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Abstract 48 

Ocean color remote sensing of chlorophyll concentration has revolutionized our understanding of 49 

the biology of the oceans.  However, a comprehensive understanding of the structure and function 50 

of oceanic ecosystems requires the characterization of the spatio-temporal variability of various 51 

phytoplankton functional types (PFTs), which have differing biogeochemical roles.  Thus, recent 52 

bio-optical algorithm developments have focused on retrieval of various PFTs.  It is important to 53 

validate and inter-compare the existing PFT algorithms; however direct comparison of retrieved 54 

variables is non-trivial because in those algorithms PFTs are defined differently. Thus, it is more 55 

plausible and potentially more informative to focus on emergent properties of PFTs, such as 56 

phenology.  Furthermore, ocean color satellite PFT data sets can play a pivotal role in informing 57 

and/or validating the biogeochemical routines of Earth System models.  Here, the phenological 58 

characteristics of 10 PFT satellite algorithms and 7 latest-generation climate models from the 59 

Coupled Model Inter-comparison Project (CMIP5) are inter-compared as part of the International 60 

Satellite PFT Algorithm Inter-comparison Project.  The comparison is based on monthly satellite 61 

data (mostly SeaWiFS) for the 2003-2007 period. The phenological analysis is based on the 62 

fraction of microplankton or a similar variable for the satellite algorithms and on the carbon 63 

biomass due to diatoms for the climate models.  The seasonal cycle is estimated on a per-pixel 64 

basis as a sum of sinusoidal harmonics, derived from the Discrete Fourier Transform of the 65 

variable time series.  Peak analysis is then applied to the estimated seasonal signal and the 66 

following phenological parameters are quantified for each satellite algorithm and climate model: 67 

seasonal amplitude, percent seasonal variance, month of maximum, and bloom duration.  68 

Secondary/double blooms occur in many areas and are also quantified.  The algorithms and the 69 

models are quantitatively compared based on these emergent phenological parameters.  Results 70 
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indicate that while algorithms agree to a first order on a global scale, large differences among 71 

them exist; differences are analyzed in detail for two Longhurst regions in the North Atlantic: 72 

North Atlantic Drift Region (NADR) and North Atlantic Subtropical Gyre West (NASW).  73 

Seasonal cycles explain the most variance in zonal bands in the seasonally-stratified subtropics at 74 

about 30o latitude in the satellite PFT data. The CMIP5 models do not reproduce this pattern, 75 

exhibiting higher seasonality in mid and high-latitudes and generally much more spatially 76 

homogeneous patterns in phenological indices compared to satellite data.  Satellite data indicate a 77 

complex structure of double blooms in the Equatorial region and mid-latitudes, and single blooms 78 

on the poleward edges of the subtropical gyres.  In contrast, the CMIP5 models show single 79 

annual blooms over most of the ocean except for the Equatorial band and Arabian Sea.  80 

 81 

 82 

 83 

 84 

 85 

 86 
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 88 

 89 

 90 

 91 
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1. Introduction 92 

Marine phytoplankton play an important role in the global carbon cycle via oxygenic 93 

photosynthesis and the biological pump (Field et al., 1998; Eppley and Peterson, 1979; 94 

Falkowski et al., 1998; IPCC, 2013; Siegel et al., 2014).  Since the late 1990's, ocean color 95 

remote sensing has enhanced our understanding of oceanic ecosystems via continuous global 96 

estimates of total chlorophyll a concentration (Chl), interpreted as a proxy for phytoplankton 97 

biomass (e.g. McClain, 2009; Siegel et al., 2013).  However, total Chl does not provide a full 98 

description of the ecosystem.  Phytoplankton have different morphological (size and shape) and 99 

physiological (growth and mortality rates, response to nutrient, temperature and light conditions) 100 

characteristics and different resulting biogeochemical and ecological roles (e.g. silica or iron 101 

requirements, calcification, sinking rates, feeding characteristics) and are thus grouped 102 

accordingly into phytoplankton functional types (PFTs, e.g. IOCCG 2014).  Phytoplankton 103 

community structure influences many fundamental components of the marine biogeochemical 104 

cycle, including: phytoplankton physiology; nutrient uptake; nutrient cycling; growth rates; 105 

metabolic rates; deep-ocean carbon export; and the transfer of energy through the marine food 106 

web (IOCCG, 2014).  Therefore, detailed characterization of PFTs, and not only total Chl, is 107 

required to develop predictive understanding of the ocean’s role in climate on various time scales 108 

(e.g. Le Quéré et al., 2005; Hood et al., 2006; Stock et al., 2014) and inform climate models.  109 

One of the primary distinguishing characteristics of the different PFTs is cell size, which is 110 

considered to be a master trait (Marañón, 2015) and is correlated to first order with 111 

biogeochemical function – e.g. Le Quéré et al, 2005).  Size partitioning has been used as a first-112 

order proxy for PFT classification (e.g. Vidussi et al., 2001; Le Quéré et al., 2005; Uitz et al., 113 

2006; Kostadinov et al., 2010). 114 
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 115 

Satellite remote sensing provides a comprehensive observation method to characterize the global 116 

spatio-temporal distribution of PFTs (e.g. McClain et al. 2009; Siegel et al, 2013).  Space-borne 117 

platforms can provide continuous sampling at the required resolution in time and space in order to 118 

facilitate the development of more complex “dynamic green ocean models” (Le Quéré et al., 119 

2005) that include multiple functional types and resolve important biogeochemical processes 120 

(IOCCG, 2014, Ch. 1, Sect. 1.5).  Multiple satellite bio-optical algorithms for the retrievals of 121 

various PFTs have been developed in the last decade as a result. One class of algorithms is based 122 

on total abundance and the premise that smaller cells are associated with oligotrophic conditions 123 

whereas larger cells are associated with eutrophic conditions (Chisholm, 1992) – such algorithms 124 

are described by Brewin et al. (2010), Hirata et al. (2011) and Uitz et al. (2006).  Another class 125 

of algorithms relies on various spectral features.  The PHYSAT algorithm exploits second-order 126 

anomalies of reflectance spectra (Alvain et al., 2005; Alvain et al., 2008), whereas several other 127 

algorithms are based on either absorption (Bracher et al., 2009; Ciotti and Bricaud, 2006; Mouw 128 

and Yoder, 2010; Roy et al, 2011; Roy et al 2013), or backscattering (Kostadinov et al., 2009; 129 

Kostadinov et al., 2010; Kostadinov et al., 2016), or a hybrid of absorption and backscattering 130 

(Fujiwara et al., 2011). 131 

 132 

Brewin et al. (2011) conducted the first systematic inter-comparison of PFT algorithms designed 133 

to identify “dominant” PFTs in the oceans.  With the increasing publication of new PFT 134 

algorithms (IOCCG, 2014), an international team of PFT algorithm developers and scientists was 135 

tasked to perform a follow-up inter-comparison exercise (Hirata et al., 2012; Hirata, 2015); this 136 

study reports results from a component of this inter-comparison project.  A summary of the 137 
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available algorithms and their technical basis can be found in Table 1 (also see IOCCG, 2014).  138 

The various algorithms use different PFT definitions and retrieve different variables that are 139 

based on various sets of assumptions, and hence are not necessarily directly comparable.  Some 140 

retrieve several taxonomic groups, others – size fractions based on Chl or volume (Table 1; 141 

IOCCG 2014).  PFT algorithms often aim to quantify the size structure of the phytoplankton 142 

population by defining three phytoplankton size classes (PSCs) – picoplankton (< 2 µm), 143 

nanoplankton (2-20 µm), and microplankton (> 20 µm) (Sieburth et al., 1978).  This is justified 144 

because size is considered a master trait (e.g. Marañon et al. 2015), but we caution that 145 

differences exist between PFTs and PSCs, even though this terminology is often used 146 

interchangeably.147 
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Table 1. Overview of the PFT/PSC algorithms used and the relevant variable(s) from which phenological parameters 148 

were derived.  SW10 refers to SeaWiFS monthly mapped 9 km global Rrs(l) data for the 2003-2007 period. Monthly 149 

data for 2003-2007 from SCIAMACHY on ENVISAT was only used for PhytoDOAS and has 1/2 degree spatial 150 

resolution.  The variables provided by most algorithm are dimensionless, i.e. fractions of a total, most commonly – 151 

chlorophyll-a (Chl).  This is indicated by a double dash in the table.  If in situ data were used in algorithm development, 152 

the region from which the data came is indicated.  N/A means no in situ data were directly used in the algorithm 153 

development (not including validation) (see references for details).  154 

 155 
 156 

Algorithm 
Publication(s) 

Acronym Variables Analyzed Units Input 
Data 

Algorithm 
Class/Basis 

Variables 
Retrieved 

Region of 
development  

Alvain et al. (2005,2008) PHYSAT Frequency of 
detection of diatoms 

% of 
days 

SW10 Rrs(l) second-
order anomalies 

(Radiance-based) 

Multiple 
taxonomic PFTs 

North Atlantic;  
Equatorial & Tropical 

South Pacific; 
Southern Ocean 

Bracher et al. (2009); 
Sadeghi et al. (2012) 

PhytoDOAS Diatoms Chl mg m-3  SCIAM
ACHY 

Differential 
absorption from 

hyperspectral data. 
(Absorption-based) 

Multiple 
taxonomic PFTs 

Uses PFT-specific 
aph(l)  

Brewin et al. (2010) BR10 Microplankton – 
fraction of Chl 

-- SW10 Abundance-based. Size structure Atlantic Ocean 

Ciotti and Bricaud (2006), 
Bricaud et al. (2012) 

CB06 1 – Sf, where Sf = 
fraction of small 
phytoplankton 

-- SW10 Absorption-based. Size structure Global (In situ data 
used for picoplankton 

basis vector) 
Fujiwara et al. (2011) FUJI11 Microplankton – 

fraction of Chl 
-- SW10 Absorption- and 

backscattering- 
based. 

Size structure Arctic-North Pacific 

Hirata et al. (2011) OC-PFT Microplankton – -- SW10 Abundance-based.  Size structure Global (coastal and 
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fraction of Chl shelf waters excluded) 
Kostadinov et al. (2009, 

2010)  
KSM09 Microplankton -  

volume fraction 
-- SW10 Backscattering-

based. 
Size structure N/A 

Mouw and Yoder (2010) MY10 Sfm, fraction of large 
phytoplankton 

-- SW10 Absorption-based. Size structure Global 

Roy et al. (2011, 2013) ROY13 Microplankton – 
fraction of Chl  

-- SW10 Absorption-based. Size structure Global 

Uitz et al. (2006)  UITZ06 Microplankton – 
fraction of Chl 

-- SW10 Abundance-based. Size structure Global (case-2 waters 
excluded) 

O'Reilly et al. (1998, 2000) OC4v6 Chl-a mg m-3 SW10 Band-ratio Rrs(l) 
based. 

(Radiance-based) 

Chl-a Global 
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Here we compare the algorithm outputs in terms of a key emergent property: phytoplankton 157 

phenology.  Since seasonal cycles are a key property of ecosystems, it is important to assess to 158 

what degree different algorithms agree in terms of phenology, i.e. how consistently they capture 159 

the annual progression of phytoplankton blooming and subsequent senescence.  If the timing of a 160 

bloom were slightly shifted between two data sets, direct comparison of the variables at each time 161 

step would yield disparate and meaningless results, whereas phenological analysis will identify 162 

the offset in timing (Platt et al., 2009).  The amount of algorithms spread about an ensemble 163 

mean can be indicative of our confidence in retrieving a certain phenological parameter (e.g. 164 

timing of annual bloom), and overall results of the comparison can guide further algorithm 165 

improvements. 166 

 167 

We use the Discrete Fourier Transform (DFT) to first model the seasonal cycle as a summation of 168 

sinusoids derived from the annual frequency band and its harmonics (integer multiples).  We then 169 

quantify phenological parameters of interest using the modeled seasonal cycle.  The phenology 170 

inter-comparison is based on global ocean color data (SeaWiFS and SCIAMACHY) for the 171 

period 2003-2007, using microplankton fraction or the most similar available variable from each 172 

participating PFT/PSC algorithm (Table 1).  Increases in the absolute or fractional amount of 173 

large phytoplankton or diatoms were considered here to define a bloom, which is consistent with 174 

the established ecological idea that higher chlorophyll concentrations are associated with 175 

eutrophy and a relatively higher dominance of large phytoplankton  (e.g. Chisholm, 1992; Loisel 176 

et al., 2006; Kostadinov et al., 2010; Marañón, 2015).  We quantify the timing, amplitude and 177 

duration of blooms, as well as the fraction of variance explained by the modeled seasonal cycle.  178 

We compare these phenological parameters among the PFT algorithms.  The same phenological 179 
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parameters are also compared for the NASA chlorophyll product (OC4v6 Chl), as well as 180 

contemporary diatom carbon biomass provided by seven CMIP5 Earth System Models (ESMs).  181 

Our goal is not to rank the satellite algorithms and CMIP5 models in terms of quality; rather we 182 

strive to identify spatial patterns of agreement and disagreement among the algorithms in an 183 

effort to guide future improvements.  Additionally, the comparison to the ESM ensemble is aimed 184 

at guiding future improvements in biogeochemical and climate modeling, a key goal of the Earth 185 

system science community (IPCC, 2013).  186 

2. Data and Methods 187 

2.1 Input Satellite Data 188 

All algorithms with the exception of PhytoDOAS use monthly global 9 km Level 3 mapped 189 

SeaWiFS remote-sensing reflectance, (Rrs(l), reprocessing R2010.0) from January 2003 to 190 

December 2007 as input (60 monthly maps total).  These data as well as the corresponding 191 

monthly OC4v6 Chl data (O'Reilly et al., 2000) and monthly composites of daily averaged 192 

photosynthetically available radiation (PAR, mol photons m-2 day-1)  from the same reprocessing 193 

were downloaded from the NASA Ocean Biology Distributed Active Archive Center 194 

(OB.DAAC) maintained by the Ocean Biology Processing Group (OBPG) 195 

(http://oceandata.sci.gsfc.nasa.gov/) (NASA Goddard Spaceflight Center, 2010). Rrs(l) data were 196 

processed by the individual algorithm providers.  The hyperspectral PhytoDOAS algorithm is 197 

based on Scanning Imaging Absorption Spectrometer for Atmospheric Cartography 198 

(SCIAMACHY) level-1 top-of-atmosphere radiance data. SCIAMACHY was a satellite sensor 199 

with a native pixel size is 30 km by 60 km which operated from 2002 to 2012 on the ENVISAT 200 

satellite.  These processing details were agreed upon by the International PFT Inter-comparison 201 
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Project Team (Hirata et al., 2012).  SeaWiFS Chl data were analyzed in the same way as the PFT 202 

algorithms data for comparison purposes.  PAR data were used for verification of the DFT 203 

phenological algorithm (Supplement Part 1). 204 

 205 

2.2 PFT/PSC Algorithm Output Pre-Processing 206 

The PFT/PSC algorithms were used to derive phenological parameters using the variable most 207 

closely corresponding to either microplankton Chl [mg m-3] or microplankton/large 208 

phytoplankton fraction [% of total Chl].  The rationale behind this choice is 1) blooming/more 209 

eutrophic conditions are on average characterized by an increase in total and fractional large 210 

phytoplankton biomass; and 2) this is the most common variable among all available algorithms.  211 

Table 1 summarizes the respective variables used in the phenological analysis, indicates the 212 

acronym used here for each algorithm and provides additional relevant information.  For 213 

additional algorithm methodologies details, see the references in Table 1 and IOCCG (2014).   214 

 215 

Monthly data from all algorithms were down-sampled to 1 degree resolution using two-216 

dimensional convolution with a 12 x 12 top hat averaging kernel (2 x 2 in the case of 217 

PhytoDOAS due to its different resolution).  Missing data in the original resolution were ignored 218 

in the averaging; however, if less than 50% of the pixels being averaged were valid data, the pixel 219 

in the down-sampled image was assigned a missing data value.  For PhytoDOAS, even a single 220 

valid pixel of the four being averaged produced a valid pixel in the down-sampled image.  The 221 

registration of PhytoDOAS images was changed from grid/node to cell/pixel (NCEI, 2015) in 222 

order to match all other down-sampled imagery. All variables were down-sampled in linear space 223 

with the exception of Chl and the PhytoDOAS data, which were down-sampled in log10 space, 224 
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since Chl values tend to vary lognormally spatially (Campbell, 1995).  The log space spatial 225 

average was weighted appropriately for any present zeros, which cannot participate in a log 226 

average (Habib, 2012).  Note that taking an arithmetic average in log space approximates the 227 

median of the data in linear space (Campbell, 1995).    228 

 229 

2.3 Phenological Parameters via Discrete Fourier Transform (DFT); Metrics of 230 

Algorithm and Model Inter-comparison.  231 

An increase in the absolute or fractional amount of large phytoplankton or diatoms is considered 232 

a bloom, and the bloom peak is considered the maximum of these values, respectively.  A time 233 

series of each algorithm’s relevant microplankton or diatom variable (Table 1) was constructed at 234 

each pixel at 1-degree resolution.  Data were gap-filled temporally by linear interpolation (no 235 

extrapolation was applied).  If more than 45% of the data points were missing or if there was a 236 

continuous run of missing data longer than 8 months anywhere in the time series, data for that 237 

pixel was not used in the analysis.  The mean was subtracted from each time series.  Interannual 238 

variability is not explicitly considered in this study; however, possible secular trends are removed 239 

by detrending (by subtracting a least-squares line fit to the data), and other interannual variability 240 

in the study period of 2003-2007 is taken into account implicitly because the DFT is computed 241 

over the entire time series.  If data were missing at the edges of the time series, they were filled 242 

with zeros.  The DFT was then used to transform the time series to the frequency domain.  The 243 

Fourier coefficients at a frequency of one cycle per year (f = 1 yr-1) and all its available harmonics 244 

(integer multiples) were used to model the seasonal cycle as a sum of sinusoids of varying phases 245 

and amplitudes.  Supplement Part 1 describes the details of the DFT analysis and seasonal cycle 246 

modeling, and Supplement Fig. S1 illustrates an example modeled seasonal cycle. 247 
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 248 

Peak analysis was performed on the modeled annual cycle signal using the MATLAB® (R2014b) 249 

Signal Processing Toolbox® routine findpeaks in order to determine the timing of the local 250 

maxima, the signal height (the value of the signal at the peak) and the width of the signal at half-251 

height.  The modeled signal minimum value was subtracted from the signal before peak analysis 252 

to ensure correct height determinations.  Signal edge effects were taken into account.  In order to 253 

avoid detection of small secondary peaks (many of which can be artifacts of the modeling), only 254 

peaks whose prominence was greater than 10% of the signal range (maximum minus minimum 255 

value) and which were at least 2.5 months apart from each other were detected.  Prominence here 256 

is equivalent to topographic prominence and can be thought of as the intrinsic height of the peak 257 

relative to other nearby peaks.  The same phenological analysis was applied to diatom carbon 258 

output from 7 CMIP5 models – details of the methodology and model information are provided 259 

in Supplement Part 2 and in Cabré et al. (2015).  The following phenological parameters and 260 

inter-comparison metrics were derived from the peak analysis for both the PFT algorithms and 261 

the CMIP5 models: 262 

 263 

1) Seasonal amplitude of the primary bloom, determined as half the height of the most prominent 264 

(highest) peak (Supplement Fig. S1), was inter-compared qualitatively because variables are on 265 

different scales (even among algorithms that have the same units, the methodologies are 266 

different). 267 

2) The month of maximum of the primary bloom, determined as the month where the DFT-268 

modeled seasonal cycle is maximum.  The ensemble mean for the algorithms and CMIP5 models 269 

(calculated separately for each ensemble) was used to quantitatively compare the month of 270 
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maximum of each algorithm to the ensemble mean month of maximum for all algorithms.  We 271 

also compared the Chl and the ensemble mean CMIP5 model months of maxima.  Variances in 272 

month of maxima were quantified for the algorithms and the CMIP5 models separately.  The 273 

month of maximum was averaged across algorithms and models using circular statistical methods 274 

to ensure a properly estimated mean and variance (Supplement Part 3).   275 

3) Duration of the primary bloom (in days), determined as the width of the most prominent peak 276 

at the peak's half-height level. Ensemble mean and standard deviation of bloom duration were 277 

calculated for the CMIP5 models and algorithms, and individual algorithm durations were 278 

qualitatively compared.   279 

4) Percent seasonal variance, i.e. fraction of the data variance explained by the modeled seasonal 280 

cycle as opposed to other processes (e.g. one-time events, multiannual processes, and inter-annual 281 

variability due to climate oscillation modes like ENSO) and noise. An area in which this fraction 282 

is very high is characterized by a very clean seasonal signal i.e. little variance contribution by 283 

other processes.  It is calculated as the sum of power at f = 1 yr-1 and its harmonic frequencies 284 

(Supplement Part 1), divided by total variance of the input data.  The ensemble mean among the 285 

algorithms and models was calculated.    286 

 287 

At least three algorithms (or two CMIP5 models) were required to participate in the ensemble 288 

means of month of maximum, percent seasonal variance and bloom duration for the ensemble 289 

statistics to be considered valid.  If present, the second most prominent peak, representing a 290 

possible secondary bloom, was also characterized by using the above phenological parameters 291 

and the following was also derived: difference in months between the primary and secondary 292 

bloom, and relative prominence of the secondary blooms (ratio of the prominence of the 293 
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secondary peak to the prominence of the primary peak).  The fraction of satellite algorithms or 294 

CMIP5 models exhibiting two annual peaks was mapped, indicating in which regions the 295 

majority of algorithms or models agree that there is a secondary bloom. The difference in months 296 

between the maxima of the primary and secondary blooms was compared qualitatively among the 297 

algorithms.  Finally, regionally binned analysis was performed for the following Longhurst 298 

(1998) provinces 1) Westerlies - North Atlantic Drift – NADR and 2) North Atlantic Subtropical 299 

Gyre West  - NASW.  Available data in these regions were spatially averaged and the resulting 300 

single time series per region and algorithm/model were analyzed.  Methodological details of this 301 

analysis are provided in Supplement Part 4.    302 

3. Results and Discussion 303 

3.1 Seasonal Amplitude 304 

The seasonal amplitude (Fig. 1) of the relevant PFT variables (Table 1) quantifies the strength of 305 

the seasonal cycle at a particular location.  The tropical ocean and the oligotrophic subtropical 306 

gyres (defined here as the regions delineated by the climatological SeaWiFS Chl = 0.08 mg m-3 307 

isoline and having Chl values less than this value) were generally characterized by low seasonal 308 

amplitudes of Chl and microplankton across all the algorithms.  However, according to most 309 

algorithms, the southern edge of the South Pacific gyre, at around 30oS, was characterized by a 310 

band of higher seasonal amplitude, particularly evident in the UITZ06 and ROY13 data.  Notably, 311 

in BR10 and UITZ06, some of the areas of lowest amplitude for microplankton are just 312 

equatorward of the Chl isoline delineating the gyre. Similarly, in ROY13 the gyres are not 313 

actually the places with the lowest amplitudes; rather they occur just equatorward of them in the 314 

Pacific.  According to most algorithms, the highest seasonal amplitudes occur at the temperate 315 
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and subpolar latitudes and in coastal zones, particularly the North Atlantic, the Northwestern 316 

Pacific, and in the monsoon-driven upwelling region off of the Arabian Peninsula.  Circumpolar 317 

bands of high and low seasonal amplitude characterize the Southern Ocean, but the spatial details 318 

of the bands differ across algorithms.  Overall, the large-scale spatial patterns of seasonal 319 

amplitude are similar, across algorithms of the same type.  The CB06 algorithm retrieved almost 320 

no valid data over the gyres, and the PHYSAT data sparsity precludes meaningful DFT analysis 321 

over most areas; thus no PHYSAT map was included in Fig. 1 and subsequent maps (See Sect 3.6 322 

for regionally binned analyses of PHYSAT data). 323 
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 324 

 325 

Figure 1. Seasonal amplitude of Chl and the large phytoplankton/diatoms variables of 9 326 

PFT satellite ocean color algorithms (Table 1).  PHYSAT is not shown due to data 327 

sparsity.  The same logarithmic color scale applies to all maps, and units are as 328 
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indicated in Table 1.  The isoline of climatological Chl = 0.08 mg m-3 is plotted as a solid 329 

white contour.  All pixels where valid phenological analysis was performed are mapped. 330 

 331 

3.2 Percent Seasonal Variance 332 

The ensemble-mean percent seasonal variance for all 10 PFT algorithms (Fig. 2A) reveals several 333 

oceanic zones where the seasonal cycle is particularly clean/reproducible.  This is especially 334 

prominent at the poleward boundaries of the subtropical gyres, around 30-40o latitude in both 335 

hemispheres, where 70-80% of the signal variability is explained by the seasonal cycle 336 

represented by the DFT.  These highly-seasonally variable regions correspond to sharp transitions 337 

in surface Chl concentration, as observed in in situ observations and satellite data (e.g. Glover et 338 

al. 1994).  In the Pacific this feature is known as the transition zone chlorophyll front (TZCF), 339 

which migrates from 30-35oN in winter to 40-45oN in summer; its migration is due primarily to 340 

wind-driven seasonal variations in Ekman pumping and Ekman advection of nutrients (e.g., 341 

Bograd et al. 2004).  The equivalent North Atlantic seasonally-stratified subtropics coincide with 342 

the mid-latitude biome of Levy et al. (2005) and are described as a nutrient-limited regime. 343 

Equivalent seasonally-stratified, nutrient-limited subtropics with high seasonal variability are 344 

present in the Southern Ocean band around 30oS.  345 

 346 

 347 
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 348 

Figure 2. Ensemble mean percent seasonal variance for the 2003-2007 period for A) 349 

the 10 PFT algorithms (Table 1) and B) the 7 CMIP5 models (Table S1). (C) The 350 

difference in percent seasonal variance between the satellite data and the models 351 

(positive difference means satellite data percent seasonal variance is larger than the 352 

model value).  The isoline of climatological Chl = 0.08 mg m-3 is plotted as a solid black 353 

contour. 354 
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 355 

Detailed analysis of the KSM09-based carbon biomass from SeaWiFS (Kostadinov et al., 2016) 356 

and CMIP5 model output shows that the regions of high percent seasonal variance of Fig. 2A  357 

exhibit strong and reproducible seasonality and are mainly dominated by nano- and 358 

microphytoplankton during the bloom months, and by picophytoplankton during the low-biomass 359 

summer months (Cabré et al. 2016).  These ensemble mean PFT–based results are consistent 360 

with the Chl-based analysis of Sapiano et al. (2012) who also determined that the poleward 361 

fringes of the subtropical gyres have the best seasonality statistical fits  362 

 363 

In contrast to the satellite data, CMIP5 model diatom biomass exhibits smoother spatial 364 

variability of percent variance explained by the seasonal cycle (Fig. 2B, model ensemble mean; 365 

Fig 2C, model-data difference map), with much broader regions characterized by more than 60% 366 

of variance due to the annual cycle.  The percent variance explained by the seasonal cycle is a 367 

much stronger function of latitude (and hence the seasonality of insolation) in models.  Poleward 368 

of 40oS/40oN, models show stronger seasonal variance compared to satellite data. In contrast, the 369 

Equatorial regions, especially in the Pacific and Indian Oceans, have lower percent annual 370 

variance as compared to the satellite data.   371 

 372 

3.3 Month of Maximum of the Primary Bloom 373 

The ensemble-mean month of maximum of the primary peak (Fig. 3A) varies as a function of 374 

latitude to first order, due to the seasonality of insolation, which is a primary physical driver of 375 

oceanic ecosystems, controlling both light and nutrient availability (via heating rates, wind 376 

patterns and mixing).  This latitudinal dependence is most pronounced in the North Atlantic, 377 
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where the subtropics experience a late winter-early spring bloom, northern temperate latitudes 378 

experience maximum blooms in May and June, and subarctic regions – as late as August.  379 

Equivalently, for much of the Southern Hemisphere subtropical seas, the maximum of the bloom 380 

occurs in late austral winter – July and August (Fig. 3A). The Southern Ocean blooms later 381 

during austral late spring and summer, mostly in November through February.  However, the 382 

Southern Ocean exhibits an interesting banded structure where large phytoplankton 383 

(microplankton, diatoms) bloom earlier (November and December) in a zonal band around 50oS, 384 

as compared to a nearly continuous band just to the north, at about 45oS, which tends to bloom 385 

later in January and February. 386 
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 387 

Figure 3. Ensemble mean month of maximum of A) fraction large phytoplankton/diatoms 388 

(or Chl) among 10 PFT satellite algorithms (Table 1), and B) diatom biomass among 7 389 

CMIP5 models.  C) The difference (in months) between the ensemble means of the 390 

satellite data and the models. A positive difference means the satellite data is leading 391 
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the models, i.e. the bloom peak occurs earlier in the data than in the model. The isoline 392 

of climatological Chl = 0.08 mg m-3 is shown (black solid contour). The means and the 393 

respective difference should be treated with caution in areas where a considerable 394 

number of algorithms or models exhibit low fraction of variance explained by the 395 

seasonal cycle (See. Supplement Fig. S13). 396 

 397 

The CMIP5 ensemble mean month of maximum of diatom carbon biomass (Fig. 3B) exhibits a 398 

similar spatial pattern with latitude and is spatially less noisy than the satellite PFT estimates.  In 399 

general the models place the blooms later in time over most of the ocean, as indicated by the 400 

algorithm-model difference map (Fig. 3C, red colors indicate the data peak leads the model peak 401 

in time). Notable exceptions are some areas in or near the subtropical gyres, the Equatorial 402 

Upwelling, and the higher latitudes (e.g. the models do not reproduce the aforementioned banded 403 

structure in the Southern Ocean), where models place the blooms earlier in time. The algorithm-404 

model difference is about one month over much of the ocean area (Fig. 3C, pale red or blue).  405 

This difference is not randomly distributed and exhibits definite spatial patterns, pointing to 406 

latitudinal biases in processes and understanding of seasonality in models.  407 

 408 

The differences between the PFT algorithm’s ensemble mean month of maximum and the month 409 

of maximum for Chl are small (Supplement Fig. S2, top left panel), indicating that the PFT 410 

algorithm ensemble mean month of maximum for microplankton (or similar variable, Table 1) 411 

appears to be representative of that for total Chl.  Several algorithms (BR10, OC-PFT, UITZ06) 412 

are abundance-based (Table 1), i.e. their PFT retrievals are a strong function of Chl; thus it is not 413 

surprising that their individual differences with the Chl month of maximum are relatively small.  414 



25 
 

So the ensemble mean month of maximum may be driven by the abundance-based PFT 415 

algorithms.  Two of the spectral-based models (CB06 and MY10) also exhibit generally small 416 

differences with the Chl results.  Differences among other algorithms with respect to the month of 417 

maximum can be larger; while for most of the ocean and for most algorithms the differences are 418 

not very large, considerable discrepancies persist in significant ocean areas where month of 419 

maxima difference can reach up to 5 or 6 months.   More details, including possible reasons for 420 

the observed differences, are discussed in Supplement Part 5.  An alternative way to quantify the 421 

level of agreement among the satellite algorithms or the CMIP5 models is the circular variance of 422 

the month of maxima (Supplement Fig. S3).  Note that in areas where percent seasonal variance 423 

is low (Fig. 2A and Supplement Fig. S13), the concept of month of maximum for the seasonal 424 

cycle breaks down and results in these areas should be interpreted with caution.  See Sect. 3.7 and 425 

this Supplement Part 9 for details.   426 

 427 

We note that from a resource management standpoint, a difference of a month can be very 428 

significant, especially with respect to the effect on higher trophic levels.  For example, Platt et al. 429 

(2003) conclude that differences of three weeks in the timing of the spring algal bloom can have 430 

large influences on the survival index of fish larvae in the Northwest Atlantic.  Koeller et al. 431 

(2009) discuss the coupling of the phenologies of phytoplankton and shrimp in the North 432 

Atlantic.  In general, whether a difference of one or two months among the algorithms and 433 

CMIP5 models is significant for practical applications will depend on the specific application.  434 

Which PFT algorithm or algorithm ensemble may be best suited to inform a certain decision will 435 

also depend on the issue at hand, as the algorithms have different theoretical bases.  However, in 436 
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general, practical applications would best be addressed by using daily or 8-day data, rather than 437 

the monthly data used here for the global inter-comparison. 438 

 439 

3.4 Primary Bloom Duration 440 

The ensemble mean of the duration of the primary annual bloom among the 10 PFT algorithms 441 

(Fig. 4A) indicates that over much of the ocean the bloom duration is about 100 – 120 days, i.e. 442 

about 3-4 months.  Maximum durations tend to occur at the poleward and to a lesser extend, the 443 

equatorward fringes of the subtropical gyres.  These maximum bands are most prominent in the 444 

Pacific.  Large portions of the interior of the southern hemisphere subtropical gyres also exhibit 445 

long bloom duration.  These results are consistent to first order with the SeaWiFS Chl-based 446 

phenological analysis of Racault et al. (2012) and Sapiano et al. (2012), who use different 447 

methodologies.  Sapiano et al. (2012) observe longer bloom durations than the analysis here.  448 

They note that their results are indeed longer than most previous studies and also caution that in 449 

areas of double blooms, their duration indicates the combined duration of the blooms in some 450 

cases.  Additionally, our analysis may exhibit shorter durations if there is a taxonomical 451 

succession, as our analysis indicates the bloom of only microplankton/diatoms.  Sapiano et al. 452 

(2012) note that bloom durations do not tend to exhibit a simple pattern of decrease with higher 453 

latitudes, which is consistent with our observations (Fig. 4A), and different from the result of 454 

Racault et al (2012). The PFT ensemble mean exhibits high spatial frequency noise, and there is 455 

no clear pattern of decreasing bloom duration with increasing latitude.  The same is noted by 456 

Sapiano et al. (2012) and is also apparent in the analysis of Racault et al. (2012) to some degree, 457 

but note that they use a coarser spatial smoothing.  Maps of primary bloom duration for Chl and 458 

the individual PFT algorithms are shown in Supplement Fig. S4 and agreement among the 459 
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algorithms and CMIP5 models is quantified by the variance in primary bloom duration 460 

(Supplement Fig. S5); additional details are discussed in Supplement Part 6.   461 

 462 

 463 
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Figure 4. Ensemble mean primary bloom duration (in days) for A) large 464 

phytoplankton/diatoms among 10 PFT satellite algorithms, and B) diatom biomass 465 

among 7 CMIP5 models. C) Difference in bloom duration between the satellite data and 466 

the models (positive when data bloom duration is larger). Duration is defined as the 467 

width of the modeled seasonal signal at half the bloom peak height. The isoline of 468 

climatological Chl = 0.08 mg m-3 is shown (black solid contour). 469 

 470 

The CMIP5 models, in contrast to the PFT algorithm data, exhibit much smoother bloom duration 471 

spatially (Fig. 4B), and the most prominent duration maxima occur at the equatorward fringes and 472 

inside of the subtropical gyres.  Compared to the satellite data, the higher latitudes exhibit a much 473 

more obvious progression towards shorter bloom durations, dropping to below 2 months for polar 474 

latitudes.  Models fail to capture secondary peaks, which are especially important at high 475 

latitudes, as explained in the following section. The lack of secondary peaks might contribute to a 476 

shorter and cleaner definition of bloom duration in models when compared to data.  The 477 

difference in bloom duration between the models and the data (Fig. 4C) confirm that in general, 478 

models exhibit longer blooms in the gyres and shorter bloom at latitudes higher than ~ 30o. 479 

3.5 Secondary Blooms 480 

The presence of secondary blooms can be detected, because several harmonics were used in the 481 

DFT analysis (Sect. 2.3 and Supplement Sect. S1).  In the mid-latitudes, the second bloom is 482 

usually a secondary bloom of smaller amplitude in the respective hemisphere’s autumn (e.g. 483 

Sapiano et al, 2012).  To summarize the PFT algorithm and model consensus about where 484 

secondary blooms occur, the fraction of algorithms that exhibit a single annual peak (Fig. 5A) 485 

versus a double annual peak (Fig. 5B) is employed.  Both maps exhibit well-defined latitudinal 486 
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banding, where most algorithms exhibit a single peak at the poleward fringes of the subtropical 487 

gyres (~ 30o latitude), a double peak around 40-45o in both hemispheres, and again a single peak 488 

at higher sub-polar latitudes of about 60o.  Previous studies have identified and studied this 489 

pattern, using Chl data (Sapiano et al., 2012) together with ecosystem modeling (Platt et al., 490 

2009).  Cushing (1959) qualitatively described a single peak at higher latitudes and a double peak 491 

at lower temperate latitudes, which is consistent with the PFT observations summarized here, as 492 

well as the ecosystem model of Platt et al. (2009).  Chl time series from SeaWiFS in the North 493 

Atlantic analyzed in Platt et al. (2009) are also generally consistent with these observations, as is 494 

the analysis of Cabré et al. (2016).  In general the zonal bands of single vs. double peak run 495 

slightly SW to NE in the Northern Hemisphere, which is most pronounced in the Pacific and is 496 

apparent in both the analyses here (Fig.5A) and the maps of Sapiano et al. (2012).  Importantly, 497 

caution should be employed when interpreting results from areas with low seasonal variance 498 

(Sect. 3.7, Figs. 2A and S13A).  More details on the secondary blooms in the PFT data sets, 499 

including phase difference with the respective primary bloom and fractional prominence analysis, 500 

are provided in Supplement Part 7.  501 

 502 

The CMIP5 models exhibit a very different pattern of single (Fig. 5C) vs. double peaks (Fig. 5D), 503 

as compared to the PFT and Chl satellite data. Double peaks are predominantly found only along 504 

the Equator and in the Arabian Sea and the Bay of Bengal.  In these areas the models are in 505 

agreement with the satellite data (cf. Figs. 5A and 5B), although the data are noisier.  Models fail 506 

to reproduce the secondary peak occurring at mid-latitudes around 40-45o in satellite data.     507 

 508 
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Figure 5. Fraction of PFT algorithms exhibiting (A) a single annual peak or (B) two 510 

peaks in one annual cycle. Fraction of CMIP5 algorithms that exhibit (C) a single annual 511 

peak and (D) two peaks in one annual cycle.  The fraction is calculated from all 512 

algorithms (or models, respectively) that have valid phenology metrics calculated at each 513 

pixel (Supplement Fig. S6). The isoline of climatological Chl = 0.08 mg m-3 (black solid 514 

contour) is shown on all panels. 515 

 516 

3.6 North Atlantic Regionally Binned Analysis 517 

The analyses of seasonal variance (Fig. 2) and that of number of peaks (Fig. 5) suggest the 518 

presence of the following North Atlantic biomes with significant seasonal amplitude: (a) a 519 

subpolar regime north of about 50oN, with a single (June to August) light-limited biomass peak; 520 

and (b) a transitional, subpolar-subtropical regime between 35o-50oN with two annual peaks, 521 

resulting from an alternation of light and nutrient limited conditions (e.g. Evans and Parslow 522 

(1985), and (c) a seasonally varying Northern subtropics regime centered around 30oN, 523 

characterized by a single annual peak in winter or early spring and high seasonal variability.  524 

Monthly averages from regionally-binned satellite PFT time series for two Longhurst marine 525 

biogeographic provinces, the North Atlantic Drift Region (NADR) and the North Atlantic 526 

Subtropical gyre – West (NASW) (Supplement Fig. S9), are exhibited in Fig. 6A and 6B, 527 

respectively.  The NADR province straddles the subpolar and the transitional regimes 528 

(representing mostly the transitional biome), whereas NASW represents the Northern subtropics 529 

regime.  The corresponding month of maxima are illustrated for the same Longhurst provinces for 530 

the 10 PFT algorithms and Chl (Fig. 7A-B) and for the 7 CMIP5 models (Fig. 7C-D).  The time 531 

series in both regions (Fig. 6) illustrate that the PFT algorithms exhibit different absolute values 532 



32 
 

and amplitudes/ranges of their variables (Table 1), even if they are mostly referred to as 533 

large/micro phytoplankton.  This is expected since the algorithms have differing theoretical bases.  534 

The spectra of the corresponding complete 5-year time series (Supplement Fig. S10) have their 535 

strongest peak at f = 1 yr-1, indicating that the annual seasonal cycle is a first order source of 536 

variability.  2nd and 3rd harmonics often represent additional notable peaks. 537 

 538 

 539 
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 540 

Figure 6. Time series plots of the monthly climatologies of the PFT algorithm variables 541 

and OC4v6 Chl (units given in Table 1) and for two example Longhurst (1998) 542 

biogeographic provinces as follows: A) North Atlantic Drift Region (NADR); B) The 543 

Western North Atlantic Subtropical Gyral Province (NASW). Y-axis scales are different 544 
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between the two panels.  See Sect. 3.6 and Supplement Parts 4 and 8 for more 545 

information and Supplement Fig. S9 for a map of the provinces. 546 

 547 

Most algorithms in Longhurst’s NADR province (Supplement Fig. S9) agree that there is a well 548 

pronounced annual maximum in May (Figs. 6A, 7A); however ROY13 and PhytoDOAS indicate 549 

minima then instead, exhibiting very different phasing of the seasonal cycle. Also KSM09 550 

exhibits relatively small range of the seasonal cycle there compared to other algorithms, as well 551 

as a double peak in April and November (Fig. 7A).  The reasons for the lack of complete 552 

agreement among the PFT algorithms regarding the month of maximum could not be resolved by 553 

this study and require further investigation; this suggests that more in situ validation and 554 

algorithm development data is required.  Three of the seven CMIP5 models also place the 555 

maximum in May (Fig. 7C), but for some it is in April or June, and December for the GISS-E2-556 

H-CC model, resulting in a higher variance of month of maximum for the models as compared to 557 

the satellite data for NADR (cf. length of black arrows in Figs. 7A and 7C).  Some inter-model 558 

and data-model differences could be due to the relatively small size of the Longhurst provinces 559 

with respect to the coarse model resolutions and the fact that some models may place the 560 

equivalent biome in a different location due to different model physics.   The NADR province 561 

straddles regions where most satellite algorithms indicate double peaks (Figs. 5A and 5B); while 562 

CMIP5 models show single annual peaks (Fig. 5C). The fall peak in satellite data is generally 563 

weaker than the spring one (Fig. 6A); CB06, KSM09 and MY10 exhibit more noticeable fall 564 

blooms.  Note that these fall peaks may or may not be detected by the DFT analysis here based on 565 

prominence criteria (Sect. 2.3).  The presence of double peaks is reflected in the spectra having a 566 

pronounced peak at f = 2 yr-1 (Supplement Fig. S10) that is almost as high as the primary peak at 567 
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f = 1 yr-1. The NADR spectra indeed exhibit higher overall variance (more power) than the 568 

NASW spectra, and also more even distribution of power between the annual and semi-annual 569 

peaks, indicating the NASW area is characterized by a single annual peak, and NADR has a fall 570 

secondary peak.   The strength of this peak in relation to the primary one may depend on the unit 571 

(fractional vs. absolute) used in the time series analysis (Sect 3.7 and Supplement Part 7).  The 572 

high variance of NADR is expected, as this area is known for its spectacular North Atlantic 573 

blooms in the spring (e.g. Siegel et al., 2002; Behrenfeld, 2010).  Since NADR straddles two 574 

different regimes with respect to single vs. double peaks (cf. Figs. 5A and 5B and Supplement 575 

Fig. S9), this analysis illustrates the limitations of a regionally binned approach using classically 576 

defined biogeographic provinces.  577 

 578 

 579 
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580 
  581 

Figure 7.  Months of maxima of the regionally binned PFT algorithm variables (Table 1) 582 

(top panels – A and B) and CMIP5 models’ diatom carbon biomass (bottom panels – C 583 

and D).  The following Longhurst (1998) provinces are displayed as examples: A and C) 584 

North Atlantic Drift Region (NADR); B and D) The Western North Atlantic Subtropical 585 

Gyral Province (NASW).  See Supplement Fig. S9 for a map of the provinces.  The black 586 

arrow’s direction indicates the PFT algorithms’ or CMIP5 models’ ensemble mean month 587 
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of maximum (circular), and its length indicates one minus the circular variance in month 588 

of maxima among the algorithms (an arrow length of one indicates zero variance, and an 589 

arrow length of zero – maximal variance of one).  The beginning of each month is 590 

marked by the abbreviated month name on the polar plots.  See Sect. 2.3 and 591 

Supplement Part 4 for methodology details.  Supplement Table S1 lists the CMIP5 592 

models used with their acronyms as they appear here. 593 

 594 

Further to the south, the NASW province straddles the Chl = 0.08 mg m-3 climatological isoline 595 

used here to delineate the gyre (Supplement Fig. S9) and is a typical northern-subtropical region.  596 

It is mostly characterized by a single peak in most algorithms and exhibits some of the cleanest 597 

seasonal cycles globally (Figs. 2A and 5A).  It is considerably more oligotrophic and hence has 598 

lower fraction of microplankton (and total Chl concentration) than NADR, year-round (cf. y-axis 599 

scales of Fig. 6A vs. 6B).  While some algorithms indicate a strong winter-spring peak (KSM09, 600 

CB06), the annual range of others is a lot smaller and some even exhibit double peaks (ROY13, 601 

FUJI11).  Seven algorithms agree on a maximum for the primary bloom in March or April (Fig. 602 

7B), but ROY13 and PhytoDOAS indicate a January peak, and FUJI11 indicates a July peak for 603 

the primary bloom.  Similarly, most CMIP5 models agree on a March or April bloom peak (Fig. 604 

7D).  As stated above, the DFT spectra of the satellite data (Supplement Fig. S10B) indicate that 605 

overall variance is lower than NADR, and the first harmonic contains proportionately more 606 

power than the second harmonic, indicating a single annual peak.  A comparative analysis for 607 

time-series at the Bermuda Atlantic Time Series (BATS) station, representative of the NASW 608 

province and the Northern subtropics regime, is provided in Supplement Part 8 (Supplement Fig. 609 
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S11), including discussion of some complementary in situ biogeochemical data.  Supplement Part 610 

8 also provides details on mechanisms in the regions of interest discussed here. 611 

 612 

In conclusion, regional binning of the satellite data sets reduces noise, and allows for inspection 613 

of a limited number of actual time series from various regions. It also allows for analysis in 614 

regions or algorithms that suffer from data sparsity (particularly true of the PHYSAT algorithm) 615 

that precludes the DFT analysis on a per-pixel basis. On the other hand, if the chosen regions are 616 

spatially heterogeneous, results may be misleading or meaningless, and regions may have an 617 

arbitrary definition not necessarily relevant to the phenology at question here.  Future monitoring 618 

of biology and biogeochemistry at multiple specific representative locations such as BATS is 619 

critically important for validation and inter-comparison of satellite algorithms.  620 

 621 

3.7 Sources of Uncertainty 622 

There are multiple sources of uncertainty that can affect the DFT phenology analysis presented, 623 

both related to intrinsic ecosystem characteristics and features and limitations of the DFT 624 

technique.  Here we discuss some important considerations and we provide more details in 625 

Supplement Part 9.  The advantages of the DFT method include relative insensitivity to noise and 626 

the ability to isolate the variance in the frequencies of interest for phenological studies (deBeurs 627 

and Henebry, 2010).  In addition, multi-year time series are summarized with a single metric 628 

from the modeled signal and the DFT approach eliminates the need to consider a "sliding season" 629 

to ensure the annual cycle is properly described everywhere (Racault et al., 2012).  The DFT is a 630 

statistical method to fit data to a sum of sines and cosines of fixed frequencies and varying 631 

phases.  As such, one disadvantage is that representation of seasonal cycles that have non-632 
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sinusoidal waveforms requires artificial placement of variance in high frequencies where most 633 

noise resides.  For example, Wilson and Qiu, 2008 observe sharp spikes in seasonal Chl blooms 634 

in some areas of the oligotrophic gyres.   If higher frequencies are present in the data, significant 635 

aliasing can occur, confounding the analysis by placing spurious energy in lower frequencies.  636 

The aliasing problem can be addressed by analyzing weekly or daily data to test for the 637 

significance of higher order harmonics in the data.  That said, Fourier analysis is among the best 638 

available techniques to analyze cyclical phenomena and partition variance in frequency 639 

components of interest, so it is strongly suited for analyzing seasonal cycles. 640 

 641 

The correct retrieval of the phenological parameters of interest using the DFT technique was 642 

verified in several ways: by examining an example time series (Supplement Fig. S1); by 643 

validation against direct maxima finding via peak analysis of the time series of the monthly 644 

climatologies of the respective PFT satellite data, and relating the results to percent seasonal 645 

variance (Supplement Fig. S12); and by using the SeaWiFS PAR data set (as discussed in 646 

Supplement Sect. S1).  The overall assessment is that the DFT technique correctly identifies 647 

phenological parameters if percent variance explained by the seasonal harmonics is 30% or more.  648 

Phase derived by the DFT techniques in frequency bands where power density is low can be 649 

stochastic and meaningless; therefore month of maxima determinations can be unreliable or 650 

random and should be treated with caution in areas of low percent seasonal variance (Fig. 2; 651 

Supplement Fig. S13).  Supplement Fig. S12A illustrates the fraction of pixels for each algorithm 652 

that exhibit a given percent seasonal variance.  Comparison of direct maxima finding vs. the DFT 653 

determinations of the month of maxima indicate that in places where percent seasonal variance 654 

drops below 30%, differences between the two methods can be > 2 months for over 10% of the 655 
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pixels for most algorithms (Supplement Fig. S12B).  It was therefore determined that the DFT 656 

technique results should be interpreted with caution or not used in analyses in places where 657 

percent seasonal variance drops below 30%.  A map of the number of algorithms exhibiting 658 

percent seasonal variance < 30% is shown in Supplement Fig. S13A, and the analogous map for 659 

the CMIP5 models is shown in Supplement Fig. S13B.  It is worth noting that analyzing 660 

phenology in places with low percent seasonality becomes intrinsically meaningless, regardless 661 

of what technique is used.  Additionally, ensemble metrics for the PFT algorithms should be 662 

interpreted with caution where few algorithms contribute to the mean (Supplement Fig. S6).  663 

Finally, results should also be interpreted with caution at high latitudes where data can be sparse, 664 

especially in the respective winter months.  This is discussed in Supplement Sect. S1. 665 

 666 

It is important to note that it is not exactly equivalent to analyze absolute biomass indicators (Chl, 667 

carbon) and fractions (as done here for most PFT algorithms), e.g. there are indications that the 668 

secondary bloom is more dominated by larger sizes than the primary peak (Cabré et al., 2016) 669 

(see also Supplement Part 5 and Part 7).  For example, a secondary peak can look about as high as 670 

the primary one in terms of percent, but can be much weaker in terms of Chl.  Mathematically, 671 

percent microplankton can increase without an accompanying increase (or even with a decrease) 672 

in total or microplankton absolute biomass or Chl. However, such situations are likely to be 673 

atypical on a global scale according to modern ecosystem understanding.  Absolute carbon 674 

biomass of diatoms was analyzed for the CMIP5 models, which is not exactly equivalent to the 675 

algorithm variables.  Further analysis should focus on comparing phenology calculated from 676 

fractions vs. absolute biomass indicators.  Finally, physiological adaptation affects the Chl to 677 

carbon ratio and can decouple Chl and carbon variability, especially in lower-latitude oceans (e.g. 678 
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Behrenfelred et al., 2005; Siegel et al., 2013); it is best to express size-fractionated or PFT-679 

specific biomass in terms of carbon units, as done by Kostadinov et al., 2016 who re-cast the 680 

PFTs in terms of carbon using the KSM09 particle size distribution algorithm and allometric 681 

relationships (Menden-Deuer and Lessard, 2000).  In spite of the above considerations, we stress 682 

that the primary purpose of this work is PFT algorithm inter-comparison, and all PFT algorithms 683 

are analyzed in an equivalent way here. 684 

 685 

The phenological parameters described here were derived only from the large 686 

phytoplankton/microplankton variable (Table 1) or for diatoms in the case of the CMIP5 models 687 

and the PhytoDOAS and PHYSAT algorithms.  While in much of the temperate, high latitude 688 

and upwelling regions it is indeed larger phytoplankton that dominate the bloom, in the more 689 

oligotrophic subtropics and tropics nanoplankton can dominate the seasonal maximum.  Also, 690 

diatoms can be found within the nanoplankton fraction or the microplankton can be dominated by 691 

other large phytoplankton (e.g. dinoflagellates).  Various PFT algorithms provide nanoplankton 692 

and other PFT variables that need to be analyzed and compared in future work.  The analysis 693 

presented here is global; however, some algorithms were developed/parameterized with data sets 694 

of specific limited geographic coverage. Those would not be expected to necessarily perform well 695 

outside of their area of development. Notably, FUJI11 was developed for the Arctic.  Not 696 

surprisingly, this algorithm differs more substantially from other algorithms in the tropics and 697 

subtropics.  The Southern Ocean presents atypical bio-optical characteristics (e.g. Uitz et al., 698 

2006) some implications of which are discussed in Supplement Part 9.  699 
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4. Concluding Remarks 700 

We used the Discrete Fourier Transform (DFT) to derive and inter-compare phenological 701 

parameters for the 2003-2007 period among 1) the fraction of Chl corresponding to 702 

microplankton (or a closely related variable) from 10 satellite ocean color algorithms, 2) satellite 703 

determinations of chlorophyll concentration, and 3) diatom biomass from 7 CMIP5 climate 704 

models.  The phenological parameters derived were amplitude, month of maximum, percent 705 

variance explained by the seasonal cycle, bloom duration, and secondary bloom characteristics.   706 

Results indicate that PFT algorithms agree only to first order globally.  Enough qualitative and 707 

quantitative differences between the algorithms are detected (e.g. Fig. 6) to make a further 708 

comprehensive, global validation exercise a high priority.  While validation is outside the scope 709 

of this work, a separate working group has been formed within the PFT Inter-comparison Project 710 

to perform a comprehensive validation exercise (Bracher et al., 2015).  Validation itself is 711 

challenging (Brewin et al., 2011), as in situ HPLC-derived PFTs have their own limitations and 712 

do not necessarily correspond to the way non-HPLC-based algorithms define their variables.  To 713 

allow for these subtle differences in the variables retrieved, it may be best to test all algorithms 714 

against a comprehensive in situ data set incorporating co-located radiometric, bio-optical 715 

(pigment concentration, IOPs) and derived biological quantities (phytoplankton Chl, size 716 

structure, etc.) in order to resolve whether differences are due to algorithm uncertainties or to 717 

actual biogeophysical differences between, for example, the timing of maximum diatom biomass 718 

vs. maximum of large cells biomass (Bracher et al. 2015). 719 

 720 

Comparison of phenological parameters in CMIP5 model output (diatom carbon biomass) to 721 

those of satellite data suggests that the month of maximum is fairly well represented in models 722 
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(albeit with a systematic, latitude-dependent bias), while other phenological characteristics show 723 

a number of important biases in CMIP5 models:  1) more pronounced seasonal variability in the 724 

models, e.g. a smoother latitudinal progression and less local spatial variability in phenological 725 

indices such as month of maximum and bloom duration, 2) while seasonality in the satellite data 726 

is cleanest (i.e. percent variance explained is highest) along a zonal band at 30o latitude in both, 727 

this feature is not reflected in the CMIP5 models. and 3) models exhibit a single annual biomass 728 

peak over most of the ocean, except for the Equatorial band, whereas secondary blooms tend to 729 

occur in zonal bands in temperate latitudes in the satellite data but are not well captured in the 730 

climate models.  These biases are probably due to over-simplification of processes in models and 731 

a lower response to interannual variability than in reality as also discussed in Cabré et al. (2016).  732 

Additionally, the coarse 1o resolution does not allow a proper representation of coastal processes 733 

and some frontal dynamics in models.  We note that for many modelers, the PFT products 734 

derived from satellite algorithms are considered as observations (not algorithm products per se) 735 

and used as a reference for validating model outputs, (e.g. LeQuéré et al. (2005); Bopp et al. 736 

(2005); Stock et al. (2014)).  To improve the utility of satellite algorithms for this purpose, better 737 

uncertainty characterization should be considered high priority. 738 

  739 

A fruitful way forward would be to use algorithms of different theoretical bases together to 740 

increase the degrees of freedom and solve for more variables. Advent of hyperspectral sensors in 741 

the near future is expected to improve our ability to discern small spectral differences arising 742 

from the different PFTs, as indicated, for example, by the development of the PhytoDOAS 743 

algorithm.  Therefore, future direction of efforts towards development of hyperspectral 744 

algorithms is desirable, keeping in mind that there is a fundamental limit on the additional 745 
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degrees of freedom available (Lee et al, 2007).  While chlorophyll is certainly a useful variable, it 746 

is carbon biomass in the living phytoplankton that is the variable of most direct relevance to 747 

carbon cycle and biogeochemical studies; it is also the unit of PFT accounting in climate models 748 

(Table S1).  The carbon-based algorithm of Kostadinov et al. (2016) could be used in conjunction 749 

with an algorithm partitioning Chl (e.g. BR10) in order to assess physiological status and 750 

productivity by size class (Behrenfeld et al., 2005; Uitz et al., 2010).    751 

 752 

Importantly, PFT algorithms and bio-optical algorithms in general could improve by moving 753 

towards analytical approaches based more on first principles rather than empirical relationships, 754 

i.e. being mechanistic in nature.  Most of the existing PFT algorithms contain a high degree of 755 

empiricism.  Empirical algorithms rely on statistical relationships derived during a certain 756 

environmental state and are thus not predictive in nature.  Should the underlying relationship 757 

change, the algorithm uncertainties will increase. Mechanistic models should remain more robust 758 

under changing environmental conditions of the future, e.g. due to climate change.  759 
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Supplement	to	Kostadinov	et	al.	"	Inter-Comparison	of	
Phytoplankton	Functional	Type	Phenology	Metrics	Derived	
from	Ocean	Color	Algorithms	and	Earth	System	Models	"		

Part	1.	Details	of	the	DFT	Analysis	
The per-pixel time series of 1-degree PFT data (Sect. 2.2 and 2.3) is a 60 x 1 vector x, consisting 
of monthly sample points, xt; t = 1,2,3,…N, N = 60.  For the purposes of Fourier analysis, we 
consider one year a unit of time, thus the sampling frequency is fs = 12 times per year.  The 
complex-valued discrete Fourier transform (DFT) of x, denoted y, was obtained using the Fast 
Fourier Transform (FFT) algorithm as follows (Heinzel et al., 2002):  
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No windows were applied (i.e. a top-hat window was implicitly applied). The two-sided DFT 
transform vector y is composed of the ym elements.  The frequency resolution of the FFT is thus 
fs/N = 0.2 yr-1, and the frequencies to which the elements of y correspond are f = 0, 0.2, 0.4, 0.6, 
… yr-1 up to the highest resolvable frequency – the Nyquist frequency fNyquist = fs/2 = 6 yr-1.  The 
first element of the y vector is real and equal to the arithmetic mean of the data set x; thus it is 
equal to zero because the mean was subtracted before Eq. S1 was applied.  Because of a property 
of the DFT of real valued input, the first half of vector y contains the same information as the 
second half and they are complex conjugates of each other.  For example if the 2nd element is a + 
bi, then the last element is a – bi.  Because of this conjugate symmetry, only the first half of the 
vector y has to be considered.  The power in each frequency is spread to both complex 
conjugates, so we need to multiply the square of the modulus of each element of the first half of 
y by 2, with the important exceptions of the 1st element (the mean), and in the case of even N - 
the (N/2 + 1)-th element corresponding to the Nyquist frequency (Heinzel et al., 2002).   
 
The DFT vector is thus normalized as follows, in order to obtain the power spectrum density, Pxx 
(Heinzel et al., 2002) (symbology as above):  
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where k = 1 for m = 0 (the signal mean, 0th frequency) and m = N/2 (the Nyquist frequency), and 
k = 2 for all other m values.  Pxx has the units of squared data units per cycle per year, that is, 
power per unit frequency.  
 
The power spectrum, PS, can be obtained by multiplying Eq. S2 by the frequency step, fs/N, i.e. 
(Heinzel et al., 2002):  
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In the above Eq. S3, k takes values as for Eq. S2. The power spectrum has units of power, i.e. 
squared units of the input data x.  It represents the power in each frequency band, but not 
normalized to the frequency bin.  Integrating Pxx over all frequencies or, equivalently, summing 
the elements of PS results in the variance of x.  This relationship is known as Parseval’s theorem 
and was verified by testing that the variance computed in the frequency domain matches the time 
domain variance (normalized by N) to within machine precision.  This also verifies that the 
scaling of the DFT was correct (Heinzel et al., 2002).  Previous use of Fourier analysis for 
phenology analysis is documented, for example, in Moody and Johnson (2001).  De Beurs and 
Henebry (2010) provide an overview of various phenology analysis methodologies and their 
advantages and disadvantages.  
 
The annual seasonal cycle was modeled using the fundamental frequency f = 1 yr-1 and all its 
available harmonics, i.e. all frequency bands that are its integer multiples, up to the Nyquist 
frequency of 6 yr-1 (f = 1,2,…6 yr-1). That is, the signal was modeled as the summation of 
sinusoids whose amplitudes and phases are determined by the Fourier coefficients ym at the 
respective harmonic frequencies (MathWorks, 2015):   
  x̂ = a0 + an cos(2π ft)− bn sin(2π ft); f = [1;6], f ∈ Ζ  (S4)  
In the above, x̂  represents the modeled signal, t represents time in years, a0 corresponds to the 
signal mean and is equal to y0 (Eq. S1).  The a's are the real part, and the b's – the imaginary part 
– of the Fourier transform ym at the corresponding harmonic frequencies, divided by N.  Because 
of conjugate symmetry, the a and b coefficients were doubled for all frequencies except f = 0 yr-1 
and fNyquist.  Equation S4 above was applied at a fine temporal sampling of Dt = 1/10th of a day 
approximately.  However, the time of maximum is aggregated to a month because the 
underlining data sets have monthly resolution. 
 
Peak analysis is then applied to x̂ as described in Sect. 2.3, in order to determine the relevant 
phenological parameters.  The percent variance explained by the modeled signal was calculated 
as the summation of the power spectrum (PS, Eq. S3) terms corresponding to f = 1, 2, 3, 4, 5, and 
6 yr-1, divided the total variance of the input data vector x (Eq. S1).  An example of the DFT-
based seasonal cycle modeling and peak analysis is illustrated in Fig. S1.     
 
As a verification of the DFT and peak analysis methodology used to derive phenological 
parameters, we applied the methodology to monthly SeaWiFS photosynthetically available 
radiation (PAR, mol photons m-2 day-1).  We used PAR data because it is expected to exhibit 
strong predictable seasonality in most of the world.  For brevity, PAR analysis results are not 
plotted here, but results are summarized as follows.  The derived seasonal amplitude was low 
near the Equator and higher poleward, as expected. The percent variance explained by the DFT-
modeled signal indicated that in most of the world PAR seasonality is well captured by a 
sinusoidal model and explains most of the variability of the signal.  The month of maximum for 
the primary peak in monthly PAR is December or January in most of the Southern Hemisphere 
and June, July or August in most of the North Hemisphere.  Equatorial locations are expected to 
have two peaks each year near the equinoxes, but the peaks need not be the same amplitude, so 
the primary peak occurs in March in some places and August or September  - in others. The PAR 
primary peak duration tends to be highest near to, but not quite at, the Equator (where there are 
double peaks) and gets progressively shorter at higher latitudes in both hemispheres. 
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Since missing data (especially at high latitudes) can affect phenological analysis (Sapiano et al., 
2012; Cole et al., 2012), we investigated the effect of data gaps on the DFT analysis used here.  
We computed monthly averages of top of the atmosphere (TOA) total solar irradiance 
(insolation) using the model of Kostadinov and Gilb (2014).  Since monthly TOA insolation (and 
thus PAR) can be exactly 0 W m-2 for some months near the solstices during the corresponding 
polar nights, the same phenological analysis (Sect. 2.3 and S1) applied to the PFT data sets was 
also applied to two variants of the monthly TOA data set – the original data set with exact zeros 
near the Poles, and with those zeros replaced by missing data and interpolated over (as done with 
gaps in the PFT data sets).  When interpolation was used and the zeros were ignored, the signal 
mean was increased and the amplitude was decreased by small amounts for latitudes above 70o.    
These effects are small for TOA insolation but could be more significant and could occur at 
lower latitudes for PAR and especially for PFT and Chl data.  Interpolation over missing data 
can also introduce artificial non-sinusoidal waveforms, which will cause artificial peaks in the 
DFT spectra and the modeled signal. Observed small decreases of PAR amplitude poleward of 
~45o (not shown) could therefore be due to real geophysical phenomena (such as cloudiness 
patterns), but they may also be modeling artifacts (missing PAR data starts to occur for at least 
one month per year at these latitudes).  Thus, results of analysis presented here at high latitudes 
or in other areas of frequent missing data must be interpreted with caution (see also Fig. S6). 

Part	2.		IPCC	Models	(CMIP5)	Data	and	Phenological	Parameters	
In addition to analyzing phenology from various ocean color PFT algorithms (Table 1), we also 
investigated the same phenological parameters in a group of Earth System simulations from the 
recent Coupled Model Inter-comparison Project CMIP5 (Taylor et al., 2012). CMIP5 model 
output was downloaded from http://pcmdi9.llnl.gov/esgf-web-fe/. We derived phenological 
parameters from the same five years of “present” historical output (2003 to 2007) of the variable 
‘phydiat’ (“mole concentration of diatoms expressed as carbon in seawater”).  Diatom carbon 
concentration was chosen because it is most similar to the large phytoplankton variables of the 
satellite algorithms (Table 1); hence only those models that provide this variable are used. The 
“present” output for 2003-2005 is based on the historical scenario (years 1850 to 2005) forced by 
observed atmospheric changes (both anthropogenic and natural).  The last two years (2006 and 
2007) of the "present" output are based on the RCP8.5 scenario (Riahi et al., 2011). Table S1 
provides details and references for the models. CMIP5 model details and global analysis of 
ecology for the present and for the 21st century for this same subset of models was presented in 
Cabré et al. (2015). Molar concentration provided by the models (mol diatom C m-3) was 
converted to mass concentration (mg C m-3) using the atomic weight of carbon (12.011 g/mol, 
Wieser et al., 2013).  All model output was resampled to a 1o grid before applying the DFT 
calculations (Sect. 2.3).  Before computing phenological parameters, biomass values below 0 
were set to missing data. 
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Table S1. Summary of the CMIP5 models that were used in the phenology inter-
comparison study presented here.  These models were selected because they explicitly 
model diatom biomass.  
 

 
Model 

 
Nutrients Ecology 

module 
Phytoplankton 

variables References 

CESM1-BGC P, N,Fe,Si MET 
Diatoms, 
small phytoplankton, 
diazotrophs 

Moore et al. (2004), 
Moore et al. (2006) 

GFDL-ESM2G 
(M) P,N,Fe,Si TOPAZ2 

Large phytoplankton (diatoms, 
greens, and other large 
eukaryotes), small 
phytoplankton (prokaryotic 
picoplankton and 
nanoplankton), and diazotrophs 

Dunne et al. (2013) 

HadGEM2-ES N,Fe,Si 
Diat- 
HadOCC 
(NPZD)  

Diatoms,  
non-diatoms 

Palmer and 
Totterdell (2001) 

IPSL-CM5A-
MR P,N,Fe,Si 

PISCES 
(from 
HAMOCC5) 

Diatoms, nanophytoplankton 
(non-diatom). 

Aumont and Bopp 
(2006), Séférian et 
al. (2013) 

GISS-E2-H-CC 
(GISS-E2-R-CC) N, Fe, Si NOBM Diatoms, chlorophytes, 

cyanobacteria, coccolitophores Gregg (2008) 

 

Part	3.	Statistics	of	Circular	Quantities	
Quantities such as day or month of maximum are circular and can be transformed to an angular 
representation, i.e. angles close to 0 are also close to 2p, and December is temporally close to 
January.  Thus, conventional descriptive statistics are not applicable to such quantities, e.g. for 
the calculation of the mean and variance of a set of months or angles (Berens, 2009).  In 
particular, differences between two months cannot be simply calculated as it is done for linear 
differences.  To resolve this issue and provide meaningful difference and mean and variance 
estimates of circular quantities used here, we employed circular statistics principles.   The signed 
difference between two months was computed by first representing months in angular form (each 
month spans 30 degrees, mid-January is at 15o, mid-February at 45o, etc.).  These angles were 
treated as vectors on the units circle and the absolute value of the angle between them was 
calculated using their dot product. This angle was converted to time units and represented the 
time difference between two months.  The sign of the difference was determined by the sign of 
the sine of the angle resulting from subtracting the angular representations of the two months.  
This sign indicates which value leads and which lags in time.  By convention, the difference is 
positive when the first element of the subtraction leads in time.   
 
To calculate the mean month of maximum among the algorithms or models, the months were 
also represented in angular form and the i and j components of the corresponding vectors were 
averaged separately. The resultant vector's orientation, calculated with the arctangent function, 
determined the mean months of maximum.  This method is consistent with Berens (2009).  
Variance was computed as one minus the length of this resultant vector (Allen and Johnson, 
1991; Berens, 2009). Unlike the variance of linear quantities, circular variance is bound between 
0 and 1. 
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Part	4.	Methodoloy	for	Regionally	Binned	Analyses	(North	Atlantic)	
In addition to the per-pixel analysis of phenology, satellite algorithm and model data were 
spatially binned and regional analysis was performed for two example Longhurst (1998) marine 
biogeographical provinces (obtained from the Flanders Marine Institute (Claus et al., 2013)),  
representing regimes of 1) North Atlantic spring bloom region (Westerlies - North Atlantic Drift 
– NADR, 3.512*106 km2), and 2) a subtropical gyre region (North Atlantic Subtropical Gyre 
West  - NASW, 5.809*106 km2). Data for the spatial averages were extracted from the 9-km 
original imagery for the satellite data (PhytoDOAS data were first resampled to 9 km using 
nearest neighbor interpolation) and from the 1-degree data for the CMIP5 models.  The scalar 
regional value was obtained by calculating the weighted pixel average, the weights being pixel 
area.  Chl-based data (OC4v6 Chl and PhytoDOAS, Table 1) were averaged in log space.  If 
zeros were present within the region, those pixels were excluded from the log-space averaging, 
but the final spatial average was weighted by the number of non-zero pixels divided by the 
number of valid pixels (Habib, 2012).  Monthly climatological time series were also computed 
for the Longhurst provinces by averaging the data for all years of a given month (2003 to 2007) 
after the spatial binning. The same DFT-based phenological analysis was performed on the 
regionally binned complete time series (not the monthly climatology) as for the per pixel 
analysis. (Sect. 2.3, Supplement Sect. S1). The PHYSAT algorithm frequency of diatom 
detection variable (Table 1) is characterized by a large degree of sparsity and exact zeros that 
render the per-pixel DFT-based phenology analysis impossible.  Regionally binned analysis 
addresses this sparsity issue. In order to link the NASW satellite data analysis to at-sea 
observations, Bermuda Atlantic Time Series (BATS) in situ primary production and sediment 
trap data were downloaded from http://bats.bios.edu. Details of BATS in situ methodology are 
given in the caption of Fig. S11.  

Part	5.	Details	on	Month	of	Maximum	
Several algorithms that closely resemble Chl also exhibit minimal differences with the ensemble 
mean month of maximum (Fig. S2), especially BR10, OC-PFT, CB06, and to a lesser extent 
UITZ06 and MY10.  This result is not surprising for the abundance-based algorithms (BR10, 
OC-PFT, UITZ06) (Table 1) as these are parameterized with Chl; thus their retrievals are a 
strong function of Chl.   For spectral-based models (CB06, MY10), this suggests the temporal 
variations of derived spectral absorption properties of phytoplankton are generally consistent 
with those of Chl (i.e. the absorption spectrum becomes flatter, indicating, as generally expected, 
an increasing proportion of microplankton when Chl concentration increases).  In contrast, the 
remaining algorithms exhibit larger excursions from the ensemble mean, with the biggest 
differences occurring in the Southern Ocean for KSM09 and ROY13 (both exhibiting a similar 
pattern), the subtropical gyres for FUJI11, and many widespread areas for ROY13 and 
PhytoDOAS.  Differences are expected for FUJI11 in the gyres as this algorithm is developed 
with high-latitude regional data only.  PhytoDOAS differences may be attributable to some 
extent to the use of data from a different sensor with a different spatial and temporal resolution, 
and retrieving diatom Chl and not microphytoplankton fraction.  It is not clear how to explain the 
differences in ROY13. Overall, since secondary blooms are also detected (Sects. 2.3 and 3.5; this 
Supplement Part 7), it is possible that some secondary and primary blooms are hard to 
distinguish and can be confused due to data noise, if their amplitudes are similar. This is 
particularly true when dealing with fractional biomass, as opposed to absolute units (Cabré et al., 
2016).  This similarity in amplitude is the particularly evident in KSM09 data in the temperate 
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and subarctic North Atlantic (e.g. Fig. S1).  Note that since KSM09 is based on backscattering, it 
may be detecting phases of the bloom differently, e.g. because peak carbon may not be the same 
as peak Chl. 

Part	6.	Details	on	Primary	Bloom	Duration		
Maps of primary bloom duration for Chl and the individual PFT algorithms (Fig. S4) reveal 
significant differences among them, as well as significant variability of high spatial frequency 
(likely noise).  The spatial patterns for Chl determined with the DFT analysis here closely agree 
with the observations of Racault et al. (2012) (see their Fig. 1d).  The Chl spatial patterns of Fig. 
S4 (as well as the ensemble mean PFT–based patterns of Fig. 4A) also agree to first order with 
the results of Sapiano et al. (2012). Namely, Sapiano et al. (2012) also observe zonal maxima at 
~30o N/S latitude as the most prominent feature of the bloom duration global map. Durations 
there are quantified at ~ 170-180 days (see their Fig. 9), roughly consistent with the long bloom 
durations (> 120 days, often up to 180 days) as quantified here by the DFT method for Chl (Fig. 
S4, top left panel).  Other features are also in agreement, such as the long bloom durations 
equatorward of the subtropical gyres, in the entire South Atlantic gyre, as well as in parts of the 
subarctic Atlantic.  As a quantification of the level of agreement in terms of bloom duration, the 
standard deviations of bloom duration for the satellite algorithms are depicted in Fig. S5A, and 
for the CMIP5 models – in Fig. S5B.  
 
As with other phenology metrics, the abundance-based PFT algorithms are most similar to Chl 
(BR10 and OC-PFT in particular, and UITZ06 to a lesser extent).  CB06 is also similar, 
indicating consistency between the spectral shape of absorption coefficients and Chl 
concentration.  ROY13 and KSM09 exhibit long bloom durations in the Southern Ocean, unlike 
the rest of the algorithms.  PhytoDOAS, MY10, and FUJI11 exhibit significantly shorter bloom 
durations overall globally, as compared to the other algorithms.  Overall, there is considerable 
disagreement among the PFT algorithms with regards to the primary bloom duration metric. The 
standard deviation of bloom duration among the 10 PFT algorithms tends to be about 20 – 40 
days over much of the ocean, but it can reach up to 70 days in certain areas (Fig. S5A).  The 7 
CMIP5 models also exhibit high standard deviation of primary bloom duration (Fig. S5B); 
however, most high values occur in the tropics and subtropics, whereas higher latitudes generally 
exhibit better model agreement with regards to bloom duration (but this observation could be 
influenced by missing data at high latitudes, Fig. S6).  

Part	7.	Details	on	Secondary	Blooms		
Note that the maps of Fig. 5A and Fig. 5B are not exactly complementary to each other (one is 
not equal to unity minus the other) as some areas exhibit a complex signal with more than two 
peaks which may or may not be ecologically significant (they are not analyzed here).  The model 
of Sapiano et al. (2012) detects a double peak in SeaWiFS Chl data in the Pacific at 40oN, which 
is stranded by a single peak zone to the south and a flat model (no peak) to the north.  This is 
roughly consistent with the PFT-based analysis presented here, except that the flat zone is 
identified as a single peak zone, and the PFT data has high data sparsity further north. The 
subtropical gyre and the Equatorial region in the Pacific exhibit many pixels of double peaks 
according to most PFT algorithms in the North Pacific, unlike Sapiano et al. (2012), who 
identify a flat seasonal cycle there. Note that Sapiano et al. (2012) choose among 8 different 
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models (including sinusoidal and flat models, and including a secular trend), which is a different 
methodology from the analysis employed here.  
 
Additional quantitative description of the secondary bloom can be provided by the phase 
difference between it and the primary bloom, as well as the relative strength of the secondary 
bloom compared to the primary one.  The phase difference between the primary and secondary 
bloom, i.e. their relative timing, is given here as the difference in months between their peak 
timing (Fig. S7).  The mean fractional prominence of the secondary blooms across the 10 PFT 
algorithms (Fig. S8A) indicates that in most of the areas where secondary blooms tend to occur 
(Fig. 5B) fractional prominence tends to be between 30 % and 60%. The equatorial secondary 
blooms tend to be of high fractional prominence, suggesting two annual blooms of roughly equal 
strength. The CMIP5 model's mean fractional prominence has a very different spatial pattern 
(Fig. S8B), again emphasizing a lack of the secondary bloom at temperate latitudes in the 
models.  In comparison to the mean of the 10 PFT algorithms, Chl phenology exhibits fewer 
places with a secondary bloom (Fig. S8C).  Importantly, the North temperate Atlantic area that 
does have Chl secondary blooms, exhibits smaller fractional prominence than the corresponding 
satellite algorithm microplankton ensemble mean (cf. Fig. S8A).  This is most likely due to the 
fact that fractional microplankton for most PFT algorithms is compared to absolute Chl units.  
There is evidence that secondary blooms tend to be more dominated by larger phytoplankton 
than the corresponding primary bloom (Sommer, 1996; Cabré et al., 2016), so the secondary 
blooms appear more pronounced (i.e. of higher relative prominence) if they are expressed in 
terms of microplankton fraction.  Thus, phenology analysis may be different if absolute biomass 
or Chl is used in the analysis instead (Cabré et al., 2016). 

Part	8.	Details	on	Regionally	Binned	and	BATS	Time	Series	Analysis.	
A regime equivalent to the Atlantic transitional subpolar-subtropical regime discussed in Sect. 
3.6 exists in the North Pacific as well as in the Southern Ocean at 35-50oS.  Bimodal peaks result 
from light limitation in winter, growth in spring, then nutrient limitation in the summer and 
growth in the fall. The dynamics of the North Atlantic transitional and subpolar regimes is 
explained by Evans and Parslow (1985) and agrees with the Sverdrup critical depth theory 
(Sverdrup, 1953).  Deep wintertime mixing ensures light limitation and little production and 
zooplankton population in winter, despite high nutrient supply.  High nutrients from the winter 
and slow recovery of zooplankton in the spring and/or a large zooplankton class that does not 
respond fast enough to growing phytoplankton populations allow a spring phytoplankton bloom 
of large diatoms or Phaeocystis. This bloom is terminated by a drop in nutrients and zooplankton 
grazing in the summer; the fall bloom starts when mixing re-introduces nutrients to the upper 
layer.  The seasonally varying Northern subtropics regime centered around 30oN, is 
characterized, just like in the Pacific, by a single annual peak in winter or early spring and high 
seasonal variability. The NASW province and the BATS station (Fig. S9) discussed below are 
part of this regime; the Pacific Ocean shows an equivalent regime. Previous work has determined 
that this peak is due to seasonal entrainment of nitrogen into the mixed layer.   
 
Fig. S11 shows a complementary analysis of satellite and in situ time-series for the nutrient-
limited, subtropical BATS station located inside the NASW region (Fig. S9).  Most algorithms (and 
CMIP5 models) show a single biomass spring peak in Feb - March, as expected from in situ 
observations in this well-studied region (for a review see Lomas et al. 2013). The climatologies 
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of biomass and Chl are similar at BATS and NASW (compare Fig. 6B and Fig. S11A). As 
expected, the algorithms show slightly more consistency in the timing of the spring peak at 
BATS compared to the larger NASW region.  Mixed layers at BATS vary from 10 m in the 
summer to 100 - 400 m in the winter, depending on the strength and phase of the North Atlantic 
Oscillation (Bates, 2012). The spring peak in biomass is driven by vertical mixing bringing 
macronutrients into the euphotic zone during winter.  This nutrient flux supports a short spring-
bloom period of higher primary production (Fig. S11C, bottom) and enhanced chlorophyll and 
carbon in most taxa present (e.g. Goericke, 1998). The ROY13, FUJI11 and PhytoDOAS are, as 
in the NASW region case, the most anomalous compared to the mid-February biomass peak date 
in the algorithm mean (Fig S11B). 

Part	9.	Details	on	Sources	of	Uncertainty				
Some additional disadvantages of the DFT technique apart from the ones discussed in Sect. 3.7) 
include the difficulty in providing confidence intervals, and (if the Fast Fourier Transform (FFT) 
algorithm is used for DFT computation, as it is here), the necessity for data to be sampled at 
regular intervals (i.e. necessitating interpolation over missing data and padding missing data at 
the edges of time series with zeros).  In the high latitudes, interpolating over many winter months 
with missing data may dampen the amplitude and create artificial waveforms that appear as 
spurious energy in various frequencies (Cole et al., 2012; Sapiano et al. 2012).  This is, however, 
a problem intrinsic to satellite observations, not the DFT technique.  Long time series are 
required to achieve good frequency resolution (deBeurs and Henebry, 2010).  The DFT 
technique can only distinguish frequencies that are half the sampling frequencies, i.e. up to the 
Nyquist frequency.  Note that limitations such as aliasing (discussed in Sect. 3.7) and the Nyquist 
frequency are fundamental theoretical limitations of information and signal theory, rather than 
specific drawbacks of the DFT technique. 
 
Just like in the oligotrophic tropics and subtropics, there is evidence that nanoplankton may 
dominate the annual bloom in the Southern Ocean as well (Uitz et al., 2006; Sadeghi et al. 
2012).  In the Southern Ocean, CMIP5 models and satellite data exhibit diverging relationships 
of total biomass to fractional biomass in different size classes (Cabré et al., 2016).  Large 
differences of the various phenological parameters among the PFT algorithms in the Southern 
Ocean indicate that satellite data there need to be treated with caution and algorithm 
parameterizations need to pay special attention to this critical region.  For example, it has been 
shown that for the OC-PFT algorithm other parameterizations are necessary when the algorithm 
is used in the Southern Ocean (Soppa et al. 2014).  Parameterizations are generally challenging 
due to the dearth of in situ data from this remote region, and due to the tendency to build globally 
applicable algorithms.  The Southern Ocean is known to be an atypical region in terms of bio-
optics (Uitz et al., 2006) where satellite-derived Chl is generally underestimated (Kahru and 
Mitchell, 2010).  Phytoplankton community structure could be one of the factors explaining this 
bias in ocean color Chl estimates (Sathyendranath et al., 2001; Jonhson et al. 2013; Ward et al., 
2015), which itself is used to estimate PFTs in some algorithms.  In addition, considerable 
contributions to backscattering by coccoliths (e.g. Balch et al., 2005; Balch et al, 2011) and 
bubbles (Zhang et al., 2002; Randolph et al., 2014) are known to occur in the Southern Ocean. 
Furthermore, due to the low sun angles and the polar night, as well as to considerable cloudiness, 
satellite data in the Southern Ocean is sparse and many algorithms do not have valid retrievals 
(Fig. S6), biasing spatial and temporal means.  Thus there are several reasons for being cautious 
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when using satellite OCR-derived products in the Southern Ocean.  For more details on the 
specificities of OCR in high latitudes, see IOCCG (2015).  Note that coccolithophores are fairly 
global in distribution and anomalous calcite backscattering can affect some algorithm results 
elsewhere, because it can introduce errors in band-ratio-derived Chl (Balch et al., 2005), or cause 
violations in the assumptions of the KSM09-based PFT retrievals, for example.  In terms of 
phenology (specifically month of maximum), their confounding effect is likely mitigated to some 
degree depending on the algorithm, because calcite concentrations tends to co-vary with Chl 
(Hopkins et al., 2015).  Also note that some of the algorithms specifically retrieve 
coccolithophores as a PFT (PHYSAT, PhytoDOAS), and thus take their effects into account, and 
NASA standard processing implements a high coccolithophore  concentration flag, thus masking 
out some of their confounding signal. 
 
Algorithm users need to keep in mind that algorithms (especially those based on empirical 
relationships) can only be as good as the data sets used to develop them; in situ data set 
uncertainty translates to algorithm failure or uncertainty.  Development data sets are not 
necessarily representative of the ecosystem states geographically or temporally even within the 
regions they span.  Finally, ensemble means may be biased toward algorithms based solely on 
Chl as input (3 of the 10 PFT algorithms are Chl-based). 
 
Oceanic ecosystems are expected to exhibit biennial variability (Platt et al., 2009) and more 
complex interannual variability due to climate oscillations such as ENSO and PDO, as well as 
secular trends due to climate change.  Thus next steps in the PFT phenology analysis need to 
involve longer time series and allow for temporal evolution of phenology, e.g. via wavelet 
analysis (or studying the fractional frequencies of the DFT, or using a sliding DFT), and allow 
for a secular trends in the model (Weatherhead et al., 1998; Sapiano et al., 2012).   However, a 
longer time series is recommended for that.  Such a time series needs to be self-consistent, which 
requires seamless merging of several successive satellite mission.  Apart from phenology, study 
of long term trends using seamlessly merged satellite data sets (Maritorena et al., 2010) is 
important, focusing on a power analysis of trend estimation (Gerrodette, 1987), i.e. predicting 
the length of record required to distinguish trends from noise in the data  (e.g. Beaulieu et al., 
2013; Kostadinov and Lookingbill, 2015).  
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Supplement	Figures	

 

Figure S1.  An example of DFT-based modeling of the annual seasonal cycle of PFT 
data, with subsequent peak analysis.  The regionally binned KSM09 percent 
microplankton data for the Longhurst (1998) North Atlantic Drift province (NADR) is 
shown.  The mean was subtracted from the data before modeling, and the minimum of 
the resulting modeled signal was subtracted before peak finding in order to identify 
height correctly.  As a result, the modeled signal's minimum is zero, and some values of 
the raw data can be negative.  Note the presence of two annual peaks of variable 
relative height in the data.  
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Figure S2.  Maps of differences between the month of maximum bloom of OC4v6 Chl 
and the PFT algorithms (except PHYSAT, which exhibits very sparse data almost 
everywhere) and the ensemble mean of Fig 3A.  Table 1 lists the algorithms and 
variables used.  Positive differences indicate that the ensemble mean leads (i.e. occurs 
earlier than) the specific algorithm's month of maximum. Note that the determination of 
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month of maximum becomes unreliable when only a small percentage of the signal 
variance is explained by the seasonal cycle, thus these areas should be treated with 
caution (Figs. 2A, S13A). The isoline of climatological Chl = 0.08 mg m-3 is shown (black 
solid contour).  Note that the CB06 algorithm retrieves almost no data in the subtropical 
gyres. 
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Figure S3.  Circular variance of month of maximum of the primary bloom for (A) the 10 
PFT algorithms and (B) the 7 CMIP5 models. The isoline of climatological Chl = 0.08 mg 
m-3 (black solid contour) is shown on both panels. 
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Figure S4.  Maps of bloom duration (in days) for the primary bloom for OC4v6 Chl and 
the PFT algorithms (except PHYSAT).  Duration of a bloom is defined as the width of 
the modeled seasonal signal at half the bloom peak height. The isoline of climatological 
Chl = 0.08 mg m-3 (black solid contour) is shown on all panels.  
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Figure S5.  Standard deviation (in days) of the primary bloom duration for (A) the 10 
PFT algorithms and (B) the 7 CMIP5 models. The isoline of climatological Chl = 0.08 mg 
m-3 (black solid contour) is shown on both panels. 
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Figure S6.  The number of algorithms for which valid phenological analysis is available.  
Compare with panels of Fig. 1, for example. The isoline of climatological Chl = 0.08 mg 
m-3 is shown as a white contour.  
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Figure S7. Difference in months between the maxima of the primary and the secondary 
blooms for OC4v6 Chl and the PFT algorithms (except PHYSAT).  Differences greater 
than three months in absolute value are shown in either red colors for positive 
differences (the primary bloom leads, i.e. occurs earlier than the secondary bloom) or 
blue colors for negative differences (the secondary bloom occurs earlier than the 
primary bloom).  A difference of six months is shown as positive by convention. The 
isoline of climatological Chl = 0.08 mg m-3 (black solid contour) is shown on all panels.  
 



Page 20 of 26 
 

 

Figure S8.  Fractional prominence of the secondary bloom in relation to the primary 
bloom, for, as follows: A) ensemble mean of percent microplankton for the 10 PFT 
algorithms, B) ensemble mean for diatom C for the 7 CMIP5 models, C) for OC4v6 Chl.  
Fractional prominence refers to the ratio of the prominence of the secondary bloom to 
the prominence of the primary bloom. The isoline of climatological Chl = 0.08 mg m-3 
(black solid contour) is shown on all panels. 
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Figure S9.   Map of the two Longhurst (1998) marine biogeographical provinces that 
were used for the regionally binned analysis – NADR (red) and NASW (orange). The 
location of the BATS station is indicated with a green cross (inside NASW). For details 
and province codes explanation, see this Supplement Part 4.  
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Figure S10. Power spectral density plots of the PFT algorithms (Table 1) and OC4v6 
Chl for two example Longhurst (1998) biogeographic provinces as follows: A) North 
Atlantic Drift Region (NADR); B) The Western North Atlantic Subtropical Gyral Province 
(NASW). See Fig. S9 for a map of the provinces.  See Sect. 2.3 and Supplement Sect. 
S1 for methodology details. 
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Figure S11.  A) Time series as in Fig. 6, but for a 1x1o box centered on the BATS 
station only. B) As in Fig. 7, but for a 1x1o box centered on the BATS station only. C) 
Seasonal cycle of in situ biogeochemical data at the Bermuda Atlantic Time Series 
station at 31°50’N, 64°10’W. Purple: Primary Production, in mg m-3 day-1. Go-Flo bottles 
were used to measure primary production at different depths. The shallowest depth for 
which there was consistent data, 5m, was used. Blue: Organic Carbon flux collected in 
sediment traps at the BATS station, in mg m-2 day-1. Sediment traps were left 
underwater at specific depths for 3 days, usually around once per month. 3 traps were 
used, and the average was taken. Again, the shallowest depth for which there was 
consistent data, 150m, was used. Drop sites for a given day varied by as much as half a 
degree. The traps would also float up to a degree during their 3-day deployment. Green: 
Nitrogen flux, in mg m-2 day-1, collected in the same traps as Carbon. Red: Phosphorous 
flux, in mmol m-2 day-1, collected in the same traps as Carbon. Climatologies for each 
variable were computed over the complete SeaWiFS period (September 1997 to 
December 2010).  
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Figure S12.  A) Cumulative percent of all pixels with valid phenological computations as 
a function of variance explained by the modeled seasonal cycle.  For example, the 
graph indicates that for the MY10 model, ~70% of all analyzed pixels exhibit at most 
50% variance explained by the modeled seasonal cycle.  Note that differences among 
the algorithms can be intrinsic or can be due to differences in spatial coverage among 
the models (Fig. 1, Fig. S6), as illustrated prominently by the PHYSAT curve. B) 
Percentage of pixels exhibiting greater than 2 months difference in month of annual 
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maximum as determined from the DFT-based modeling used here, and as determined 
from direct peak analysis of the times series of the monthly climatologies of PFT 
algorithm satellite data (12 data points in each analyzed time series). The percentage is 
given as a function of percent variance explained by the DFT-modeled seasonal cycle, 
binned into 10%-bins.  The percentage is calculated out of all pixels with valid 
phenology in each variance bin.  
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Figure S13.  A) Number of PFT algorithms for which percent seasonal variance is 
less than 30%. Yellow and red colors indicate areas for which more than 3 PFT 
algorithms exhibit this, indicating that month of maxima (and other phenology metrics) 
should be interpreted with caution there.  B) Same is an A), but for the 7 CMIP5 models. 
Yellow and red colors indicate areas where more than two models exhibit less than 30% 
seasonal variance.  The isoline of climatological Chl = 0.08 mg m-3 (black solid contour) 
is shown on both panels. 
 


