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Abstract

In this thesis we study self-healing polymeric materials, these are materials which can

autonomously heal upon fracture (showing a partial or full recovery of mechanical

strength). While there are a number of approaches to self-healing we focus on mod-

elling supramolecular polymer networks. These are formed by physical association of

linear or branched polymers via reversible and highly directional non-covalent bonds.

We carry out hybrid molecular dynamics/Monte Carlo simulations of supramolec-

ular networks formed by unentangled telechelic chains. The association of stickers

leads to the formation of a transient network. At high bonding energies, the major-

ity of stickers are fully reacted and the fraction of open stickers is less than 1%. We

find the dynamical behaviour of such systems is dominated by a partner exchange

mechanism in which stickers exchange their associated partners by the association

and disassociation of sticker clusters. We propose a phantom chain hopping model

to describe chain relaxation dynamics in supramolecular networks, which provides

numerical predictions in reasonably good agreement with our simulation results.

These systems are then studied under both shear and planar extensional flows. The

presence of transient networks leads to a huge increase in viscosity. We find strain

hardening behaviour in start-up flow for shear rates higher than the reciprocal of the

average bond lifetime which we conclude results from the non-Gaussian stretching

of polymer chains. An overall reduction in the number of network strands is also

seen which ultimately leads to shear thinning behaviour in steady-state. We also

carry out simulations of mildly entangled monodisperse polymer chains under pla-

nar extensional flow by taking advantage of the computational benefits afforded by

using GPUs in scientific computing. The method developed is found to be 10 times

faster than a CPU approach while providing similar accuracy. These simulations are



shown alongside experiments of uniaxial extension and provide qualitatively similar

behaviour (both showing extensional thickening at intermediate rates).
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Chapter 1

Introduction

1.1 Motivation

The word polymer derives from the ancient Greek word polus (many) and meros

(parts). As this description suggests polymers are large molecules or macromolecules

constructed of many repeated subunits known as monomers. These materials have

become essential in all aspects of modern life due to their broad range of properties

(e.g., mechanical strength, temperature resistance, structure) and can be found in

everyday items’ from the polyethylene terephthalate used to make drinks bottles

to the composite polymers used in the Airbus A380 ‘Superjumbo’ airframe. While

natural sources of polymers exist, the most widely used polymers are synthesised

using petrochemical feedstocks which are in limited supply and subject to an ever

increasing cost. This is where the development of materials which can be more

easily recycled and which posses an increased lifespan will play an important role in

reducing humanities environmental cost.
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One class of materials which stand out in this regard are those capable of au-

tonomous healing. Self-healing materials are inspired by biological systems where

damage results in an autonomous healing process which does not require external

intervention (e.g., blood clotting, bone repair) [1]. Self-healing materials are capable

of repairing themselves upon damage with a full or partial recovery of mechanical

strength. In recent years reversible chemical bonds have been exploited to produce

healable materials which are more efficiently recycled. The production of materi-

als which can heal either small cracks or fractures will dramatically improve the

longevity of polymeric products. We are already starting to see the first commer-

cially available examples in the form of healable coatings by manufacturers such as

Nippon Paint and Bayer [1].

There are three primary approaches to self-healing [2]: 1) Intrinsic healing 2)

Capsule based healing and 3) Vascular healing. Intrinsic healing relies on designing

smart materials with temporary reversible bonds. These temporary bonds break

when a fracture occurs but can subsequently autonomously reform. In capsule based

approaches small capsules containing a repairing agent are embedded within the

polymer matrix. These capsules then break open during fracture releasing their

payload which fixes the material. Vascular self-healing approaches are most directly

inspired by biological systems (the vascular system). These incorporate a healing

agent in microchannels which run through the polymer matrix. In this thesis we

focus on intrinsic self-healing as these materials are often designed using techniques

of polymer physics. We study a class of materials known as supramolecular polymer

networks.

Supramolecular polymer networks are formed by the physical association of linear

or branched polymers via reversible non-covalent bonds [3, 4, 5, 6], such as hydrogen

bonds [7, 8, 9, 10, 11, 12], π − π stacking [13, 14], metal-ligand [15, 16, 17, 18] and
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ionic interactions [19, 20, 21, 22]. The reversibility of crosslinking provides them

unique abilities for working as self-healing, stimuli-sensitive and shape-memory ma-

terials (with the introduction of double networks). They also have superior pro-

cessing and recycling properties over traditional polymers and chemical networks

constructed from covalently crosslinked polymers owing to the sharp decrease in

viscosity upon increasing temperature or decreasing concentration. The potential

applications of supramolecular polymer networks have inspired strong interests in

understanding the physical mechanisms underlying their structural, dynamical and

mechanical properties.[3, 4, 5, 6]

The topological structures of supramolecular polymer networks are determined

by the molecular composition of the parent polymers and the nature of the non-

covalent interactions. For example, telechelic or triblock polymers with hydrophobic

or hydrogen-bond-rich end blocks can associate into networks consisting of either

flower-like micelles or large aggregates of attracting end groups bridged by flexible

chains, depending on polymer concentration. [23, 24, 25] On the other hand, in

transient networks formed by copolymers with many substituted associating groups,

each chain is crosslinked with many other chains at well-separated bonding sites

along its backbone. [12, 26, 19] In the latter case, each associating group is attached

to two chain segments. The complicated topological structures, together with the

interplay between the dynamics of the parent polymers and the breaking/reforming

kinetics of the physical bonds, leads to the rich dynamical behavior of supramolecular

networks.
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1.2 Overview

This thesis is organised as follows: In the remainder of this chapter we review im-

portant aspects of polymer physics. In addition the methodology used in molecular

dynamics simulations is outlined. As we wish to study associating polymers, this

chapter also includes a description of the hybrid molecular dynamics and Monte

Carlo approach we have adopted for modelling associating polymers. In Chapter 2

we study the equilibrium dynamics of associating polymer systems. The presence

of associating monomers or stickers leads to the creation of a transient network at

higher bonding energies, which consequently results in a dramatic slow-down in dy-

namic behaviour. In Chapter 3 we carry out non-equilibrium molecular dynamics

simulations of these associating polymer system under both planar extensional flow

and shear flow. Finally, in the last chapter we study the rheology of entangled

polymer chains under start-up extension.

1.3 Molecular Rheology

1.3.1 Microscopic definition of stress

The stress tensor σαβ (where α and β denote cartesian components x, y or z) is

defined as the force per unit area in the α direction acting across a plane which is

perpendicular to the β-axis. For a component σαz if we consider a volume V of fluid

which is divided by a hypothetical plane perpendicular to the z-axis the stress tensor

is given by the force Sα which the upper part exerts on the lower part through the

plane along the α-direction

σαz = 〈Sα〉 /A

4



where A is the area of the plane. In a polymer solution the force Sα consists of

two parts, i.e., the force which acts through the solvent Ssα and the force which acts

between the monomers or beads Spα. Therefore, the complete stress tensor can be

written as

σαβ = ηs(καβ + κβα) + Pδαβ −
1

V

∑
i

Fα
i R

β
i

where ηs denotes the solvent viscosity and καβ is the velocity gradient tensor. The

final term is a summation over all particles in the system, and Ri denotes the i-th

particle position and the total force Fi = − ∂U
∂Ri

acting on this particle is given in

terms of its potential energy U . The pressure tensor P is given by

P =
1

V

(∑
i

pipi
mi

+
∑
i

Fα
i R

β
i

)

where pi denotes the peculiar velocity of a particle i and mi is the mass of particle

i. In dilute solutions, the major contribution to the stress is purely viscous, which

is given by the first term. On the other hand, when the polymer concentration

increases the last term begins to dominate. Thus, in dense polymer systems the

total stress is simply given by [27]

σαβ = − 1

V

∑
i

Fα
i R

β
i .

If the forces are pairwise this can conveniently be rewritten as

σαβ = − 1

V

∑
i<j

Rα
ijF

β
ij (1.1)

where Rij = Ri − Rj and Fij is the force acting on particle i from particle j.

Eq. (1.1) is used in the calculation of stress for polymer melts where no solvent is

involved (as is the case for all systems studied in this thesis).
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1.3.2 Viscoelasticity

Viscosity describes the resistance of a material to gradual deformation by shear

stress. The stress response of a viscoelastic material to a small step strain γ is given

by σxy(t) = γG(t) where G(t) is defined as the stress relaxation function. In an

equilibrium system, G(t) is calculated from the stress auto-correlation function

G(t) =
V

kBT
〈σxy(t+ τ)σxy(τ)〉 (1.2)

where xy are any two orthogonal directions and G(t) is averaged over all pairs of

orthogonal directions. The angular brackets 〈·〉 denote an ensemble average, which

is calculated with respect to the initial time, τ . In simulations of time-dependent

correlation functions we make use of the multiple-tau correlator method [28] which

allows us to calculate autocorrelation functions on the fly.

Figure 1.1: Illustration of simple shear flow.

If we now consider a fluid under simple shear, see Fig 1.1, the shear strain is

given by γ = ∆x/h. The shear stress σxy is then defined as the ratio of applied

force in the x-direction and the cross-sectional surface area i.e., σxy = f/A. Then

from Newton’s law of viscosity we know η dγ
dt

= f/A, therefore, under simple shear

the viscosity is defined in terms of the shear stress

η = σxy/γ̇.
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In this thesis we also consider planar extension, this is a deformation where the

fluid expands in one direction and contracts in another direction with the remaining

direction fixed. In our simulations the x-direction is expanding and the y-direction

is contracting. Therefore, the planar extensional viscosity is defined as

ηE =
σxx − σyy

4ε̇

where the factor of 4 in the denominator accounts for the Trouton ratio which allows

for comparison between shear and planar extensional flows [29]. Here ε̇ denotes the

extension rate. In the linear regime viscosity can be determined using the stress

relaxation function eq. 1.2

η(t) =

∫ t

0

G(t′)dt′

this will be calculated as additional validation of our procedure for the non-equilibrium

regime. In Chapter 3 aspects of non-linear rheology are discussed further.

1.4 Polymer dynamics

1.4.1 Brownian motion

In 1872 the botanist Robert Brown [30] observed random motion of particles while

examining grains of pollen suspended in water and he later observed the same motion

of inorganic molecules, allowing him to rule out that this motion was due to living

organisms.

This phenomenon was later termed Brownian motion and in 1905 Albert Einstein

published a paper explaining in detail how the motion that Brown had observed

was a result of pollen particles colliding with surrounding water molecules. This

allowed him to derive the Einstein relation which describes the relationship between

7



a particles diffusion and it’s friction (due to surrounding particles). Diffusion is the

physical process by which particles spread steadily from regions of high concentration

to regions of low concentration. Therefore, to understand the motion of an individual

particle one must consider the concentration of particles. We can derive the Einstein

relation in one dimension by considering the concentration c(x, t) of particles at

position x and time t. Then diffusion is described by Fick’s Law which states

that given a non-uniform concentration there is a flux which is proportional to the

spatial gradient of concentration j(x, t) = −D ∂c
∂x

. In addition if there is an external

potential U(x) which exerts a force

F = −∂U
∂x

then an additional flux term is needed given by j(x, t) = − c
ζ
∂U
∂x

where ζ is known as

the friction coefficient and describes mobility. Using the continuity equation

∂c

∂t
= −∂j

∂x

we find
∂c

∂t
= − ∂

∂x

(
−D∂c

∂x
− c

ζ

∂U

∂x

)
.

At equilibrium the concentration of particles is given by the Boltzmann distribution

c0 = Aexp(−U(x)/kBT )

where kB is the Boltzmann constant, T is the absolute temperature and A is a

normalization factor. The flux term must then vanish at a concentration c0:

−D∂c0
∂x
− c0
ζ

∂U

∂x
= 0

which leads to the well-known Einstein relation

D =
kBT

ζ
.

8



The Einstein relation quantifies the diffusion of particles, allowing us to describe the

random (Brownian) motion of particles. The Einstein relation is a special case of a

more general theorem known as the fluctuation dissipation theorem [27]. Brownian

motion plays an important role in modelling of polymer solutions and melts. In 3D

the random motion of a particle can thus be modelled using a Wiener process

ζdr = σdW

where σ2 = 2kBTζ is the variance given by the Einstein relation and the left hand

side term accounts for the frictional force experienced by a particle. Here the inertia

term mr̈ has been ignored due to the high friction assumption.

1.4.2 Freely jointed chains

Firstly we consider the simplest representation of a polymer chain: an N -step ran-

dom walk constructed of bonds with a fixed length b, see Figure 1.2. Each of these

bonds points in a random direction which is uncorrelated with neighbouring bonds.

The mean end-to-end vector is then simply 〈Ree〉 = 0, however the mean squared

end-to-end distance is given by

〈
Ree

2
〉

= Nb2.

As Ree is a sum of vectors with fixed length the central limit theorem tells us

that for sufficiently large N the end-to-end vector can be described by a Gaussian

distribution

Ψ(Ree) =

(
3

2πNb2

)3/2

exp

(
−3Ree

2

2Nb2

)
.
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Figure 1.2: N -step freely jointed random walk.

1.4.3 Gaussian chains

The simplest model consistent with a Gaussian end-to-end vector distribution is one

where every bond vector, r, is itself Gaussian distributed

ψ(r) =

(
3

2πNb2

)3/2

exp

(
−3r2

2Nb2

)
.

This is in contrast to the freely-jointed model discussed above where each bond

had a fixed length. This approach is known as the Gaussian model and is often

represented in terms of a model of ‘beads’ connected by harmonic springs with the

same potential used in the Rouse model.

1.4.4 Rouse model

The Langevin equation describes the motion of a monomer which experiences regular

forces due to interactions with other monomers in addition to random and friction

forces due to interactions with surrounding media

d2Ri

dt2
m = −∇U(R1, ...,RN)− ζ dRi

dt
+
√

2kBTζdWi, (1.3)
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where ζ is the friction coefficient, m is the monomer mass, U(R1, ...,RN) denotes the

interaction potential which is dependent on all N monomers, and Wi is a Wiener

process for particle i.

The Rouse model [31] is often described as the cornerstone of polymer dynamics

as it allows for a number of time-dependent properties to be calculated analytically,

and most polymer models reduce to it on large length- or time-scales. In the Rouse

Figure 1.3: Illustration of a Rouse chain.

model a simple harmonic potential of the form

URouse(Ri+1,Ri) =
3kBT

2b2

N−1∑
i=0

(Ri+1 −Ri)
2

acts between adjacent monomers Ri+1 and Ri within a chain (see Figure 1.4), where

the prefactor is chosen such that the average square of the bond length is

〈
(Ri+1 −Ri)

2〉 = b2.

In addition the Brownian dynamics assumption is used, which states the inertia

term on the left hand side of eq. 1.3 becomes less important with time, therefore,

this term is set to zero. The motion of a Rouse chain can then be described by a

coupled system of stochastic differential equations (SDEs):

ζ
dR0

dt
=

3kBT

b2
(R1 −R0) +

√
2kBTζdW0 (1.4)

ζ
dRi

dt
=

3kBT

b2
(Ri+1 + Ri−1 − 2Ri) +

√
2kBTζdWi (1.5)

ζ
dRN

dt
=

3kBT

b2
(RN−1 −RN) +

√
2kBTζdWN (1.6)
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The Rouse model is an example of an ideal chain model where interchain interactions

are not taken into account. It also neglects excluded volume within single chains

and hydrodynamic interactions. The system of SDEs can be rewritten in terms

of independent normal modes (referred to as Rouse modes) which allows for the

motion of a chain to be described by a sum of independent random processes. This

property allows a number of observables to be determined analytically (e.g., the

stress relaxation function, monomer mean-squared displacement and chain end-to-

end vector correlation function). A good description of the analytical calculations is

presented by Likhtman [32] we briefly review some of these here. These observables

are also calculated in our computer simulations and provide a means by which to

probe dynamic behaviour.

Stress relaxation function

In the Rouse model the equilibrium stress relaxation function is defined in terms of

the Rouse mode relaxation times

G(t) =
kBTc

(N + 1)

N∑
p=1

exp

(
−2t

τp

)
where the relaxation time of the p-th Rouse mode, τp, is given by

τp =
ζb2

12kBT
sin−2

(
πp

2(N + 1)

)
and the concentration c is the number of monomers per unit volume. The longest

relaxation time (or Rouse time) is given by

τR =
ζb2

12kBT
sin−2

(
π

2(N + 1)

)
≈ ζb2N2

3π2kBT
(1.7)

which is used in characterising the dynamic behaviour of polymers. The last ap-

proximation is the most commonly quoted in the literature and is valid for large N
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(the error is known to be less than 1% for N > 8 [32]). In melts of long polymer

chains (where N > 50), the relaxation time has been found to follow a N3.4 scaling

due to inter-chain interactions (or entanglments) rather than the N2 scaling shown

in eq. (1.7). Chains for which these interactions are important are referred to as

above entanglement length. We consider entanglement length polymers in section

1.4.5.

Mean squared monomer displacement

The mean squared displacement for a monomer i is given by

g1,i(t) =
〈
(Ri(t)−Ri(0))2

〉
.

In the Rouse model for long chains the mean squared displacement of the middle

monomer shows the following scaling regimes [32]

g1,mid(t) =


6kBT
ζ
t t < τN

2b2
√

3tkBT
πζ

τN < t < τR

6kBT
(N+1)ζ

t t > τR

where τN is the fastest relaxation time (which corresponds to monomer relaxation).

For t < τN the scaling behaviour corresponds to particle free diffusion where in-

dividual monomers are unaware they belong to a chain. During the intermediate

time scale τN < t < τR monomers begin to move coherently where the number of

monomers moving together increases proportionally with the square root of time and

is therefore subdiffusive. In this regime the end monomers diffuse faster than the

middle monomers due to lower time-dependent effective friction. The ratio between

the mean square displacement of the end and middle monomers has been shown

previously to increase from 1 in the ballistic regime to a plateau value around 2
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close to the Rouse time τR. [33, 34] Finally, when t > τR all monomers move coher-

ently and the motion of chains becomes diffusive with a mean-squared displacement

proportional to time.

Chain end-to-end vector correlation function

The end-to-end vector correlation function of a polymer chain, Φ(t), can also be

calculated which allows for comparison with results obtained from dielectric spec-

troscopy. The end-to-end vector autocorrelation function is given by

Φ(t) =
〈Ree(t) ·Ree(0)〉

< R2
ee >

(1.8)

where Ree(t) is the end-to-end vector of a polymer chain at time t. Unlike the

stress relaxation function, G(t) which corresponds to bond orientation relaxation,

the end-to-end autocorrelation function corresponds to relaxation on larger spatial

scales. The relationship between these two functions then reveals differences between

models and materials. In the Rouse model the end-to-end vector correlation function

is given by

Φ(t) =
2

N(N + 1)

∑
p,odd

tan−2
πp

2(N + 1)
exp

(
− t

τp

)
.

From the above equation we can see the terminal relaxation time of the end-to-end

vector correlation function is twice as fast as that of the stress relaxation function

for a Rouse chain.

1.4.5 Tube model

Melts or concentrated solutions of long polymer chains above a critical length scale

called entanglement length, Ne, show remarkably slow dynamics. This slowdown has
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been confirmed in numerous experiments where the terminal relaxation times were

found to scale with chain length N as τd ∼ N3.4 [35] whereas in unentangled chains

(N < Ne) studied in the previous section the terminal relaxation time scaled with

τR ∼ N2. This slowdown in dynamics of long chains results from the topological

constraints imposed by surrounding chains which strongly suppress their lateral

motion. The first model developed which successfully captured the importance of

surrounding chains on entangled polymer dynamics was the tube model.

Figure 1.4: A chain in a fixed network of obstacles. The tube is depicted by dashed

lines.

In 1971 de Gennes [36] outlined an idea which would ultimately lead to the de-

velopment of tube theory. By first considering chains in the presence of a fixed

network he suggested that an entangled polymer chain experiences snake like dif-

fusion (known as reptation) through a tube formed by the topological constraints

imposed by neighbouring chains, see Figure 1.4. This novel idea was later translated

into a theory and corresponding constitutive equation by Doi and Edwards [27].

In the tube model the primitive path (red dashed line in Figure 1.4) is the

shortest path connecting the two chain ends but maintaining the same topology as

the actual chain relative to any obstacles. The primitive path has constant contour

length L. As the polymer reptates, the primitive path changes with time due to

the creation and destruction of tube segments by the chain ends. This motion is
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governed by a one dimensional Rouse motion of the chain inside the tube with a

diffusion coefficient, Dc = kBT/Nζ. Therefore, the “primitive chain” can be thought

of as the dynamic equivalent of the primitive path. This is described as R(s, t) which

denotes the primitive path at time t and where s is the contour length measured

from the chain end along the tube. It is assumed the conformation of primitive

chain becomes Gaussian on large length scale, and so the distance between two

points becomes 〈
(R(s, t)−R(s′, t))2

〉
= a|s− s′|

where a is known as the step length of the primitive chain (or is sometimes referred

to as the tube diameter). The mean square end-to-end vector of the primitive chain

must be equivalent to the mean square end-to-end vector of the polymer chain, i.e.

La = Nb2.

Thus, we have only one new parameter a which is related to the network mesh size.

The relaxation of chains is then described in terms of the tube survival probability

(the fraction of the original tube which remains at time t). The tube survival

probability can then be obtained by solving a one-dimensional diffusion equation

and is found to be [27]

ψ(t) =
∑
p;odd

8

p2π2
exp(−p2t/τd).

Here τd is known as the reptation time and describes the time taken for the polymer

chain to disengage from the tube to which it was initially confined. The reptation

time can be written in terms of Rouse model parameters and the tube diameter

τd =
ζN3b4

π2kBTa2
.

The stress tensor can then be described in terms of chain alignment due to any

deformations and the tube survival probability. In the original work by Doi and Ed-

wards in order to make the constitutive equation for the stress tensor more tractable
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they assume sections of the chain align independently (this is referred to as the in-

dependent alignment approximation (IA)).

For continuous flow histories with both deformation and reptation the stress can

be written as an integral equation

σαβ = Ge

∫ t

−∞
ψ(t− t′)QIA

αβ(E(t, t′))dt′ (1.9)

where

QIA
αβ(E(t, t′)) =

〈
(E · u)α(E · u)β
|E · u|2

− 1/3δαβ

〉
o

the angled brackets 〈·〉o denote an integral over an isotropic distribution of unit

vectors u. The prefactor is given by Ge = 3kBTcb
2/a2 and E(t, t′) is the deformation

tensor. By using spherical coordinates (x, y, z) = (r cos θ, r sin θ cosφ, r sin θ sinφ)

the integral QIA
αβ(E(t, t′)) can be expressed as a surface integral over the unit sphere

〈...〉o = 1/4π
∫ 2π

0

∫ π
0

(...)sinθdθdφ. Doi and Edwards determined analytic expressions

for QIA
αβ(E(t, t′)) under both shear and uniaxial extensional flows [37].

The most important mechanism for describing the dynamics of linear polymers

is reptation, but a number of other physical processes have also been shown to con-

tribute, including: contour length fluctuations, constraint release and longitudinal

relaxation along the tube.

1.5 Theory of associating polymers

The first theories describing associating polymers come from the study of living

polymers with the well established Cates theory [38]. Living polymers are linear

chains which can break and recombine on experimental timescales. The change in

degree of polymerization leads to a situation where the relaxation process involves
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cooperation between chain relaxation and the breaking of temporary bonds. In

these systems the degree of polymerization changes on experimental timescales. The

characteristic timescale of these systems is then given by

τ = (τrepτbreak)
1/2

where τrep is the reptation time and τbreak is the expected survival time of a chain

before if breaks into two pieces. The characteristic timescale appears deceptively

simple, but is derived by considering a relaxation mechanism where a chain must

break before combining with a nearby free chain end (one available for bonding).

1.5.1 Sticky Rouse

One of the first theories describing associating unentangled polymers capable of

forming networks originates from the work of Rubinstein et al. [39, 40]. In these

theories associating polymers are studied using scaling theory. The systems are

constructed such that each polymer chain has a uniform number of stickers along

its backbone, each capable of binary-bonding. In these systems closed stickers act

like effective high friction units which dominate the relaxation process. Hence, the

relaxation time of the parent chains can be defined in an analogous way to the

scaling theory equivalent of the Rouse time (τR ≈ τ0N
2) by considering only these

high friction units. If we regard the monomeric relaxation time τ0 as the bond

lifetime τb and the chain length N as the number of closed interchain sticky bonds

fpinter, where f is the number of stickers per chain and pinter is the fraction of

interchain sticky bonds, we can define the sticky Rouse time as

τ stickyRouse ≈ τb(fpinter)
2.

The sticky Rouse theory also highlights the need for an effective bond lifetime as

while a sticky bond may break at a time of order τb, the two stickers will recombine
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multiple times before an open sticker (a potential partner) moves near or enters

their neighbourhood. The renormalized bond lifetime is therefore defined as the

average time from the first moment at which a sticker bonds with one particular

partner up to the moment a bond is formed with a new open partner. Therefore,

the renormalized bond lifetime is proportional to the reciprocal of the probability

for finding a new open sticker in the volume Vstrand which is explored by a given

sticker during its open state

τ ∗b ≈
τbb

3

φopenVstrand
(1.10)

where φopen is the volume fraction of open stickers and b is monomer size. The

expression for renormalized bond lifetime can then be used to determine the sticky

rouse time

τ stickyRouse ≈ τ ∗b (fpinter)
2.

This idea of renormalized bond lifetime plays an important role in systems with

associating polymers and will be explored further in later chapters.

1.5.2 Sticky Reptation

The sticky reptation model [39] extends the idea of the sticky Rouse model to systems

where the parent polymers are above entanglement length. It can be regarded

as sticky Rouse motion along the contour of the tube, see Fig 1.4. The sticky

reptation time is then given by the sticky Rouse time multiplied by the number of

entanglements per chain

τ stickyrep ≈ τ stickyRouse

N

Ne

≈ τ ∗b (fpinter)
2 N

Ne

.
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1.5.3 Self-healing

The first theory to deal with the self-healing behaviour of associating polymers was

recently proposed by Stukalin et al. [41]. The system is modelled using a simplified

description of network forming chains. In particular each chain has one end fixed in

space and the other has a sticker capable of binary bonding. Using this model they

propose two processes for relaxation in the bulk system: a) the anomalous diffusion

regime b) the hopping diffusion regime.

In the anomalous diffusion case, when the exploration volume of a given sticker

overlaps with the exploration volume of another sticker they form a bond. As a

result the concentration of open stickers is approximately given by the inverse of the

volume explored as a function of time

copen(t) =
1

Vexplore(t)
∝ t−3/4.

Here we note the volume explored by an open sticker grows slower than linearly with

time t. This type of subdiffusive process was originally studied by de Gennes [42]

who found for t < τR the scaling behaviour of the root mean squared displacement

of a sticker in a Rouse chain is given by x(t) ∼ t1/4. In this subdiffusive process

the number of sites explored is greater than the number of sites present in the

region, and therefore the reaction takes place when the volumes explored by the two

stickers overlap. This relaxation process occurs with low bonding energies or for

long dangling chains.

On the other hand for short dangling chains or higher bonding energies the equi-

librium concentration of open stickers can be smaller than one sticker per pervaded

volume of a chain. In this case stickers cannot bond through anomalous diffusion.

This is where hopping governs the motion of stickers at time-scales longer than the

Rouse time of a dangling chain. In the hopping diffusion regime an open sticker
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must satisfy two criteria before a bond can form: 1) The open sticker must wait for

a previously bonded sticker to disassociate from the network. 2) The open sticker

must occupy an overlapping volume with this newly open sticker.

In addition they also studied the self-healing process by considering what hap-

pens when bringing together two damaged surfaces. When a material is fractured

the damaged surface possesses a structure far from equilibrium (with multiple open

stickers), therefore, the waiting time before the two damaged surfaces are reunited,

τw, plays an important role in determining which mechanism is used for relaxation

(i.e., either hopping of anomalous diffusion). The mechanism for relaxation is also

dependent on bonding energy which controls the fraction of open stickers in the

equilibrium state.

1.6 Network theory

Polymer networks are formed when nearly all chains in a system are cross-linked

forming a single percolated structure. These structures exhibit huge deformation

elasticity, e.g., consider the reversible deformability of a rubber band. This de-

formability originates from the entropic elasticity of polymer chains which make up

the network. When solvent molecules penetrate these materials they show novel

swelling behaviour rather than dissolution, these diluted networks are referred to as

cross-linked gels. We discuss two classic models used to understand network elastic-

ity, more advanced models do exist (e.g., the constrained junction model [43]) but

these are beyond the scope of this thesis.
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1.6.1 Affine network model

The affine network model is the simplest model which captures the idea of rubber

elasticity and was originally proposed by Kuhn [44]. In this model the deformation

of each network strand is the same as the macroscopic relative deformation imposed

on the whole network. Specifically displacement of the mean positions of cross-links

or the end-to-end vectors of a chain are transformed affinely.

1.6.2 Phantom network model

The affine network model ignores the fluctuations experienced by cross-links within

a network. The first model to account for these fluctuations was proposed by James

and Guth [45]. In this model chains of fixed length N are attached to each other at

cross-links, and the macroscopic deformation is transmitted to the bulk by chains

attached to its surface. They found the mean square fluctuation of the end-to-end

vector R around its average value 〈R〉 depends on the cross-link functionality φ [46]

〈
(R− 〈R〉)2

〉
=

2

φ
b2N

with the magnitude of fluctuations decreasing with functionality. The single-chain

description of the phantom network which maps it onto the affine network model was

proposed by Rubinstein and Panyukov [47, 48]. In this model chains are connected

to the elastic fluctuating background by effective chains (the points of attachment

on the elastic fluctuating background deform affinely). The length of these effective

chains is determined by first noting the fluctuations experienced by a junction point

with functionality fphan, attached to chains of length N are equivalent to those

experienced on attachment with an effective chain of length K = N/fphan. With

this in mind they determined a converging series which gives the length of an effective
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chain

K =
fphan − 1

fphan − 2
N

in the phantom network model.

1.7 Molecular dynamics

Molecular dynamics (MD) simulations are a numerical method for studying the equi-

librium or transport properties of many-body systems. Studied systems can consist

of multiple types of particles, each of which has a well-defined set of interactions

(these are often considered pair-wise). Molecular dynamics is a term used to de-

scribe solution of the classical equations of motion (Newton’s equations) for a set of

molecules. In many respects these simulations are similar to real experiments [49]:

Initially we must prepare the sample. Then the sample is connected to a measuring

instrument (e.g., a thermometer), after which the property we are interested in is

measured for a certain time interval. As our measurements are subject to statistical

noise the accuracy of measurement depends on size of the interval. In molecular

dynamics simulations periodic boundary conditions can be used to reduce finite size

effects when interested in the properties of bulk systems.

1.7.1 Periodic boundary conditions

In simulations we are usually interested in bulk properties, however, due to the

associated computational cost we can only simulate a limited number of molecules

(up to a maximum of approximately 106 molecules). This then could lead to surface

effects, therefore, one often uses periodic boundary conditions [50]. If we start with

an initial cubic box of size L in all directions, positioned with corners x = ±L/2,
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y = ±L/2 and z = ±L/2. For periodic boundary conditions the cubic simulation

box is replicated throughout space to form an infinite lattice with the distance

between particles calculated using the minimum image convention

rminij = (Ri −Rj)− L
[

Ri −Rj

L

]
where [·] rounds to the nearest whole number. When a molecule moves in the

Figure 1.5: Illustration showing 2D periodic boundary conditions.

original box, it’s periodic images move in exactly the same way. Thus, when a

molecule leaves the central box one of its images will enter through the opposite

face. An illustration of periodic boundary conditions in 2D is shown in Figure 1.5.

The actual position of the particle is represented by the solid circles and the open

circles represent periodic images of particles.
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1.7.2 Pair interactions

In our molecular dynamics simulations polymer chains are represented by the bead

spring model introduced by Kremer and Grest [51]. In this model the Lennard-

Jones (LJ) potential is used to model excluded volume interactions between pairs

of particles, which is given by

ULJ(r) = 4εLJ

[(σLJ
r

)12
−
(σLJ
r

)6]
where σLJ is the LJ bead diameter and εLJ defines the depth of the attractive well.

The LJ potential acts pairwise between all monomers in a system. For modelling

the melt systems, a truncated and shifted version of the LJ potential which neglects

short range attraction is often used in simulations. Therefore, all monomers in the

system interact pairwise via the purely repulsive Lennard-Jones (LJ) potential

ULJ(r) = 4εLJ

[(σLJ
r

)12
−
(σLJ
r

)6
−
(
σLJ
rc

)12

+

(
σLJ
rc

)6
]

(1.11)

for r ≤ rc, where rc = 21/6σLJ is the cut-off radius and ULJ(r) = 0 for r > rc. The

LJ interaction parameter is chosen to be εLJ = 1.0kBT where kB is the Boltzmann

constant and T is the absolute temperature. Each pair of adjacent beads in a chain

interact via the finitely extensible non-elastic (FENE) potential

UFENE(r) = −kR
2
max

2
ln

[
1−

(
r

Rmax

)2
]

(1.12)

where Rmax = 1.5σLJ and k = 30εLJ/σLJ . This choice of parameters prevents chains

from crossing themselves and others. The FENE potential is harmonic for small r

but diverges as r → Rmax.
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1.7.3 Numerical integration scheme

The equations of motion can be integrated using a number of numerical methods.

In this thesis we use the simple Verlet algorithm for equilibrium simulations and

the more accurate Gear predictor-corrector method for non-equilibrium molecular

dynamics simulations.

Verlet Algorithm

In Molecular Dynamics, one of the most commonly used numerical integration

schemes for solving the equations of motion is the Verlet algorithm. This is derived

simply by writing two third-order Taylor expansions for the position r(t), namely

r(t+ ∆t) = r(t) + v(t)∆t+
1

2
a(t)∆t2 +

1

6

d3r

dt3
∆t3 +O

(
∆t4
)
, (1.13)

r(t−∆t) = r(t)− v(t)∆t+
1

2
a(t)∆t2 − 1

6

d3r

dt3
∆t3 +O

(
∆t4
)
, (1.14)

where we have written the first derivative of r(t) as v(t) (velocity) and the second

derivative of r(t) as a(t) (acceleration). We can now add these two expressions

together giving

r(t+ ∆t) = 2r(t)− r(t−∆t) + a(t)∆t2 +O
(
∆t4
)
.

Gear predictor-corrector algorithm

The Gear algorithm possesses two stages, an initial prediction stage and a correction

step with a force calculation which is used to determine the error in the prediction.

We consider the fourth order Gear algorithm and we denote the scaled time deriva-

tives r = r0 as r1 = δt(dr0/dt), r2 = δt2

2
(d2r0/dt

2), r3 = δt3

6
(d3r0/dt

3). Thus, the
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coefficient value

c0 251/720

c1 11/12

c2 1/3

c3 1/24

Table 1.1: Fourth order Gear predictor-corrector coefficients.

predictor step can be written in matrix form
rp0(t+ δt)

rp1(t+ δt)

rp2(t+ δt)

rp3(t+ δt)

 =


1 1 1 1

0 1 2 3

0 0 1 3

0 0 0 1




r0(t)

r1(t)

r2(t)

r3(t)


The equations of motion enter through the corrector step. Evaluating forces gives

the correct second order derivative rc2(t + δt), therefore, the error in the prediction

can be determined

∆r2(t+ δt) = rc2(t+ δt)− rp2(t+ δt)

with this error the corrected values are obtained
rc0(t+ δt)

rc1(t+ δt)

rc2(t+ δt)

rc3(t+ δt)

 =


rp0(t+ δt)

rp1(t+ δt)

rp2(t+ δt)

rp3(t+ δt)

+


c0

c1

c2

c3

∆r2(t+ δt)

the coefficients c1, ..., c4 were determined by Gear [50] and are highlighted in Table

1.1.
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1.8 Monte Carlo methods

Monte Carlo methods are a class of computer algorithms developed at the end of the

second world war which allow for deterministic mathematical problems to be treated

using a probabilistic analogue which can then be solved using random sampling

techniques [50]. In our simulations of supramolecular polymers the formation and

breaking of reversible bonds is controlled by the Metropolis Hastings algorithm.

1.8.1 Metropolis Hastings algorithm

In statistical mechanics the equilibrium probability density in the canonical ensemble

of a state
{
rN
}

is given by

P
({

rN
})

= exp

(
−
U
({

rN
})

kBT

)
/Z

where U
({

rN
})

is the potential energy of the state and Z is the partition function

(i.e., the integral of the equilibrium probability density over all states). While we

can determine the energy of a state for a complex system we have no efficient way

of calculating the partition function. If we could determine the partition function,

simulations of the system would be unnecessary as macroscopic properties (e.g.,

pressure, energy) could be calculated directly, using theories based on statistical

mechanics.

In order to sample configurations from the state space we make use of the detailed

balance condition which states that at equilibrium the average number of accepted

moves from state o to any other state n is exactly equal to the number of reverse

moves, i.e., to satisfy the condition

P (o)π(o→ n) = P (n)π(n→ o)
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where π is a transition probability which can take many forms. Given the probability

of a trial move α(o → n) from o to n and the probability of accepting this move

acc(o→ n). The transition probability π(o→ n) becomes

π(o→ n) = α(o→ n)acc(o→ n).

In Metropolis’ original scheme α is chosen to be symmetric (i.e. α(o→ n) = α(n→

o)). Therefore, by the detailed balance condition we have

P (o)acc(o→ n) = P (n)acc(n→ o)

and it follows

acc(o→ n)

acc(n→ o)
=
P (n)

P (o)
= exp

(
−[U (n)− U (o)]

kBT

)
The acceptance probability chosen to satisfy this condition by Metropolis was given

by

acc(o→ n) =

 P (n)/P (o) if P (n) < P (o)

1 if P (n) ≥ P (o)
.

1.8.2 Association dynamics

In our simulations chain dynamics are governed by standard Kremer-Grest MD and

the formation or breaking of sticky bonds is controlled by the Metropolis-Hastings

algorithm. This hybrid approach was originally developed by Huang et al. [52, 53]

to study living polymers.

When two stickers form a reversible sticky bond, they interact via the bonding

potential [54, 55]

Usb(r, ε) = UFENE(r)− UFENE(r0)− ε (1.15)

where r0 ≈ 0.97σLJ is the equilibrium FENE bond length at the minimum of the

combined potential UFENE(r)+ULJ(r). The energy offset UFENE(r0)+ε in eq.(1.15)
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is introduced to control the lifetime of the sticky bonds and consequently the frac-

tion of associated stickers in the system. Figure 1.6 shows the potential which act
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Figure 1.6: A graph showing the potentials experienced by a sticker eq. 1.15

on a bonded sticker, altering ε shifts the sticky bond potential in the y-direction in-

creasing the distance at which bonds remain favourable. The sticky bonding energy

ε is independent of the separation between the two stickers and so does not alter

their associating force. The formation and breaking of sticky bonds is controlled

by the Metropolis Monte Carlo Algorithm [56] where the energy change due to the

formation of a new sticky bond is ∆E(r, ε) = Usb(r, ε) and the energy change to

break an existing bond is ∆E(r, ε) = −Usb(r, ε). If an MC move causes a reduction

in the change of energy ∆E(r, ε) ≤ 0 then it is always accepted. On the other hand

if ∆E(r, ε) > 0 a move is accepted with probability exp[−∆E(r, ε)/kBT ]. At each

MC step pairs of stickers are chosen randomly. If the chosen pair is already bonded,

an attempt is made to break the bond. Conversely, if the pair is not bonded, an

attempt is made to create a sticky bond. Each pair is chosen on average once per

MC step. The frequency fMC = τLJ/τMC at which MC steps occur governs the
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reaction kinetics of the stickers. By increasing the MC time step size τMC the sticky

bond relaxation is effectively changed from diffusion-limited to kinetically limited

regime, which will consequently alter the dynamic behavior of the system, but not

the thermodynamic or static properties. It should be noted that the change of τMC

values will not affect the qualitative results obtained in the equilibrium systems as

studied here. Furthermore, Hoy and Fredrickson [55] have shown that small MC

time step sizes are needed to reduce systematic errors in calculating dynamic and

mechanical properties of reversible associating polymer networks. Stickers are also

prevented from bonding with the same partner twice to prohibit the formation of

“double” strength sticky bonds. If these double strength bonds were allowed we

would expect to only see the bonding of sticker pairs.
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Chapter 2

Dynamics in supramolecular

polymer networks

2.1 Introduction

In this chapter we study both static and dynamic properties of supramolecular

polymers formed from simulations of unentangled telechelic chains under equilibrium

conditions using the hybrid MD/MC method outlined in Chapter 1.

Supramolecular polymer systems behave like permanent polymer networks at

time scales smaller than the bond lifetime, and as a standard polymer melt or so-

lution when bonding constraints are fully released. The most fascinating properties

of supramolecular polymer networks are associated with the relaxation dynamics in

between these two time limits.

In associating polymer systems the reversible bonds formed by stickers have

been theoretically treated as effective high friction units [57, 58, 59, 60, 61, 62] For
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example the sticky Rouse model described in section 1.5.1 relies on this assumption

to calculate the characteristic timescale. This model was one of the first models

to describe the need for a renormalized bond lifetime. It has also been extended

for studying entangled associating polymers see section 1.5.2. In recent years the

interest in self-healing materials has led to the development of a scaling theory to

describe the self-healing process of unentangled supramolecular polymer networks

see section 1.5.3.

If stickers are able to aggregate into large clusters, leading to reversible networks

of interconnected micelles, two mechanisms have been proposed to relieve stress,

namely polymer chain diffusion [63, 64] and positional rearrangement of micelles

[64]. In these systems, the hopping of stickers is assumed to proceed by dissoci-

ating from one micellar core and then associating into another. If the distance

between aggregates or micelles is much smaller than the chain length, Marrucci et

al. predicted a power-law dependence of the terminal relaxation time of unentan-

gled telechelic chains on the polymer concentration and molecular weight. [63] For

associating polymers with many regularly spaced stickers, Semenov and Rubinstein

predicted that the chain relaxation time has a power-law dependence on polymer

concentration in the unentangled or weakly entangled regime, but an exponential

concentration dependence in the strongly entangled regime. [64] Unlike the pairwise

association case [61], the bond lifetime renormalization is considered negligible when

the sticker dissociation energy is in the range of M1/2 < ε/kBT < M4/3 with M the

average aggregation number of sticker clusters. [64] This is because the aggregates

can accommodate a varying number of stickers and the estimated energy change

before and after a sticker hopping event is lower than the thermal energy kBT . The

terminal stress relaxation time of these networks is determined by the micellar posi-

tional rearrangements, which is exponentially longer than the single-chain relaxation

time due to high energy barriers. [64]
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A number of experiments have been carried out to test the predictions of the

above mentioned theoretical models and qualitative agreements have been found on

the diffusion and rheological behaviour of certain associating polymer networks.[65,

20, 66, 63] For example, Colby and co-workers have shown that the sticky Rouse

model can well describe the linear viscoelasticity of polyester ionomers when us-

ing the ionic association lifetime measured in dielectric relaxation spectroscopic

responses as model input parameters.[20] But there is still a lack of microscopic

evidence to validate the assumptions made in the theoretical models, such as the

microscopic description of the sticker hopping process and positional rearrangement

of micelles. Computer simulations at the atomistic or fine-grained level can help to

provide such microscopic insights which are generally difficult to access in experi-

ments.

Simulation studies on associating polymers have been mostly focused on static

properties, in particular the sol-gel transition and the aggregation of associating

groups [67, 68, 69, 70, 71, 72, 73, 74, 75, 76]. Much less attention has been paid to

the dynamic and rheological properties and their relation to the topological struc-

tures and parent chain dynamics. [77, 78, 79, 80] Bedrov et al. performed stan-

dard molecular dynamics (MD) simulations of solutions of short telechelic polymers

where the attractive Lennard-Jones interactions among the end groups lead to the

formation of networks of interlinked micelles or end-group clusters. [78] The stress

relaxation in the system was described as a two-step process: a first decay due to

the translational motion of the end-groups inside their clusters and second by the

rapid hopping diffusion of end-groups between neighbouring clusters, which is fol-

lowed by the terminal relaxation due to cluster disintegration. Hoy and Fredrickson

applied hybrid molecular dynamics/Monte Carlo (MD/MC) simulations to study

supramolecular networks formed by unentangled associating polymers. [55] In this

system multiple stickers are equally spaced along the chain and can only form bi-
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nary bonds. The hybrid MD/MC method used by Hoy and Fredrickson uses the

sticky bonding potential eq. (1.15) and the Metropolis Hastings algorithm for con-

trolling sticky bond formation and breaking see section 1.8.2. The key difference in

our system is the adjustable sticker functionality and we allow sticker pairs to both

break and form a sticky bond in the same Monte Carlo step (this is required to

satisfy detailed balance). Hoy and Fredrickson study mechanical properties of the

system under non-equilibrium condition by using creep and constant volume ten-

sion simulations. Simulation results on monomer diffusion, non-equilibrium chemical

dynamics and non-linear mechanical properties have been understood in terms of

the crossover from diffusion-limited to kinetically limited sticky bond recombination

and chain connectivity. In the above-mentioned simulations, the spacers in between

the stickers are still relatively short (6− 15 monomers), which limits the capacity of

clearly identifying the contributions from the parent polymer dynamics and its inter-

play with the sticker hopping process, both playing an important role in theoretical

models of associating polymer networks.

In this chapter, we study the dynamics and rheology of supramolecular polymer

networks using a model system consisting of unentangled telechelic polymers. The

flexible polymer chains are represented by the Kremer-Grest bead-spring model [81]

outlined in section 1.7. In this model a finitely-extensible non-linear elastic poten-

tial eq. (1.12) is used to represent all polymer backbone bonds and the truncated

Lennard-Jones potential eq. (1.11) is applied between all pairs of monomers. The

end monomers of chains or stickers can associate with each other to form reversible

bonds, also called sticky bonds, with controllable reaction kinetics.[55] The function-

ality of stickers is set to f = 3, meaning that each sticker can maximally associate

with two other stickers. This is the minimum functionality required for percolated

network formation [82]. Telechelic chains with functionality of f = 2 undergo head-

to-tail associations, which have been studied in other theoretical and simulation
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works. [83, 54, 80, 84] The choice of f = 3 leads to systems which are compara-

ble to supramolecular networks constructed by mixtures of associating ditopic (A2)

and tritopic (B3) molecules [7, 85, 86]. By making the sticky monomer associa-

tion directional, this model can also be conveniently applied to study reversible

networks formed by π − π stacking [13, 14] or ureidopyrimidinone (UPy) stacking

[87, 88]. More importantly, stickers with finite functionality can form clusters with

well-defined size distribution in the equilibrium state, which is essential for providing

a clear microscopic picture of the relationship between the dynamics of cross-links

and the viscoelastic behaviour in the reversible networks of interconnected clusters

or micelles. Our simulations revealed that the dynamics and stress relaxation in

such systems are dominated by the partner exchange process of stickers which is

facilitated by the repeated dissociation and association of clusters, rather than by

the single sticker hopping process which requires a sticker to overcome a high energy

barrier when trying to fully detach from its original cluster.

The rest of the chapter is organised as follows. In section 2.2 we describe the

polymer chain model and the hybrid MD/MC simulation method used in this study.

Simulation results on the static, dynamic and rheological properties of supramolecu-

lar systems are presented and discussed in section 2.3, together with some theoretical

models developed for describing the dynamic behaviour of reversible polymer net-

works. The conclusions are drawn in section 2.4.

2.2 Models and Simulation Methods

The parent polymers are represented by the Kremer-Grest bead-spring model see

section 1.7.2. [81] Each telechelic chain consists of N monomers with the two end

monomers defined as stickers. The stickers are identical to normal monomers except
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that they are capable of reversibly associating with one another. The formation and

breaking of sticky bonds is controlled by the Metropolis Hastings algorithm described

in section 1.8.2. In the system studied each sticker is allowed to associate with a

maximum of two other stickers, giving a functionality of f = 3. The functionality

can be easily adjusted for modelling different polymer systems.

The monomer density in the systems is fixed at ρ = 0.85/σ3
LJ where σLJ is the di-

ameter of the monomers. This choice of ρ has been widely used to simulate polymer

melts.[81] For flexible Kremer-Grest chains in the melt condition, the entanglement

length is estimated to be in the range Ne = 50−80.[89, 90, 33] Therefore, we choose

to study two polymer chain lengths, N = 25 and 45, in the unentangled regime,

bearing in mind that there could occasionally be locked-in entanglements due to the

reversible association of the end monomers. As will be seen in the stress modulus

calculations, there is no significant contributions from such entanglements. By em-

ploying unentangled parent polymer chains we can focus on relating the dynamics of

the cross-links to the dynamic and rheological behaviour of the resulting transient

networks.

The equations of motion of the monomers are solved numerically using the Verlet

algorithm (section 1.7.3) with a MD time step size δt = 0.01τLJ where the Lennard-

Jones time τLJ =
√
mσ2

LJ/εLJ . [81, 91, 33] The simulations are carried out in the

canonical (NVT) ensemble with periodic boundary conditions applied in all three

directions. The stickers are allowed to associate across periodic boundaries.

Most of the simulation data presented in this chapter were generated using τMC =

0.01τLJ (i.e., one MC step at each MD time step), with some extra runs using

τMC = 1.0τLJ for comparison. As will be shown in next section, the use of smaller

τMC value leads to shorter terminal relaxation times and so enables us to obtain

good statistical results with affordable computational efforts.
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Each simulation system undergoes two stages of equilibration before any analysis

takes place. At first the system is equilibrated as a polymer melt with all stickers

treated as normal monomers along the chains. [90, 33] This stage lasts for a period

of multiple Rouse times of the unentangled chains. As an example, the Rouse time

for the flexible chains of length N = 25 as used in our simulations is τR ≈ 923τLJ .

In the second stage the hybrid MD/MC simulation are carried out with the sticker

association mechanism switched on. This stage is considerably longer than the first

one due to the much longer relaxation time of polymer chains in a supramolecular

network than in a melt (typically increased by a factor of 5 − 10). Following the

equilibration stages the static and dynamic properties of the reversible network are

calculated on the fly over an equilibrium run of 10− 100 terminal relaxation times

of the whole system.

The static, dynamic, and rheological properties of the model systems are studied

for a range of sticky bonding energy from ε = 0, corresponding to regular polymer

melt, up to ε = 12kBT . As will be shown in the next section, the sol-gel transition of

such systems takes place at ε ≈ 4.3kBT , which is consistent with the critical ε value

found in simulation systems where sticky monomers interact with the same bonding

potential as in eq. (1.15), but follow the binary bonding rule. [55] The simulation box

we used contains Nch = 400 polymer chains in the case of polymerization N = 25.

For N = 45 there are Nch = 200 chains. To improve the statistics, all simulation

data on the reversible networks is averaged over at least four independent runs for

each set of system parameters. For example if we consider ε = 10kBT the stress

relaxation and end-to-end vector correlation functions show a relative standard error

in the range 1 − 9%. Much larger ensemble averages are taken for the permanent

networks generated by preventing the sticky bonds from dissociation, as will be seen

in the next section.
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Figure 2.1: Snapshot of a transient network formed by associating telechelic chains

of length N = 25 and sticky bonding energy ε = 10kBT . The red spheres represent

the stickers at the chain ends.

2.3 Results and Discussions

2.3.1 Static properties: reversible network analysis

Figure 2.1 presents a snapshot of the simulation system consisting of associating

telechelic chains of length N = 25 and sticky bonding energy ε = 10kBT . It shows

clearly that at high enough bonding energy, the stickers associate into clusters of

different sizes which cross link the parent polymer chains into a transient network.

The topological structures of the networks can thus be understood from the sticker

cluster size distributions.
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Sol-gel transition in supramolecular polymer systems

In supramolecular polymer systems, the association of stickers leads to the formation

of chain clusters of different sizes. For a system consisting of Nch telechelic chains

with sticky end monomers of functionality f , the extent of reaction is measured by

p =
Nbond

Nch(f − 1)
(2.1)

where Nbond is the ensemble-averaged total number of sticky bonds formed in the

system. The reaction extent p increases with the increase of the sticky bonding

energy ε. The sol-gel transition occurs when p exceeds a critical threshold of pc.

In order to determine if the system is percolated in a given direction we use the

method of Koopman and Lowe [92] which tests whether any group of associated

chains is connected to its periodic image. We only require the system to be perco-

lated in one direction. This analysis allows us to identify which chains make up the

gel and which are part of the sol. The sol-gel transition can be characterized by the

weight-averaged cluster size measured in the sol phase [93, 55]

NC
W =

Nch∑
j=1

j2Psol(j)

Nch∑
j=1

jPsol(j)

. (2.2)

where Psol(j) is the probability for a chain to be associated into a finite cluster

consisting of j chains. When p approaches pc, N
C
W diverges in infinite system due

to the formation of a percolated network. However, since our simulations can only

consider finite Nch, a maximum in NC
W (p) is expected at the percolation transition.

Figure 2.2 presents the simulation results on NC
W as a function of the extent of

reaction as obtained in hybrid MD/MC simulations using different box sizes. The

maximum of NC
W occurs at pc ≈ 0.4, which is in agreement with that found in
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systems of binary associations [55]. This pc value corresponds to a sticker bonding

energy εc ≈ 4.3kBT . In Figure 2.3 this bonding energy is approximately where the

fraction of open stickers becomes less than the fraction of partially- and fully-reacted

stickers. Percolated transient networks are formed in the systems with ε > εc.
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Figure 2.2: Weight-averaged chain cluster size as a function of the extent of reaction

p as obtained in supramolecular polymer systems with sticker functionality f = 3.

The simulations were performed using different box sizes and so different number of

parent chains Nch.

Sticker cluster formation

In our model systems each sticker can bond with up to two partners. This allows

for three possible bonding states: open with no bonded partner, partially reacted

with one bonded partner and fully reacted with two bonded partners. The average

fraction of stickers in each state is calculated as a function of the bonding energy

ε. The simulation results in Figure 2.3 for the systems with chain length N =

25 demonstrate that the fraction of open stickers decreases monotonically with an
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increase of ε, while the total fraction of (partially and fully) reacted monomers keeps

on increasing and gradually saturates at high ε values. The crossover of these two

fraction curves occurs at ε ≈ 4.3kBT which is very close to the critical bonding

energy for the sol-gel transition. The fraction of fully reacted stickers becomes

dominant when ε > 6kBT . At high bonding energies ε ≥ 10kBT , the majority of

the stickers are fully reacted and the fraction of open stickers is down to less than

1%. In the sticker hopping picture for binary bonding systems [60, 59, 61, 94, 55],

if the fraction of open stickers is low, pairs of associated stickers usually break and

recombine many times before finding other open stickers to associate with. This

significantly slows down the dynamic relaxation behaviour as recombination with

previous partners leaves the network topology unchanged. In the transient networks

we studied, the formation of larger sticker clusters can facilitate the partner exchange

process as shown in the next section.
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Figure 2.3: Average fractions of stickers that are in open, partially reacted and fully

reacted states as a function of sticky bonding energy ε. The chain length is N = 25.

Stickers with functionality f = 3 (or above) can associate into clusters with

various sizes. The cluster size distribution can be described by the probability for
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Figure 2.4: (a) Probabilities for finding a sticker in a sticker cluster of size Nclu in

the systems with sticky bonding energy ε = 10kBT . The dashed curves illustrate the

analytical results given by eq. (2.8). (b) Average sticker cluster size as a function

of sticky bonding energy.
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finding a sticker in a cluster of size Nclu

P (Nclu) =
nNclu

Nclu

2Nch

(2.3)

where nNclu
is the average number of sticker clusters of size Nclu and 2Nch is the

total number of stickers in the system. Simulation results on P (Nclu) for the two

different chain lengths at ε = 10kBT are given in Figure 2.4(a). In agreement

with the high reaction rate at this bonding energy (Figure 2.3), the majority of the

stickers aggregate into clusters with sizes Nclu ≥ 3. The distinct peak at Nclu = 3

corresponds to the smallest cluster size for which each sticker can be fully reacted

and so gain −ε in association energy. The cluster size distribution is determined by

the competition between this energy gain and the entropic penalties due to the loss of

sticker translational entropy. In solutions of associating polymers, the formation of

sticker clusters or micelles can lead to elastic stretching of the polymer chains, which

in turn affects the sizes of stable clusters. But this polymeric effect is negligible in

the melt condition because the average end-to-end distance of the polymer chains is

nearly constant in the systems with different ε values.

Cluster formation of stickers in the equilibrium state can be theoretically de-

scribed in a similar way to micelle formation of amphiphilic molecules in dilute

solutions. [95] Equilibrium thermodynamics requires the mole fraction, XNclu
, of

stickers associated into clusters of size Nclu to satisfy the condition

µ0
Nclu

+
kBT

Nclu

ln (XNclu
/Nclu) = const, (2.4)

where the chemical potential of a sticker inside a cluster is given by

µ0
Nclu

= −ε+ F poly(Nclu), Nclu ≥ 3. (2.5)

The second term on the right hand side of eq. (2.5) allows the inclusion of possible

(positive) polymeric contributions to the free energy. Since the chemical potential
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has a minimum value of µ0
Mclu

= −ε at the cluster size Mclu = 3, it is convenient to

describe the mole fraction XNclu
by [95]

XNclu

Nclu

=

(
XMclu

Mclu

exp
[
Mclu(µ

0
Mclu
− µ0

Nclu
)/kBT

])Nclu/Mclu

, Nclu ≥Mclu (2.6)

In our system of telechelic chains XNclu
is related to the sticker density as

∞∑
Nclu=1

XNclu
=

2

N
. (2.7)

Hence, the probability of finding a sticker in a cluster of size Nclu is related to

XNclu
by Pclu(Nclu) = XNclu

N/2 where
∑

Nclu
Pclu(Nclu) = 1. If we neglect all the

polymeric effects by assuming F poly(Nclu) = 0, eq. (2.6) can be simplified to

Pclu(Nclu ≥ 3) = Nclu

(
2

N

)Nclu/3−1(Pclu(3)

3

)Nclu/3

, (2.8)

where the only input parameter is P (Nclu = 3) whose value can be found in simu-

lations.

As shown in Figure 2.4(a), the predictions of eq. (2.8) are in reasonably good

agreement with the simulation data. The relatively faster decay of the theoretical

curves can be attributed to the assumption of dilute solution of stickers made in

developing eq. (2.6). Since the polymer chain lengths we studied are still relatively

short, the small sticker clusters have a fairly high probability to meet each other

and associate into larger clusters, leading to a slower decay of Pclu(Nclu) at large

Nclu values. When the chain length is increased from N = 25 to 45, the peak

at Pclu(Nclu = 3) becomes higher and consequently the fraction of larger clusters

gets smaller because of the reduced sticker density. The agreement between the

theoretical and simulation results also improves.

Simulation results on the average sticker cluster size which is defined as Navg
clu =∑

NcluP (Nclu), are plotted in Figure 2.4(b) as a function of ε. The value of Navg
clu
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first increases with the sticky bonding energy until ε ≈ 9kBT and then reaches a

plateau, e. g., of Navg
clu ≈ 3.6 for N = 25. This is consistent with the results in Figure

2.4(a) that at high ε values more than 50% stickers are in clusters of size 3 because

the chemical potential of stickers is minimized at Nclu = 3 for the functionality of

f = 3. The average sticker cluster size can be considered as the active functionality

of junctions in polymer networks.[96] We find the fraction of fully-reacted stickers at

chain length N = 45 is higher than N = 25 for bonding energies ε ≥ 4kBT (results

not shown). One might expect this to result in an average cluster size larger than

N = 25, however Figure 2.4(b) only shows an increase for intermediate bonding

energies 4kBT ≤ ε ≤ 6kBT . At higher bonding energies when the majority of

stickers are fully reacted the partner exchange mechanism described in section 2.3.2

becomes dominant allowing for stickers to change their connectivity to the network

without complete detachment. This is achieved through the repeated association

and disassociation of sticker clusters, therefore, systems with a high sticker density

(e.g in the N = 25 case) experience such events more rapidly, and so having a higher

frequency to associate into larger clusters and consequently causing a net increase

in cluster size see Figure 2.4(a). As will be shown in section 2.3.2, the existence of

large clusters plays an essential role in determining the terminal relaxation time of

the supramolecular systems.

Elastically effective strands

The mechanical strength of a polymer network is determined by the fraction of elas-

tically effective strands. In unentangled networks each effective strand contributes

to the rubbery modulus by an order of kBT . [82] Apart from the reversible nature

of cross-links, the transient networks formed by associating polymers has similar

topological structures to chemically fixed networks and so possess elastically inef-
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Figure 2.5: (a) Fraction of elastically ineffective strands, φineff , in the supramolec-

ular networks obtained by using different cutoffs to identify fully contracting chains

in the PPA-type analysis. The inset presents the probability distributions of the

chain end-to-end distances in the fixed networks with both excluded volume inter-

actions and thermal fluctuations switched off. (b) Direct MD simulation results on

the stress relaxation of fixed polymer networks that are generated by fixing the topo-

logical structures of transient networks obtained from hybrid MD/MC simulations.

All results are averaged over 100 statistically independent network configurations,

and the error bars show the standard deviation of the mean. The polymer chain

length is N = 25.
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fective components, such as dangling chains and loops. This can already be seen in

Figure 2.3 from the nonzero fraction of open stickers even at the highest bonding

energy studied. In addition, some of the partially reacted stickers are involved in the

formation of sticker clusters of size two and consequently longer chains or network

strands by the linear association of two or more parent polymer chains. This also

reduces the modulus of the network.

We investigated the fraction of elastically effective strands in the transient net-

works using a method inspired by the primitive path analysis (PPA) of entangled

polymers.[89] This was done by randomly selecting instantaneous network configura-

tions from the trajectories obtained in well-equilibrated hybrid MD/MC simulations.

The topological structures of these networks were fixed by preventing any existing

sticky bonds from breaking in addition to stopping the creation of new sticky bonds.

The excluded volume interactions among all monomers were then switched off to

make the bonds contract and the system temperature was set to zero to remove

thermal fluctuations. This results in the collapse of chains not contributing to the

plateau modulus. The dangling chains shrink into single points, giving the chain

end-to-end distance Ree = 0. The chain loops are somewhat different. Even though

both ends of the loop belong to the same cluster or cross-link, they may still have

a small separation (Ree 6= 0) because other stickers in the cluster are subject to

tension along the shrunken network strands connected to them. For this reason, we

need to introduce a cutoff distance for Ree to identify the ineffective strands.

In Figure 2.5(a) we show the fraction of elastically ineffective chains, φineff ,

obtained from the PPA-type analysis of transient networks formed by telechelic

polymers of length N = 25. The φineff values decrease with the use of smaller

cut-offs and start to converge after Ree ≤ 0.75σLJ . This is consistent with the

probability distributions of the chain end-to-end distances given in the inset of Figure
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2.5(a) which show two distinct peaks at higher bonding energies with the minimum

between the peaks occurring at Ree ≈ 0.75σLJ . The peak located at smaller Ree is

indicative of chains that have collapsed, while the one at larger Ree represents the

chains that contribute to the network elasticity. Therefore, we can reasonably use

this minimum location (0.75σLJ) between these peaks as an approximation for the

cutoff. It follows that there are approximately 5% ineffective strands in the networks

formed at sticky bonding energies ε ≥ 10kBT when the average sticker cluster size

nearly saturates, see Figure 2.4. The strongly associated transient networks thus

have high elastic efficiency. We note that unlike the PPA method our analysis

algorithm does not preserve entanglements between the network strands. The cross-

linking of unentangled polymer chains will unavoidably lock in a certain number of

entanglements. How such entanglements contribute to the stress relaxation of the

reversible networks should be investigated as a function of the parent chain length

and sticky bonding energy, which will be left for further study.

To provide a reference for the plateau modulus of the reversible networks, we

calculate the stress relaxation function, G(t), of the fixed polymer networks used in

Figure 2.5(a) by performing standard MD simulations. The MD results on G(t) are

presented in Figure 2.5(b) for network configurations taken from hybrid MD/MC

simulations using two different sticky bonding energies ε = 10kBT and 12kBT .

Each curve has been averaged over 100 statistically independent fixed network con-

figurations. As expected, the stress relaxation behaviours of the two sets of fixed

networks agree with each other within error bars, confirming the similar topological

structures of the reversible networks formed at high enough sticky bonding energies

(ε ≥ 9kBT ). The initial reduction in both curves is due to the Rouse motion of

chains which occurs when t � τR and therefore before chains become aware of the

constraints imposed by the fixed network.
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The corresponding plateau modulus is GN ≈ 0.028kBT/σ
3
LJ , which is close to the

estimation of GN = ρkBT/N = 0.034kBT/σ
3
LJ for an ideal polymer network with

monomer number density ρ = 0.85σ3
LJ and strand length N = 25. In the classic

phantom network model (section 1.6.2) the plateau modulus can be rewritten in

terms of the number density of elastically effective strands. From our PPA-style

analysis we can determine the number density of elastically effective strands directly

Nactive =
Nch(1− φineff )

V
,

thus the plateau modulus is given by

GN = Nactive(1− 2/f)kBT

where f is the cross-link functionality. For ε = 10 if we assume a cross-link func-

tionality f = 4, the plateau modulus is approximated as GN = 0.0234T/σ3
LJ which

is close to the calculated value.

2.3.2 Dynamic and rheological properties

A key difference of supramolecular polymer networks from polymer melts and per-

manent or chemical networks is the formation of reversible bonds. This introduces

additional timescales into the systems and consequently affects their dynamic and

rheological behaviour. We thus start with identifying the timescales characterizing

the dynamics of reversible association of stickers and the underlying microscopic pic-

tures, and then relate them to experimentally measurable properties, such as sticky

monomer diffusion, stress and chain end-to-end vector relaxation functions.
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Timescales characterizing reversible association of stickers

Sticky bonds are formed by physical association of pairs of stickers. Considering the

dissociation of sticky bonds as a thermally activated process, their average lifetime,

τb, is predicted to depend exponentially on the bonding energy ε [55, 94]

τb ≈ τMC exp(ε/kBT ), (2.9)

where the MC step size τMC reflects the controllable reaction rates of the stickers

in the hybrid MD/MC simulation model. Figure 2.6 presents the simulation data

on τb for two different chain lengths and τMC = 0.01τLJ , which follows the expected

exponential dependence on ε. When increasing τMC from 0.01τLJ to 1.0τLJ , the τb

value was found to increase by a factor of about 100 without altering any static

properties of the systems (results not shown). The average sticky bond lifetimes in

the systems with longer chains (N = 45) are slightly larger than those in the shorter

chain systems (N = 25). This can be attributed to the higher probability of stickers

to form stable clusters (of size Nclu = 3, see Figure 2.4) in the former systems, which

effectively prolongs their average association time.

In the systems with sufficiently high bonding energies (ε ≥ 6kBT ) most of the

stickers are associated into clusters as shown in Figure 2.3. Following a bond break-

ing event, the open stickers will most likely recombine with their old partners due

to the low density of available opening reaction sites nearby. This breaking and re-

forming process needs to be repeated many times before a sticker finally combines

with new partners without returning to the old ones. It is through such partner

exchange events that the topological constraint imposed by a sticker on its parent

polymer chain is partly released. Therefore an additional timescale much longer

than τb is required for describing the dynamic properties of associated polymer sys-

tems. [61, 97, 55, 94] In systems where stickers only experience binary bonding,
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the renormalized bond lifetime, τ ∗b , was defined as the average time from the first

moment that a sticker is bonded with one particular partner up to the moment that

a bond is formed with a new open partner (see section 1.5.1). The renormalized

bond lifetime in the sticky Rouse model was shown to be dependent on both the

concentration of open stickers and the volume that an open sticker can explore. The

situation becomes more complicated for systems consisting of stickers with higher

functionality (f ≥ 3) where larger sticker clusters are formed.
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Figure 2.6: Average sticky bond lifetime τb, partner exchange time τpe, and cluster

exchange time τce with respect to sticky bonding energy ε for the systems with two

different chain lengths and τMC = 0.01τLJ .

We introduce two timescales for characterizing the dynamic process of releasing

topological constraints imposed by associated stickers. The first one is the partner

exchange time, τpe, which is defined as the average time taken for a given sticker from

first being bonded with two particular partners until forming bonds with two new

partners, as sketched in Figure 2.7(a). For a partner exchange event to take place

there is no requirement for both stickers to break at once, instead multiple sticky

bond formation and breaking events usually take place before a sticker exchanges its
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partners. This definition can be considered as an extension of the renormalized bond

lifetime concept from the binary association case (f = 2) to systems with sticker

functionality f = 3. In many supramolecular systems the stickers can associate with

more than two partners and the sticker clusters also have a broad size distribution,

e. g., see Figure 2.4. A more general definition of the characteristic timescale could

be the cluster exchange time, τce, which is the time taken for a given sticker from

being initially associated with one cluster consisting of three or more stickers until

associating with another sticker cluster of size Nclu ≥ 3 which shares no stickers in

common with the original cluster. A cluster exchange event can occur in multiple

stages with stickers within a cluster changing over time until none match the original.

This definition can be easily understood from the hopping picture of a sticker from

one sticker cluster or micellar core to another. [63, 64] We note that these timescales

are better defined in the strongly associated supramolecular networks than in the

systems with low bonding energies. The latter cases are anyhow of little interest,

because no transient network is formed and so chain dynamics are only weakly

altered by the presence of stickers. The partner exchange time and cluster exchange

time can not be directly understood via the proposed expression for the renormalized

bond lifetime in the sticky Rouse model eq. (1.10). This is because partially reacted

stickers can also form reversible associations, and so must be taken into account

in the volume explored by open stickers Vstrand and concentration of open stickers

φopen.

Figure 2.7 compares the probability distributions of the partner exchange and

cluster exchange times for the system with chain length N = 25 and bonding en-

ergy ε = 10kBT . The two distributions agree with each other reasonably well at

timescales t� τb. We note the tails for both distributions can be well approximated

by a single exponential. This is expected for the systems with f = 3 where more

than 50% of the sticker clusters are of size 3. The ensemble-averaged values of τpe
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and τce are presented in Figure 2.6 as a function of ε for the two different chain

lengths. The two definitions provide nearly identical results within error bars (of

symbol size). At small timescales the cluster exchange time has higher probabilities

because of the inclusion of events involving partially-reacted stickers. In the partner

exchange time we require both stickers to be bonded, while in the cluster exchange

time a sticker need only have a single bond attaching it to a cluster. For conve-

nience, we will only use the partner exchange time τpe to represent these timescales

in the remaining sections. These events are studied further in the next section. The

simulation data on τpe and also τce can be fitted with an exponential function of the

form

τpe,ce ≈ τMC exp(Bε/kBT ) (2.10)

where B = 1.36 > 1 indicates that the partner exchange time grows with ε faster

than the single exponential function of τb ∼ exp(ε/kBT ). This is qualitatively

consistent with the renormalized bond lifetime τ ∗ ∼ exp(7ε/6kBT ) predicted by

Stukalin et al. when studying self-healing behaviour (details of the model studied

were described in section 1.5.3).

For a given bonding energy, the values of τpe and τce are up to 2 orders of

magnitude larger than the average bond lifetime τb, indicating that τb is not suf-

ficient for describing the dynamics in supramolecular networks. Our simulation

results are thus very different from the theoretical assumption that the bond life-

time renormalization is negligible in systems with micellar core formation, although

the sticker bonding energy we studied does not fall exactly into the relevant range

of N
1/2
clu < ε/kBT < N

4/3
clu . [64]
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Microscopic picture of sticker partner exchange

According to the original sticker hopping picture, a sticker first dissociates from

the initial sticker cluster or micellar core and then diffuses as an open sticker until

meeting another cluster to associate with. Although the difference in the total

bonding energy of the sticker is negligible between the initial and final states, it

needs to overcome an energy barrier on the order of (f − 1)ε to break off all the

sticky bonds formed in the initial cluster. In equilibrium systems the probability

for such hopping events to happen is exponentially low, and the corresponding time

scale would be τhop ∼ exp [(f − 1)ε/kBT ]. But the simulation results on τpe or τce

in Figure 2.6 grow with the association energy ε much slower than exp (2ε/kBT ) for

f = 3. This implies the existence of other pathways that have much lower energy

barriers to allow the stickers to move from one cluster to another.

The sticker clusters in a supramolecular network fluctuate in space just like

junction points in a permanent polymer network. Sticky bonds are short lived

breaking and recombining many times while two clusters are close to one another,

therefore they may associate into a larger cluster at no additional energy cost with

the total number of sticky bonds remaining constant between the small clusters and

the larger cluster.

The stickers coming from these two different clusters can then easily swap their

partners inside the large cluster, because each sticker now has equal probability

to associate with any other sticker in the cluster owing to fast bond breaking and

reformation events. Since the large cluster is entropically unfavorable and so short-

lived, it will break apart into two new clusters which may or may not be of the same

size as the two original ones but has a relatively high probabilities to contain different

member stickers. It is through this association-dissociation process of sticker clusters
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that stickers change their partners. Figure 2.8(a) sketches such a process where two

sticker clusters both of size Nclu = 3 associate into a larger one of size 6, which later

breaks into two new clusters to complete a partner exchange event. The cluster

association-dissociation pathway thus facilitates changes in the transient network

topology without requiring stickers to fully dissociate from the network. In Figure

2.8(a) the total number of sticky bonds remains 6 throughout the process, with

sticky bonds frequently breaking and recombining so there is no additional bonding

energy cost involved.

On the basis of the microscopic picture in Figure 2.8(a), we perform a de-

tailed analysis of partner exchange events, and correspondingly network topological

changes, by studying the variation of sticker cluster size from the perspective of a

sticker. Firstly, we define stable sticker clusters as those possessing a lifetime larger

than the average bond lifetime, ∆t > τb. Then we look at the transitions through

which a sticker initially attached to a stable cluster finally associates with another

stable cluster. We require the new cluster to either be of a new size or contain

different members from the original cluster. This allows for three possible cases: (1)

two clusters combine to form a larger cluster; (2) a smaller cluster breaks off from

a larger cluster; (3) a cluster exchanges members with another cluster but remains

the same size. The events where two clusters combine together and then separate

back into the original ones are not counted, because they do not result in changes

in transient network topology. From the number of transitions we can determine a

right-stochastic matrix, Mi,j, which measures the probability that a sticker initially

in a cluster of size Nclu = i (initial state or ith row in the matrix) transfers into

a final cluster of size j (final state or jth column of the matrix). The matrix is

described as right-stochastic because we normalize each row such that
∑
j

Mi,j = 1.

The matrix is illustrated in Figure 2.8(b) where the color of a block represents the

magnitude of the transition probability.
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Figure 2.8(b) shows that for Nclu ≤ 3 the clusters usually attempt to grow in size,

e. g., from a cluster of size 2 to that of size 5 with M2,5 = 0.383 (red block). This is

contrasted by a usual decrease in cluster size when Nclu ≥ 4, e. g., from a cluster of

size 7 to clusters of sizes 3 and 4 with M7,3 = 0.281 (orange block) and M7,4 = 0.259

(yellow block), respectively. It is evident that the most probable pathway for sticker

cluster size changes is the addition or subtraction of three stickers, as marked by

the two solid lines in Figure 2.8(b). This can be understood by the fact that a

group of three associated stickers has the maximum possible translational entropy

without compromising bonding energy, as discussed in the next section. On the

contrary, the probabilities in the first column of the transition matrix are very low,

indicating that it is very unlikely for a single sticker to break off a cluster. This

further confirms that the partner exchange events usually take place via the cluster

association and dissociation processes, rather than by single sticker hopping. The

presence of large sticker clusters thus facilitates the rates of partner exchange and

so polymer chain relaxation. In section 3.3.2 we investigate how imposing an upper

cap on the sticker cluster size would affect the stress relaxation behaviour of the

transient networks. We note that a sticker may need to experience multiple cluster

association-dissociation events in order to exchange all of its original partners. This

can be seen more clearly in the example sketched in Figure 2.8(a) where stickers 1

and 4 have successfully exchanged both of their partners, while other stickers have

only exchanged half of their original partners and so need more cluster association-

dissociation events to exchange those which remain.

Mean square displacement of stickers

The effect of varying bonding energy on the mean square displacements (MSD) of

stickers, gsticker1 (t) = 〈(rsticker(t) − rsticker(0))2〉 where rsticker(t) is the coordinate
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of the sticker bead, is shown in Figure 2.9(a). For comparison we also include the

MSD data of chain end monomers in polymer melts (ε = 0kBT ) and of stickers

in fixed polymer networks whose configurations were taken from the simulations

of supramolecular systems with ε = 12kBT . Since the chain lengths studied are

well below the entanglement length Ne, the monomer mean square displacement in

the melt system follows Rouse behaviour which was described in section 1.4.4. In

supramolecular systems, the association of stickers significantly slows down their

diffusion behaviour. The transition from the subdiffusive to diffusive regime is de-

layed beyond the partner or cluster exchange time τpe,ce (> τR). This is in contrast

to non-associating unentangled polymers which follow Rouse behaviour where the

transition between the subdiffusive and diffusive regime occurs at t = τR.

At time scales t < τpe, the MSD of the stickers is governed by the cluster size

distribution. Figure 2.9(b) shows the mean square displacements of sticker clusters

of different sizes, gNclu
1 (t), for the system with ε = 10kBT . The MSD of stickers in

clusters of size Nclu = 2 is analogous to that of middle monomers in chains of length

2N . As expected the growth rates of the gclu1 curves decrease with the increase

of Nclu. For each given bonding energy, the gsticker1 data in Figure 2.9(a) can be

exactly calculated by taking a weighted average of the cluster MSD results by using

the cluster size distribution Pclu(Nclu),

gsticker1 (t) =
∞∑
i=1

Pclu(i)g
i
1(t)

up to the lifetimes of the related clusters.

The growth rate of gsticker1 (t) decreases with the increase of ε as a consequence

of the increased average cluster size. When ε ≥ 9kBT the average cluster size con-

verges, e. g., to Navg ≈ 3.6 in systems with chain length N = 25. Correspondingly

the sticker MSD curves obtained at these high ε values follow a universal behaviour
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similar to that resulting from the thermal fluctuations of cross-links in fixed poly-

mer networks (dotted-dashed line) up to the partner exchange time in each case.

This indicates that below τpe the supramolecular systems behave as permanent net-

works. At larger time scales t > τpe, the stickers are able to exchange their partners

through the cluster association-dissociation processes and so gradually forget their

topological constraints. The gsticker1 (t) curves slowly cross over into the diffusive

regime. Figure 2.9 also shows that for the bonding energies studied in this thesis

(ε ≤ 12kBT ), there is still no extended plateau regime in the diffusion curves due to

the limited lifetimes of the clusters.

The diffusion coefficients D of the stickers and equivalently of the entire chains

in the free diffusion regime are plotted as a function of ε in the inset of Figure

2.9(a). The decrease of the chain diffusivity with increasing sticker association

energy has also been observed in experimental measurements of tracer chain dif-

fusion in supramolecular polymer networks with different strength of chain cross-

linking.[98, 99] Our simulation data on D show an exponential decay with ε at higher

bonding energies. As will be seen below, this is consistent with the exponential de-

pendence of the chain terminal relaxation time τd on ε.

Stress and dielectric relaxation

The reversible association of stickers also strongly affects the rheological behaviour

of the supramolecular systems. In simulations the stress relaxation function and

chain end-to-end vector correlation functions are calculated using eq. (1.1) and eq.

(1.8) respectively. Figure 2.10 presents simulation results of the stress relaxation

function, G(t), and chain end-to-end vector correlation function or dielectric relax-

ation function, Φ(t), for the systems with N = 25 and various bonding energies
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Figure 2.9: (a) Mean-square displacements of stickers in supramolecular systems

with different sticky bonding energies ε. The black dotted-dashed curve shows re-

sults obtained from fixed polymer networks whose configurations were taken from

simulations of supramolecular systems with ε = 12kBT . For reference the Rouse

time τR and the sticker partner exchange time at ε = 10T are given by the two

vertical dashed lines on the right. (b) MSD of sticker clusters with different sizes

Nclu ≤ 6 at ε = 10kBT . The parent chain length is N = 25 in all cases.
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ε. Results obtained from polymer melts and fixed polymer networks are also in-

cluded for comparison. All these time correlation functions were calculated on the

fly using the multiple-tau correlator method to ensure good statistics. [100] In un-

entangled melt systems polymer chains can be described by the Rouse model (see

section 1.4.4) with stress fully relaxing at t = τR/2 (which corresponds to ε = 0

in Figure 2.10a) and the end-to-end vector correlation function relaxing at t = τR.

On the other hand in supramolecular systems as the bonding energy ε increases,

the relaxation behaviour demonstrates a gradual transition from polymer melt-like

behaviour to fixed network-like behaviour. In the systems with high enough ε val-

ues where τR < τpe, three distinct relaxation regimes can be clearly identified in the

G(t) and Φ(t) curves: (1) initial Rouse regime at τ0 < t� τR where the relaxation

curves follow universal Rouse-like behaviours, G(t) ∼ t−1/2 and Φ(t) ∼ t−1/2; (2)

intermediate rubbery regime at τR < t < τpe where the systems show rubber-like
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behaviour due to the transient network formation; (3) terminal relaxation regime at

t > τpe where the sticker partner exchange events lead to the stress and dielectric

relaxation. Figure 2.11 shows that at high sticky bonding energy the terminal times,

τ stressd and τ eed , of the stress and chain end-to-end vector relaxation functions both

grow exponentially with ε. There is roughly a factor of 2 difference between these

two terminal times, but subject to rather poor statistics in τ stressd at high bonding

energies. The analogy to Rouse chain behaviour (τ eed = 2τ stressd ) [27] implies that

the release of topological constraints by partner exchange events takes place in a

random-walk manner, and therefore a theoretical model could be constructed based

on this observation.

Earlier we described how the presence of large sticker clusters facilitates the

partner exchange events. We now test this effect on the stress relaxation behaviour

directly by imposing an upper cap on the maximum size of the clusters, N∗clu, in simu-

lations. Figure 2.12 presents the stress relaxation functions for the systems with two

different upper caps, namely N∗clu = 3 and 4 respectively, together with that of the

regular uncapped systems (N∗clu =∞). The G(t) results show clearly that preventing

the sticker clusters from growing in size leads to a much slower stress relaxation be-

haviour in comparison with the regular supramolecular network we simulated, even

though single sticker hopping events are allowed in both cases. Partner exchange

events facilitated by sticker cluster dissociation-association processes thus play a

dominant role in controlling the dynamic and rheological behaviour of supramolec-

ular networks cross-linked by stickers cluster or micellar cores. In a theoretical work

on the dynamics of telechelic ionomers, Leibler et al. have also pointed out that

the stress relaxation should take place by exchanging pairs of charged chain ends to

lower the free energy costs. [101]
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Figure 2.12: Stress relaxation functions of supramolecular systems with and without

a upper cap N∗clu for the sticker cluster sizes. The system parameters are ε = 10kBT

and N = 25.

2.3.3 Theoretical models

Phantom chain hopping model

In this section we introduce a simple theoretical model to describe the dynamic

behaviour of supramolecular polymer networks formed at high bonding energies

(ε ≥ 9kBT ) where nearly all stickers have associated into clusters. At time scales

t < τpe, the system behaves like a fixed polymer network and so can be described by

the phantom network model where the sticker clusters act as cross-links or junctions.

[82] In a phantom network consisting of ideal-chain strands of length N∗ and cross-

links of functionality f ∗, each end monomer of a target network strand is considered

to be effectively connected to the elastic non-fluctuating background via a virtual

chain of length Neff = N/(f ∗−2). The other end, also called the anchor point, of the

virtual chain is fixed in space. For mapping the phantom model to a supramolecular
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network formed by bead-spring chains with a broad distribution of sticker cluster

sizes, we first choose a strand length N∗ and then match the time scales of the

two systems by the ratio between the Rouse times of the phantom network strand

and the parent polymer chains in the supramolecular system. Following that, the

virtual chain length Neff , or equivalently the effective cross-link functionality f ∗, is

determined by matching the mean square fluctuations of the end-to-end vectors of

the network chains in the two different systems.

Unlike a permanent network, the end monomers or stickers of a polymer chain

in a supramolecular network can change their topological connection to the network

by moving from one sticker cluster or cross-link to another at time scales t > τpe.

The change of topological constraint on the target chain end via partner exchange

process can be represented by a hopping of the anchor point of the virtual chain

in the phantom model. Figure 2.13 sketches this phantom chain hopping model

(PCHM) where a target Rouse chain consisting of N∗ beads is end-linked to two

other Rouse chains each of Neff beads and anchored in space at the other end. The

dynamic behaviour of the system is then controlled by chain fluctuations and anchor

point hopping.

Figure 2.13: Sketch of the phantom hopping model. The red circles represent the

stickers at the ends of the target chain.

The motion of all beads apart from the two anchored beads is governed by eq.

(1.5). The phantom chain hopping model can then be solved numerically to provide
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dynamic relaxation functions of the target polymer. Considering the broad distri-

bution of the partner exchange times as shown in Figure 2.7(b), each anchor point

is assigned a lifetime t∗life randomly taken from a simple exponential distribution

P (t∗life) = P0 exp(−t∗life/τan), (2.11)

where P0 is a normalization constant and τan is the average anchor point lifetime

whose value can be varied to reflect the dependence of the partner exchange time

τpe on the bonding energy. For a given ε value, we set τan = τpe(τ
∗
R/τR) where τ ∗R

and τR are the Rouse times of the target phantom network strand and the polymer

chains in the supramolecular systems, respectively.

After tlife the anchored bead performs a random hopping to a nearby position.

The hopping process is carried out by eliminating a chain segment consisting of

s(≤ Neff ) beads from the anchored end of the virtual chain and then regenerating

it by a s-step random walk of step size b, as sketched in Figure 2.13. The posi-

tion of the regenerated end monomer is taken as the new anchor point which is

assigned a new lifetime from the distribution P (tlife). The resulting anchor point

hopping distance follows the Gaussian distribution of the end-to-end distance of an

ideal chain with 2s bonds and so has the mean value of aan = (2s)1/2b. In this

algorithm, the impact of the abrupt hopping of the anchor point propagates to the

related end monomer or sticker of the target chain through Rouse fluctuations of

the virtual chain. Therefore, the sticker can adapt to its new equilibrium position

in the transient network smoothly, analogous to the partner exchange events in real

supramolecular systems. The average hopping distance of the anchor point and

correspondingly the number of hopping events needed for a target chain to fully

relax can be tuned by changing the segment length s. The terminal relaxation of

the target chain depends on both the mean anchor point lifetime τan and the mean

hopping distance aan. These essentially capture the effect of increasing the bonding
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energy and the sticker density as observed in the hybrid MD/MC simulations.

The system parameters of the phantom chain hopping model are set up as follows.

For convenience, we choose the number of beads in the target phantom chain same

as that of the parent chains in the modeled supramolecular systems, i. e, N∗ = N .

To find the virtual chain length Neff or the effective cross-link functionality f ∗,

we recall from section 1.6.2 that in the phantom network model the mean square

fluctuation of the end-to-end vector around its average value is given by < (Ree− <

Ree >)2 >= 2N∗b2/f ∗. [102] Figure 2.10 (b) shows that the end-to-end vector

correlation function Φ(t) of the polymer chains with N = 25 is relaxed by about 30%

in the fixed supramolecular polymer networks. One can thus deduce the effective

cross-link functionality by the relation of 2/f ∗ ≈ 0.3, which gives f ∗ = 7. This

f ∗ value is somewhat larger than the average sticker cluster size Navg
clu ≈ 3.6 found

in the supramolecular networks. But as shown in Figure 2.14 (a), the resulting

virtual chain length of Neff = 5 provides a very good prediction of the permanent

phantom network model for the chain end-to-end vector correlation function in the

fixed supramolecular networks. As mentioned above, the average lifetimes of the

anchor points τan are determined directly from the sticker partner exchange times

τpe obtained in the hybrid MD/MC simulations at different bonding energies ε.

Figure 2.14 presents the numerical results of the PCHM on the chain end-to-

end vector correlation functions Φ(t) and the end-monomer or sticker mean square

displacements gsticker1 (t) of the target chains, together with the MD/MC simulation

data on supramolecular networks with N = 25. At each ε value the two sets of data

show reasonably good agreement in both the Rouse and rubbery (plateau) relaxation

regimes without requiring any extra tuning parameters. Further agreement in the

terminal relaxation regime after τan or τpe is achieved by choosing proper hopping

distance aan or s. For example, a value of s = 4 has been used for modeling the
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supramolecular systems with N = 25 and ε = 10kBT .

Discrete model of sticker diffusion

In supramolecular networks formed by associating telechelic chains, the topological

constraints on the polymer chain ends are released in a step-by-step manner by

sticker partner exchange events. The terminal relaxation time of the system can

thus be estimated as the time taken for a sticker to diffuse a distance comparable

to the size of its parent chain,

τd ≈
Nb2

a2pe
τpe, (2.12)

where ape is the average distance that a sticker diffuses after one partner exchange

event with the characteristic time τpe. Eq. (2.12) takes a similar form as the free

path (FP) model proposed by Marrucci et al. for equilibrium conditions [63], but

the microscopic origins of the time and length scales of the discrete diffusion steps

are very different from their model assumption.

In hybrid MD/MC simulations, we define ape as the separation between the mean

positions of the initial and final sticker clusters that a sticker is associated with before

and after a successful partner exchange event. The value of ape is found to increase

with the sticky bonding energy ε even while the average size of clusters converges

(Figure 2.4(b)). This implies that the sticker diffusion distance is determined by not

only the average distance between sticker clusters, but also the lifetime of clusters.

As the bonding energy increases, a cluster is able to explore a larger volume before

the bond breakage permits its association with another cluster to facilitate sticker

partner exchange. Figure 2.11 compares the predictions of eq. (2.12) obtained by

using the simulation values of ape and τpe with the terminal times of the stress

relaxation and chain end-to-end vector correlation functions of the supramolecular
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Figure 2.14: Simulation results of the phantom chain hopping model on the end-to-

end vector correlation function Φ(t) (a) and the sticker mean square displacement

(b) of the target chains. The symbols are the results obtained from hybrid MD/MC

simulations of supramolecular networks with polymer chain length N = 25 at various

bonding energies ε. The simulation times in both the PCHM and supramolecular

systems have been rescaled by the Rouse times of the corresponding polymer chains.

The dotted-dashed line in (a) presents the Φ(t) data of the fixed polymer network

same as in Figure 2.10(b).
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networks formed at high ε values. They show qualitatively good agreement. But it

should be noted that the statistics of the ape and τpe values as well as the terminal

times τ stressd and τ eed are getting worse with increasing bonding energy because the

simulation runs can only last 15− 200 terminal relaxation times depending on ε.

We note that the sticker diffusion step size ape used in eq. (2.12) is different from

the anchor point hopping distance aan defined in the phantom chain hopping model.

But the random walk feature of the chain end diffusion can be well correlated to

the Rouse-like relationship between the terminal times of the stress and chain end-

to-end vector relaxation functions, namely τ eed ≈ 2τ stressd . The PCH model has the

advantage of being able to predict the entire relaxation functions over eq. (2.12)

that only gives the terminal times.

2.4 Conclusions

Hybrid molecular dynamics/Monte Carlo simulations have been performed to study

the static, dynamic and rheological properties of supramolecular systems consisting

of unentangled telechelic chains with end sticky monomers. The choice of function-

ality f = 3 allows each sticker to form reversible bonds with two other stickers,

which is the minimum requirement for network formation. The sol-gel transition

occurs at a critical sticky bonding energy of ε ≈ 4.3kBT when the fraction of re-

acted stickers overtakes that of the unreacted ones. At sufficiently high bonding

energies (ε ≥ 10kBT ), the majority of stickers are fully reacted and less than one

percent of stickers remain open. The distribution of the sticker cluster sizes can be

well described by a theoretical model analogous to that used to predict micellar size

distribution in dilute solutions of amphiphilic molecules. The proportion of elasti-

cally inefficient strands in the strongly associated supramolecular networks is found
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to be less than 5%.

The dynamic and rheological behaviour of the strongly associated supramolecular

networks are shown to be dominated by the partner exchange events in which the

stickers exchange their associated partners, and so release the imposed topological

constraints, through the disassociation-association processes of the sticker clusters.

This is in contrast to the traditional picture of single sticker hopping where a sticker

needs to first pull out of a cluster by breaking all existing sticky bonds, which is

energetically unfavorable. Our study indicates that the system can relax without

waiting for the chain ends to completely disassociate from the network. The presence

of large sticker clusters can actually increase the chain relaxation rate. Preventing

the sticker clusters from associating into larger ones will significantly slow down the

stress relaxation.

Two characteristic time scales, namely the partner exchange time τpe and clus-

ter exchange time τce, are introduced to measure the dynamics of supramolecular

networks formed at high sticky bonding energies. These time scales are up to two or-

ders of magnitude larger than the average sticky bond lifetime τb. Three distinctive

regimes can be identified in the stress and end-to-end vector relaxation functions,

i.e., an initial Rouse regime at time scales τ0 < t � τR, an intermediate rubbery

or plateau regime at τR < t < τpe and a terminal relaxation regime at t > τpe. A

phantom chain hopping model is developed based on the microscopic picture of the

sticker partner exchange process. Numerical predictions of this model on the sticker

mean square displacement and chain end-to-end vector correlation functions are in

reasonably good agreement with the hybrid MD/MC simulation results. Further-

more, the terminal relaxation time of a supramolecular network can be estimated as

the time taken for a sticker to diffuse a distance comparable to the size of its parent

chain. The time and length scales of the discrete steps of the chain-end diffusion are
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determined by the sticker partner exchange events.
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Chapter 3

Non-linear rheology of

supramolecular polymer melts

3.1 Introduction

In this chapter we study the non-linear rheology of polymers which can form re-

versible associations under both planar extensional flow and shear flow. These sys-

tems are modelled using the hybrid MD/MC method described in section 1.8.2.

Each chain possesses stickers at chains ends which can reversibly associate with up

to two other stickers.

The two main types of flows used to characterise the viscoelastic properties of

liquids are known as shear and extensional flows. The latter encompasses irrotational

geometries including: uniaxial extension, biaxial extension and planar extension. In

this thesis we focus on shear flow and planar extensional flow in a canonical ensemble

(i.e. a system with fixed volume). Figure 3.1 illustrates the evolution of an initial
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volume under the application of shear flow (a) and planar extensional flow (b). The

a) Shear

b) Planar Extension

Figure 3.1: Illustration showing the deformation of a volume under the application

of shear and planar extension.

first use of extensional viscosity, under a different name is attributed to Trouton

[103]. He outlined the relationship between shear viscosity and what he called the

“coefficient of viscous traction”. Trouton determined a ratio of three between the

extensional and shear viscosities of a Newtonian fluid (now known as the Trouton

ratio). For the planar extension which we will be studying here the Trouton ratio is

four [29].

The difficulty in characterising extensional viscosities is highlighted in a review

by James and Walters [104]. In this paper the authors collate experimental results

on the extensional viscosity of the same polymer liquid using different experimental

techniques (e.g., spinline rheometer, contraction flow, filament stretching). Each

technique produced different flow histories, which gives rise to inconsistent results

when comparing transient extensional viscosities as a function of strain rate, see

Figure 3.2. For this reason the authors went on to suggest that results should be

viewed in terms of the total strain for consistency.
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Figure 3.2: The “M1” muddle described by James and Walters (1993). Shows the

difference in extensional viscosity calculated for a single material using different

experimental techniques.

3.1.1 Supramolecular polymers

Supramolecular polymers have been shown to exhibit either shear thickening [105,

106] or shear thinning behaviour. In some cases both types of behaviour have been

seen in the same system when probed under different experimental conditions [107].

Shear thinning describes the process by which the viscosity decreases when in-

creasing shear rate. In supramolecular polymer networks shear thinning is often

attributed to the shear induced rupture of sticky bonds. Chains detach from the

network once the tension supported by the chain exceeds some critical threshold
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determined by the strength of the sticky bonds [108]. If the chains can reach this

critical value before they naturally detach due to thermal fluctuations, this will re-

sult in an overall reduction in bond lifetime. Shear banding in transient polymer

networks has also been shown to cause shear thinning on macroscopic scales. An

inhomogeneous flow profile forms which is caused by fractures in brittle materi-

als. These fractures lead to the presence of concentration gradients in the sheared

material [109].

Shear thickening on the other hand describes the process by which the viscosity

of a material increases with shear rate. There are two main mechanisms which have

been proposed to explain shear thickening behaviour:

1. Non-Gaussian stretching of polymer chains: when a polymer chain is stretched

under shear, the stress along the polymer chain will increase exponentially with

strain [48]. This mechanism for shear thickening was first proposed by Marruci

et al. [110].

2. Network reorganisation or structure formation under shear: the application of

shear can lead to an increase in the number of active strands in the transient

network [105].

Literature tends to focus on the network reorganisation or structure formation ex-

planation. For example in systems of hydrophobically modified ethoxylate-urethane

(HEUR) polymers chains can form into micelles or flower-like structures. In these

systems an increase in the number of active strands is described in terms of an in-

crease in the ratio of chains bridging micelles to looping chains [111]. As a result

many theoretical approaches focus on models with populations of active (bridg-

ing) and inactive (dangling or looping) strands [106, 112]. Two characteristic rates
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then define the transition between these two states: from active to inactive (usu-

ally termed the destruction rate) and inactive to active (the creation rate). These

rates are linked to the bond lifetime, τb, and the time a sticker spends detached

from the network, τopen. Shear thickening is usually observed in systems with slower

cross-linking kinetics [113]. That is in systems with a low destruction rate or long-

lived active strands. In some studies like the Brownian dynamics simulations of

Hernández et al. [112] a variable is introduced to artificially reduce the destruc-

tion rate. Concentration has also been shown to play an important role in shear

thickening [111]. If the concentration is low, an increase in the number of inactive

strands is seen with far fewer chains forming bridges between micelles. Therefore,

reducing the concentration decreases the creation rate. Under shear (see Figure

3.1), as the deformation rate increases, detached stickers have an increased proba-

bility of collision due to the differential velocity in the y-direction [106]. This results

in an increase in the creation rate or decrease in τopen. The increase in creation

rate due to a deformation leads to a net increase in the number of active strands

which increases the stress held by the system (i.e., an additional kBT per chain)

and consequently results in shear thickening. The conversion of intrachain bonds

to interchain bonds was suggested by Witten et al. [114] as another mechanism to

facilitate structure formation (in systems where multiple stickers are placed along

the polymer backbone).

To our knowledge very few simulations have been carried out to study the non-

linear rheology of supramolecular polymers. The Brownian dynamics simulations

reviewed above represent polymer chains using only dumbbells and so disregard the

contributions of polymer dynamics. One example of a full chain simulation comes

from Li et al. [80] who present non-equilibrium molecular dynamics simulations

of supramolecular polymers under steady shear flow. In these simulations, short

linear chains capable of reversible head-to-tail association are studied. Chains of
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this kind can not produce a 3D network structure, instead behaving more like living

polymers. In their shear simulations they find increasing association energy results

in a higher shear viscosity. These simulations also demonstrate shear thinning be-

haviour. Another example of non-linear rheology simulations comes from the work

of Hoy and Fredrickson [79] discussed in section 2.1, which contains results from

creep experiments, but not steady shear flow or steady extensional flow which are

studied here.

3.2 Time-dependent rheology

Viscosity describes the resistance of a material to a gradual deformation by shear

stress. The viscosity in the linear regime is given by

η(t) =

∫ t

0

G(t′)dt′

where G(t) is the stress autocorrelation function, this will be calculated as additional

validation of our non-equilibrium procedure.

In our simulations we consider only start-up flow, therefore, the shear rate γ̇ and

extension rate ε̇ are independent of time. Under shear flow the stress components σyz

and σxz vanish identically by symmetry, therefore, the relevant stress components

are the shear stress σxy, and the normal stresses N1 = σxx−σyy, and N2 = σyy−σzz.

The shear viscosity η as a function of time (also known as the shear stress growth

coefficient) is then given by the shear stress divided by the shear rate γ̇,

η(t) =
σxy(t)

γ̇
. (3.1)

The first normal stress growth coefficient is then given by

Ψ1(t) =
N1(t)

γ̇2
(3.2)

80



and similarly the second normal stress growth coefficient is

Ψ2(t) =
N2(t)

γ̇2
.

In the linear regime the transient first normal stress coefficient is related to the stress

autocorrelation function such that

Ψ1(t) = 2

∫ t

0

t′G(t′)dt′. (3.3)

For planar extensional flow the off-diagonal components of the stress vanish, and

there are then two extensional viscosities, firstly

ηE(t) =
σxx(t)− σyy(t)

4ε̇
(3.4)

where the four in the denominator accounts for the Trouton ratio which allows for

comparison between shear and planar extensional flows [29]. This viscosity describes

the tensile stress required to stretch the material in the x-direction. The second

viscosity is known as the ”cross viscosity”

ηc(t) =
σzz(t)− σyy(t)

2ε̇
(3.5)

which denotes the tensile stress required to prevent deformation in the neutral di-

rection (z-direction). This second viscosity has only been measured rarely with one

example coming from Wagner et al. [115] who compared the results from a number

of constitutive models to experimental results from linear and long-chain branched

polyolefin melts.

3.3 Equations of motion

The first methods for non-equilibrium molecular dynamics involved using solid-wall

boundaries to drive flow, these methods however are not efficient if one is interested
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in bulk properties far away from the boundary surface.

For studying bulk properties there are two methods for applying flows in simula-

tions: 1) The first involves modifying the periodic boundaries conditions to simulate

systems far from equilibrium. 2) The second method involves applying a synthetic

field which allows for the required streaming velocity profile to be maintained indefi-

nitely. The first approach using only modified boundaries requires longer simulation

times for the translation of atoms between boundaries to communicate throughout

the fluid, and has been shown to be insufficient in driving the most general time

perturbations [50]. For this reason homogeneous non-equilibrium molecular dynam-

ics (NEMD) algorithms which make use of an artificial field have been proposed,

the most commonly used is the SLLOD equations of motion which were initially

proposed by Evans and Morris [116]

ṙi =
pi

mi

+ ri · ∇u (3.6)

ṗi = Fi − pi · ∇u (3.7)

where Fi is the sum of all interatomic forces (i.e., when modelling polymer chains

the non-bonded Lennard-Jones and bonded FENE forces) acting on an atom i and

peculiar velocity, pi, and the gradient of the streaming velocity, ∇u. Here mi de-

notes the mass of atom i. This set of equations is described as the atomic version of

SLLOD, with the deformation applied to each particle in the system. An alternative

“molecular” approach to SLLOD has also been developed which applies the defor-

mation to the centre of mass of each molecule. These two versions exhibit differences

in the initial transient phase, but reach equivalent steady states. In our simulations

we use the atomic version as this will produce more accurate trajectories for all

atoms within a chain rather than just the polymer as a whole.In order to calculate

the bulk properties the SLLOD equations of motion must be used with periodic

boundary conditions which do not interfere with the particle trajectories. There-
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fore, the choice of periodic boundary conditions is dependent on the flow profile.

As was discussed in section 3.1.1 the inhomogeneous flow profile caused by shear

banding may result in the shear thinning of supramolecular polymer systems. The

use of an artificial field via the SLLOD equations of motion prevents shear banding

as particles experience a predetermined velocity profile. Therefore, the role of this

mechanism in shear thinning can not be studied in our simulations. Shear banding

has been explored in simulations by using dissipative particle dynamics [117] a tech-

nique which allows for the study of time and space scales much larger than those

which can be studied in MD.

3.4 Thermostat

In NEMD simulations using SLLOD we use the Gaussian thermostat, which has

been shown to be effective in maintaining temperature in both planar extensional

flow and shear flow [118]. For this thermostat an additional term is added to the

equation for peculiar velocity eq. (3.7)

ṗi = Fi − pi · ∇u− ζαpi

where ζα is known as the Gaussian multiplier and is given by

ζα =

∑
i pi · (Fi − pi · ∇u)∑

i pi
2

.

However, it was shown by Todd and Daivis [118] that after long times the temper-

ature will tend to drift when using the Gaussian thermostat. This numerical drift

is caused by truncation errors. A simple solution for this problem was suggested by

Baranyai et al. [119] and involves the addition of a proportional feedback term to

counteract the drift. In simulations of the SLLOD equations of motion, Todd and

Daivis [120] applied this technique to the thermostat by modifying the Gaussian
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multiplier ζα. This is achieved by adding a small perturbation which is proportional

to the difference between the desired temperature and the actual kinetic temperature

obtained by summing momenta. Thus, the thermostat multiplier can be rewritten

as

ζnew = ζα + ζ0

∑i
p2
i

mi
− 3NkBT

3NkBT


where ζ0 is a weighting term and T is the desired temperature. The weighting term

ζ0 is selected such that it is large enough to correct for numerical drift, but not so

large that the equations of motion become stiff. They suggest typical values for the

weighting term are in the range 0.1 − 10. We select a weighting term of ζ0 = 10

which we find results in a temperature ratio of approximately one between the actual

temperature and the desired temperature.

3.4.1 Simulation parameters

In simulations of non-equilibrium behaviour of supramolecular networks, we study

parent chains of length N = 45 and each simulation box contains Nch = 400 chains.

We also use slower reaction kinetics, specifically maintaining τLJ = τMC . The poly-

mer density is set to ρ = 0.85/σLJ which has been widely used to study melt systems.

Unless stated otherwise a time-step of δt = 0.005τLJ has been used in simulations.

For some faster shear or elongation rates the time-step will need to be decreased,

but the kinetic rate will remain fixed so that results are comparable.
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3.5 Shear flow

The first type of deformation we considered is shear flow or planar Couette flow

(PCF), in which the fluid flows in the x-direction with velocity gradient γ̇ in the

y-direction. Therefore, the strain rate tensor can be written as

∇u =


0 0 0

γ̇ 0 0

0 0 0

 . (3.8)

Accordingly, the SLLOD equations of motion in the x-direction become

ṙix =
pix
mi

+ γ̇riy

ṗix = fix − γ̇piy.

With the equations of motion in all other directions unchanged from equilibrium

simulations.

For shear flow the Lees-Edwards periodic boundary conditions can be used [121].

These periodic boundary conditions are illustrated in two dimensions in Figure 3.3,

in which periodic images above the central simulation cell slide with velocity +γ̇L,

while images below it slide with velocity −γ̇L. If a monomer passes through the

top or bottom interface its x-position must be adjusted by ±γ̇Lt. An alternative

approach for periodic boundary conditions in shear flow is the Lagrangian-Rhomboid

method [50], which involves the deformation of an initial rectangular simulation box

in line with the shear strain, followed by remapping to the initial simulation box

when the shear strain γ̇t is a multiple of box length, L. This alternative approach

is equivalent to Lees-Edwards boundary conditions. Therefore, we use the easier to

implement Lees-Edwards periodic boundary conditions in simulations of shear flow.

In shear flow simulations the length of the simulation box in the x-direction is usually
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Figure 3.3: Illustration of the Lees-Edwards sliding brick periodic boundary condi-

tions for planar couette flow. The grey lines show the equivalent simulation box for

Langragian-Rhomboid periodic boundaries.

set to be twice the box length in the y and z directions. This is to ensure elongated

chains do not interact with their own images through the periodic boundaries [122].

3.6 Extensional flow

The other type of flows considered in experiments are extensional flows. There are

three main types of extensional flows, namely: uniaxial, biaxial and planar extension.

For planar extensional flow (PEF) the strain rate tensor is given by

∇u =


ε̇ 0 0

0 −ε̇ 0

0 0 0

 .
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Hence, the SLLOD equations of motion become

ṙix =
pix
mi

+ ε̇rix

ṙiy =
piy
mi

− ε̇riy

ṗix = fix − ε̇pix

ṗiy = fiy + ε̇piy.

The equation of motion in the z-direction is unchanged from equilibrium simulations.

These flows can be difficult to simulate, as suitable periodic boundary conditions

are required which are compatible with the flow geometry i.e., which allow one or

more directions of the simulation box to contract with time. If we deform the box

in line with the flow, the simulation will be forced to stop when the width of the

simulation box in the contracting direction(s) reaches twice the radius of interactions

between particles since the minimum image convention is violated. This limits

the length of time that the simulations are able to run, ultimately preventing the

simulation from reaching steady state.

3.6.1 KR boundary conditions

To overcome the above mentioned problem, Kraynik and Reinelt proposed a method

in 1992 [123] to allow time unrestricted simulations of planar elongational flows of

spatially periodic lattices, this method was later applied to molecular dynamics

simulations by Todd and Daivis [124]. The KR boundary conditions consist of

rotating a square lattice to a special angle and performing elongation with respect to

the original lattice. Thus, it has been shown that after some strain period εp known

as the Henckey strain the lattice can be reproduced onto the original lattice. A

simple illustrative simulation of these boundary conditions for randomly positioned
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Figure 3.4: Evolution of randomly positioned particles via the Kraynik-Reinelt (KR)

lattice under planar extensional flow as a function of time. Only the x- and y-axis

vary with time. At ε = εp the lattice reproduces itself, and the particles are shown

before the positions are folded back (c).
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particles being displaced with an appropriate flow (ε̇ in the x-direction and −ε̇ in

the y-direction) is shown in Figure 3.4. The initial image shows the undeformed

unit cell aligned to an angle θ between the x-axis and the axis of expansion (Figure

3.4a), and the final image shows the fully transformed unit cell before it is mapped

back to the initial unit cell Figure in 3.4c.

In the algorithm outlined by Todd and Daivis [124] one must initially determine

the “magic” angle, θ, describing the angle that the box is initially rotated in the

xy-plane and the Hencky strain, εp, at which the deformed box is mapped to the

original. These are calculated as follows:

1. Choose any integer k, such that k = 3, 4, 5, ...

2. Defining λp as λp = exp(εp), we have

λp =
k ±
√
k2 − 4

2

which in turn gives us the value of εp. Hence, as εp = ε̇τp where ε̇ is the

extension rate, we can determine the strain period τp.

3. For the chosen value of k, choose a positive integer N11, then solve for N12

using the following expression

N12 = −
√
N11(k −N11)− 1.

4. If and only if N12 is an integer then a solution has been found, and the “magic”

angle θ is determined as

θ = tan−1
(
N11 − λp
N12

)
.

We use the typical values of θ ≈ 31.7◦, and εp ≈ 0.9624 which correspond to

k = 3, N11 = 2 and N12 = −1. This selection guarantees that the system
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remains spatially and temporally periodic at times t = nτp where n is an

integer.

From the above we can determine the basis vectors for the simulation cell as a

function of time, namely

L1(t) =
(
eε̇t cos θ, e−ε̇t sin θ

)
and

L2(t) =
(
−eε̇t sin θ, e−ε̇t cos θ

)
.

3.7 Results

In addition to the supramolecular system we also run simulations of a melt system

with analogous parameters without stickers. This will allow us to investigate the

differences in material properties which arise from the introduction of reversible

associations. All non-equilibrium viscosity curves are averaged over six statistically

independent simulations.

3.7.1 Viscosity

Monodisperse polymer melt system

We firstly look at results obtained from a melt system without stickers (equivalent

to ε = 0kBT ). Under start-up of shear flow the viscosity as a function of time (eq.

(3.1)) is shown in Figure 3.5a for a number of shear rates, γ̇.
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Figure 3.5: Simulations results for a melt system without stickers for a number of

shear and extension rates. The black dot-dashed line highlights the linear viscosity

curve calculated from the equilibrium stress autocorrelation function.
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At small strains shear viscosity curves for all applied shear rates are expected

to superimpose with the linear viscoelastic behaviour. In the simulation results

we present the linear viscosity curve is calculated by first fitting Maxwell Modes

using Reptate [125] to the stress relaxation function, then the resulting function

is numerically integrated. The error present in the initial behaviour is due to the

fitting. The terminal stress relaxation time τd of a monodisperse melt system with

chain length N = 45 is approximately 1.21×103τLJ at equilibrium. If the shear rate

γ̇ is larger than the reciprocal of the terminal time τd of the system, the viscosity

η(t) passes through a maximum and then decreases until it reaches the steady-state.

In start-up shear the stress overshoot in entangled monodisperse polymer systems

for rates 1/τd < γ̇ < 1/τR is thought to be caused by changing tube segment

orientation [122]. On the other hand for rates larger than 1/τR chain stretching is

thought to cause the stress overshoot. The chain stretching and segment orientation

mechanisms are also both present in unentangled monodisperse melt systems. The

first normal stress growth coefficient is shown in Figure 3.5c. For small strains all

curves collapse onto the linear first normal stress growth curve given by eq. (3.3).

The overshoot in the first normal stress growth coefficient appears at high shear

rates.

We now look at planar elongational flow of a melt system in the absence of

stickers. The extensional viscosity as a function of time (eq. (3.4)) is shown in

Figure 3.5b for a number of extension rates, ε̇. For small strains the linear viscoelastic

regime differs only by the Trouton ratio (four in PEF). For higher extension rates

the extensional viscosity rises above the linear viscoelastic regime, this is known as

extensional thickening.

The results for extensional cross viscosity shows analogous behaviour to the

shear viscosity. The curves superimpose for small strains and the cross viscosity
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passes through a maximum and then decreases until it reaches the steady-state if

the extension rate ε̇ is higher than the reciprocal of the terminal time τd of the

system.

Supramolecular polymer system

We now look at the systems with the addition of stickers at chain ends each capable

of reversibly associating with up to two partners. Simulations are carried out with

a sticky bond association energy of ε = 10kBT . In our study of the equilibrium

dynamics of supramolecular polymers we showed the existence of a transient network

for this and higher bonding energies. Hence, we would expect an increase in viscosity

as the presence of temporary network junctions should make the material more

resistant to deformation.

Figure 3.6a shows the viscosity as a function of time for a number of shear

rates, γ̇. We find a large increase in viscosity for all shear rates, γ̇. Again if the

shear rate γ̇ is higher than the reciprocal of the terminal time τd of the system,

the viscosity η(t) passes through a maximum and then decreases until it reaches

the steady-state. The terminal time τd of a supramolecular polymer system with

bonding energy ε = 10kBT and chain length N = 45 is approximately 2.46× 105τLJ

at equilibrium. The magnitude of the maximum or overshoot is much larger than the

equilibrium case and more importantly for higher shear rates the overshoot reaches

a viscosity higher than the linear viscosity curve, demonstrating shear hardening

in supramolecular networks. This increase in viscosity above the linear viscosity

curve is due to non-Gaussian stretching which occurs for shear rates higher than the

reciprocal of the bond lifetime, τb. For lower rates chains have time to rearrange

themselves within the transient network preventing the onset of stretching. This is
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Figure 3.6: Simulation results for the supramolecular system with bonding energy

ε = 10 for a number of shear and extension rates. The black dot-dashed line high-

lights the linear viscosity curve calculated from the equilibrium stress autocorrelation

function.
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discussed further in the section 3.7.2. If we look at the first normal stress growth

coefficient given by eq. (3.2) in Figure 3.6c we again see signs of shear hardening at

higher shear rates.

The extensional viscosity Figure 3.6b shows an increase in the magnitude of

extensional thickening compared with the melt system and the introduction of a

small overshoot for higher deformation rates just before the steady state is reached.

The terminal time τd increases dramatically with the introduction of stickers so

it becomes too computationally expensive to simulate extension rates which are

small enough to see a reduction in extensional thickening. This extreme extensional

thickening has also been observed in experiments [126].

The extensional cross viscosity Figure 3.6d is again found to produce qualitatively

similar results to those obtained in shear with higher rates, leading to an overshoot

much larger than the linear viscosity curve.

Marruci et al. [110] were the first to explore the role of non-Gaussian chain

stretching and shear thickening. In the system they studied stickers can quickly

rejoin the network once detached, allowing chain stretching to persist when a sticker

is free. This was guaranteed by assuming the spacing between aggregates was much

smaller than the equilibrium chain size. In this theory chains were said to become

fully stretched at a shear rate γ̇ ≈ N1/2/τ where τ is the effective relaxation time of

a chain. If we assume this picture is valid then in our system the proposed shear rate

for maximum stretching is approximately γ̇ ≈ 2.72 × 10−5/τLJ . Fig 3.6a however

shows no obvious signs of chain stretching for rates lower than γ̇ ≈ 1e− 4/τLJ .

The important deformation rates should be related to key material timescales,

these are τd, τR, τpe and τb. If we consider these in terms of deformation rates we
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have
1

τd
<

1

τpe
<

1

τb
.

As discussed in Chapter 2 sticky bonds frequently break, which facilitates the ex-

change of partners. Under deformation when a sticky bond breaks the elastic energy

built up by chain stretching is released. This results in fewer recombination events

as is highlighted by the decrease in partner exchange time with increasing defor-

mation rate (studied in section 3.7.3). Therefore, for the effects of stretching to be

apparent a chain must remain associated to the network at both ends. Therefore,

chain stretching should occur for shear rates γ̇stretch such that

γ̇stretch >
1

τb

where τb is the equilibrium bond lifetime. For such rates the stretching will lead to

an increased overall viscosity and an increase in the overshoot above even the linear

viscosity curve.

3.7.2 Chain stretching and network structure

Viscosity can be increased above the linear viscoelastic behaviour by either chain

stretching or network reorganisation. To study the shear hardening behaviour ob-

served in Figure 3.6a we can look at the number of sticky bonds and the mean

end-to-end distance as a function of time. This will allow us to identify whether this

hardening is caused by structural changes or chain stretching.

We can study chain stretching by looking at the average end-to-end distance

Ree of polymer chains as a function of time, see Figure 3.7a. This shows how the

end-to-end distance varies with time at γ̇ = 5× 10−3/τLJ . The results are averaged

over three statistically independent simulations. Initially a sharp increase to over
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Figure 3.7: The end-to-end vector and the fraction of open, partially- and fully-

reacted stickers as a function of time.
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1.6 times the equilibrium end-to-end distance is experienced, followed by a sharp

drop and eventually reaching an equilibrium value of approximately 1.5 times.

Stretching of chains can occur for shear rates higher than the reciprocal of the

equilibrium sticky bond lifetime, τb. This stretching leads to shear hardening, as

shown in Figure 3.6a.

We can examine the evolution of chains with time by considering chain confor-

mations during key times: initial behaviour (A), overshoot (B) and the steady-state

(C). The three regimes are labelled in terms of chain stretching in Figure 3.7a and

Figure 3.8 shows the conformation of a single chain at these key times under shear

flow with a deformation rate γ̇ = 5× 10−3/τLJ .

Initially when the deformation is applied, the chain begins to align in the direc-

tion of flow. Figure 3.8a shows the initial behaviour (A) taken at t = 350τLJ . As the

flow continues the chain starts to stretch which leads to a large overshoot (B) around

t = 2050τLJ , see Figure 3.8b. As the elastic energy due to stretching increases, so

does the likelihood for the sticky bonds to break. Following a breaking event the

stickers will quickly reattach to the network, but owing to the relatively high restor-

ing force stored in the stretched chains they will be less likely to combine with their

previous partners (which is reflected by the decrease in partner exchange time which

will be seen in section 3.7.3). The chain conformation in the steady-state (C) at time

t = 14450τLJ is shown in Figure 3.8c. In this snapshot the chain has folded back

on itself, nearly forming a loop (an elastically ineffective structure). Under simple

shear flow the magnitude of elongational and rotational components are equal. In

this case it has been suggested polymers will not attain a stable strongly stretched

state in steady shear. Instead the end-to-end vector tumbling of the molecules oc-

curs as the stretched state is destabilized by the rotational component of shear flow.

Evidence for polymer chain tumbling under shear has been provided by fascinating
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(a) Initial transient behaviour t = 350τLJ .

(b) Overshoot t = 2050τLJ .

(c) Steady state t = 14450τLJ

Figure 3.8: Evolution of a chain configuration (taken from a simulation of N = 45,

Nch = 400 and ε = 10kBT ) with shear rate γ̇ = 5× 10−3/τLJ .
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experiments of single-chain polymer dynamics [127]. In the supramolecular system

studied chains are attached to a transient network via chain ends which counters

the rotational effects allowing for a far greater degree of stretching. The degree

of shear hardening depends on how much stretching chains have experienced before

they detach from the network. The increase in elastic energy due to chain stretching

must remain below the association energy for the sticky bonds to persist.

Figure 3.7b shows how the fraction of open, partially- and fully-reacted stick-

ers changes as a function of time. Initially the equilibrium system contains a large

fraction of fully-reacted stickers, following the overshoot this decreases by approxi-

mately 20% with the majority of these stickers being converted to partially reacted

stickers. As partially-reacted stickers denote the formation of long linear chains or

network strands of length 2N or greater, each of these strands contributes only one

kBT to the energy (regardless of length). This leads to an effective reduction in

the number of active strands. These longer strands are also able to sustain a larger

degree of stretching.

3.7.3 Steady state properties

Figure 3.9 shows the steady state viscosity under extensional and shear flow for

either case (with or without stickers), we see no evidence for shear thickening in

these systems, with only trivial shear thinning behaviour apparent. This shear

thinning could be attributed to the reduction in the fraction of active strands as

mentioned above. Figure 3.9 also highlights the huge increase in viscosity due to

the introduction of stickers (up to two orders of magnitude at low deformation rates)

in supramolecular networks from polymer melts.

We now consider some dynamic properties which show deformation rate depen-
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Figure 3.9: Comparison of steady state viscosity with and without stickers present.

dence. An example of one such characteristic in supramolecular polymer systems

is the sticky bond lifetime, τb, and the partner exchange time, τpe. The change in

these two timescales is presented as a function of deformation rate for both shear

and extension flow in Figure 3.10c and Figure 3.10d in steady-state respectively.

We observe a small change in the bond lifetime with deformation rate under shear

flow. A much larger drop is seen under extension, but to compare these two results

we should take into account the Trouton ratio. Specifically under extension the

highest rates are equivalent to shear rates which are well above the reciprocal of

the sticky bond lifetime, which explains this huge reduction in sticky bond lifetime.

Under shear the partner exchange time declines by one order of magnitude for the

rates considered while for the extension rates a reduction of almost three orders of

magnitude is seen. Again the rates under extension are equivalent to much higher

shear rates.

When the shear rate increases the polymer chains experience a greater degree of

stretching before sticky bonds break. Following a breaking event the prior stretching
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leads to a restoring force pulling the constituent stickers away from one another

which causes a reduction in the number of recombination events needed before a

sticker can forget its previous partners. This ultimately leads to a reduction in the

partner exchange time such that τpe → τb as shear rate increases.
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Figure 3.10: (a)-(b) The change in fraction of open, partially- and fully-reacted

stickers as a function of deformation rate. (c)-(d) The change in bond lifetime and

partner exchange time as a function of deformation rate.

One structural property which we can study is the fraction of open, partially- and

fully-reacted stickers as a function of deformation rate, Figure 3.10a-b. Under shear

as the deformation rate increases we see an almost 20% reduction in the fraction
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of fully-reacted stickers, while a sizeable increase is seen in the number of partially-

reacted stickers (15%), and a small increase in the fraction of open stickers (5%).

Looking at the fraction of open, partially- and fully-reacted under planar extension,

Figure 3.10b we see a much larger decrease of approximately 40% in the fraction

of fully-reacted stickers, with an accompanying large increase in partially-reacted

stickers.

3.8 Conclusions

We have studied the rheological properties of supramolecular polymers under both

shear and extensional flow. The formation of a transient network leads to a large

increase in viscosity. In comparison with the polymer melt counterpart we find

shear hardening behaviour at higher deformation rates (namely where γ̇ > 1/τb) in

the start-up of flow which we conclude is caused by the non-Gaussian stretching of

network strands. By studying the change in the end-to-end distance as a function of

time we find chains stretch up to 1.6 times their equilibrium length. In the system

studied we find no evidence of shear thickening in the steady-state viscosity either

via chain stretching or structure formation. In fact the fraction of fully-reacted

stickers is reduced by over 20% under shear and nearly 40% under extension. The

majority of these fully-reacted stickers are converted to partially-reacted stickers

following the stress overshoot. The increased number of partially reacted stickers

is indicative of associated linear chains or strands and will cause a reduction in the

overall viscosity due to a decrease in number of effectively active strands.

From our equilibrium simulations the small fraction of open or partially-reacted

stickers found at higher bonding energies suggests little structure formation is pos-

sible. In both experiments and theory the most commonly proposed mechanism for
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shear thickening is the conversion of dangling chains to active chains.

The average bond lifetime and partner exchange time are both found to decrease

with higher deformation rates. These rate dependent changes are thought to result

from the presence of stretching at faster deformation rates which increases the prob-

ability for sticky bonds to break. This effect is more pronounced under extensional

flow.
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Chapter 4

Extensional rheology of entangled

polymer melts

4.1 Introduction

In this chapter we carry out molecular dynamics simulations of entangled monodis-

perse linear chains under planar extension. In order to model systems with multiple

entanglements we develop a GPU based simulation protocol to efficiently simulate

these large systems. The chain length is chosen to allow for comparison with results

obtained from the uniaxial extensional rheology experiments of Nielsen et al. [128].

The most successful model for studying entangled polymers is the Doi-Edwards

(DE) tube model (section 1.4.5). In this model the effects of topological constraints

due to neighbouring chains can be approximated using a mean field tube represen-

tation. For start-up planar extension, the deformation tensor E(t, t′) in the DE tube
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model is given by

E(t, t′) =


λt,t′ 0 0

0 λ−1t,t′ 0

0 0 1


where λt,t′ = exp(ε̇(t)(t− t′)) and

ε̇(t) =

0 if t < 0

ε̇ if t ≥ 0

Therefore, the transient viscosity for some extension rate ε̇ can be calculated using

eq. 1.9 which makes use of the independent alignment approximation

η(t) =
Ge

4ε̇

∫ t

−∞
ψ(t− t′)

[
QIA
xx (E(t, t′))−QIA

yy (E(t, t′))
]
dt′ (4.1)

where

QIA
xx (E(t, t′))−QIA

yy (E(t, t′)) =

1

4π

∫ 2π

0

∫ π

0

λ2t,t′ cos2 θ sin θ − λ−2t,t′ sin3 θ cos2 φ

λ2t,t′ cos2 θ + λ−2t,t′ sin2 θ cos2 φ+ sin2 θ sin2 φ
dθdφ.

We solve this integral equation numerically using MATLAB for comparison with

results obtained in our molecular dynamics simulations.

In recent uniaxial extension experiments, Bach et al. [129] found that for ex-

tension rates greater than the reciprocal of entanglement time, τe, the steady state

extensional viscosity follows the scaling law η ∼ (ε̇τd)
−1/2. These experimental re-

sults indicate a failure of the DE tube theory when considering chains under uniaxial

extension. For extension rates greater than the reciprocal of entanglement time, τe,

the model predicts a scaling of the form η ∼ (ε̇τd)
−1. Consequently the DE tube

theory fails to describe the extensional thickening behaviour which has been seen in

many experiments [115, 128].

106



Further developments of tube theory have sought to include a strain-dependent

tube diameter [130] where polymer chains stretch because of an increasing restric-

tion of lateral motion due to deformation. This affine chain stretch was found to

quantitatively describe the onset of strain hardening but gives no information about

the steady state (an appropriate bound for the strain hardening was not deter-

mined). Marrucci et al. [131] found that this can be remedied by accounting for the

confinement pressure exerted by chains trapped within tubes (increases in radial

pressure balance the tube diameter reduction). This idea was later incorporated

into a constitutive model by Wagner and colleagues [132] through the introduction

of a new chain-length dependent function, the tube diameter relaxation time. This

was shown to provide good agreement with experimental results.

The experiments of Nielsen et al. [128] provide transient viscosity results for

uniaxial extension of monodisperse polystyrene obtained using a filament stretching

rheometer. We compare the extensional thickening behaviour observed in these

experiments with our simulations of planar extension using the method described in

Chapter 3.

The difference between results from the various types of extensional flows has

been poorly studied. However, Meissner et al. [133] have found that for equivalent

deformation rates ε̇ the steady-state stress values are ordered as follows

σuniaxial > σplanar > σequibiaxial.

This ordering is also supported by the experiments of Wagner et al. [115] who

calculate the transient extensional viscosity of long-chain branched polyolefin melts

under three types of flow: uniaxial, equibiaxial and planar. In addition, comparisons

of the transient viscosity in the DE tube theory with experimental results were

presented in the same work, showing the absence of strain hardening in the theory.
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4.2 System mapping and linear viscosity

To simulate these entangled polymer systems we must first determine the lengths

of the bead-spring chains to be used in order to appropriately model the polymers

studied in these experiments. Secondly, we need to map the time-scale used in our

coarse grained MD simulations for comparison with experiments.

In the experiments of Nielsen et al. [128] the monodisperse linear polystyrenes

have molecular weights, Mw = 52kg/mole, 103kg/mole and 200kg/mole. Polystyrene

has an entanglement molecular weight of M exp
e = 13.3kg/mole [134], therefore, the

mapping coefficient between polystyrene molecular weight in the experiments and

the number of beads in the simulations is

M exp
e

Ne

=
13.3

60
= 0.2217kg/mole

where we have taken the entanglement length Ne ∼ 60 for the Kremer-Grest bead-

spring model [135, 136]. The mapping coefficient tells us that in order to match

the number of entanglements in experiments we need to simulate chains of length

N = 235, 465 and 902, respectively. Due to the high computational cost we only

consider the shortest polymer chain which represents a molecular weight of Mw =

52kg/mole (or N = 235) which we will refer to as PS50K.

In order to map the time-scales used in experiments we must compute the vis-

cosity in the linear regime. As we are considering relatively long chains this becomes

computationally expensive for standard CPU based simulations. For this reason we

make use of HOOMD-blue, a MD simulation package from the University of Michi-

gan which can be used to run MD simulations on NVIDIA CUDA powered GPUs.

This is used in conjunction with the in-house simulation code (the generic polymer

simulator) for analysing particle trajectories. Since the stress relaxation function

is usually very noisy and so expensive to calculate we instead use the orientation
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relaxation function which has been shown in experiments to be proportional to the

stress relaxation function. This property is known as the stress-optical law. The

orientation relaxation function is given by

S(t) =
N

kBT

〈
1

N2

Nch∑
j=1

Oαβ
j (t)

Nch∑
j=1

Oαβ
j (0)

〉
(4.2)

where

Oαβ
j (t) =

N−1∑
i=1

uαij(t)u
β
ij(t)

is the orientation tensor of the chain j and uij =
Ri+1,j−Ri,j

|Ri+1,j−Ri,j |
is the unit bond

vector. The stress relaxation function can then be approximated as

G(t) =
1

β
S(t)

where the constant β = 0.0886 has been found to collapse the stress and orientation

relaxation functions for linear polymer melts represented by the Kremer-Grest model

[137]. In this work we use the orientation relaxation function for a single chain

(averaged over all chains in a system) to approximate the orientation tensor for the

whole system, eq. 4.2, without calculating the cross-correlation contributions. The

orientation tensor is given by

S(t) =
A(t)

1− κ(t)

where A(t) is the averaged orientation relaxation function for a single chain. The

coupling parameter κ(t) was determined by Cao [138] as

κ(t) = 0.265 + 0.113 log10(t)− 0.0101 log10(t
2).

The quality of this approximation is shown in Figure 4.1 and is compared with

the stress relaxation function, G(t), calculated in a CPU MD simulation running

on 8 processors. This approach gives us an accurate approximation for the stress
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Figure 4.1: Application of the orientation relaxation function to approximate the

stress relaxation function following the stress-optical law.

relaxation function when time t > 100τLJ . The standard CPU MD simulation has

been running for over two weeks but still has rather poor statistics at longer times,

while via the HOOMD approach using the stress-optical law we have been able to

obtain a usable form of the stress relaxation function in a few days. We then deter-

mine the Maxwell modes of the stress relaxation function using RepTate [125], which

provides us the loss and storage moduli for comparison with those obtained in exper-

iments. As the orientation correlation function only provides an accurate estimate

for t > 100τLJ the moduli determined for high frequencies are also inaccurate. This

allows us to determine the time shift factor required to map molecular dynamics

simulation time scales to those in experiments, see Figure 4.2. For N = 235 we find

a shift factor of 2.05× 104 in the x-direction when compared with the PS50K data.

As we are comparing two different types of flow, namely the experimental uniaxial

extension results of Hassager et al. [128] with simulations of planar extension, we

do not attempt to map the deformation rates directly and instead consider a range
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Figure 4.2: Mapping of MD simulations using N = 235 using an approximation of

the stress relaxation function derived via the stress-optical law to the experimental

PS50K data. The time shift factor used in the mapping is 2.05× 104.

of Deborah numbers, where the Deborah number is a dimensionless number given

by De = ε̇τd which is used in rheology to characterise flow behaviour. If we recall

ε̇ = 1/τ where τ is the characteristic time-scale of the flow, then the Deborah num-

ber describes the degree to which the elastic (if τ � τd) or viscous effects dominate

(if τ � τd).

For chain lengths far above entanglement lengths we are unable to efficiently

probe the transient viscosity using our CPU based simulation protocol (as was used

in section 3). For this reason we implement a GPU accelerated version which cal-

culates the transient stress tensor in a far more efficient way.
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4.3 GPU simulations

4.3.1 Motivation

In recent years the capabilities of GPUs have been widely used in scientific com-

puting. Generally these devices are designed for an astonishing number of floating

point operations per second (FLOPS). The most costly part of a molecular dynamics

simulation is calculation of the forces. Thankfully this is an operation which can be

effectively computed in parallel with little overhead.

While a number of molecular dynamics packages already exist which take advan-

tage of these devices (e.g. LAMMPS, HOOMD-blue), we instead choose to write

our own in order to simulate systems using the KR planar extension boundary con-

ditions [123]. This implementation is written using NVIDIA CUDA and will run on

NVIDIA K10 GPU accelerators. Each K10 consists of two devices which together

are capable of 4.58 trillion FLOPS.

4.3.2 Hardware

Before we go into details regarding our implementation, it’s worth reviewing some

of the hardware details in NVIDIA GPUs as these will help guide the programming

design choices.

Each GPU device contains a specialised processor and its own RAM. The device

is connected to a CPU host which again contains a processor and RAM. GPUs

are regarded as secondary computation devices: functions known as kernels can be

executed on the GPU, but a function running on the GPU can not execute another
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kernel, therefore, the CPU must guide the computation. There is a large overhead

associated with the transfer of data to and from the device so generally the system

is initialized and copied from the host to the device at start-up and subsequently

results are intermittently (when we wish to save them) copied from the device to

the host.

One device in a K10 GPU accelerator contains a processor with 8 streaming

multiprocessors each with 192 cores for arithmetic operations. The most basic unit

of computation on a NVIDIA GPU is known as a thread. Each streaming mul-

tiprocessor will schedule 32 threads into a group known as a warp and 64 warps

are scheduled per streaming multiprocessor at a time. In total four warps can be

executed concurrently on a single streaming multiprocessor, therefore, 1024 threads

can run at one time on a device.

GPUEStreamEMultiprocessorE–EThroughputEProcessor

CPUEcoreE–ELowELatencyEProcessor

Computation Thread/
WarpEofEparallel Threads

Tn Executing

WaitingEforEdata

ReadyEtoEexecute

ContextEswitch

W1

W2

W3

W4

T1 T2 T1

Figure 4.3: Illustration highlighting the difference in execution between GPUs and

CPUs. This picture was adapted from a talk presented by James Balfour.

GPUs and CPUs are two fundamentally different approaches to computing, on

CPUs a large L1 cache is used to hide latency, while on GPUs the large number
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of concurrent threads is leveraged to hide latency. This difference is illustrated in

Figure 4.3. The large number of concurrent threads allow for constant execution

when viewed across threads (hiding the latency of slow memory reads). To improve

GPU memory reads there are a few types of available memory on the device which

can be used for specific purposes. The most basic is the global memory which is

direct use of the device memory. The second is known as constant memory which

resides in device memory but with a cache to speed up reads. This kind of memory

will not change over the course of a kernel execution. The third is texture memory

which is effectively global memory but with an associated cache for speeding up

reads. Texture memory is optimized for spatial locality (and can be used to optimize

random reads). Finally, each streaming multiprocessor has a small amount of shared

memory which resides on the processor (i.e. is very fast) and can be used by resident

threads. This can be used for inter-thread communication or as another cache.

4.3.3 Implementation

General considerations

All computations are performed on the GPU with initial particle positions and

velocities copied to device memory on start-up. Where possible each computation

is carried out as one particle per thread (in the hope of minimising the amount of

memory reads per thread while giving each thread enough work).

The implementation of the equations of motion is unchanged from the CPU

simulation (we use the Gear-predictor corrector algorithm described in section 1.7.3).

This is used in conjunction with a cell list and neighbour list for working out non-

bonded interactions. The size of cells in the x-direction needs to be multiplied by
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√
10 in order to ensure all interacting particles in this direction are contained within

adjacent cells [139]. When calculating bonded and non-bonded forces the array of

particle positions is bound to a texture in order to take advantage of the cache.

This cache is designed to speed up spatially local reads, therefore, we can make

use of a space filling curve as was first proposed by Anderson et al. [140] to order

the particle array to increase the cache hit rate. Space filling curves allow one to

represent ND data in 1D but still preserving spatial locality (e.g. particles close to

one another in 3D will be remain close in the 1D representation). For simplicity

Figure 4.4: Illustration showing Z-order curve iterations in 3D. This image was

created using Mathematica by Robert Dickau (2008).

and speed we opt to do this via a 3D Z-order curve, an illustration of the ordering

is shown in Fig 4.4. The Z-order curve is described in terms of Morton codes [141].

The code for a given particle is generated when the system is aligned to the x-axis.

Each position has its coordinate normalized such that ri ∈ [0, 1] where i = x, y, z.

Then the Morton code for a point is generated by expanding the binary fixed-point

representation of a coordinate by inserting two “gaps” after each bit. Next the bits
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of all three coordinates are interleaved to form a single binary number.

Upon sorting these Morton codes an order of the particles will be obtained in

terms of the Z-order space filling curve. The Morton codes are sorted using the

NVIDIA thrust library. The particles are then reordered in terms of these ordered

Morton codes. This is done every one hundred time-steps, where the choice of

frequency is a compromise between the added overhead of reordering particles and

the speed up due to an improved number of texture cache hits. This approach

provides an approximately 10-15% increase in overall performance (with a more

substantial speed up for larger systems).

Floating point precision

In the most commonly available GPU devices floating point operations greatly out-

perform double precision operations. This gives rise to concerns regarding the ac-

curacy of GPU based simulations. The most important problem with floating point

arithmetic is that summation is not associative, therefore, the order in which val-

ues are summed can lead to differences. For this reason a number of methods for

compensated sums exist e.g. Kahan summation [142].

Step 1

Step 2

Figure 4.5: The steps of a parallel reduction operation on four elements.

A common approach to reduce the error in accumulation is to sum components
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of similar sizes. Thankfully this is exactly what is done when carrying out a sum-

mation via a parallel reduction (as is the preferred method for carrying out pairwise

operations on GPU hardware). An illustration of this process is shown in Figure

4.5. In a reduction, elements are reduced pairwise on a single thread with each step

operating on a pair generated from the previous step (or the initial values).

The most notable accumulation problem in our simulations occurs in the calcu-

lation of transient stress. For accuracy this is calculated using logarithmic binning.

That is given some quantity A(t) we wish to calculate, the time intervals are de-

fined such that t0 = D and ti = DM i where i is an integer greater than zero. The

constant D is the initial time and M is a multiplication factor. In our simulations

D = δt is taken as the starting time and M = 1.1. Then the average at some time

interval ti → ti+1 of the quantity A(t) is given by

A(ti) =
1

ti+1 − ti

∫ ti+1

ti

A(t′)dt′.

The interval size which is averaged over grows as the simulation progresses. The

transient stress tensor is thus given by

σαβ(ti) =
1

ti+1 − ti

∫ ti+1

ti

σαβ(t′)dt′.

Each integral is calculated discretely as a summation. If the running total is stored

as a floating point it will eventually fail, because as the simulation progresses the

time interval grows substantially. Eventually adding values which are significantly

smaller than the running total will no longer have any affect on the stored value.

This can be fixed simply by making use of a double for storing the running sum which

is calculated via a reduction each time step (this small change equates to only seven

double precision operations every time-step) without affecting the overall simulation

speed.
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The only other quantity which is summed over all particles per time-step is the

Gaussian multiplier as this plays a crucial role in maintaining stability within the

simulation. We go one step further to improve accuracy and use a double-single

precision approach i.e. two floating points are used to store a more accurate rep-

resentation of a variable. Double-single precision floating point numbers have been

used more extensively in the study of glassy dynamics via the molecular dynamics

simulations [143].

4.4 Results
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Figure 4.6: Comparison of transient viscosity results obtained from GPU (symbols)

and CPU (lines) simulations.

Firstly to test our implementation we simulate a polymer melt system with chain

length N = 45, time step δt = 0.004τLJ and Nch = 400. The transient viscosity is

calculated using eq. 3.4. Figure 4.6 shows these test results which are compared

with those obtained from our CPU implementation in section 3. The GPU results
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are denoted by symbols and the CPU results are shown as lines. We find very

good agreement between the two implementations. For this system our GPU code

achieves approximately 820 time steps per second. The comparable CPU based code

manages approximately 60-80 time steps per second on a single CPU (an Intel Core

i5). A performance increase of over 10 times. However, as mentioned previously

the slowest part of a GPU simulation is reading from global memory, therefore, our

choice of the Gear predictor-corrector algorithm which uses a staggering eighteen

variables per particle for storage of the velocity, position and their derivatives plays

a large role in reducing the performance. Even so the GPU version dramatically

outperforms our CPU implementation with simulations which could take months

being completed in a number of days.
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Figure 4.7: Comparison of transient viscosity results obtained from GPU simulations

of planar extension of N = 235 and experiments of uniaxial extension of PS50K.

We now consider simulation results for chains of length N = 235. These chains

posses the same number of entanglements as PS50K. Each simulation box con-
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tains Nch = 150 chains and the results are averaged over two statistically indepen-

dent runs. The time-step used in these simulations is δt = 0.005τLJ . These non-

equilibrium simulations are started using saved configurations from an equilibrium

simulation carried out using HOOMD-blue (which has run for approximately 104τd).

The experimental results correspond to extension rates ε̇ = 0.3s−1, 0.1s−1, 0.01s−1

and 0.003s−1. The terminal relaxation time of PS50K is τd = 12.8s which has been

determined from linear rheology experiments.

Figure 4.7 shows results for Deborah rates 0 < De < 10 alongside the exper-

imental results. The time scales for simulation results have been scaled appropri-

ately using the time shift factor determined previously and the viscosities, η, have

been normalised by the steady state viscosity from the linear regime (shown by

the dashed curve). We find that for small Deborah numbers we have reached the

limiting steady-state viscosity η0.

The similarity between the linear rheology curve and the slowest rate in experi-

ments ε = 0.003s−1 or De = 0.00384 demonstrates the validity of this mapping. The

results show qualitatively similar behaviour with the slowest rates following the lin-

ear viscosity curve. For intermediate rates 1 < De < 10 the steady state extensional

viscosity rises above η0. In simulations the maximum steady-state viscosity seen is

approximately 2.5η0 for a Deborah number of De = 7.261. The experimental results

show a maximum of 2η0 at a Deborah number of De = 3.84 which represents the

highest rate that can be tested for this material due to an upper limit on extension

rate to avoid dissipative heating in the filament stretching rheometer. In contrast

molecular dynamics simulations of smaller Deborah numbers (or slower extension

rates) are problematic as these lead to a larger degree of error as seen in Figure 4.6

and take considerably longer to reach steady state. A comparison of the steady state

viscosities, η̄, for various Deborah numbers is shown in Figure 4.8. In our simula-
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Figure 4.8: Comparison of steady state viscosity results obtained from GPU simu-

lations of planar extension of polymer melts with chain length N = 235 and exper-

iments of uniaxial extension of PS50K.

tions of planar extension we observe analogous extensional thickening to that seen

in experiments of uniaxial extension but at higher Deborah numbers. When using

the same deformation rate, the steady-state viscosity obtained in uniaxial extension

is found to be higher than that in planar extension, which is in agreement with the

observations of Meissner et al. [133].

We now consider the scaling behaviour for extension rates greater than the re-

ciprocal of entanglement time, τe. In the experiments of Bach et al. [129] the steady

state extensional viscosity was found to follow the scaling law η ∼ (ε̇τd)
−1/2. In or-

der to see how this scaling differs under planar extension we must run a number of

high extension rates. The transient viscosity curves obtained from these simulations

are shown in Figure 4.9. Figure 4.10 compares the steady state viscosities, η̄, with

predictions from the DE tube model obtained by numerically solving eq. 4.1. As
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Figure 4.9: Transient viscosity for a large number of extension rates with N = 235.

expected the DE tube theory does not predict the extensional thickening behaviour.

Due to the limited number of simulation results for extension rates greater than

the reciprocal of entanglement time we are unable to draw any concrete conclusions

regarding the scaling behaviour at this stage. Using our current simulation proto-

col we are unable to test higher extension rates. In experiments one surface of the

sample is often in contact with the atmosphere which maintains the sample in an

Isothermal-isobaric or NpT (constant pressure) ensemble. In molecular dynamics

simulations it is customary to use a canonical or NV T (constant volume) ensemble

as is the case in all simulations carried out in this thesis. Federico and Todd [144]

have shown that using a canonical ensemble at very high extension rates in sim-

ulations leads to large deviations in results compared with an Isothermal-isobaric

ensemble.

By considering a larger number of extension rates for N = 235 we find the

maximum viscosity at approximately De = 10.373, where it reaches 2.585η0. The

value of η0 has been calculated accounting for the Trouton ratio.

122



10
-2

10
0

10
2

τ
d
ǫ

10
-4

10
-2

10
0

η̄
/
η
0

DE Tube Theory

MD

Figure 4.10: Comparison of steady state viscosities, η̄, for a number of extension

rates, ε̇, between molecular dynamics simulations and the Doi-Edwards tube theory.

4.5 Conclusions

We have simulated mildly entangled polymer chains under planar extensional flow.

This has been proved to be computationally expensive for CPU simulations, so we

opt to write new code which takes advantage of the promising performance benefits

shown by GPUs in scientific computing. This approach leads to huge performance

gains, and we find the results produced using floating point precision in good agree-

ment with simulations carried out on CPUs which use double precision. By mod-

elling polymer chains with the same number of entanglements as PS50K we find an

increase in the magnitude of the steady-state viscosity which is comparable with

the increase shown by Nielsen and coworkers [128]. We find for low extension rates

the viscosity curves and linear viscosity curve superimpose. As the extension rate

increases the extensional viscosity rises above the linear viscosity curve (extensional

thickening), demonstrating behaviour consistent with experimental observations but
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not predicted by the DE tube theory.

For reaching the same extensional viscosities the extension rates required in our

planar extension simulations are higher than those used in the uniaxial extension

experiments. We are unable to determine how the steady state viscosity scales with

Deborah number for extension rates higher than the reciprocal of entanglement time

for the chain length studied in this chapter but the GPU method developed here for

simulating these systems can readily be applied to longer chain lengths to test this

scaling.
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Chapter 5

Conclusions

5.1 Conclusions

In this thesis we discussed three main topics: the dynamic behaviour of supramolec-

ular polymer melts, non-linear rheology of supramolecular polymer melts and the

extensional rheology of entangled linear polymer melts.

We first present hybrid molecular dynamics/Monte Carlo simulations of supramolec-

ular networks formed by unentangled telechelic chains with sticky end monomers

(or stickers). The functionality of the stickers is chosen to be f = 3, meaning

that each sticker can maximally associate with two other stickers. This is the mini-

mum functionality required for percolated network formation, but allows us to study

supramolecular polymer networks that are cross-linked by reversible sticker clusters

or micellar cores with well defined size distributions.

We investigated the kinetics of sticker association, the topological structure and

the resulting dynamic and rheological behavior of the supramolecular systems as a
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function of the sticker bonding energy and the parent polymer chain length. Our

simulations revealed that the sol-gel transition occurs at a critical sticky bonding

energy around 4.3kBT when the fraction of reacted stickers overtakes that of the

open stickers. At sufficiently high bonding energies (≥ 10kBT ), the majority of

the stickers are fully reacted and less than one percent of stickers remain open.

We developed a chain shrinking algorithm to detect the proportion of elastically

inefficient strands and found that in the strongly associated supramolecular networks

this is less than 5%.

The dynamic and rheological behavior of the strongly associated supramolecular

networks were shown to be dominated by a partner exchange mechanism in which the

stickers exchange their associated partners, and so release the imposed topological

constraints, through the disassociation-association processes of the sticker clusters.

This is in contrast to the traditional picture of single sticker hopping where a sticker

needs to first pull out of a cluster by breaking all existing sticky bonds, which is

energetically unfavourable. Our study indicates that the system can relax without

waiting for the chain ends to completely disassociate from the network. We found

the presence of large sticker clusters can actually increase the rate at which chains

relax.

Two new characteristic time scales, namely the partner exchange time and cluster

exchange time are introduced to measure the dynamics of supramolecular networks

formed at high sticky bonding energies. These time scales are up to two orders of

magnitude larger than the average sticky bond lifetime. Three distinctive regimes

can be identified in the stress and end-to-end vector relaxation functions, i. e.,

an initial Rouse regime, an intermediate rubbery or plateau regime and a termi-

nal relaxation regime. A phantom chain hopping model is proposed based on the

microscopic picture of sticker partner exchange process. Numerical predictions of
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this model on the sticker mean square displacements and chain end-to-end vector

correlation functions are in reasonably good agreement with the hybrid MD/MC

simulation results.

These supramolecular networks were then studied under both shear and planar

extensional flows. We found the transient networks formed at high bonding energy

results in a large increase in viscosity when compared with polymer melts. At de-

formation rates larger than the reciprocal of the bond lifetime, the sticky bonds

do not have enough time to disassociate by thermal fluctuations, the parent poly-

mer chains experience non-Gaussian stretching during the start-up flow, leading to

strain hardening. We find chains stretch up to 1.6 times their equilibrium length.

During the deformation a change in structure is observed with an overall reduction

in the number of fully reacted stickers (between 20− 40% depending on the type of

deformation). This structural change leads to an overall reduction in the number

of active strands and therefore results in shear thinning behaviour in steady-state.

In these simulations a decrease in both bond lifetime and partner exchange time is

seen with increasing shear rate.

Finally, we carried out planar extension simulations of mildly entangled polymer

chains. In order to model these systems efficiently using molecular dynamics we

developed a GPU based simulation method which was found to be approximately

10 times faster than a CPU approach. The chain length modelled was chosen to

allow for comparison with data from uniaxial extension experiments. At low exten-

sion rates the viscosity differ from the linear viscosity curve by only the Trouton

ratio. But when the extension rate increases extensional thickening was observed.

For completeness these results were compared with the Doi-Edwards tube theory

which predicts an absence of thickening behaviour. The increase in the steady-state

viscosity above the linear viscosity curve were comparable with the experimental
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results.

5.2 Future Work

Use the hybrid MD/MC simulation method to study various supramolecular sys-

tems, such as binary association systems and networks formed by bridged micellar

cores both in equilibrium and under flows. Examine correspondence with existing

and if needed develop, new theoretical models on supramolecular polymers.

Perform more detailed analysis of the entangled polymers under extensional flow,

comparing simulation results with experimental measurements and theoretical pre-

dictions [145, 146] for achieving a better microscopic understanding of non-linear

rheology of entangled polymers.
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