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Green neighbourhoods in low voltage networks: measuring impact
of electric vehicles and photovoltaics on load profiles

Laura HATTAM1, Danica Vukadinovic GREETHAM1

Abstract In the near future, various types of low-carbon

technologies (LCTs) are expected to be widely employed

throughout the United Kingdom. However, the effect that

these technologies will have at a household level on the

existing low voltage (LV) network is still an area of

extensive research. We propose an agent based model that

estimates the growth of LCTs within local neighbourhoods,

where social influence is imposed. Real-life data from an

LV network is used that comprises of many socially

diverse neighbourhoods. Both electric vehicle uptake and

the combined scenario of electric vehicle and photovoltaic

adoption are investigated with this data. A probabilistic

approach is outlined, which determines lower and upper

bounds for the model response at every neighbourhood.

This technique is used to assess the implications of modi-

fying model assumptions and introducing new model fea-

tures. Moreover, we discuss how the calculation of these

bounds can inform future network planning decisions.

Keywords Agent based modelling, Low voltage networks,

Electric vehicles, Photovoltaics

1 Introduction

From 2005 onwards, the national electricity demand in

the UK and other developed countries has stagnated or

even decreased, despite the population increase. The UK

energy statistics show that total electricity consumption

year on year has reduced on a UK, GB and south-east level

[1]. The current predictions are that the UK domestic

electricity demand will continue to decrease in the next ten

to fifteen years [2] due to the better efficiency of electrical

appliances and lighting [3, 4]. The anticipated addition to

the domestic demand will come mostly from the new

builds and the low carbon technologies (LCTs) employed

in existing buildings.

In particular, the electrification of transport and heating,

which is forecasted for the near future, are predicted to be

the main contributors to the changes in the electricity

demand. The whole picture is made more complex by the

variability of renewable energy sources, which result in

new peaks and troughs forming in the aggregated con-

sumption. However, not all the projected changes threaten

to worsen this situation. A big mitigating factor is energy

storage, which can help smoothen generation and demand,

as well as offer cost efficient local solutions. Our proposed

model can estimate future loads at the feeders, and as a

result, street level storage solutions can be appropriately

employed.

We are interested in measuring the combined impact of

electric vehicles (EVs) and solar panels on low voltage

(LV) networks. Several possible issues that might arise

from the described smart grid developments are already

recognised, these include frequent peak loads that reduce

headway, voltage drops and phase unbalance. Due to the

complexity of human societies, any predictions on the

uptake of EVs and photovoltaics (PVs) comes with large
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uncertainties. Different models that determine uptake

already exist and are used by network planners. However,

by their nature it is quite difficult to validate these models,

and to decouple the influence of different modelling

parameters.

Our contribution is two-fold. Firstly, we present an

agent based model of load profiles for the uptake of LCTs

in local neighbourhoods when social influence is present.

Our neighbourhoods are based on real-life LV networks

containing multiple substations and feeders. This model

uses a sample of realistic EV and PV profiles to simulate

future uptake. Secondly, we demonstrate techniques that

allow for a thorough mathematical analysis of results.

Probabilistic methods based on multiple simulations enable

the calculation of upper and lower bounds for the model

response, which we refer to as confidence bounds. These

bounds are used to understand the inner-workings of the

model and to measure the effects of introducing/changing

the model’s parameters. In particular, these bounds are

used here to quantify the difference between applying a

clustered or random initial LCT distribution amongst our

sample population.

The outline of the paper is the following. In Section 2

we give an overview of the recent relevant results. In

Section 3 the model is described in detail, as well as the

data that is used for the initialisation and calibration of the

model. The focus is initially EV adoption only. In Section 4

the confidence bounds creation is explained with some

simulation results shown. Then in Section 5 the adaptation

of the model to include socio-demographic information is

discussed. As well, confidence bounds are used to assess

the impact of this new model feature. Next in Section 6 the

model is further modified to investigate the combined

uptake of EVs and PVs. Again, confidence bounds are

computed to determine the effect of changing our model

assumptions. Finally in Section 7 we discuss the implica-

tions of our results and their possible use in design, plan-

ning and policy.

2 Previous work

There is a fast growing amount of literature [5, 6]

concerning the different impacts EVs and PVs will have on

the future power grids. More specifically, these studies

concentrate on load profiles, system losses, voltage pro-

files, phase unbalance, harmonic and stability impacts.

Here, we focus on load profiles within a LV network.

2.1 Impact of PVs and EVs to LV networks

For EVs, most of the existing work is based on predic-

tions, simulations or small pilot trials. Only recently have

larger data sets based on trials become available. Focused

mostly on LV networks impact, in [7] the authors created

generic local networks to assess the neighbourhood impact

of EV charging. Using a realistic distribution network

simulation, in [8] the authors evaluate a range of different

residential EV charging strategies, highlighting their

strengths and weaknesses.

In [9], the authors aimed to measure the impact of PVs

on LV networks in New Zealand. They were looking in

particular at over-voltage and overload of conductors and

transformers. They created a power-flow model of a LV

network and simulated varying percentages of PV uptake.

PV was based on a specific installation with an output

power of 3.7 kW. These uniform PVs were then randomly

distributed through different parts of the LV network

classified as rural, urban, industrial and city. Their results

showed that only very high PV penetration (over 45%)

caused an overload of conductors, and in most cases

overvoltage was not much higher than the existing statu-

tory limit. In [5], the major technical impacts of small PV

installations were discussed. This included excessive

reverse power flow, overvoltages along distribution feed-

ers, increased difficulty of voltage control, increased power

losses (caused by reverse power flow) and severe phase

unbalance.

A microgrid case-study from a neighbourhood in

Utrecht in Netherlands, looking at the combination of PVs

and EVs throughout a year was described in [10]. Based on

simulations, and using February demand projected over the

whole year, the authors compared several control algo-

rithms. Their results showed a potential for relative peak

reduction and increased self-consumption when using

smart charging and vehicles to grid technology.

In [11], Monte-Carlo simulations were used to measure

the impact of several low carbon technologies, including

EVs and PVs. Similar to our approach, the authors used a

realistic LV network with 7 feeders and sampled from

realistic profiles for load and for LCTs. Note that the net-

work area examined in our paper is significantly larger,

with 44 feeders considered. Their focus is on identifying

thermal and voltage problems in different feeders. While

they use a random allocation of LCTs, we compare a

random allocation with a clustered one using socio-demo-

graphic information, although here the focus is the load

profile impact.

2.2 Agent based modelling of PVs and EVs uptake

In [12], a simple agent-based model of EV uptake was

detailed and their impact on a local grid was examined.

Their analysis was based on governmental scenarios of

future UK EV uptake and a small pilot project that gave

incentives to participants to charge overnight. As expected,
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having a variety of EV charging patterns helped to reduce

the peaks, as opposed to when all the domestic charging

occurred after work and overnight. By then comparing

random and clustered uptake simulations, it was shown that

some local grids might see a substantial increase of peak

loads faster than expected. In [13], the impact of different

EV charging behaviours on the electricity grid was as well

considered, except their area of study was Western Aus-

tralia. They concluded that by promoting off-peak charg-

ing, the effect of EV uptake on the grid would be

minimised.

An agent-based model using San Francisco as a test city

was presented in [14]. The paper considered how different

policies and battery technologies might affect the uptake

and usage of EVs. The model included a set of agents with

socio-demographic properties, attitudes and an EV

ecosystem that considered the cost of gas/electricity,

rebates and public charging stations. Each three months,

agents assessed whether they needed a new vehicle. Based

on their properties, attitudes and state of their social net-

work, they acquired (or not) an EV to use for their daily

commute. The social network was created randomly based

on similarities in age, income and residential locations of

agents. This enabled the exploration of different scenarios

(for example, increasing or decreasing rebates for EVs and

increasing battery sizes) and then looking at the impacts on

the average daily load.

3 Agent based model

The impact of future LCT adoption is predicted with our

agent based model that applies a clustered distribution of

technologies to a sample UK population (Bracknell, UK).

The clustering follows the Joneses effect such that house-

holds are influenced by their neighbours’ choices through

observation, which is one of the causes for the development

of ‘green neighbourhoods’. This means a household is

more likely to acquire a LCT if their neighbour already has

one. Here, we model EVs and PVs as they are visible from

the street, and can be observed by a neighbour.

Our network is based on a realistic LV network situated

in Bracknell, UK, which comprises of 44 feeders. The

household population at each feeder varies considerably.

Figure 1 demonstrates the variation in feeder size, where

the feeder number and feeder population is given. The

feeders have been sorted according to feeder size. Note that

each feeder corresponds to one neighbourhood and all

households along a particular feeder are considered

neighbours. Overall, there are 1841 properties, where 7 are

households with PVs installed and 71 are commercial

properties.

We have three data sets that were created using metered

data from this LV network. This information was collected

on Thursday the 15th of January 2015 (winter), Thursday

the 7th of May 2015 (spring) and Thursday the 9th of July

2015 (summer). The data sets consist of a combination of

metered and predicted daily demand energy profiles (kWh)

for every household, where a genetic algorithm was used to

allocate monitored endpoints to unmonitored customers

[15]. These profiles have readings every half hour and

therefore for each household we have a load profile as a

vector of length 48. Throughout this paper, we refer to

these three data sets as ‘baseloads’.

Thursdays are of particular interest here since presum-

ably most household members will be at home and there-

fore, the demand will be maximised. As well, if they

possess an EV, we assume Thursdays are a likely time to

charge, just before the weekend.

Initially, the focus here is the clustered allocation of EVs,

although later the combination of EV and PV uptake is

investigated. The EV charging profiles used in our model

were generated during the 55 week trial conducted by My

Electric Avenue [16], where the number of participants

increased as the trial progressed. These profiles consist of the

two values ‘0’ and ‘1.85’ kWh,which representwhen theEV

is not charging and charging respectively. They have read-

ings also every half hour. Three days from this trial are

selected, which are Thursday May the 8th 2014 (week 16 of

the trial), Thursday July the 10th 2014 (week 25 of the trial)

and Thursday January the 15th 2015 (week 52 of the trial).

These dates are chosen since they correspond seasonally to

the baseload dates. There are 79 households that consistently

participate during weeks 16–52 of the trial and therefore, we

have 79 EV daily profiles that are representative of winter,

spring and summer charging behaviour. As an example, the

EV profiles for one randomly selected household on the

chosen days are shown in Fig. 2.

Note that EV profiles will have variability within each

season. However, here we assume that by taking a snapshot

of charging behaviour on Thursdays occurring at the same
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time of year as the baseloads, the model result will be more

realistic.

All profiles are depicted in energy units (kWh). To

instead consider power units (kW), all profiles must be

multiplied by 2 (since the time step is 0.5 hours). This

gives the average load over 30 minutes.

The following outlines the clustering algorithm applied

to forecast EV uptake.

1) Firstly, we establish the percentage of households in

the sample population that will adopt EVs and the

number of years it will take (This is set to be 8 years).

2) Next, an initial random distribution of EV seeds is

performed to simulate the first year of EV uptake.

3) Then, during the remaining years, EVs are assigned to

households according to the score s (refer to (2)).

4) The number of EV households (households that

adopted an EV) increases linearly every year until

the specified amount is attained.

5) Lastly, EV profiles are assigned to the EV households,

where

EV household profile ¼ base load þ EV profile ð1Þ

It is important to note that all 71 commercial properties in

our data set never receive LCT load since our focus is LCT

household uptake. As well, there is one feeder comprised

of only commercial properties, thus this site is always

given zero LCT load.

In 2015, OFGEM (a UK regulatory authority for gas and

electricity markets) increased the period covered by a

single price control review to 8 years [17]. As detailed

investment decisions must be outlined in this time horizon,

we also use 8 years in our simulations.

The score, s, assigned to eligible households is the

percentage of PVs and EVs in its neighbourhood presently,

where

s ¼ 100
Number of neighbours with an EV and=or PV

Number of neighboursþ 1

� �

ð2Þ

This score is proportional to the probability of selection by

a random number generator. Figure 3 illustrates this

selection process with a simplified network, comprising of

red and numbered circles that represent EV and eligible

households respectively, with their probability of EV

assignment by the random number generator also shown.

This figure suggests that household 1 is the most probable

to acquire an EV due to observing 2 of its 3 neighbours

with EVs.

Once a household is selected, they become an EV

household for the remaining years of the simulation, with

s updated every year. Using s to inform EV allocation leads

to clusters of EVs forming around the initial seeds.

Therefore, we are modelling the formation of green

neighbourhoods due to social influence. This method is an

adaptation of the algorithm proposed in [12], which was

also applied to model EV uptake.

There is an assumed link between increased neigh-

bourhood diversity and a heavily populated feeder. As a

result, when transforming these larger sites into greener

neighbourhoods, the impact from one EV household should

be comparatively small. To account for this, s depends

upon the feeder population and therefore, the influence of

one household on its neighbours is relative to the neigh-

bourhood size.

Note that when a household is given an EV, the EV

profile assigned to them is randomly selected from 79

possible profiles. If the baseload applied is representative
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of spring, summer or winter then the EV profile chosen will

also correspond to spring, summer or winter respectively.

4 Confidence bounds

For some fixed model parameters, there are many fea-

sible outcomes. This is due to the initial random distribu-

tion of seeds highlighting different neighbourhoods every

model run. As well, one of 79 possible EV profiles are

randomly assigned to households, causing further variation

in the model result. Consequently, we aim to determine

upper and lower bounds of the model response for a fixed

set of parameters, which we label confidence bounds.

These bounds will be calculated by undertaking 500 con-

secutive model runs and will therefore relate to the EV load

variance, not the baseload. Since the clustering is based on

neighbourhoods, which are defined by feeders, the bounds

will be computed at each feeder.

The following details the method used to calculate

confidence bounds.

1) Specify the model parameters, which are the uptake

percentage and the number of years i.e. 30% EV

uptake ensures d0:3� 1841e properties receive an EV

each simulation.

2) Complete 500 simulations.

3) After each simulation, record the aggregate result at

the feeder. The 44 feeders are considered together so

that 0%–100% of households along a particular feeder

can receive an EV each simulation.

4) The aggregate data is then used to calculate 10%, 50%

and 90% quantiles at the feeder. The feeder lower and

upper bounds correspond to the 10% and 90%

quantiles.

5) The quantile with the baseload subtracted represents

the variation in EV load at the feeder. Then, dividing

the quantiles by the number of households along the

feeder, we can compare the 44 feeders and their EV

loads.

In Fig. 4a, b, the results for feeders 15, 17, 39 and 40 are

depicted when 30% uptake overall is assumed amongst the

44 feeders. The aggregate result at the feeder is displayed

(including baseload), where the black dots represent the

response from 500 model runs. The red, green and blue

curves are the 10%, 50% and 90% quantiles respectively

calculated from the black dots. The far right plots show the

quantiles with the baseload subtracted, divided by the

number of households along the feeder. Only the results

corresponding to winter are given here, where the winter

baseload and winter EV profiles discussed in Section 3 are

used. From the far right plots of Fig. 4a, b, it is apparent

that feeders with similar household numbers receive

comparable EV loads, where feeders 15, 17, 39 and 40

have 25, 27, 82 and 86 households respectively. Further-

more, less populated feeders have greater EV peaks,

demonstrated by the blue curves. This can be attributed to

increased neighbourhood diversity when the feeder popu-

lation is larger and therefore, it is more difficult to

influence your neighbours and form an EV majority. Also,

it is evident that the spread between the 10% and 50%

trends is far less notable for smaller feeders. Additionally,

the red curve sits along the baseload in Fig. 4a. This

suggests that less populated feeders do often avoid EV

assignment.

Hence, similar to [11], multiple simulations are used to

determine the impact of LCTs on a LV network. However,

here the area examined is comparatively large, social

influence is imposed and our focus is the load profile.

Moreover, this methodology enables bounds for the

expected load at each feeder/neighbourhood to be found,

which are extremely informative measures for network

planners.

Only the results for four of the 44 feeders considered by

the model have been shown. Refer to the Appendix A for

the depiction of the results across the entire network. In this

paper, 30% EV uptake has been selected. However, this is a

model parameter that can be varied. Furthermore, the

network examined here with our approach covers a fixed

area, although, the analysis can be easily adapted to study

networks of a greater or smaller size.

The number of simulations conducted, n, to calculate the

bounds shown was n ¼ 500. Choosing n ¼ 500 was

believed appropriate since the variance was captured but

the computation time was minimised. This was deduced by

comparing the confidence bounds at various feeders when

n ¼ 200; n ¼ 500 and n ¼ 1000. These results revealed

only minor differences between the quantiles for n ¼ 500

and n ¼ 1000. Therefore, considering the additional time

required to undertake 1000 simulations, it was determined

unnecessary to perform this many runs and setting n ¼ 500

was optimal for a network of this size.

These particular four feeders were chosen for closer

analysis because feeders 15 and 17 have approximately the

same number of households, similarly for feeders 39 and

40. As well, household numbers at feeders 15 and 17 are

less than the average feeder population (which is 40

households), whereas they are greater at feeders 39 and 40,

and therefore, two extreme cases are studied. Furthermore,

the distribution of council tax bands (see Section 5)

amongst these feeders varies considerably, which becomes

important in Section 5.

The simulations and confidence bounds calculations

were performed using MATLAB on a standard workstation

with Intel i5 processor on 2.50 GHz with 8 GB RAM. The

computation time required to conduct 500 consecutive
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model runs with this network (44 feeders consisting of

1841 properties) was approximately 15 minutes.

5 Adding socio-demographic information

The simulations performed in Section 4 randomly allo-

cated EV seeds. Next, we aim to improve our model by

introducing council tax band (CTB) information to instead

inform seed distribution. Council tax is a local tax on

domestic properties in England, Scotland and Wales,

introduced in 1993. Each property is assigned one of eight

bands (A to H) based on the property’s capital value [18],

where A corresponds to the smallest value and H to the

highest. Here, it is assumed that larger homes have higher

CTBs. We note here that other socio-demographic infor-

mation can be used if available. We use CTB as it is

publicly available [19] and it allows us to identify neigh-

bourhoods that have a higher percentage of larger

properties.

A survey of Californian EV owners [20] revealed that

generally they owned and lived in single family dwellings

that had parking and space to install a charging point. They

also had higher incomes, which typically relates to living in

larger homes. Furthermore, present EV owners commonly

had a PV installed at their property. Also acknowledged

was that neighbour influence was an important factor in EV

adoption since clusters of EV households had formed in

California. This study therefore supports initialising the

seeds guided by CTB information and then imposing

neighbour influence to determine the growth of EV

ownership.

The model is now adapted to firstly favour PV properties

and larger households, signified by higher CTBs. To

implement this, we assign to every household an initial

score, si, such that:

si ¼
100CTB

j
hh

8 j
ð3Þ

where CTBhh ¼ 1; 2; . . .; 8 when the household’s CTB is

A;B; . . .;H respectively and j is some positive integer. As

well, PV (resp. commercial) properties are given the score

si ¼ 100 (resp. si ¼ 0). The score is proportional to the

likelihood of selection by a random number generator. This

relationship is consistent with that portrayed in Fig. 3. It

should be noted that si is only used during the first year

when seeds are allocated, then s as given by (2), applies for

the remaining years.

Choosing j determines how dependent seed assignment

is on the CTB information, where CTB influence increases

with j. Moreover, higher values of j will result in prominent

clusters developing in neighbourhoods with large house-

holds. Here we set j ¼ 4.

The last column of Table 1 details the spread of CTBs

within our sample population of 1841 properties. As well,

in Table 1 a comparison is given of 100 seeds that are

selected using CTB information, with j ¼ 1; 2; 3; 4, where

the distribution of CTBs for the 100 nominated households

is displayed. We propose that by setting j ¼ 4, the subse-

quent initial EV population reflects the survey findings

[20], since approximately 70% of seeds now have a CTB

greater than C (A� C typically represents small dwell-

ings). Note that j is a model parameter that can be

varied.

Confidence bounds can be used to measure the effect of

changing our model assumptions. Here, we analyse the

influence of using CTB to inform the initial seed distri-

bution, instead of random initial distribution. The winter

results for feeders 15, 17, 39 and 40 are shown in Fig. 4c, d.

It is evident that feeders with about the same sized popu-

lations are no longer given a similar EV load. The upper

bounds depicted along Fig. 4c reveal that feeder 15

receives a significantly larger load than feeder 17. This is

due to 60% of properties along feeder 15 having a CTB

greater than D, whereas for feeder 17 it is 0%. Similarly,

Fig. 4d suggests that feeder 39 has been assigned a greater

EV load compared to feeder 40, which is due to 54% of

households along feeder 39 having a CTB of more than D,

when feeder 40 has 0%. Furthermore, of these four feeders,

feeder 15 overall has the largest EV peak, which is a result

of both feeder size and its households’ CTBs. In Fig. 4a, c:

feeder 15 has 25 households and the number of households

with CTB[D ¼ 60%; panels a and c: feeder 17 has 27

households and the number of households with

CTB[D ¼ 0%; panels b and d: feeder 39 has 82 house-

holds and the number of households with

CTB[D ¼ 54%; panels b and d: feeder 40 has 86

households and the number of households with

CTB[D ¼ 0%.

Now that socio-demographic data has been incorpo-

rated, higher potential peaks are exhibited at certain feeders

than previously predicted. This modelling suggests that

Table 1 CTB Distributions

CTB j ¼ 1 j ¼ 2 j ¼ 3 j ¼ 4 All

0 0 0 0 0 71

A (1) 0 0 0 0 1

B (2) 2 2 2 0 103

C (3) 59 47 46 31 1135

D (4) 25 32 24 29 373

E (5) 5 9 14 23 107

F (6) 8 5 8 8 37

G (7) 1 5 4 7 12

H (8) 0 0 2 2 2
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these feeders are likely sites for future network issues.

Refer to the Appendix A for an overview of the results at

all 44 feeders.

6 Combination of electric vehicles
and photovoltaics

The additional impact of PV adoption on the electricity

network is now examined by adapting our model to also

consider PV uptake.

As part of the New Thames Valley Vision project,

surplus generation and solar radiation data was recorded at

12 households that had PVs installed. PV daily generation

profiles were then created, defined every half hour, by

assuming that PV generation is proportional to solar radi-

ation. It should be noted that other influences, such as

ambient and surface temperatures, would also contribute to

PV generation, but we ignore these to simplify our model.

Thus, for our analysis only solar radiation is used. As a

result, we obtained three sets of 12 PV daily generation

profiles that were representative of spring, summer and

winter generation. For this investigation, only the summer

baseload and summer PV profiles are applied to simulate

uptake. In Fig. 5, the 12 summer PV daily generation

profiles are shown. These profiles are scaled so that the

maximum generation is 1.9 kWh to comply with UK

standards. When a household is given a PV, one of the 12

possible profiles are randomly selected and then subtracted

from their baseload i.e. a household with an EV and a PV is

assigned the profile:

EV þ PV household profile ¼ baseload þ EV profile

� PV profile ð4Þ

The confidence bounds discussed in Section 4 are now

used to quantify the effect of both EV and PV adoption by

our sample population. Simulations for 30% EV and 30%

PV uptake are conducted (the uptake percentage chosen is

a model parameter, which can be modified). Firstly, the

clustering algorithm outlined in Section 3 is applied, where

the initial seed is randomly distributed. Then, the seed

allocation is guided by CTB. There are now two scores

assigned to eligible households. These are sEV and sPV ,

where both are defined using (2) and updated every year. A

household’s likelihood for EV (resp. PV) selection by a

random number generator is proportional to sEV (resp. sPV ).

The dependence of selection on these scores is

demonstrated by Fig. 3.

Again the 71 commercial properties within our data set

do not receive a LCT. Also, we ensure that the 7 house-

holds with PVs installed already are not allocated an

additional PV.

In Fig. 6a, c: feeder 15 has 25 households and the

number of households with CTB[D ¼ 60%; panels a and

c: feeder 17 has 27 households and the number of house-

holds with CTB[D ¼ 0%; panels b and d: feeder 39 has

82 households and the number of households with

CTB[D ¼ 54%; panels b and d: feeder 40 has 86

households and the number of households with

CTB[D ¼ 0%.

In Fig. 6a, b, the results for feeders 15, 17, 39 and 40 are

displayed. Here, the initial seeds have been randomly

allocated, where EV and PV seeds are distributed sepa-

rately. The quantiles depicted reveal significant troughs

(red curve) develop during the day and large peaks (blue

curve) form at night. Furthermore, it is evident that feeders

of a similar size again receive comparable EV/PV loads,

where the red trough and blue peak are more prominent for

smaller feeders, suggesting increased variability at these

feeders.

Next, in Fig. 6c, d, the results for feeders 15, 17, 39 and

40 are given, where now the seed distribution is informed

by CTB information. The allocation of EV and PV seeds

are again separate. Consistent with previous findings, due

to introducing CTB, feeders 15 and 39 have greater

extremes. Interestingly, these values are roughly the same

for feeders 15 and 39, and hence, independent of feeder

size. This is a result of now modelling two technologies,

which amplifies the clustering effect. Although, the result

variability is more pronounced for the smaller feeders,

indicated by the spread of the quantiles. As a result of using

CTBs, the minimum and maximum loads obtained at

feeders 15 and 39 are now larger than initially estimated

(see Fig. 6a, b).

Lastly, simulations of 30% EV and 30% PV uptake with

CTB information are again performed, except now we

ensure that all households which receive an EV with our

clustering algorithm are also given a PV. The results are

actually extremely similar to those depicted in Fig. 6c, d.

The most significant difference observed is at feeder 17 and

is shown in Fig. 7. This is expected as our clustering

method already promotes the growth of EV ? PV

groupings.
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Modelling EV and PV uptake reveals significant night-

time peaks and daytime troughs, which enlarge at some

feeders when the CTB information is applied. These results

can inform network operators about the need for reinforc-

ing some of the feeders so to cater for the load increases at

night and voltage rises during the day, which is due to EV

charging and PV generation respectively. Refer to the

Appendix A where an overview of the results at the 44

feeders is given.

Analysing load profiles is a straightforward method to

assess the impact of LCTs and to highlight potential sites

that require further attention. However, other factors such

as thermal and voltage issues must also be considered to

fully understand the LCT impact. To explore these issues,

the feeder upper and lower bounds obtained through our

modelling are used by a network operator as input to a

voltage and thermal constraints simulator.

7 Conclusion

An agent based model was outlined that considered

social factors to predict the uptake of low-carbon tech-

nologies. The data used was taken from real-life, with real

substation and feeder assignment. This allowed us to sort

the 1841 properties into 44 realistic neighbourhoods. Then

neighbour influence was imposed to determine uptake. The

model also applied sets of EV and PV profiles that were

representative of spring, summer and winter usage. To

assess the model response, a probabilistic approach was

proposed that provided feeder confidence bounds, which

were an upper and lower limit for the expected load at

every neighbourhood. These were a result of 500 consec-

utive simulations and therefore, the bounds measured the

variation in LCT load. Next, another aspect of social

influence was introduced with socio-demographic infor-

mation also guiding LCT selection. More specifically, we

ensured that bigger households were more likely to acquire

a LCT. Confidence bounds were then utilised to quantify

the effect of implementing this change. In particular, the

potential peaks/troughs at select feeders were amplified as

these neighbourhoods comprised of clusters of larger

homes. The modelling undertaken focussed on EV adop-

tion and then the combination of EV and PV uptake. To

investigate these different scenarios and their possible

model outcomes, computing confidence bounds was

extremely effective. Moreover, the upper bound can also be

used to determine the available headroom at each feeder

for some specified uptake percentage. Identifying head-

room is essential for network planning since negative

headroom indicates transmission is greater than the maxi-

mum available power, causing issues for the electricity

provider. Hence, subsequent to the upper bound calcula-

tion, certain feeders can be highlighted as likely sites for

network malfunction when subjected to LCT demand.

Furthermore, when analysing PV uptake as well, the lower

bound becomes an equally important measure since nega-

tive power at the feeder level is also problematic for the

electricity provider. As well, future voltage and thermal

issues can be examined with these bounds if used as input

to a voltage and thermal constraints simulator. Confidence

bounds therefore will be an important tool to inform new

policies and planning so that the future impact of LCTs on

the LV network can be mitigated.
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Appendix A

The confidence bounds results for the studies:

1) 30% EV uptake winter with

a) seeds randomly distributed;

b) seed distribution guided by CTB information.

2) 30% EV and 30% PV uptake summer with

a) seeds randomly distributed;

b) seed distribution guided by CTB information.

are summarised in Fig. 8 for all 44 feeders. Note that feeder

1 is comprised of only commercial properties, so this

feeder does not receive any LCTs. Panel a depicts each

feeder’s average CTBhh (blue-dashed) and household

population (red). Panel b relates to study a, where the

maximum value of the 90% EV feeder quantile (the

baseload subtracted), divided by the number of households

along the feeder, is shown. The red and blue curve

correspond to a(i) and a(ii) respectively. Panel c displays

the results for study b, with the minimum value of the 10%

EV/PV feeder quantile (the baseload subtracted), divided

by the number of households along the feeder, given. The

red and blue trend are linked with b(i) and b(ii) respec-

tively. There is an evident correlation between the feeder

population and the red curves associated with a(i) and b(i).

This behaviour was discussed in Section 4, where less

populated feeders received larger LCT loads. When the

CTB data is introduced, certain feeders attain greater

extreme values, whilst at other feeders the load magnitude

is reduced. This is demonstrated by the blue curve along

the bottom two panels, which overall follows the top panel

blue trend. This is expected since when CTBs are applied,

the clustering algorithm favours feeders that have a higher

proportion of larger properties. The feeders that receive

amplified minimum and maximum values are especially

vulnerable, therefore further analysis and possibly rein-

forcement at these sites are needed.
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