheric Research, 
Canada 

2.8°x2.8°, L35 Arora et al. (2011) 

CCSM4 National Center for Atmospheric Research 
(NCAR), United States 

1.3°x0.9°, L26 Gent et al. (2011) 

CESM1-BGC†, 
CESM1-CAM5, 
CESM1-CAM5-1-FV2, 
CESM1-FASTCHEM, 

NSF/DOE NCAR (National Center for 
Atmospheric Research) Boulder, CO, United 
States 

1.3°x0.9°, L26; 
1.3°x0.9°, L26; 
1.3°x0.9°, L26; 
1.3°x0.9°, L26; 

Long et al. (2013) 
Hurrel et al. (2013) 
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CESM1-WACCM* 2.5°x1.9°, L66 Marsh et al. (2013) 
CMCC-CM, 
CMCC-CMS 

Centro Euro-Mediterraneo per i 
Cambiamenti Climatici (CMCC), Bologna, 
Italy 

0.8°x0.8°, L31; 
1.9°x1.9°, L95 

http://www.cmcc.it/models; 
Scoccimarro et al. (2011) 

CNRM-CM5* Centre National de Recherches 
Météorologiques (CNRM), Météo-France 
and Centre Européen de Recherches et de 
Formation Avancée en Calcul Scientifique 
(CERFACS), France 

1.4°x1.4°, L31 Voldoire et al. (2013) 

CSIRO-Mk3.6.0 Australian Commonwealth Scientific and 
Industrial Research Organization (CSIRO) 
Marine and Atmospheric Research, 
Queensland Climate Change Centre of 
Excellence (QCCCE), Australia 

1.9°x1.9°, L18 Rotstayn et al. (2010) 

EC-EARTH EC-Earth (European Earth System Model) 1.1°x1.1°, L62 Hazeleger et al. (2010) 
FGOALS-g2, 
FGOALS-s2 

Institute of Atmospheric Physics, Chinese 
Academy of Sciences (LASG) 

2.8°x3°, L26; 
2.8°x1.7°, L26 

Li et al. (2010), 
http://www.lasg.ac.cn/FGOA
LS/CMIP5 

FIO-ESM† The First Institution of Oceanography, SOA, 
Qingdao, China 

2.8°x2.8°, L26 Qiao et al. (2013) 

GFDL-CM3*, 
GFDL-ESM2G†, 
GFDL-ESM2M† 
GFDL-CM2p1 

Geophysical Fluid Dynamics Laboratory 
(NOAA GFDL), United States 

2.5°x2.5°, L48; 
2.5°x2°, L24; 
2.5°x2°, L24; 
2.5°x2°, L24 

Donner et al. (2011); 
http://nomads.gfdl.noaa.gov/ 

GISS-E2-H*, 
GISS-E2-H-CC, 
GISS-E2-R*, 
GISS-E2-R-CC 

Goddard Institute for Space Studies 
(NASA/GISS), United States 

2.5°x2°, L40 Schmidt et al. (2006) 

HadCM3, 
HadGEM2-AO 
HadGEM2-CC, 
HadGEM2-ES 

Met Office Hadley Centre, United Kingdom 3.8°x2.5°, L19; 
1.9°x1.3°, L60; 
 
1.8°x1.3°, L38 

Collins et al. (2001); Collins 
et al. (2008); Collins et al. 
(2011) 

INM-CM4 Institute for Numerical Mathematics (INM), 
Russia 

2°x1.5°, L21 Volodin et al. (2010) 

IPSL-CM5A-LR, 
IPSL-CM5A-MR, 
IPSL-CM5B-LR 

Institut Pierre Simon Laplace (IPSL), France 3.8°x1.9°, L39; 
2.5°x0.6°, L39; 
3.8°x1.9°, L39 

Dufresne et al. (2013), 
Hourdin et al. (2013) 

MIROC-ESM†, 
MIROC-ESM-CHEM*, 
MIROC4h, 
MIROC5 

Japan Agency for Marine-Earth Science and 
Technology (JAMSTEC), Atmosphere and 
Ocean Research Institute (AORI), University 
of Tokyo and National Institute for 
Environmental Studies (NIES), Japan 

2.8°x2.8°, L80; 
2.8°x2.8°, L80; 
0.6°x0.6°, L56; 
1.4°x1.4°, L40 

Watanabe et al. (2011); 
Sakamoto et al. (2012); 
Watanabe et al. (2010) 

MPI-ESM-LR†, 
MPI-ESM-MR, 
MPI-ESM-P 

Max Planck Institute for Meteorology, 
Germany 

1.9°x1.9°, L47 Roeckner et al. (2006); 
 
Stevens et al. (2013) 

MRI-CGCM3, 
MRI-ESM1† 

Meteorological Research Institute (MRI), 
Japan 

1.1°x1.1°, L48 Yukimoto et al. (2011) 

NorESM1-M, 
NorESM1-ME† 

Norwegian Climate Centre, Norway 2.5°x1.9°, L26 Bentsen et al. (2013) 

For all variables except for column average CO2 (XCO2), we analyze the concentration driven 400 

CMIP5 historical simulations - twentieth-century simulations for 1850-2005 conducted with the 401 

best record of natural and anthropogenic climate forcing. In order to extend the model runs 402 

beyond the year 2005, we use results from simulations forced under the Representative 403 

Concentration Pathways 4.5 for the years 2006-2014. RCP4.5 is a scenario applied within 404 
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CMIP5 prescribing future greenhouse gas concentrations and resulting in a radiative forcing of 405 

4.5 W m-2 in the year 2100 relative to pre-industrial values (Clarke et al., 2007; Smith and 406 

Wigley, 2006; Wise et al., 2009). The differences in the forcings between 2006 and 2014 for the 407 

different emission scenarios (RCP2.6, RCP4.5, RCP8.5) are rather small and negligible 408 

compared with the variability of the ensemble members of an individual model. We chose the 409 

RCP for which the most data for the analyzed ECVs were available, which is RCP4.5. 410 

For aerosol and ozone, the evaluation is only performed for the subset of CMIP5 models that has 411 

interactive aerosols and chemistry, respectively. 412 

Since CO2 is prescribed in the concentration driven historical simulations, we analyze the 413 

emission driven historical simulations (esmHistorical) for XCO2. In this case, the simulations 414 

were extended beyond 2005 with the corresponding RCP8.5 (esmrcp85) simulations because 415 

emission driven simulations for RCP4.5 were not part of the CMIP5 experiment design. 416 

If there are multiple ensemble members available for any given model, we only consider the 417 

ensemble member “r1i1p1” in our analysis. The only exceptions to this are the EC-EARTH 418 

model, for which complete data sets were only available for “r6i1p1” and the GISS-E2-H and 419 

GISS-E2-R models for which we used ensemble members with interactive ozone chemistry 420 

(“r1i1p2”; see section 5.7). 421 

4 CMIP5 summary statistics 422 

An assessment of the agreement of simulated climatological mean state and seasonal cycle for 423 

key variables such as ECVs with observations is commonly seen as a reasonable starting point 424 

for the evaluation of ESMs (e.g., Gleckler et al., 2008; Flato et al., 2013; Hagemann et al., 2013; 425 

Eyring et al., 2016b). Following Gleckler et al. (2008) and similar to Fig. 9.7 of Flato et al. 426 
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(2013), we start the evaluation of the models by calculating the normalized relative space-time 427 

RMSD of the climatological seasonal cycle from CMIP5 simulations compared with 428 

observations for selected variables (section 4.1) and extended Taylor diagrams summarizing the 429 

multi-year annual mean performance (section 4.2). For land use variables, no summary statistics 430 

are calculated because the observations are rather static, i.e. do not provide a seasonal cycle. 431 

All variables except for sea ice concentration are averaged over the whole globe. Sea ice 432 

concentration is averaged over the latitude band 60°N to 90°N (Arctic, “NHpolar”) and 60°S to 433 

90°S (Antarctic, “SHpolar”). The model results are compared to a reference data set (marked 434 

with asterisks in Table 2) and - where other data are available - to an alternative observationally 435 

based data set. Table 3 gives an overview of the variables and the corresponding CMOR names 436 

used while the observationally based data sets used for the evaluation are summarized in Table 2. 437 

For the models, results are averaged over the years with observational data available given in 438 

Table 2. Note that if alternative observationally based data are available, only years covered by 439 

both, the reference and the alternative observations, are used. 440 

Table 2. Observationally based data sets used for the model evaluation. The data sets marked with 

asterisks (*) are used as reference data sets in Figure 1 (lower right triangles), the other data sets are used 

as alternative data sets (upper left triangles in Figure 1, red stars in Figure 2). The variable names are 

defined in Table 3. The years specify the periods analyzed in Figure 1 and Figure 2. 

Data set Type Variable(s) Resolution Years 
(Figure 1, 
Figure 2) 

Estimate of 
systematic 
errors 

Reference(s) 

AIRS_L3_RetStd-v5 satellite hus 1°x1° 2003-2010 ~25% Tian et al. (2013), 
Susskind et al. (2006) 

BDBP ozonesond
es 

tro3 - 2006-2007  Hassler et al. (2008, 
2009) 

CERES-EBAF* satellite rlut, rsut, 
sw_cre, 
lw_cre 

1°x1° 2001-2012 ~5 W m-2 Loeb et al. (2009, 
2012) 

CLARA-A2 satellite clt 0.5°x0.5° 1982-2014  Karlsson et al. 
(2013), 



22 
 

http://dx.doi.org/10.5
676/EUM_SAF_CM/
CLARA_AVHRR/V
002 

ERA-Interim* reanalysis ta, tas, ua, 
va, zg; 
hus; 
clt 

0.75°x0.75° 1980-2005; 
 
2003-2010; 
1982-2014 

 Dee et al. (2011) 

ESA CCI Aerosol* satellite od550aer; 
od870aer, 
od550lt1aer, 
abs550aer 

1°x1° 2003-2011; 
1997-2011 

 Popp et al. (2016) 

ESA CCI Cloud* satellite clt 0.5°x0.5° 1982-2014  Stengel et al. (2016b) 
ESA CCI Greenhouse 
Gases 

satellite xco2 5°x5° 2009-2014 ~1.5 ppm Buchwitz and Reuter 
(2016) 

ESA CCI Ozone* satellite toz; 
tro3 

1°x1°; 
360°x10° 

1997-2010; 
2007-2008 

 Van Roozendael et al. 
(2015) 

ESA CCI Land Cover satellite lccs_class 300 m 2000, 2005, 
2010 

 Defourny et al. 
(2015) 

ESA CCI Sea Ice* satellite sic 25 km x 25 
km 

1992-2008  Sandven et al. (2015) 

ESA CCI Sea Surface 
Temperature* 

satellite-
based/anal
ysis 

ts 0.05°x0.05° 1992-2010 ~0.05 K 
(global 
median) 

Merchant et al. 
(2014a,b) 

ESA CCI Soil 
Moisture* 

satellite sm 0.25°x0.25° 1988-2005 ~0.05 m3 m-3 Liu et al. (2011, 
2012), Wagner et al. 
(2012) 

GPCP_L3_v2.2* satellite + 
gauge 

pr 2.5°x2.5° 1980-2005 0-2 mm day-1 Adler et al. (2003), 
Huffman and Bolvin 
(2013) 

HadISST satellite-
based/anal
ysis 

ts 1°x1° 1992-2010  Rayner et al. (2003) 

IGAG/SPARC satellite + 
ozonesond
es + 
model+ 
analysis 

tro3 5°x5° 1960-2008  Cionni et al. (2011) 

MODIS satellite clt; 
od550aer 

1°x1° 2003-2014; 
2003-2011 

 Platnick et al. (2003); 
Remer et al. (2005); 
doi: 
10.5067/MODIS/MY
D08_M3.006; 

NCEP reanalysis ta, tas, ua, 
va, zg 

2.5°x2.5° 1980-2005  Kalnay et al. (1996) 

NIWA satellite 
analysis 

toz 1.25°x1° 1997-2010  Bodeker et al. (2005) 

NSIDC-NT, NSIDC-
BT 

satellite sic 25 km x 25 
km 

1992-2008  Cho et al. (1996), 
Comiso and Nishio 
(2008), Comiso 
(1995) 

PATMOS-x satellite clt 1°x1° 1982-2014  Heidinger et al. 
(2014) 

Table 3. Variables used. 

Variable Name Unit Comment 
abs550aer Ambient aerosol 

absorption optical 
thickness at 550 nm 

1  
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clt Total cloud fraction % For the whole atmospheric column, as seen from the surface or 
the top of the atmosphere; includes both large-scale and 
convective clouds 

hus Specific humidity 1  
lccs_class Land cover class -  
lw_cre Longwave cloud 

radiative effect 
W m-2 At the top of the atmosphere 

mrsos Soil moisture in upper 
portion of soil column 

kg m-2 Mass of water in all phases in a thin surface soil layer 

od550aer Ambient aerosol optical 
thickness at 550 nm 

1 AOD from the ambient aerosols (i.e., includes aerosol water); 
does not include AOD from stratospheric aerosols if these are 
prescribed but includes other possible background aerosol types 

od550lt1aer Ambient fine aerosol 
optical thickness at 550 
nm 

1 od550 due to particles with wet diameter less than 1 µm 
("ambient" means "wetted"); when models do not include explicit 
size information, it can be assumed that all anthropogenic 
aerosols and natural secondary aerosols have diameter less than 1 
µm 

od870aer Ambient aerosol optical 
thickness at 870 nm 

1 AOD from the ambient aerosols (i.e., includes aerosol water); 
does not include AOD from stratospheric aerosols if these are 
prescribed but includes other possible background aerosol types 

pr Precipitation kg m-2 s-1 At surface; includes both liquid and solid phases from all types of 
clouds (both large-scale and convective) 

rlut TOA outgoing 
longwave radiation 

W m-2 At the top of the atmosphere 

rsut TOA outgoing 
shortwave radiation 

W m-2 At the top of the atmosphere 

sic Sea ice area fraction % Fraction of grid cell covered by sea ice 
sm Volumetric soil 

moisture in upper 
portion of soil column 

m3 m-3 Volume of water in all phases in a thin surface soil layer 

sw_cre Shortwave cloud 
radiative effect 

W m-2 At the top of the atmosphere 

ta Air temperature K  
tas Near-surface air 

temperature 
K  

toz Total ozone column DU Equivalent thickness at standard temperature and pressure (stp) 
of atmosphere ozone content 

tro3 Ozone volume mixing 
ratio 

ppbv  

ts Surface temperature K "skin" temperature (i.e., SST for open ocean) 
ua Eastward wind m s-1  
va Northward wind m s-1  
xco2 column average CO2 

concentration 
ppm  

zg Geopotential height m Geopotential height 

4.1 Portrait diagram 441 

Figure 1 provides a synoptic overview of the relative quality of the CMIP5 models’ 442 

representation of simulated climatological mean state and the seasonal cycle for ECVs compared 443 

with the multi-model median. The figure shows the relative space-time root-mean-square 444 

deviation (RMSD) from the climatological mean seasonal cycle assessing whether a specific 445 

model performs better or worse than the other models. The model data have been regridded to 446 
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the grid of the reference data using a higher order patch recovery interpolation (Khoei and 447 

Gharehbaghi, 2007; Hung et al., 2004) and normalized with the centered median (i.e., subtracting 448 

the median and then dividing by the median). For the calculation of the RMSD, only grid cells 449 

with observational data available for at least 95% of the time period are taken into account. 450 

 451 

Figure 1. Relative space-time root-mean-square deviation (RMSD) calculated from the climatological 

seasonal cycle of the CMIP5 simulations. The years averaged depend on the years with observational data 

available and are summarized in Table 2. A relative performance is displayed, with blue shading 

indicating better and red shading indicating worse performance than the median of all model results. A 

diagonal split of a grid square shows the relative error with respect to the reference data set (lower right 

triangle, data sets marked with asterisks in Table 2) and the alternative data set (upper left triangle). White 
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boxes are used when data are not available for a given model and variable. The variable names are 

defined in Table 3. 

As such it can be seen as a starting point of model evaluation while the reasons for differences 452 

between model and observations need to be further investigated in additional analyses. The 453 

figure includes all variables that are shown in figure 9.7 of Flato et al. (2013) and adds variables 454 

with ESA CCI data now available. We would like to note that some differences compared to the 455 

portrait diagram of Flato et al. (2013) are introduced by using a different set of models, time 456 

range and observationally base reference data sets. 457 

As found in previous studies, the performance varies across the models and variables, with some 458 

models comparing better with observations for one variable and another model performing better 459 

for a different variable. Typically, the multi-model mean outperforms any individual model, 460 

which also holds for many of the newly added ECVs. Exceptions to this are, for example, global 461 

average temperatures at 200 hPa (ta_Glob-200), sea ice (sic_NHpolar, sic_SHpolar), aerosol 462 

optical depth of fine particles at 550 nm (od550lt1aer_Glob), and column average CO2 463 

(xco2_Glob). In the following we discuss the results only for the variables that are compared to 464 

the ESA CCI data sets and refer to Flato et al. (2013) for results on the other variables. 465 

SST: typical biases in the geographical distribution of the simulated SST include a warm bias in 466 

the subtropical stratocumulus regions as well as a cold bias in the equatorial Pacific. Individual 467 

models performing worse than the multi-model mean (Figure 1) include, for instance, the 468 

CSIRO, the FGOALS, and the MRI models. The reasons for this are rather different, for example 469 

the CSIRO model shows a cold bias in the subtropical North Pacific whereas the FGOALS 470 

model shows a warm bias in the subtropical Southeast Pacific. 471 
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Sea ice: for sea ice concentration (sic), the ESA CCI SI SSM/I and the National Snow and Ice 472 

Data Center NSIDC-NT (Walsh et al., 2015) observations are used for comparison with the 473 

CMIP5 models. Figure 1 shows that the choice of the reference data set does not impact the 474 

results for the model performance in reproducing the observed sea ice concentration 475 

significantly. This is expected as the two sea ice data sets are in rather good agreement. 476 

Cloud: for total cloud cover (clt), the choice of the reference data set can make some difference 477 

for the calculated performance of the individual models. A number of models such as, for 478 

instance, the GFDL-CM3 and some of the HadGEM2 models have a larger RMSD when 479 

compared against the ESA CCI data set than against the data from Pathfinder Atmospheres 480 

Extended (PATMOS-x). The ESA CCI cloud data show slightly higher values (10-15%) for total 481 

cloud cover in the subtropical stratocumulus regions off the west coasts of North and South 482 

America as well as off the coast of Australia. In contrast, cloud amounts in the ESA CCI data are 483 

smaller over the tropical Pacific with frequent deep convection (-10 to -20%). These are also 484 

regions in which the models typically struggle to reproduce the observations. The average model 485 

bias is therefore larger when the models are compared with the ESA CCI data rather than the 486 

PATMOS-x data. An exact quantitative assessment, however, requires application of a satellite 487 

simulator in the models to take into account satellite overpass times and lower cut-off thresholds 488 

(Bodas-Salcedo et al., 2011), which is beyond the scope of this study. The comparison of total 489 

cloud cover done here should therefore only be seen as a starting point for further evaluation of 490 

the ESMs. 491 

Soil moisture: the inter-model spread for soil moisture (sm) is large and most models tend to 492 

systematically over- or underestimate soil moisture throughout the globe compared with the ESA 493 

CCI data. It should be noted, however, that a quantitative comparison is difficult as the layer 494 
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thickness considered is not consistent among the models and the satellite observations (see 495 

discussion in section 5.4). Qualitatively, many models such as the FGOALS, GFDL, HadGEM, 496 

and MIROC models overestimate the soil moisture particularly in higher latitudes in Asia, as 497 

well as Alaska and the northern part of Canada. 498 

Aerosol: performance metrics for the four aerosol variables od550aer, od870aer, abs550aer, and 499 

od550lt1aer are calculated with respect to the ESA CCI data set (see section 2.1) as reference 500 

data set (lower triangles) and an alternative data set from MODIS. Shown are only CMIP5 501 

models with interactive aerosols (ACCESS1-0, ACCESS1-3, BNU-ESM, CESM1-CAM5, 502 

CSIRO-Mk3-6-0, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H, GISS-E2-R, 503 

HadGEM2-CC, HadGEM2-ES, IPSL-CM5B-LR, MIROC4h, MIROC5, MIROC-ESM, 504 

MIROC-ESM-CHEM, MRI-CGCM3, NorESM1-M, NorESM1-ME), models using pre-scribed 505 

aerosol climatologies have not been taken into account. Except for od550lt1aer, the multi-model 506 

mean outperforms the individual models. Because of differences in the two satellite data sets for 507 

AOD, which are largest over the continents (see section 5.1), the choice of the reference data set 508 

can make a difference in the resulting model grading with most models performing slightly better 509 

against MODIS than the ESA CCI data set. Additional analysis with the ESMValTool (not 510 

shown) reveals that even though most models agree on the basic properties of the AOD 511 

distribution (od550aer), the relative spread among the models for absorption AOD (abs550aer) 512 

and AOD of fine particles (d < 1 µm, od550lt1aer) is large. It should be noted that the 513 

observational uncertainties for these quantities are also larger than for AOD at 550 nm. For 514 

CMIP5, only the latter was evaluated whereas od550lt1aer, abs550aer, and od870aer are shown 515 

for the first time here. 516 
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Ozone: the performance metric of total column ozone with respect to the ESA CCI (lower 517 

triangle) and NIWA (upper triangle) data is shown only for models with interactive chemistry 518 

(CESM1-WACCM, CNRM-CM5, GFDL-CM3, GISS-E2-H, GISS-E2-R, MIROC-ESM-519 

CHEM). The performance of the individual CMIP5 models for global total column ozone is 520 

quite similar for the two observational data sets. This is not surprising as both reference data sets 521 

are based on the same satellite observations from GOME-2 and SCIAMACHY (Bodeker et al., 522 

2005; Loyola et al., 2009). However, in the polar regions (toz_SHpolar) there are significant 523 

differences that likely occur because the ESA dataset has gaps in polar winter whereas these are 524 

filled in the NIWA data set. Typical biases in CMIP5 models with interactive chemistry include, 525 

for instance, an overestimation of total ozone in high northern latitudes (> 60°N) throughout the 526 

year and an underestimation of ozone in Antarctica during summer (November to January) 527 

(Eyring et al., 2013). 528 

CO2: only results from emission driven simulations are included in the performance metric 529 

shown for XCO2 in Figure 1. The BNU-ESM and the MPI-ESM-LR models outperform the 530 

multi-model mean, which is biased high compared with the ESA CCI data as most models 531 

systematically overestimate the column average CO2 concentrations. This overestimation could 532 

be possibly caused by slightly too weak CO2 sinks in some models (Friedlingstein et al., 2014). 533 

For most variables, the choice of reference data set does not make a big difference when using 534 

global averages for comparison with the CMIP5 models. This is, however, not necessarily the 535 

case when looking into more details such as individual regions or seasons. More on the 536 

comparison of the ESA CCI data with alternative observationally based data sets are given in the 537 

individual subsection of section 5. 538 
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4.2 Taylor diagrams 539 

Another widely used way to summarize comparisons of results from a number of different 540 

models with observations are Taylor diagrams (Taylor, 2001). The Taylor diagrams shown in 541 

Figure 2 give the standard deviation and linear pattern correlation with observations of the total 542 

spatial variability calculated from multi-year annual means, so in contrast to the space-time 543 

RMSD evaluated in section 4.1, here only the geographical pattern is evaluated. For the 544 

calculation of the Taylor diagrams, all data have been regridded to a regular 1°x1° latitude-545 

longitude grid using a patch recovery interpolation method. For each variable, a common 546 

masking to exclude missing values has been applied to all data sets. 547 

The standard deviations are normalized by the observed standard deviations, so the observed 548 

climatology is represented in each panel by the filled black dots on the x-axis at x = 1. The 549 

pattern correlation is given in this polar projection by the angular coordinate. The linear distance 550 

between the observations and each model is proportional to the root-mean-square error (RMSE) 551 

and can be estimated in multiples of the observed standard deviation with the gray circles 552 

centered on the observational dots. The multi-model mean values have been calculated over all 553 

models with data available (black star). Where available, an alternative reference data set (see 554 

Table 2) is also shown in Figure 2 (red star). 555 
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Figure 2. Extended Taylor diagrams showing the multi-year annual average performance of the CMIP5 

models in comparison with ESA CCI data for a) SST, b) total cloud cover, c) soil moisture, d) AOD at 

550 nm, e) AOD at 870 nm, f) total column ozone, and g) column averaged CO2 concentration. Panels a) 

to e) show CMIP5 historical simulations (extended with RCP4.5), panel f) historical simulations 

(extended with RCP4.5) with interactive ozone chemistry, and panel g) emission driven historical 

simulations (extended with RCP8.5). The multi-model mean values have been calculated over all models 

with data available (black stars). Where available alternative observationally based data sets are also 

shown (red stars, Table 2). The green circles show estimates of the observational uncertainties (RMSE, 

for details see section 4.2). 

In this study, a new extended version of Taylor diagrams is presented that visualizes 557 

observational uncertainty: the green circles show estimates of the observational uncertainties 558 

(RMSE) that are part of the ESA CCI data sets. Here, the multi-year global average uncertainties 559 

given as one sigma of the total standard error normalized by the standard deviation of the 560 

observations are shown. The RMSE of a given model compared with the observations is 561 

therefore smaller than the 1-sigma uncertainty estimate of the observations if the model lies 562 

within the green circle. 563 

SST (Figure 2a): the geographical annual mean patterns of the sea surface temperatures from the 564 

models are highly correlated with the ESA CCI data with correlation coefficients ranging 565 

between 0.94 and 0.98. However, SST in the subtropical stratocumulus regions as well in the 566 

Southern Ocean is overestimated by many models. Another typical model bias found in many 567 

simulations is an underestimation of the SST in the equatorial Pacific. 568 

Cloud (Figure 2b): for total cloud cover, the models show a large spread in pattern correlation 569 

between 0.25 and 0.88. Most models are, however, not outside of the 1-sigma uncertainty 570 
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estimate showing that the differences between the models and the observations cannot be solely 571 

explained by model deficiencies. 572 

Soil moisture (Figure 2c): can mostly be used for qualitative assessments of the models as the 573 

observational uncertainties are larger than the RMSE of many of the individual models. 574 

Aerosol (Figure 2d,e): the integrated aerosol properties AOD at 550 (Figure 2d) and 870 nm 575 

(Figure 2e) also show a large inter-model spread. Because of the large observational 576 

uncertainties, most models lie within the green circle of the 1-sigma measurement uncertainty 577 

making further quantitative assessments difficult. This is also supported by the differences 578 

between the ESA CCI data set and the MODIS data for AOD with MODIS being close to 1-579 

sigma of the ESA CCI uncertainty estimate. The linear pattern correlation of most models with 580 

the ESA CCI data, however, is smaller than that of the ESA CCI data and MODIS (0.8) showing 581 

also differences in the geographical distribution of the simulated AOD (see also section 5.1 and 582 

Figure 14). 583 

Ozone (Figure 2f): the correlation coefficients of the modeled total ozone columns with the ESA 584 

CCI data are quite high for most models (with interactive chemistry) with values above 0.94 and 585 

a ratio of the modeled and the observed spatial standard deviation close to 1. All models are, 586 

however, outside of the 1-sigma uncertainty estimate of the observations, which is also the case 587 

for the alternative observational data set (NIWA). Differences are found, for instance, in the 588 

northern high latitudes where the models tend to overestimate the total ozone columns (see also 589 

section 5.7 and Figure 18). 590 

CO2 (Figure 2g): For the column-averaged CO2 concentrations, the correlation coefficients of the 591 

results from the emission driven simulations with the ESA CCI data are typically quite low and 592 
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range between 0.4 and 0.6. This is partly caused by a systematical overestimation of XCO2 593 

concentrations by most CMIP5 models and partly by differences in the geographical patterns 594 

such as, for example, in northern Europe or Southeast Asia where the models show distinct local 595 

maxima that are not clearly visible in the ESA CCI data. 596 

5 Further insights into the evaluation of CMIP5 models with ESA CCI data 597 

In the following subsections, the evaluation of CMIP5 models using ESA CCI data and 598 

comparisons of ESA CCI data with alternative observational data sets are discussed individually 599 

for each of the CCI products (sea surface temperature, sea ice, cloud, soil moisture, land cover, 600 

aerosol, ozone, and greenhouse gases). 601 

5.1 Sea surface temperature 602 

The implemented diagnostics for sea surface temperature in the ESMValTool include the 603 

analysis of the temporal mean fields, their differences as well as a long-term trend analysis and 604 

calculation of scalar accuracy skill scores such as, for instance, area weighted RMSDs. All 605 

diagnostics can be applied to regional areas of interest defined by the user, e.g., ocean basins. 606 

A major challenge when comparing the ESA CCI SST data to CMIP model results is that the 607 

ocean grids used in the various CMIP models differ substantially. Thus, a common target grid 608 

needs to be defined for the models and SST observations first. The user can specify the target 609 

resolution and target projection in the ESMValTool configuration. For the examples given in 610 

Figure 3 and Figure 4, we use a T63 Gaussian grid as a common reference and project all SST 611 

data to this grid using an energy conservative approach. In addition, the representativeness of the 612 

SST variables largely varies among different models. While the CMIP sea surface temperature 613 

variable (tos) corresponds to the temperature in a layer a few centimeters deep in some models, it 614 
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represents the temperature of a layer of a couple of meters in other models. The ESA CCI SST 615 

product used in this study is designed to be representative of the sea surface at a depth of 20 cm. 616 

Except under conditions of very low wind stress and strong insolation, the stratification across 617 

the upper ~1 m of the ocean tends to be small because of near-surface mixing driven by wind and 618 

wave action. Nonetheless, the differing depth definitions need to be considered when interpreting 619 

SST differences between different models and between models and observations, particularly for 620 

the subset of the comparisons corresponding to situations of likely near surface stratification. 621 

Figure 3 shows an example of a comparison of results from the CMIP5 model MPI-ESM-P with 622 

the ESA CCI SST data set. On a global scale, the observed geographical patterns (top) with high 623 

temperatures in the equatorial areas and low temperatures close to the poles are well reproduced 624 

by the model and so is the global mean SST value of 287 K and its spatial variability. Both the 625 

observations and the model show the typical two-armed warm areas in the Niño 3 and Niño 4 626 

areas in the equatorial Pacific. They also show the typical shift of warm water in the eastern 627 

northern Atlantic generated by the Gulf Stream, and the colder regions in the Arabian Sea. MPI-628 

ESM-P shows a negative bias in the subtropics and tropics while a positive bias is found in the 629 

cold climate zones in both hemispheres (Figure 3, bottom row). A switch in these differences 630 

occurs in the temperate zones. The difference plot also shows discrepancies in specific areas 631 

such as the underestimation of SST in the central northern Atlantic, from too-zonal behavior of 632 

the North Atlantic Drift in the model, or the pattern of overestimation of temperature in ocean 633 

upwelling zones on the east of ocean basins (along the Namibian coast, Baja California, etc.). 634 

These discrepancies suggest differences in the representation of the wind driven upwelling and 635 

western boundary currents. 636 
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 637 

Figure 3. Temporal means of SST in K for the ESA CCI data set (top right) and the CMIP5 model MPI-

ESM-P (top left) as well as absolute (bottom left) and relative differences (bottom right). 

Discrepancies between 7 exemplary CMIP5 models (GISS-E2-H-CC, GISS-E2-H, IPSL-CM5A-638 

LR, MIROC-ESM-CHEM, MIROC-ESM, MPI-ESM-P, NorESM1-ME) for different ocean 639 

basins are shown in Figure 4. Larger basins, like the northern or southern Pacific or Atlantic 640 

Ocean, as well as the polar seas show good agreement in SST cycles among the different models 641 

and with the ESA CCI data. Differences are larger for smaller basins like the Baltic or 642 

Mediterranean Seas or the Niño regions. These larger discrepancies occur due to the size of these 643 

smaller regions and their higher sensitivity to small scale fluctuations. Spatial averages of larger 644 

basins attenuate such fluctuations. The ESA CCI SST data are sufficient to show the model 645 

limitations on such scales, and discriminate, for example, the better seasonal cycle amplitude for 646 

the Baltic Sea in MIROC-ESM-CHEM compared to MPI-ESM-P. 647 
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Figure 4. Time series of mean SST for different ocean basins from 7 CMIP5 models (see legend) 

compared with the ESA CCI SST data. 

ESA CCI SSTs are relatively unusual in being physics-based (not tuned to drifting buoys) and 649 

explicitly aiming to represent the 20-cm depth SST, which should correspond well to model-650 

layer-average SSTs in most circumstances. The new data set therefore provides an independent, 651 

accurate (0.1 K), high-stability climate data record. 652 

5.2 Sea ice 653 

The observed rapid decline in Arctic sea ice thickness and extent over the last few decades is one 654 

of the most striking indicators for climate change (Stroeve et al., 2012; Lindsay and Schweiger, 655 

2015). The melting of sea ice contributes to the rise of global temperatures through the ice-656 

albedo feedback (Curry et al., 1995). The decline in sea ice extent is a positive feedback where 657 

the initial shrinkage in the area of sea ice reduces the albedo and thus reinforces the initial 658 

alteration in sea ice area. High-quality observations of sea ice are thus crucial to monitor climate 659 

change and to evaluate climate models. 660 

Here, we use data from the National Snow and Ice Data Center (Walsh et al., 2015) as an 661 

additional reference data set for the model evaluation and for comparison with the ESA CCI sea 662 

ice data. The NSIDC provides two different data sets, each covering the time period from 1979 663 

to present. The main difference between the two data sets is the algorithm used in processing the 664 

satellite data: the NASA Team (NSIDC-NT; Cavalieri et al., 1996) and the Bootstrap (NSIDC-665 

BC; Comiso, 2000) algorithm. While the NSIDC-BT algorithm corrects for melt ponds that are 666 

treated as open water by synthetically increasing the summer sea ice concentration (sic), such a 667 

correction is not included in NSIDC-NT. 668 
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The sea ice diagnostics implemented into the ESMValTool include time series of the modeled 669 

and observed evolution of sea ice extent (Figure 5) or area as well as polar-stereographic contour 670 

plots of sic and sic biases (Figure 6). The sea ice extent has been calculated by adding up the 671 

surface area of all grid cells with a sea ice concentration equal or larger than 15%. Satellites in 672 

polar orbits do not pass directly over the poles. As a consequence, there is a small area centered 673 

around the poles that cannot be observed by these instruments. For the comparison with the 674 

model data shown in Figure 5, these pole holes have been filled assuming 100% sea ice cover in 675 

this region. 676 

The time series of September Arctic sea ice extent in Figure 5 shows that the spread between the 677 

four observational data sets (thick black lines) from ESA CCI and NSIDC is much smaller than 678 

the spread among the CMIP5 models (colored lines), which amounts to about 9 million km2 679 

between CSIRO-Mk3-6-0 (largest positive bias) and GISS-E2-H (largest negative bias). 680 

However, the CMIP5 multi-model mean (thick red line) lies most of the time within the 681 

observational spread although the RCP4.5 simulation mean does not show the decrease in sea ice 682 

extent that has been observed between 2005 and 2013. The sea ice extent from the ESA CCI data 683 

sets (thick black lines) is in very good agreement with the NSIDC data sets. ESA CCI SSM/I 684 

data show a small positive bias compared with NSIDC-NT of up to 1 million km2 between 1997 685 

and 2005. ESA CCI AMSR-E data are in very good agreement with both NSIDC data sets. The 686 

negative trend over the observed time period from 1990 to 2010 is about 1 million km2 per 687 

decade in all four observational data sets. The magnitude of this trend is, however, 688 

underestimated by the CMIP5 multi-model mean. 689 
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 690 

Figure 5. Evolution (1960-2020) of September Arctic sea ice extent in million km2 from the CMIP5 

models (colored lines) and from observations (thick black lines). The pole holes of the satellite data sets 

have been filled assuming a sea ice concentration of 100%. All available ensemble members from a given 

model are shown and drawn in the same color as indicated in the legend. The CMIP5 multi-model mean 

is shown in bold red and the gray shading shows the standard deviation of the CMIP5 ensemble. The 

observations are from ESA CCI SI and NSIDC. Figure modified from Bräu (2013). 

Figure 6 shows polar-stereographic contour maps of Arctic September (upper row) and Antarctic 691 

March (lower row) sic, which roughly corresponds to the average annual minimum sea ice 692 
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extent. As in Figure 5, there is good agreement between the ESA CCI SI SSM/I (left column) 693 

and NSIDC-NT (middle column) also in the geographical distribution. The sic from the two data 694 

sets differs by less than 0.2 in all grid cells for both Arctic and Antarctic sea ice distributions (not 695 

shown). In the Arctic, the CMIP5 multi-model mean slightly underestimates the observed sic in 696 

the marginal ice zone of the Central Arctic Ocean and in the East-Siberian and Beaufort Seas by 697 

about 0.2 (right column). There is also a small overestimation east of Svalbard. In the Antarctic, 698 

the sea ice concentration is underestimated by the CMIP5 multi-model mean in the Weddell Sea 699 

as well as in a belt along the coast of the Amundsen, Ross and Somov Seas by up to 0.6. 700 

 701 

Figure 6. Polar-stereographic map of Arctic September (upper row) and Antarctic March (lower row) sea 

ice concentration from ESA CCI SI SSM/I (left column) and NSIDC-NT (middle column) observations 



41 
 

averaged over the years 1992-2008. The pole holes of the satellite data sets have been filled assuming a 

sea ice concentration of 100%. The right column depicts the differences between the CMIP5 multi-model 

mean and the ESA CCI SI SSM/I observations averaged over the years 1992-2005. 

In general, the ESA CCI data show good agreement to the data sets from the NSIDC. For robust 702 

assessments of retrospective climate simulations, however, a longer time period is needed and 703 

would ideally go from the early 1980s to present. Since the sea ice observational data are no 704 

exception in having errors that are inherent to all observations, the daily uncertainty estimates 705 

provided by the ESA CCI sea ice team are very useful for a more quantitative model evaluation. 706 

These error estimates are based on the extensive algorithm comparison study (Ivanova et al., 707 

2015) and have been underpinned by subsequent validation studies (Kern et al., 2016). The error 708 

estimates will be useful for further regional and seasonal assessments of sea ice concentrations. 709 

5.3 Cloud 710 

Clouds strongly affect the Earth's radiative balance and temperature but are challenging to model 711 

and observe, leading to large uncertainties in understanding climate variability and change. 712 

Model evaluation using long-term, consistent observational data records can help to improve 713 

both, the understanding of the present-day climate and the confidence in climate model 714 

projections. Modeled clouds and satellite observations are difficult to compare because observed 715 

clouds are affected by the satellite instrument’s sensitivity, the temporal and spatial sampling and 716 

the vertical overlap of the cloud layers, while the clouds in climate models are assumed to be 717 

plane-parallel and are of coarse horizontal and vertical resolution. Ideally, a satellite simulator 718 

(e.g., Bodas-Salcedo et al., 2011) is used during the model simulation to mimic the satellite 719 

viewing geometry, temporal sampling and specific instrument characteristics such as lower cut-720 

off values. Many CMIP5 historical and future scenario simulations, however, have been run 721 
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without such a satellite simulator. Total cloud cover is the model cloud parameter that most 722 

readily can be compared directly to the satellite derived cloud fraction without a simulator, even 723 

though models can have substantial cloud cover but very little cloud condensate making those 724 

clouds too optically thin to be detected by the satellite instrument. 725 

Here we use the ESMValTool diagnostics mean, bias and interannual variability to compare 726 

Cloud_cci AVHRR-PM total cloud cover with other satellite-based cloud data sets and to 727 

evaluate CMIP5 models. Figure 7 shows the ESA CCI total cloud cover (clt) in boreal winter 728 

(December, January, February) and summer (June, July, August) and the associated total 729 

uncertainties derived from comparisons with CALIOP as described in section 2.3. The inherent 730 

AVHRR difficulties in detecting clouds during polar night and over high elevation, snow 731 

covered areas (North Canada, North East Asia and Himalayas) result in uncertainties of more 732 

than 20% in these regions. Comparing the ESA CCI zonal mean cloudiness to other AVHRR 733 

cloud data sets such as PATMOS-x (Heidinger et al., 2014) and CLARA-A2 (Karlsson et al., 734 

2013) and the MODIS cloud data set (Platnick et al., 2003) also show the largest observational 735 

spread (40-50%) in high latitudes in the winter hemisphere. The ESA CCI uncertainties are also 736 

high with values of up to 20% in the subtropical high pressure dry areas. In these regions, the 737 

ESA CCI data set has 5-10% less cloud coverage than PATMOS-x and CLARA-A2 (not shown). 738 

The performance metrics results in Figure 1 show that the cloudiness of most CMIP5 models 739 

compare well with the ESA CCI data and the alternative reference data set PATMOS-x on a 740 

global scale, but there are regional differences as seen in Figure 7. The CMIP5 multi-model 741 

mean bias compared to the ESA CCI data shows an underestimation of cloud amount especially 742 

in the subtropical stratocumulus regions off the west coasts of North and South America as well 743 

as off the coast of Australia as known from many previous studies (e.g., Nam et al., 2012). In 744 
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contrast, the CMIP5 multi-model mean and most individual models overestimate cloud amounts 745 

by 20% over the subtropical high pressure regions with minimum cloud amounts. These biases 746 

are smaller (10-15%) if the models are compared to PATMOS-x and CLARA-A2 instead 747 

because cloud amounts from these two alternative observational data sets are larger than from the 748 

ESA CCI data set in these regions. The CMIP5 models with a normalized RMSD above 0.2 in 749 

Figure 1 (CCSM4, CESM1-BGC, HadCM3, MIROC-ESM and MIROC-ESM-CHEM) 750 

underestimate cloud amount on a global scale (not shown). The largest inter-model spread (60%) 751 

occurs at high latitudes in polar winter, where also the observational data sets have their largest 752 

uncertainties as seen in the zonal mean plots in Figure 7. In these cold conditions the amount of 753 

cloud condensate is small and the modeled clouds are often thinner than the satellites’ detection 754 

limit. Here, using a simulator removes part of these model clouds. 755 
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Figure 7. Maps of the multi-year seasonal mean of total cloud cover and 1-sigma uncertainty from ESA 

CCI cloud for a) December-January-February (DJF) and b) June-July-August (JJA) averaged over the 

years 1982-2014. The figure also shows the differences between the ESA CCI data and the CMIP5 multi-

model mean as well as zonal means. The zonal mean panels show averages from ESA CCI (red), 

PATMOS-x (blue), CLARA-A2 (cyan), MODIS (green), ERA-Interim (orange), and the CMIP5 multi-

model mean (black). The individual CMIP5 models are shown as thin gray lines and the observational 

uncertainties of the ESA CCI data (±1-sigma) are shaded in light red. The MODIS data are only available 

for the years 2003-2014. 

Figure 8 shows the interannual variability of total cloud cover for the satellite data sets, the 757 

CMIP5 multi-model mean and ERA-Interim. The interannual variability is estimated as the 758 

relative temporal standard deviation of the deseasonalized monthly mean time series (Lauer and 759 

Hamilton, 2013). All the AVHRR data sets (ESA CCI, CLARA-A2, PAMOS-x) have their 760 

largest variability (30-40%) for the dry tropical high pressure regions over the oceans, over north 761 

Africa, south Africa and Australia, reflecting the annual shift of the ITCZ and the El 762 

Niño/Southern Oscillation (ENSO). MODIS tropical Pacific Ocean variability is smaller than in 763 

the AVHRR data sets, since MODIS data are available only for the time period 2003-2014 and 764 

thus do not include the strong El Niño events in the 1980s and 1990s, which illustrates the 765 

importance of using long-term observational records when evaluating ENSO. The ESA CCI data 766 

have larger variability over the tropical Pacific Ocean than the other AVHRR satellite data sets. 767 

Time series (not shown) reveal that the ESA CCI clt is of similar magnitude as PATMOS-x and 768 

CLARA-A2 for El Niño years when the cloud cover is maximum, while the ESA CCI data have 769 

less cloud amount (5-15%) for La Niña years when the cloud cover reaches minima. This results 770 

in a larger interannual variability of the ESA CCI data. PATMOS-x data show less variability 771 
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and higher cloud amounts over the Antarctic than the ESA CCI and CLARA-A2 data. The 772 

CMIP5 multi-model mean shows less variability than the observations, especially over the 773 

subtropical high pressure regions, where most of the individual CMIP5 models overestimate the 774 

total cloud cover. In contrast, the models that underestimate clt in the dry regions (CCSM4, 775 

CESM1-BGC, HadCM3, MIROC-ESM, MIROC-ESM-CHEM) show a larger interannual 776 

variability. 777 

 778 

Figure 8. Interannual variability in total cloud cover estimated from the relative temporal standard 

deviation of the deseasonalized monthly mean time series from 1982 to 2014. Shown are (from top left to 

bottom right) satellite data (ESA CCI cloud, CLARA-A2, PATMOS-x, MODIS) in comparison with 

ERA-Interim reanalysis data (lower row, center) and the CMIP5 multi-model mean (lower row, right). 

The MODIS data are only available for the years 2003-2014. 

The Cloud_cci AVHRR-PM total cloud cover data compare well with other existing long-term 779 

AVHRR cloud data sets. The ESA CCI pixel-based uncertainties show the user which areas 780 

should be interpreted carefully, e.g. polar and high elevation snow covered regions where the 781 

passive satellites have problems detecting clouds. The ESA CCI cloud cover data show lower 782 
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minima than the other AVHRR data sets for the tropical Pacific, which should be investigated 783 

further. The other ESA CCI cloud data sets with shorter time records (MODIS, ATSR-2, 784 

AATSR and MERIS) can be used for process studies and for narrowing the observational 785 

uncertainties. A Cloud_cci satellite simulator has been developed, which can be used in future 786 

CMIP simulations and include other cloud variables such as cloud top pressure, optical 787 

thickness, effective radius, albedo and liquid/ice water path in the model evaluation. Cloud cover 788 

from the CMIP5 models shows the known typical error patterns compared with the ESA CCI 789 

data and the other satellite data sets, underestimating clouds in the stratocumulus regions and 790 

overestimating clouds in the subtropical dry regions. More detailed analysis of the individual 791 

models and the interaction with radiation are needed to understand these biases. 792 

5.4 Soil moisture 793 

The current soil moisture diagnostics implemented in the ESMValTool comprise metrics for the 794 

evaluation of soil moisture from regional to global scale and are largely based on Loew et al. 795 

(2013) using version 2.2 of the ESA CCI soil moisture data set. These include the comparison of 796 

temporal mean fields of soil moisture, as well as the analysis of the co-variability of soil 797 

moisture anomalies with precipitation anomalies and the similarity of the spatial patterns of the 798 

percentile distributions of the model and observations. The latter is a measure for the similarity 799 

of the spatio-temporal dynamics of the soil moisture field (see Loew et al., 2013 for details). 800 

Another diagnostic analyzes the long-term trend in soil moisture for both the ESA CCI data set 801 

and CMIP models. The non-parametric Mann-Kendall regression is used to assess the statistical 802 

significance of long-term soil moisture trends, similar to Dorigo et al. (2012) for the time period 803 

1988-2008. This time period was chosen because the ESA CCI soil moisture data have a poorer 804 
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temporal sampling prior to this period (Loew et al., 2013). All diagnostics can be applied at the 805 

global scale as well as for user-defined regions. 806 

A general challenge when comparing satellite soil moisture with model results is that the 807 

observations represent a rather different quantity than the one simulated by the models. CMIP 808 

models provide the soil moisture as storage terms for soil layers at specific depths. As the 809 

different CMIP models are based on different soil model implementations, these are not 810 

necessarily directly comparable as they might differ in their depth and therefore in their temporal 811 

dynamics. Currently, the official CMIP5 output comprises two soil moisture variables, which are 812 

supposed to represent a 10-cm surface layer (mrsos) or the entire soil column (mrso). Here, we 813 

use only data from models that provided the surface layer soil moisture for comparison. The 814 

surface layer soil moisture is converted into the volumetric soil moisture content by dividing 815 

mrsos by the thickness of the represented layer and by the density of water, which is assumed to 816 

be 998.2 kg m-3 (20°C). The variable for volumetric soil moisture content compared with the 817 

ESA CCI data is called sm (see Table 3). 818 

Satellite soil moisture data typically represent the volumetric soil moisture content (m3 m-3) of a 819 

shallow surface layer, which is also the case for the ESA CCI data set. The soil moisture 820 

diagnostics implemented in the ESMValTool compare the volumetric soil moisture content 821 

calculated from the model output with observations. All data are aggregated to similar temporal 822 

and spatial scales before further analysis. 823 

Figure 9 shows an example of the ESA CCI volumetric soil moisture data compared with soil 824 

moisture from the CNRM-CM5 model. The model shows comparable soil moisture patterns in 825 

large parts of the globe. A wet bias is observed in the northern latitudes, which might be related 826 



49 
 

to an overestimation of soil moisture due to missing processes in the model (e.g., freeze-thaw 827 

dynamics). The model bias can also be related to a dry bias in the ESA CCI observations in these 828 

regions as no soil moisture is observed during wintertime and under frozen soil conditions. 829 

Relative differences are largest in the desert regions (Sahara, Arabian Peninsula), which is, 830 

however, of minor importance due to the overall small absolute soil moisture content in these 831 

regions. The wet region along the southern border of the Himalayas is clearly visible in the 832 

model but not in the ESA CCI soil moisture. This is most likely due to the complexity in 833 

mountainous terrain with large terrain slopes (for both the models and in the satellite soil 834 

moisture retrieval algorithms). 835 

 836 

Figure 9. Temporal mean fields of volumetric soil moisture from the CNRM-CM5 model (top left), the 

ESA CCI soil moisture data set (top right) as well as their absolute (bottom left) and relative differences 

(bottom right). 
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The long-term trends in soil moisture during the time period 1988-2008 are compared in Figure 837 

10. The figure illustrates only statistically significant trends (p < 0.05). The ESA CCI soil 838 

moisture shows decreasing soil moisture in large parts of the globe. Strongest decline of soil 839 

moisture is observed in southern Russia, while positive trends are observed in the tropical parts 840 

of Africa. Trends in the CNRM-CM5 model are rather different to those obtained from the CCI 841 

data set. A significant decline in soil moisture is observed over Europe, while a significant 842 

increase of soil moisture is simulated throughout large parts of the northern hemisphere. 843 

 844 

Figure 10. Temporal trend in soil moisture over the period 1988-2008 as derived from the CNRM-CM5 

model (left) and the ESA CCI soil moisture data sets (right). Masked areas represent grid cells where the 

Mann-Kendall correlation coefficient was not statistically significant at the 95% confidence level. 

The percentiles of the observed and simulated soil moisture fields are rather similar, which 845 

illustrates that both data sets show similar spatial patterns of the soil moisture dynamics. As an 846 

example, Figure 11 shows the percentile maps for the 5%, 50% and 95% percentiles for the 847 

observed and simulated (CNRM-CM5) soil moisture fields. For each of the percentiles, the 848 

spatial autocorrelation coefficient results in very high correlation values (𝜌 > 0.9), which 849 

indicates a strong similarity of the spatial patterns. 850 
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 851 

Figure 11. Percentile maps for ESA CCI soil moisture (left column) and soil moisture from CNRM-CM5 

(right column). The (from top to bottom) 5%, 50% and 95% percentiles are shown and the spatial 

correlation coefficient between the model and the observations is provided in the title of each plot. 

There is increasing evidence on the quality and consistency of the trends in the ESA CCI soil 852 

moisture data set. For example, in a recent special issue in the International Journal of Applied 853 

Earth Observation and Geoinformation (JAG) (vol. 48, June 16) several trend papers are 854 
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presented and reveal reliable trends over many parts of the globe where they were compared with 855 

other water related observations including runoff, precipitation, and reanalysis data (see e.g., 856 

Wang et al., 2016; Su et al., 2016; Du et al., 2016; Qiu et al., 2016, all in the special issue in 857 

JAG). These results give more confidence in the ESA CCI soil moisture trends, especially over 858 

the sparsely to moderately vegetated regions. This is also highly relevant to assessing soil 859 

moisture variability and change in the context of a changing climate, which has been a great 860 

challenge so far. 861 

5.5 Land cover 862 

Benchmarking climate models with land cover information is not straight forward due to the 863 

different concepts of representation of terrestrial vegetation in global Dynamic Vegetation 864 

Models (DGVM), which are typically based on the concept of PFTs that are supposed to 865 

represent groups of land cover with similar functional behavior. Thus, an important first step is 866 

to map the ESA CCI land cover classes to PFTs like the ones used in CMIP models (Figure 12) 867 

(Poulter et al., 2015). As the PFTs in CMIP models differ, the current ESMValTool diagnostics 868 

analyzes only broad surface types (bare soil, grass, shrubs, forests), which is similar to the 869 

approach chosen by Brovkin et al. (2013). Land cover is either prescribed in the CMIP models or 870 

simulated using a DGVM. In particular for the latter case, an independent assessment of the 871 

accuracy of the simulated spatial distributions of major land cover types is desirable in order to 872 

evaluate the DGVM accuracy for present climate conditions. The diagnostic currently 873 

implemented into the ESMValTool considers the land cover to be static for present climate 874 

conditions in the CMIP models. The PFT distribution is then compared against satellite 875 

observations from a similar time period. 876 
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 877 

Figure 12. Area fraction (%) of forest and shrub cover in the MPI-ESM-MR model (top left) and the ESA 

CCI land cover data set (top right) and absolute (bottom left) and relative differences (bottom right). The 

ESA CCI 2005 epoch was used for the analysis. 

Figure 12 and Figure 13 show differences in the area cover fraction for forest type land covers as 878 

well as grassland and cropland areas between the ESA CCI land cover product and the MPI-879 

ESM-MR model, which is based on the DGVM JSBACH for the terrestrial component (Brovkin 880 

et al., 2009; Brovkin et al., 2013). The tree cover in MPI-ESM-MR is underestimated compared 881 

to the ESA CCI data set in the Amazon and along the west coast of North America, while grass 882 

and cropland is overestimated in many parts of the globe. Similar analysis results are obtained 883 

when using the ESA CCI epoch for the year 2000 instead of 2005. 884 
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 885 

Figure 13. Area fraction (%) of grass and cropland cover in the MPI-ESM-MR model (top left) and the 

ESA CCI land cover data set (top right) and absolute (bottom left) and relative differences (bottom right). 

The ESA CCI 2005 epoch was used for the analysis. 

The ESA CCI land cover data set provides the first consistent series of high-resolution (300 m) 886 

global land cover products derived by combining a whole suite of different sensors including 887 

information on PFTs. This has become important in particular for evaluation of ESMs that start 888 

to include more complex land cover dynamics in projections of future climate. 889 

5.6 Aerosol 890 

The geographical distribution of the multi-year averages of od550aer, o550lt1aero, and 891 

abs550aer, as well as the differences between the ESA CCI data and some exemplary CMIP5 892 

models (CSIRO-Mk3-6-0, GFDL-CM3, GISS-E2-H, IPSL-CM5B-LR, MIROC-ESM-CHEM) 893 

are shown in Figure 14. Here, we consider only the CMIP5 models with interactive aerosols and 894 
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exclude multiple versions of the same model. In general, the models’ performance is better over 895 

the oceans than over the continents although the SU algorithm used to process the CCI data may 896 

underestimate AOD over the oceans. Large model biases are found over the Sahara where some 897 

models (especially GFDL-CM3 and IPSL-CM5B-LR) underestimate the aerosol optical depth 898 

(left column). This could be caused by an incorrect representation of dust which is consistent 899 

with a much better performance of these models for the fine mode optical depth (middle column) 900 

in the same region. In addition, the underestimation of AOD over the Sahara might also be partly 901 

amplified by an overestimation of AOD in the ESA CCI aerosol product (SU), which is a known 902 

problem in this region. In contrast, a substantial positive bias is found over Europe and East Asia 903 

(in particular CSIRO-Mk3-6-0 and GISS-E2-H) with similar biases both in the total and in the 904 

fine mode optical depth. Significant deviations from the observations are also visible in the 905 

modeled absorption optical depth (right column), especially in tropical regions. The contribution 906 

of absorption to the aerosol optical depth is, however, quite small. We also note that the satellite 907 

uncertainty for abs550aer is larger than for od550aer and od550ltaer. 908 
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Figure 14. Climatological mean AOD (left column), fine mode optical depth (middle) and absorption 

optical depth (right column) at 550 nm averaged over the period 1997-2011. The first row shows the the 

observations (ESA CCI ATSR SU v4.21), the other rows the differences between selected CMIP5 models 

with interactive aerosols and the ESA CCI data. Differences that are not statistically significant at the 

95% confidence level are masked out in gray. 

As can also be seen in Figure 1, the two satellite data sets used as observational references result 910 

in different model performance grades, mainly because of measurement uncertainties inherent to 911 

the data sets. To further explore the reason for these differences, the two satellite data sets are 912 

compared with ground-based measurements from the AErosol RObotic NETwork (AERONET; 913 

Holben et al., 1998) (Figure 15). AERONET data are widely accepted as a reliable reference for 914 

aerosol optical depth and are often used for validating satellite products. AERONET data, 915 

however, do not provide global coverage with very few measurements particularly over the 916 

ocean. The few AERONET sites that are measuring AOD over the ocean are typically near 917 

shallow-water areas such as on islands and the coastlines of continents, and thus not 918 

representative of open ocean conditions. The Marine Aerosol Network MAN has therefore been 919 

established to provide AOD measured with hand-held sun photometers, predominantly on 920 

research ships, starting from 2004 (Smirnov et al., 2009). However, in spite of the many cruises 921 

included, the data are still sparse making global satellite data sets very valuable for evaluation of 922 

ESMs. For consistency, we only consider years that are covered by both, the MODIS and the 923 

ESA CCI data sets (2003-2011). Similarly to the models, the largest differences between the two 924 

satellite data sets are found over the continents (top row of Figure 15). This is not surprising 925 

given that satellite retrievals over the dark ocean surfaces are less sensitive to the assumptions in 926 

the retrieval algorithms. The ESA CCI product shows a considerably higher optical depth than 927 
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MODIS over the Sahara and seems to be in slightly better agreement with AERONET in this 928 

region (however only a few stations are available around the Sahara). Another striking difference 929 

between the two data sets is found over Southeast Asia where od550aer from MODIS is higher 930 

than the values from the ESA CCI resulting in a slightly better performance when compared to 931 

AERONET. The overall performance of the two data sets is quite similar but the MODIS data 932 

show a higher correlation (R2 = 0.85) with AERONET than the ESA CCI data (R2 = 0.76) as can 933 

be seen in the scatter plots in the bottom row of Figure 15. 934 

 935 

Figure 15. Comparison of AOD at 550 nm from the ESA CCI ATSR SU v4.21 and the MODIS Terra C6 

satellite products against the AERONET ground-based measurements for the period 2003-2011. The top 
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row shows the AERONET values as open circles plotted on top of the satellite data averaged over the 

same time period. The bottom row shows scatter plots of spatially and temporally collocated 

measurements on a monthly-mean basis. 

With the ESA CCI aerosol and the MODIS data, two independent, long-term satellite data sets 936 

are available for model evaluation. This is particularly helpful when there is doubt about the 937 

reliability of the comparison with model results by adding the possibility to provide an 938 

independent check whether the satellite data are correct. Furthermore, in some areas, the ESA 939 

CCI aerosol products provide better correlation with AERONET than MODIS and the addition 940 

of ATSR to MODIS data can improve the overall results when used for data assimilation as there 941 

are more data available to constrain the model. 942 

5.7 Ozone 943 

For the first time in CMIP, a subset of the models included interactive chemistry in CMIP5. Also 944 

in contrast to previous CMIP phases, the models that prescribed ozone in CMIP5 included a 945 

time-varying stratospheric ozone climatology (Cionni et al., 2011) rather than a constant forcing. 946 

Detailed information on the treatment of ozone in CMIP5 models as well as an evaluation of 947 

their performance compared to observations is given in Eyring et al. (2013). Here we repeat 948 

some of this analysis by adding the newly available ESA CCI ozone data. 949 

Eyring et al. (2013) divided the CMIP5 models into three classes: (a) CMIP5 models with 950 

interactive chemistry, (b) CMIP5 models with semi-interactive chemistry including those models 951 

that prescribed ozone data based on results from the underlying CMIP5 chemistry-climate 952 

model, and (c) CMIP5 models that prescribed ozone IGAC/SPARC ozone database (Cionni et 953 

al., 2011). Here, we focus on the models with interactive ozone chemistry only. The performance 954 
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of the individual CMIP5 models with interactive chemistry for total ozone columns is similar 955 

with respect to both observational data sets (ESA CCI and NIWA) as can be seen in the time 956 

series from 1960 through 2010 shown in Figure 16. Differences in both data sets are therefore 957 

mostly a result of different statistical methods used to combine the different satellite data sets. 958 

Most CMIP5 models with interactive chemistry overestimate the annual global mean total 959 

column ozone compared with the ESA CCI data (Figure 16a) but capture the trend of ozone 960 

depletion starting in the 1980s quite well. The October mean total column ozone in the Antarctic 961 

(90°S-60°S) is well captured by the CMIP5 models in terms of both, magnitude and trend 962 

(Figure 16b). 963 

 964 

Figure 16. Time series of area-weighted total column ozone from 1960 to 2010 for a) global annual mean 

(90°S-90°N) and b) Antarctic October mean (60°S-90°S). The figure shows the multi-model mean (black 

line) and standard deviation (gray shading) as well as individual CMIP5 models with interactive 

chemistry (colored lines) compared with ESA CCI (filled circles) and NIWA (open triangles) data. The 
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IGAG/SPARC ozone database (Cionni et al., 2011) is also shown as a reference (orange line). All data 

sets have been interpolated to the same grid as the ESA CCI observations. During the periods covered by 

observations, only grid cells in the time series with valid observational data available have been taken into 

account for calculating the (area-weighted) averages. 

Figure 17 shows the climatological vertical profiles of the ozone mixing ratio for different 965 

latitude bands and months. Some models simulate ozone only up to 10 hPa, which is just below 966 

the layer of maximum ozone concentrations in the stratosphere. Although most models capture 967 

the trend and magnitude of total column ozone in Antarctica well, the spread of ozone at 10 hPa 968 

in the CMIP5 models is quite large for the same region (80°S). 969 

 970 

Figure 17. Vertical ozone profile climatologies (2007-2008) at a) 80°N in March, b) the equator in March, 

and c) at 80°S in October from individual CMIP5 models with interactive chemistry (colored lines) and 

the ESA CCI ozone data set (solid black line). The multi-model mean (MMM) is shown as a red solid line 

with one standard deviation of the inter-model spread shown as the light-blue shaded area. For 
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comparison, also balloon measurements from the Binary Data Base of Profiles (BDBP; Hassler et al., 

2008, 2009) are shown for the respective latitudes (2006-2007). 

Figure 18 shows the zonally averaged climatological seasonal cycle of total column ozone for the 971 

CMIP5 multi-model mean, the two satellite-based reference data sets ESA CCI (Figure 18, upper 972 

row) and NIWA (Figure 18, lower row), and the differences of the multi-model mean and the 973 

two reference data sets. All data sets (models and observations) have been interpolated linearly 974 

to the grid of the observations and all grid cells with no observational data have been excluded 975 

from the model data sets. The seasonal cycle is calculated from monthly means averaged over 976 

the years 1997 to 2010. As expected, the zonal mean seasonal cycle of total column ozone does 977 

not differ much between ESA CCI and NIWA for the above mentioned reason. Only the 978 

magnitude of ozone is a few DU higher in northern winter in the ESA CCI data set, which can 979 

probably also be attributed to the different merging algorithms used to produce the two data sets. 980 

The CMIP5 multi-model mean is able to capture the phase and amplitude of total column ozone 981 

but tends to slightly overestimate ozone at the equator throughout the year and underestimate 982 

total ozone in Antarctica during summer (November through January). The occurrence of very 983 

low ozone values in CMIP5 multi-model mean is delayed by about 1 month compared with the 984 

observational data sets and lasts a few weeks longer than shown by the observations. 985 
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 986 

Figure 18. Total column ozone climatologies (1997-2010) for (upper row, from left to right) the multi-

model mean of CMIP5 models with interactive chemistry (see Table 1), the ESA CCI ozone data set, and 

the differences between the CMIP5 multi-model mean and the ESA CCI ozone data. The lower row 

shows the same plots but for the NIWA combined total column ozone data. The model data have been 

interpolated to the same grid as the observations. In order to calculate the (area-weighted) global annual 

averages shown above the individual plots, grid cells in the time series without valid observational data 

have not been taken into account. 

The ESA CCI ozone data sets combine all currently available backscatter nadir spectral UV-Vis 987 

sensors, i.e. GOME, SCIAMACHY, GOME-2 and OMI (Lerot et al., 2014) resulting in a 988 

harmonized product suitable for analyses of long-term ozone trends (WMO, 2014). The 989 
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reprocessed ozone profiles from 20 years of observations by GOME, SCIAMACHY and 990 

GOME-2 result in a data set of unprecedented accuracy and consistency (Miles et al., 2015; 991 

Keppens et al., 2015) well suited for the evaluation of global coupled climate models with 992 

interactive chemistry. 993 

5.8 Greenhouse Gases: XCO2 994 

In order to compare the ESA CCI XCO2 data set with CMIP5 simulations, only the emission 995 

driven simulations (esmHistorical) are used. These simulations were extended until 2014 with 996 

results from simulations of the RCP8.5 (esmrcp85). The differences in modeled CO2 997 

concentrations in the year 2014 between the different emission scenarios (RCP2.6, RCP4.5, 998 

RCP8.5) are rather negligible and are therefore not further discussed in the analysis presented 999 

here. Here, we focus on those models of the CMIP5 ensemble that provide all necessary data to 1000 

compare with the ESA CCI GHG data for the full time period (2003-2014): BNU-ESM, 1001 

CanESM2, CESM1-BGC, FIO-ESM, GFDL-ESM2G, GFDL-ESM2M, MIROC-ESM, MPI-1002 

ESM-LR, MRI-ESM1, and NorESM1-ME (see Table 1). These models include an interactive 1003 

carbon cycle and performed emission driven simulations in which the emissions rather than the 1004 

concentrations of the greenhouse gases are prescribed (Taylor et al., 2012). This allows the 1005 

carbon cycle in the models to react to changes in climate by adjusting their carbon fluxes to the 1006 

new climate conditions and providing the atmospheric CO2 concentration as an output 1007 

(Friedlingstein et al., 2006). 1008 

For comparison of model and satellite data shown in Figure 19 and Figure 20, the model data 1009 

were interpolated to the grid of the ESA CCI data set (5°x5°) using local area averaging. Grid 1010 

cells with missing values in the satellite data were also flagged as missing in the model fields. An 1011 

important characteristic of the ESA CCI data set is that between 2003-2008 measurements are 1012 
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only over land whereas from 2009-2014 the record contains measurements over land and ocean. 1013 

The models have been sampled accordingly. 1014 

Figure 19 shows the monthly mean time series of XCO2 comparing ESA CCI data with CMIP5 1015 

simulations in four different latitude bands. For all four latitude bands two main features of the 1016 

time series are very prominent: firstly, the increase in XCO2 between 2003 and 2014. The 1017 

increase of about 2 ppm per year is consistent with other observations (Ciais, 2013; Jones and 1018 

Cox, 2005; Tans and Keeling, 2015) although the absolute values are not directly comparable 1019 

since the ESA CCI product is an average of the total atmospheric column of atmospheric CO2 1020 

with the concentration at higher altitudes increasing more slowly than at the surface due to 1021 

mixing (Shia et al., 2006). The CMIP5 multi-model mean shows a positive bias compared with 1022 

the ESA CCI data of about 5-10 ppm in all four domains. Particularly the CESM-BGC and the 1023 

GFDL-ESM2M models simulate an XCO2 bias of about two times higher than the bias of the 1024 

multi-model mean. The MRI-ESM1 model has the largest negative bias of the models analyzed 1025 

here with a bias of about -20 ppm. This agrees with findings by Friedlingstein et al. (2014) and 1026 

Hoffman et al. (2014), who analyzed CO2 simulated by ESMs. Secondly, the seasonal variation 1027 

of XCO2 is more pronounced in the northern hemisphere (30°N-60°N) because of more 1028 

vegetation exchanging carbon with the atmosphere. We note again that no ESA CCI XCO2 data 1029 

over the ocean are available before 2009 (see also section 2.8). Since the main anthropogenic 1030 

sources of CO2 are located over land, the CO2 concentrations over the oceans are slightly lower 1031 

than over land. Thus, there is a small discontinuity in the XCO2 time series shown in Figure 19 in 1032 

the beginning of the year 2009 when measurements over the ocean become available and are 1033 

included in the calculation of the averages over the different latitude bands. As a consequence of 1034 
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this artifact, the amplitudes of the seasonal cycle in Figure 19 appear slightly reduced in the 1035 

beginning of 2009. 1036 

The emission driven CMIP5 models simulate a large spread in XCO2 at all latitude bands mainly 1037 

falling outside the observational (1-sigma) uncertainty of the ESA CCI data. The MPI-ESM-LR 1038 

model is in good agreement with the annual average XCO2 values but overestimates the 1039 

amplitude of the seasonal cycle compared with the ESA CCI data. 1040 

 1041 

Figure 19. Time series of column averaged carbon dioxide (XCO2) from 2003 to 2014 from the CMIP5 

emission driven simulations for the historical period (2003 to 2005) extended with RCP8.5 simulations 

(from 2006 to 2014) in comparison with the ESA CCI GHG XCO2 data. The CMIP5 models are 

interpolated to the 5°x5° grid of the observations omitting grid cells with no observations. From top left to 

bottom right: global average, 30°N-60°N, 30°S-30°N, and 60°S-30°S. 

The spatial distribution of XCO2 from the CMIP5 models and the ESA CCI data set is compared 1042 

by analyzing the deviations from the climatological annual averages (2003-2008 and 2009-2014) 1043 

shown in Figure 20. Because of the trend in XCO2, we show the two time periods separately to 1044 
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reduce artifacts caused by XCO2 data over the ocean only being available in the second half of 1045 

the ESA CCI record (2009-2014) (Buchwitz et al., 2015). The CMIP5 models have been 1046 

sampled accordingly averaging only over grid cells with observational data available. Over the 1047 

continents the ESA CCI data reveal many expected regional features, such as lower XCO2 1048 

concentrations over the tropical rain forests and the boreal forests in the northern high latitudes 1049 

(Buchwitz et al., 2015). This spatial distribution can be expected because in forest regions and 1050 

areas with high vegetation more carbon from the atmosphere is taken up by plants via 1051 

photosynthesis (Keeling et al., 1995). Higher than global average values are found particularly in 1052 

the northern hemisphere over the United States, Europe, Middle East, India, and China. These 1053 

basic features are reproduced by the CMIP5 multi-model mean but the annual average XCO2 1054 

values are overestimated by about 6-10 ppm by the models compared with the ESA CCI data in 1055 

the time period 2003-2008. This bias in the CMIP5 multi-model mean is found to increase 1056 

slightly to 8-12 ppm in the second half of the ESA CCI XCO2 record (2009-2014), which could 1057 

point to possibly slightly too weak carbon sinks in some models (Friedlingstein et al., 2014). 1058 

 1059 
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Figure 20. Annual mean XCO2 climatologies averaged over the years 2003-2008 (top row) and over the 

years 2009-2014 (bottom row). Shown are deviations from the global annual mean (printed in the right 

above each panel) for (left) the CMIP5 multi-model mean and (middle) ESA CCI XCO2. The right panels 

show the absolute differences between the CMIP5 multi-model mean and ESA CCI XCO2 data. The 

CMIP5 results shown are from emission driven historical simulations extended with the respective 

RCP8.5 scenario. 

6 Summary and outlook 1060 

Diagnostics for a subset of the ESA CCI Phase 2 data including the CCIs sea surface 1061 

temperature, sea ice, cloud, soil moisture, land cover, aerosol, ozone, and greenhouse gases have 1062 

been implemented into the community diagnostics and performance metrics tool ESMValTool. 1063 

This enhanced version of the ESMValTool has been applied to evaluate a suite of CMIP5 models 1064 

with the new ESA CCI data sets as well as to compare the new data sets with observations that 1065 

have already been widely used for model evaluation. The usage of the ESA CCI data in model 1066 

evaluation has been demonstrated in overview statistics of the models’ global average 1067 

performance using RMSD from the climatological mean seasonal cycle as a metric. The ESA 1068 

CCI data sets allow for evaluation of new ECVs such as global soil moisture and AOD from fine 1069 

particles from global coupled (free running) climate models for which consistent and long-term 1070 

observational data sets have not been previously available. For other variables such as total cloud 1071 

cover, sea surface temperature, or total ozone columns, the ESA CCI data sets provide the 1072 

possibility to compare previously available observational data sets in addition to the models. This 1073 

can help to estimate the uncertainty inherent to model evaluations caused by the choice of a 1074 

specific observational reference data set for comparison. The error estimates provided as part of 1075 

the ESA CCI data sets on a per grid basis help to further assess and quantify what a climate 1076 
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model can be realistically expected to reproduce. A new extended version of the Taylor diagram 1077 

has been presented that includes observational uncertainty estimates and allows to quickly 1078 

identify models with a RMSE compared to the observations of less than the observational 1079 

uncertainty (also given as RMSE) by simply gauging the figure. The models cannot be expected 1080 

to agree perfectly with the observations given the observational uncertainty. In particular for 1081 

ECVs with large observational uncertainties such as certain cloud properties this helps to avoid 1082 

over-interpreting model biases that cannot be assessed quantitatively and that might depend 1083 

significantly on the choice of the reference data set. 1084 

In most cases, the ESA CCI data compare well with existing data sets such as, for instance, 1085 

MODIS AOD, NIWA total ozone, or NSIDC sea ice concentration. The additional value of 1086 

implementing the ESA CCI data sets into the ESMValTool for these quantities lies particularly 1087 

in the harmonized and consistently processed data from different platforms and instruments. 1088 

Such data can now be used by the climate modeling community to evaluate long-term trends and 1089 

variability of selected modeled ECVs. This is particularly relevant to assessing modeled changes 1090 

in ECVs related to projected climate change and an important contribution reducing the 1091 

uncertainties in the projected climate change scenarios. 1092 

The ESMs participating in CMIP6 will be more complex than the models of the CMIP5 1093 

generation and include new or more detailed processes such as more sophisticated dynamical 1094 

vegetation models, sea ice treatment or interactive chemistry and carbon cycle. Future releases of 1095 

the ESMValTool will therefore not only include further ESA CCIs such as ocean color, sea level, 1096 

ice sheets and fire, but also additional ECVs from already implemented CCIs such as column 1097 

averaged methane or additional cloud properties such as, for instance, cloud water path, spectral 1098 

cloud albedo and cloud optical properties. 1099 
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The aim is to apply the enhanced version of the ESMValTool presented in this paper for routine 1100 

evaluation of ESMs with observations including the ESA CCI data sets within CMIP6. The 1101 

CMIP6 results can be analyzed and evaluated together with other evaluation tools and metrics 1102 

packages such as PMP as soon as the results become available on the ESGF. The application of 1103 

different analysis/evaluation tools in combination with different and independent observational 1104 

data sets will help to get a more complete picture of the performance of the quite complex state-1105 

of-the-art ESMs, particularly across different ESM domains. This is an important step to identify 1106 

domains and processes that would particularly benefit from further model improvements and one 1107 

step further to the ultimate goal of improving our understanding of the climate system and 1108 

reducing the uncertainties in projections of future climate change. 1109 

Code Availability 1110 

The enhanced version of the ESMValTool presented in this paper is released under the Apache 1111 

License, VERSION 2.0. The newly added ESMValTool namelist ‘namelist_lauer16rse.xml’ 1112 

includes the diagnostics that can be used to reproduce the figures of this paper. This enhanced 1113 

version will be available from the ESMValTool webpage at http://www.esmvaltool.org/ and 1114 

from github (https://github.com/ESMValTool-Core/ESMValTool). Users who apply the software 1115 

resulting in presentations or papers are kindly asked to cite the ESMValTool documentation 1116 

paper (Eyring et al., 2016b) alongside with the software doi (doi: 10.17874/ac8548f0315) and 1117 

version number. The wider climate community is encouraged to contribute to this effort and to 1118 

join the ESMValTool development team for contribution of additional more in-depth diagnostics 1119 

for ESM evaluation. 1120 
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Appendix – list of abbreviations and acronyms 1718 

AATSR Advanced Along-Track Scanning Radiometer  1719 
ACE Atmospheric Chemistry Experiment 1720 
ADV Advanced along-track scanning radiometer (AATSR) Dual-View 1721 
AEROCOM Aerosol Comparisons between Observations and Models 1722 
AERONET AErosol RObotic NETwork 1723 
AIRS Atmospheric Infrared Sounder 1724 
AMSR-E Advanced Microwave Scanning Radiometer - Earth Observing System 1725 
ana4MIPs analyses for Model Intercomparison Projects 1726 
AOD Aerosol Optical Depth 1727 
ATBD Algorithm Theoretical Basis Documents 1728 
ATSR(-2) Along-Track Scanning Radiometers (2) 1729 
AVHRR Advanced Very High Resolution Radiometer 1730 
BDBP Binary Data Base of Profiles 1731 
CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization 1732 
CC4CL Community Cloud retrieval for CLimate 1733 
CCI Climate Change Initiative 1734 
CERES Clouds and the Earth's Radiant Energy System 1735 
CLARA-A2 CLoud, Albedo and RAdiation dataset, AVHRR-based 1736 
CMIP5/6 Coupled Model Intercomparison Project Phase 5/6 1737 
CMOR Climate Model Output Rewriter 1738 
CMUG Climate Modelling User Group 1739 
CO2 carbon dioxide 1740 
CRESCENDO Coordinated Research in Earth Systems and Climate: Experiments, 1741 
kNowledge, Dissemination and Outreach 1742 
CVDP Climate Variability Diagnostics Package 1743 
DECK Diagnostic, Evaluation and Characterization of Klima 1744 
DGVM Dynamic Global Vegetation Model 1745 
DJF December, January, February 1746 
DU Dobson Unit 1747 
EBAF Energy Balanced And Filled 1748 
ECV Essential Climate Variable 1749 
ENVISAT Environmental Satellite 1750 
ENSO El Niño Southern Oscillation 1751 
ERS-2 European Remote Sensing Satellite 2 1752 
ESA European Space Agency 1753 
ESGF Earth System Grid Federation 1754 
ESM Earth System Model 1755 
ESMValTool Earth System Model Evaluation Tool 1756 
EUMETSAT European Organisation for the Exploitation of Meteorological Satellites 1757 
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FMI Finnish Meteorological Institute 1758 
FTS Fourier Transform Spectrometer 1759 
GCOS Global Climate Observing System 1760 
GHG greenhouse gases 1761 
GOME/-2 Global Ozone Monitoring Experiment / 2 1762 
GOMOS Global Ozone Monitoring by Occultation of Stars 1763 
GOSAT Greenhouse gases observing satellite 1764 
GPCP Global Precipitation Climatology Project 1765 
GRACE Gravity Recovery and Climate Experiment 1766 
HadISST Hadley Centre Sea Ice and Sea Surface Temperature data set 1767 
IASI Infrared Atmospheric Sounding Interferometer 1768 
IGAC International Global Atmospheric Chemistry 1769 
ITCZ Inter-Tropical Convergence Zone 1770 
JAG International Journal of Applied Earth Observation and Geoinformation 1771 
JJA June, July, August 1772 
L2/3/4 Level 2/3/4 1773 
MAN Marine Aerosol Network 1774 
MERIS MEdium Resolution Imaging Spectrometer 1775 
Metop Meteorological Operational Satellite 1776 
MIPAS Michelson Interferometer for Passive Atmospheric Sounding 1777 
MMM Multi-Model Mean 1778 
MODIS Moderate Resolution Imaging Spectroradiometer 1779 
NASA National Aeronautics and Space Administration 1780 
NCAR National Center for Atmospheric Research 1781 
NCEP National Centers for Environmental Prediction 1782 
NDVI Normalized Differenced Vegetation Index 1783 
NH Northern Hemisphere 1784 
NIR near-infrared 1785 
NIWA National Institute of Water and Atmospheric Research 1786 
NOAA National Oceanic and Atmospheric Administration 1787 
NSIDC National Snow and Ice Data Center 1788 
obs4MIPs observations for Model Intercomparison Projects 1789 
OMI Ozone Monitoring Instrument 1790 
ORAC Oxford-Rutherford Appleton Laboratory (RAL) Aerosol and Clouds 1791 
OSI SAF Satellite Application Facility on Ocean and Sea Ice 1792 
OSIRIS Optical Spectrograph and InfraRed Imaging System 1793 
OSTIA Operational Sea surface Temperature and sea-Ice Analysis 1794 
PATMOS-x Pathfinder Atmospheres Extended 1795 
PCMDI Program for Climate Model Diagnostics and Intercomparison 1796 
PFT Plant Functional Type 1797 
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POLDER POLarization and Directionality of the Earth’s Reflectances 1798 
PMP PCMDI metrics package 1799 
RAL Rutherford Appleton Laboratory 1800 
RCP Representative Concentration Pathways 1801 
RMSD relative space-time Root-Mean-Square Deviation 1802 
RMSE Root-Mean-Square Error 1803 
SCIAMACHY Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY 1804 
SECM Simple Empirical CO2 Model 1805 
SH Southern Hemisphere 1806 
SI Sea Ice 1807 
SMR Sub-Millimetre Radiometer 1808 
SPARC Stratospheric Processes and their Role in Climate 1809 
SPOT Satellite Pour l’Observation de la Terre 1810 
SSM/I Special Sensor Microwave Imager 1811 
SWIR short-wave infrared 1812 
SST Sea Surface Temperature 1813 
SU Swansea University retrieval algorithm 1814 
TANSO Thermal And Near-infrared Sensor for carbon Observation 1815 
TCCON Total Carbon Column Observation Network 1816 
UV ultraviolet 1817 
Vis visible spectral range 1818 
WCRP World Climate Research Programme 1819 
WMO World Meteorological Organization 1820 


