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Focal Points Revisited: Team Reasoning, the Principle 

of Insufficient Reason and Cognitive Hierarchy Theory 

 

Nicholas Bardsley and Aljaž Ule1 

 

Abstract 

It is well-established that people can coordinate their behaviour on focal points in games with 

multiple equilibria, but it is not firmly established how. Much coordination game data might be 

explained by team reasoning, a departure from individualistic choice theory. However, a less exotic 

explanation is also available based on best-responding to uniform randomisation. We test these two 

accounts experimentally, using novel games which distinguish their predictions. The results are 

inconsistent with best-responding to randomisation but consistent with team reasoning as the modal 

behaviour, though there is also unexplained heterogeneity. Increasing the difficulty of the 

coordination tasks produces some behaviour suggestive of response to randomisation, but this is a 

minor feature of the data.  

 

Keywords 

Coordination, team reasoning, focal points, bounded rationality 

 
 

1. Introduction 

In a classic of modern economics, Schelling (1960) argued persuasively that people have a capacity 

to coordinate their behaviour on focal points in non-cooperative settings, and that this capacity is 

mysterious to classical game theory. He based his arguments partly on informal experiments that 

have since been corroborated in controlled and incentivised settings (Mehta et al. 1994; Bardsley et 

al. 2010). Several theories have been proposed in response to this evidence. Each departs in some 

way from classical game theory, but there is no firm consensus yet on how coordination actually 

occurs. One theory is that play in games with perfectly-aligned payoffs is actually cooperative 

despite independent decision making, which we term the ‘team reasoning’ explanation. This 

explanation departs from received versions of methodological individualism.  

                                                                 
1
 This research has been supported by grants from Dutch and Slovenian science agencies (NWO grant 451-07-

031 and ARRS grant J7-6828). We thank two anonymous referees, and seminar participants at the Universities 
of Amsterdam, Nottingham, Reading and Toulouse for comments which significantly improved the paper.  
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 Since economics is committed to an individualistic account of action, it matters whether or 

not the team reasoning explanation is needed. Gintis (2003) suggests it is not, because of an 

alternative explanation: that in situations of unresolved strategic uncertainty people presume and 

best-respond to random choice. This idea occurs in two accounts of coordination, namely the 

application of the ‘principle of insufficient reason’ (Gintis 2003) and a version of ‘cognitive hierarchy 

theory’ (CHT) (Bacharach and Stahl, 2000, Camerer et al. 2004).2 These accounts retain individualism 

but depart from full rationality. The relevant version of CHT, which we denote CHTr, holds that non-

rational choice consists of uniform randomisation. Previous empirical research has not tested the 

team reasoning explanation against best response to randomisation however; only a version of CHT 

based on psychological salience has been tested, which we denote CHTp. More information on CHTr 

and CHTp is given in section 2. 

 Classic coordination problems give rise to multiple equilibria, each of which can be 

rationalized in the standard game-theoretic framework. Both explanations nonetheless yield some 

determinate predictions there, which have experimental support. We show that, unfortunately, in 

classic problems their predictions coincide, prohibiting empirical distinction. On the other hand, 

games that do distinguish them usually introduce payoff asymmetry, and therefore conflicts of 

interest and social preference considerations. Evidence from these games does not clarify play in the 

classic problems. Since each cell has identical payoffs for each player, there is neither conflict nor 

any scope for social preferences to alter the game. We therefore investigate a new experimental 

game, the ‘risky coordination problem’, which both distinguishes the two theories and maintains the 

symmetry of payoffs (Gintis, 2003). 

 We report two experiments on risky coordination problems. The first implements a simple 

game which tests the two accounts. The second experiment implements computationally more 

challenging, but structurally similar games. This is intended to trigger subjects’ doubts about the 

cognitive sophistication of other players, as is depicted in CHT, in order to increase CHTr’s prospects 

of success. Results across our two designs are consistent with team reasoning, but not the principle 

of insufficient reason or CHTr, as a significant driver of coordination. We review the relevant theories 

and evidence in section 2, and report our experiments in sections 3 and 4. Section 5 provides 

discussion and interpretation, and section 6 concludes. 

 

2. Theories of Coordination and Evidence from Coordination Games 

2.1 Coordination Games 

                                                                 
2
 For simplicity we do not observe a distinction in the text between CHT and level -k theory, since they coincide 

predictively for the games we study.  
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Informally, a classic coordination problem is one in which two individuals are rewarded for making 

the same choice from the same alternatives. An example is the heads and tails game, in which two 

players have to independently nominate the same side of a coin in order to share a prize, and 

receive nothing otherwise. We restrict our attention to 2-player, one-shot, doubly-symmetric games 

applying Bardsley et al. (2010)’s formal definition.3  The first part of the definition specifies the 

normal form of the game. Each player chooses a strategy from S = {s1 …. sn}. Payoffs are defined by 

utility indices U1, … , Un with U(.) > 0. If each player chooses the same strategy sj then each player 

receives Uj, otherwise each receives 0. If U1 = U2 = … Un the game is a pure coordination game, if not 

it is an impure coordination game (or “Hi-Lo” game). To give content to the notion of choosing “the 

same” strategy where two or more strategies are not distinguishable by outcomes, the second part 

of the definition stipulates that there is a set L = { l1 … ln} of labels which is common knowledge to the 

players. Players pick their strategy by choosing a label: player i picks strategy denoted sj in the 

normal form if and only if she chooses lj
 . For simplicity of exposition we refer to the “choice set” to 

identify L (and thereby S).4  

 In pure coordination games, rewards are the same in each equilibrium. They are described 

by games with diagonal payoffs equal to 1 and off-diagonal payoffs equal to 0. Nothing within the 

payoff structure enables a particular equilibrium to be selected. According to Harsanyi and Selten 

(1988), in a world of pure rationality, players would therefore coordinate with probability 1/n. Yet in 

apparent instances of such games, real people do much better (Schelling, 1960; Mehta et al., 1994; 

Bacharach and Bernasconi, 1997; Bardsley et al. 2010). In Schelling’s (1960) informal trials, for 

example, in the scenario that two people had to meet in New York with no prior arrangement, 

respondents most commonly nominated Grand Central Station as a meeting place , showing the 

importance of labels. 

Impure coordination games, with variable rewards for coordination and zero payoffs 

otherwise, seem simpler, perhaps trivial, for real players. But they remain puzzling to analysts, since 

within the standard framework of common knowledge of rationality the theoretical problem o f 

equilibrium selection still obtains (Regan, 1980; Hollis, 1998; Bacharach 2006). Where there is a 

payoff dominant equilibrium (PDE), for example, this serves empirically as a strong attractor. 

Harsanyi and Selten (1988) invoke a “principle” of payoff dom inance stipulating that a PDE will be 

                                                                 
3
 Often a coordination problem is defined more broadly, to include any game with multiple Nash equilibria, 

including those with asymmetric payoffs (that is, outcomes in which the two players obtain different payoffs). 
Asymmetry may give rise to conflict of interest and other-regarding concerns that would confound our 
analysis. Similarly, we do not consider repeated games because they introduce additional factors such as 
signalling and learning. 
4
 In most cases this is unambiguous. However, if a choice set is reported as, for example, {heads, heads}, we 

are reporting the experimenter’s explicit labelling. The setting wi l l  normally also include contextual features 
that distinguish each item for the chooser: ‘heads on the left’ versus ‘heads on the right’, for example. 
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selected. But the magnetism of the PDE is unexplained within classical game theory, rendering the 

principle arbitrary. For it is utility-maximising to choose the PDE strategy if and only if one expects 

the other to do so with sufficient probability. Since the same also holds for every other strategy, the 

expectations of PDE strategies are ungrounded. The same problem obtains for other equilibrium 

refinement concepts, including risk dominance and the maximum of a game’s potential function 

(Monderer and Shapley, 1996).5 These concepts coincide with the PDE of impure coordination 

games, but they do not explain choices.  

 

2.2 Theories of Coordination 

The literature contains three explanations of coordination: psychological salience, response to 

randomisation and team reasoning. Taking these in turn, salience is posited by Lewis’s (1969) 

coordination theory as a psychological propensity to choose items that stand out. For example, a 

shopper faced with dozens of similar toothpastes might choose one with brightly-coloured 

packaging just because this attracts their attention. Salience acts as a non-rational tie-breaker where 

actions yield identical expected consequences. This explanation adds a psychological element to 

game theory. The overall pattern of play is still strategic, however, as players anticipate decisions 

driven by salience or by anticipation of salience-driven choice.  

 Psychological salience can be cast as one version of CHT. CHT posits a population structured 

by different levels of rationality, as formalised by Stahl (1993), Stahl and Wilson (1995) and Camerer 

et al. (2004). Each player’s reasoning belongs to a level, where level 0 players are the least rational 

and choose non-strategically. Level 1 players optimise based on their beliefs about level 0 behaviour. 

Level 2 players optimise based on their beliefs about the distribution and behaviour of level 0 and 

level 1 players, and so on. Agents in any level > 0 optimise based on beliefs about the rest of the 

players, who are assumed to belong to lower tiers than themselves. If we assume level 0 players’ 

choices are driven by psychological salience we arrive at CHTp.  

 The second explanation involves the idea that an agent might choose randomly, with 

uniform probability over strategies. In one variant (Gintis 2003), this is posited as the application of 

the principle of insufficient reason, commonly attributed to Laplace. If strategic players apply this 

principle in an impure coordination game with strictly ranked equi libria, then each player’s best 

response will be to choose the strategy associated with the PDE. If both players reason in this way, 

then the agents will coordinate on that outcome. This account amounts to an application of 

Harsanyi’s ‘tracing procedure’ (Harsanyi and Selten, 1988) with the principle providing the initial 

beliefs. The players’ reasoning is logically dubious (Bjerring, 1978), but can be defended as a version 

                                                                 
5
 A prediction of risk dominance in 2x2 games is sometimes explained by invoking hypothetical equi -probable 

play, as in the CHTr argument set out in section 2. 
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of bounded rationality. Skyrms (1989), for example, proposes a model in which the players treat 

consequences of initial information as new information. We are not aware of any empirical 

assessment of the relevance of principle of insufficient reason in coordination games, however. 

 The same mechanism occurs under CHTr, where bounded rationality is explicitly invoked. 

CHTr posits uniform randomisation for level 0 players, and is the most common version of CHT. This 

has been applied to coordination games by Bacharach and Stahl (2000) in their Variable Frame Level-

N Theory (VFLNT). Given unbiased expectations about lower levels’ behaviour, CHTr then makes the 

same equilibrium prediction as the principle of insufficient reason. For convenience we henceforth 

refer to both the principle and CHTr accounts under the term CHTr.  

 The third explanation is that the individuals, despite making causally independent choices, 

actually act in concert, asking themselves “What should we do?” According to the team reasoning 

hypothesis, an individual identifies a profile of strategies which is optimal for her team and then 

performs her part in it, without conditioning on the other’s expected strategy choice. This has been 

invoked to explain coordination by Bacharach (1999, 2006) and Sugden (1995), drawing on Schelling 

(1960). This explanation departs from a version of methodological individualism usually taken as 

axiomatic by economists (Elster 1982, 1985), but does not invoke bounded rationality in the sense of 

cognitive limitations of the agents.  

 Both team reasoning and CHTr have been coupled with a hypothesis about how agents 

classify their strategies, allowing them to cover a wide variety of cases.  

 

2.3 Evidence from Coordination Games 

Psychological salience seems consistent with some but not all experimental data. Tests by Mehta et 

al. (1994) found that choices in pure coordination games with n>2 strategies sometimes 

concentrated on items that were found not to be psychologically salient in independent, parametric 

choice tasks. For example, when tasked to choose the same integer, subjects tended to choose {1}, 

but when asked to nominate any number with no coordination task, {1} was not modal. Subsequent 

experiments by Bardsley et al. (2010), designed to test team reasoning against CHTp, confirmed this. 

They also found that subjects’ guessing what is psychologically salient for others produces different 

modal choices to the corresponding coordination games. On the other hand, both studies found that 

for many games CHTp apparently performed well. One should also consider that for 2x2 pure 

coordination games neither CHTr nor team reasoning have any explanatory power, because neither 

breaks the symmetry of the situation. Thus, psychological salience appears to account for a subset of 

the data. We confine our attention henceforth to the explanation of the remainder. 
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 Both CHTr and team reasoning can account for data from impure coordination games. For 

impure coordination games with a PDE, they make the same prediction straightforwardly. For 

example, in a game with choice set {10, 9, 8} with U1=10, U2= 9 and U3 = 8, the best strategy 

combination for the team is (10, 10), and therefore team reasoning predicts that each plays {10} 

unconditionally.6 Under CHTr, expected payoffs are calculated after assigning probability 1/3 to each 

of the other’s strategies, and the fact that {10} offers the highest payoff under this calculation again 

generates the prediction that {10} will be chosen. In this game both accounts thus predict play of the 

PDE.  

 For impure coordination games without a unique PDE, both team reasoning and CHTr 

accounts invoke redescriptions of the game. Consider first a game with choice set {10, 10, 10, 9}, 

U1=U2=U3=10 and U4=9. Empirically, modal choice appears to be {9} (Bardsley et al, 2010), so there is 

no simple regularity that players are attracted by the highest payoffs. Players presumably realize the 

payoff dominance of coordinating on the same 10, but they risk mis-coordination by picking 

different 10s, a risk enhanced by the absence of further explicit labelling. Suppose next that the 

choice set is redefined by each player to be {any 10, 9}. The on-diagonal expected payoffs of the 

transformed game are 3.33, and 9. The redefined game therefore has a PDE where both choose {9}, 

but this is now predicted by both accounts of coordination. 

 Next, consider pure coordination games. These can be transformed into impure 

coordination games if L can be suitably partitioned (requiring n>2 strategies).  At that point, the 

same arguments apply. With the choice set {Ford, Ferrari, Porsche, Jaguar}, for example, the 

strategies might be re-categorised as the options {the ordinary brand, a luxury brand}. In the re -

categorised game, selection of {the ordinary brand} by each constitutes a dominant equilibrium. 

Bardsley et al. (2010) report modal choice of the ordinary brand, {Ford}, in this game, and interpret it 

as evidence of team reasoning.  But this redescription is also posited by VFLNT, which instantiates 

CHTr, again predicting {Ford} for the coordination game. 

 The availability of two explanations which both invoke players’ unobserved re-descriptions 

of strategies threatens to seriously confound data interpretation in coordination studies. In both 

Blume and Gneezy (2010) and Crawford et al. (2008) for example, subjects had to coordinate on 

segments of partitioned discs, one of which is identified as unique by a framing involving shading. In 

each case, the prediction of coordination on this segment can be derived from either VFLNT or team 

reasoning.  Consequently, essentially the same behaviour is interpreted in Blume and Gneezy’s 

design as evidence of VFLNT, and Crawford et al.’s as evidence of team reasoning.  The alternative 

readings seem equally justified, but invoke completely different modes of reasoning. There is 

                                                                 
6
 Given symmetric payoffs within cells, it need only be assumed that the team’s welfare is a function of both 

players’ payoffs, increasing in both arguments. 
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therefore a need for games where the two mechanisms of interest yield distinct predictions. We 

describe and empirically investigate such games in sections 3 and 4 below.  
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3. Experiment 1: Game Play versus Response to Randomisation 

Gintis (2003) describes a variation on a doubly-symmetric coordination game in which team 

reasoning and CHTr make clearly distinct predictions. As in coordination games as defined above, 

there are multiple equilibria along the leading diagonal of the game matrix, but variable losses are 

introduced instead of zero payoffs in the off-diagonal cells. We call this a ‘risky coordination game’ 

because it introduces risk, in the everyday sense of prospective losses, for coordination failure. With 

this game we can separate play which is optimised against random behaviour from the PDE. In 

Gintis’s example, each player has to choose an integer in the interval [1, 10]. If each selects the same 

integer, each wins that number of monetary units. If different integers are chosen, each loses the 

larger of the two numbers. This gives rise to the normal form game matrix shown in Figure 1. The 

game is doubly-symmetric; both players either win or lose the same amount in each cell . 

 

 

 1 2 3 4 5 6 7 8 9 10 

1 1 -2 -3 -4 -5 -6 -7 -8 -9 -10 

2 -2 2 -3 -4 -5 -6 -7 -8 -9 -10 

3 -3 -3 3 -4 -5 -6 -7 -8 -9 -10 

4 -4 -4 -4 4 -5 -6 -7 -8 -9 -10 

5 -5 -5 -5 -5 5 -6 -7 -8 -9 -10 

6 -6 -6 -6 -6 -6 6 -7 -8 -9 -10 

7 -7 -7 -7 -7 -7 -7 7 -8 -9 -10 

8 -8 -8 -8 -8 -8 -8 -8 8 -9 -10 

9 -9 -9 -9 -9 -9 -9 -9 -9 9 -10 

10 -10 -10 -10 -10 -10 -10 -10 -10 -10 10 

 

Figure 1: risky coordination game 

 

Here, choosing larger numbers increases the magnitude of prospective losses given uncertainty 

about the other’s selection. Standard theories of choice under uncertainty, including Expected Utility 

theory and Prospect Theory (Kahneman and Tversky, 1979), predict that an agent responding to 

uniform randomisation should choose either {2} or {3}; this prediction carries over to CHT r (proof: 

Appendix 1). The team reasoning prediction is for both to choose {10}.  Gintis (2003) suggests that in 

this game TR fails comprehensively, but to the best of our knowledge the evidence for this does not 

exist. We therefore test the conjecture experimentally. 
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3.1. Experiment 1: Design 

Subjects played the risky coordination game shown in Figure 1. The strategy set for each player 

consisted of integers in the interval [1,10]. In one treatment (‘human computer,’ or ‘HC’), control 

over the actions of one player in each pair was taken away. The ir strategy was determined by 

computer with uniform probability. The other player in each pair was told that this was how her 

partner’s action would be determined, and had to choose an integer normally. In the second 

treatment (‘human human,’ or ‘HH’), the  same subjects played under standard game conditions, 

with each player freely choosing her integer. 

 Having a computer choose on behalf of a person seems to us better controlled than having 

subjects play against a computer. For, although the determination of one player’s action was shifted 

to the computer in HC, a social choice situation was maintained, in the sense that each strategy 

selection affects the payoff of a pair of human subjects.  

 If coordination proceeds via responses to uniform randomisation,  we should observe in HH 

the same pattern of choices as in HC, since HC implements randomness. According to CHT r, any level 

0 players will randomise, whilst players in level 1 best-respond to randomisation, in both treatments, 

choosing from {2,3}. Higher level players best-respond to randomness in HC and to mixtures of lower 

level play in HH, but still choose from {2,3} (Appendix 1).  If, alternatively, team reasoning is the 

correct explanation of coordination, we would expect, in contrast, that players choose {10} in HH.  

 To summarise, in experiment 1, we test point predictions of each theory plus a comparative 

prediction of CHTr across treatments:  

 

 Theory Prediction 

1 team reasoning choice of {10} in HH 

2 CHTr a. choice of {2} or {3} in both HH and HC 

b. identical distributions of choices in HH and HC 

Table 1: predictions for experiment 1 

 

Minor caveats apply to prediction 2. Under CHTr (but not the principle of insufficient reason), there 

should be some level 0 players, who actually randomise uniformly over strategies. Thus, prediction 

2a can be stated more precisely for CHTr as a modal strategy choice of {2} or {3} with other choices 

uniformly dispersed. Concerning prediction 2b, CHTr allows for some switching from {2} in HC to {3} 

in HH (Appendix 1). 
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3.2 Experiment 1: Procedures 

Experiment 1 was conducted at the CREED laboratory at the University of Amsterdam (UvA) in June 

2006, with 44 subjects. Each received a show-up fee of 15 euros, in 30 experimental currency units, 

from which losses could be deducted. The design was counterbalanced, with half of the subjects 

playing HC before HH, and half the opposite order, to control for potential order effects. 7 Treatment 

HC was divided into two tasks.  In the first task the computer made the choice for one subject in 

each pair, and in the second task it made the choice for the other subject. Thus, there were three 

tasks per subject pair, two in HC and one in HH, and each subject made two choices. The experiment 

lasted approximately 30 minutes including instructions, comprehension questions and a single 

sequence of the three tasks. Instructions were repeated to each subject who failed the 

comprehension check until they were able to correctly answer all questions.  No feedback was given 

on task outcomes or earnings before the end of the experiment. The instructions are given in 

Appendix 2.  

 

3.3 Experiment 1: Results 

Figure 2 illustrates the distributions of choices in treatments HH and HC. We summarize the main 

observations regarding predictions 1 and 2 in the following results. 

 

Result 1: We find strong support for the team reasoning point prediction.  

Most subjects (64%) chose {10} in HH, in line with the team reasoning prediction 1.  

  

Result 2: We find little support for the predictions of CHTr. 

The CHTr prediction 2a is rejected since only a small minority of subjects (7% in HH and 11% in HC) 

chose {2} or {3}. The modal choice in HC is {1}, which is stochastically dominated. If one interpre ts 

choices of {1} in HH as flawed attempts to best-respond to randomisation, counting {1}, {2} or {3} as 

consistent with CHTr, this would only increase the proportion of subjects complying to 16%. In fact, 

only one subject chose {2} or {3} in both conditions, and only 4 subjects chose {1}, {2} or {3} in both.  

 The CHTr prediction 2b of no difference in choice distributions between treatments is tested 

with the chi-square test of independence. Since this requires expected cell frequencies of at least 5 

(Agresti, 1996), it requires combining response categories into bins. A simple method is to determine 

the bins from the data as follows. The mode is identified of HH and HC choices combined, and bins 

comprise the mode, integers below it and integers above it. (All data partitions and χ2 tests in this 

paper, following this approach, are detailed in Table 3,  section 4.3.) Here {10} is the overall mode 

                                                                 
7
 No order effects were in fact observed. 
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and bins comprise {10} and {[1,9]}. We therefore test the null hypothesis of no difference between 

HC and HH using a chi-square test with one degree of freedom. The null hypothesis is rejected 

(χ2(1)=23.2;  p<0.01). Thus, we find strong evidence against prediction 2b. In fact, 68% of subjects 

change their choice between HH and HC.   

 

0

0.1
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0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10

HH

HC

 

Figure 2: frequency distribution of strategy choices in experiment 1 

 

3.4 Interpretation of Experiment 1   

The main lesson of experiment 1 is that team reasoning strongly out-performs CHTr in the game of 

Figure 1. The very different shapes of the distributions in HH and HC make it highly unlikely that HH 

choices are based on responses to randomisation. Subjects seem unable to optimise in a one -shot 

game, since the modal choice in HC, {1}, is stochastically dominated. As {1} is the lowest integer, 

participants were probably attempting to minimise exposure to loss. However, this description is 

incomplete, since HC choices suggest a doubly-censored normal distribution with an interior mode 

at roughly the mid-point of the strategy space. It is therefore not obvious how best to characterise 

behaviour in the HC treatment overall.  We also note that around 1/3 of subjects violate the team 

reasoning point prediction in HH, a substantial amount of unexplained heterogeneity. It could be 

argued that if these subjects play the same number in both conditions they may be attempting to 

respond to randomisation, in some flawed manner. Only 18% of subjects choose the same number 

(other than {10}) however. We also find no association between decisions and the comprehension 

test performance. 
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4. Experiment 2: Game Play versus Response to Team Reasoning 

Experiment 1 returned evidence favourable to the team reasoning interpretation of coordination, 

and inconsistent with the CHTr accounts. A strict falsificationist might conclude that the CHTr account 

should be rejected. However, falsificationism has arguably lost ground to views which see empirical 

work as theory-developing rather than simply theory-refuting (Pawson and Tilley, 1997). The idea of 

best-responding to random behaviour seems strategically plausible and has empirical support in 

some experimental contexts (Nagel, 1995). We therefore conducted a further test on the premise 

that there are some settings in which best-responding to randomisation will operate and some 

settings more conducive to team reasoning.  The aim of experiment 2 was to gain insight into the 

conditions under which the CHTr and team reasoning accounts either succeed or fail, with the goal of 

informing theory development.  

 Experiment 2 attempted to undermine team reasoning, and boost consistency with CHTr, by 

increasing the cognitive difficulty of the coordination problem. The rationale for this is as follows. In 

a task as computationally easy as the game of experiment 1, it is perhaps unrealistic to expect there 

to be a perceived cognitive hierarchy. The ‘hierarchy’ of CHT, it seems to us, is likely to depend on 

the cognitive difficulty of the decision problem. Sufficient easiness may lead to perceived cognitive 

equality, but higher levels of difficulty should give rise to a perceived distribution of abilities. Our 

auxiliary hypothesis on bounded rationality is that the parameters describing a cognitive hierarchy 

are endogenous to the choice problem. This is in line with Camerer et al.’s (2004, p863 n1) 

suggestion that the frequency distribution of player types may be sensitive to the costs and benefits 

of thinking harder.  

 Specifically, we propose that in harder tasks the perceived net benefits of deliberation 

compared to randomisation are diminished, resulting in an increase in the proportion of level 0 type 

players. Further, actors should be more likely both to anticipate unpredictable behaviour, and 

responses to unpredictable behaviour, as difficulty increases. We should,  then, be more likely to 

observe responses to randomisation, and less likely to observe team reasoning, in harder tasks. We 

therefore aimed to induce a cognitive hierarchy by manipulating the difficulty of calculating the 

team reasoning choice. This was done not to test subjects’ maths ability, but to see whether 

behaviour is more consistent with the CHTr account when we depart further from cognitive triviality. 

 

4.1 Experiment 2: design 

In experiment 1, the comparison of HH and HC tests CHTr. Experiment 2, in contrast, uses the HC 

condition to simulate team reasoners, so that the treatment comparison tests team reasoning.  One 

reason for this was to detect strategic switching to low numbers in HH (prediction 4b below). Also, 
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we wanted to evaluate the two theories in a similar manner, by letting each one represent the null 

hypothesis in an experimental test. In treatment HC, then, the integer of one of the paired players 

was predetermined according to the team reasoning prediction. The other player was told that the 

computer would select the number which gives the highest joint earnings if both participants choose 

it. In HC, therefore, the choosing subject has to respond to team reasoning.  If team reasoning is the 

only non-random process at work in HH, choices in HH and HC should be realisations of the same 

underlying distribution. According to CHTr, in contrast, players in levels > 0 can solve the team 

reasoning computational problem but still best-respond to randomisation in the interpersonal game 

setting. So CHTr predicts choices of lower integers in HH than in HC. 

 Three doubly-symmetric games were used. They shared the feature with Experiment 1, that 

if the paired subjects chose different integers, they would both lose the larger number in currency 

units. If their chosen integers matched they would earn positive amounts. The winning amounts 

may, however, differ from the face value of the chosen integers, as set out below: 

a) ‘Low’ difficulty. Matches on prime numbers pay their face value, while matches on other 

integers pay half their face value. 

b) ‘Medium’ difficulty. A match on x pays its face value, where x = 8!/7!, while matches on 

all other integers pay half their face value. 

c) ‘High’ difficulty. A match on x pays its face value, where 959049 x , while matches on 

all other integers pay 4. 

As the labelling indicates, the tasks were constructed to increase difficulty of team reasoning from a) 

to c). Subject recruitment was not restricted to courses with mathematical content. We therefore 

expected that there would be considerable variation in participants’ problem solving ability, and, 

therefore, good prospects of observing responses to randomisation in HH. CHT r predicts low number 

choices for HH, with the exact prediction varying slightly between games as specified below. These 

tasks give rise to the normal form game matrices shown in Figure 3 below.  

 An additional motivation for experiment 2 was to eliminate the possibility that subjects in 

HH are coordinating on salient features of the strategy space in something other than the team 

reasoning sense. For example, in experiment 1, it is conceivable that 10 is simply a psychologically 

salient number. To exclude this possibility, the strategy space is kept the same in each variant. 

Number salience is therefore held constant, whist team reasoning selects a different integer in each 

case.  
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Low 

 1 2 3 4 5 6 7 8 9 10 

1 1 -2 -3 -4 -5 -6 -7 -8 -9 -10 

2 -2 2 -3 -4 -5 -6 -7 -8 -9 -10 

3 -3 -3 3 -4 -5 -6 -7 -8 -9 -10 

4 -4 -4 -4 2 -5 -6 -7 -8 -9 -10 

5 -5 -5 -5 -5 5 -6 -7 -8 -9 -10 

6 -6 -6 -6 -6 -6 3 -7 -8 -9 -10 

7 -7 -7 -7 -7 -7 -7 7 -8 -9 -10 

8 -8 -8 -8 -8 -8 -8 -8 4 -9 -10 

9 -9 -9 -9 -9 -9 -9 -9 -9 4.5 -10 

10 -10 -10 -10 -10 -10 -10 -10 -10 -10 5 

 

Medium 

 1 2 3 4 5 6 7 8 9 10 

1 0.5 -2 -3 -4 -5 -6 -7 -8 -9 -10 

2 -2 1 -3 -4 -5 -6 -7 -8 -9 -10 

3 -3 -3 1.5 -4 -5 -6 -7 -8 -9 -10 

4 -4 -4 -4 2 -5 -6 -7 -8 -9 -10 

5 -5 -5 -5 -5 2.5 -6 -7 -8 -9 -10 

6 -6 -6 -6 -6 -6 3 -7 -8 -9 -10 

7 -7 -7 -7 -7 -7 -7 3.5 -8 -9 -10 

8 -8 -8 -8 -8 -8 -8 -8 8 -9 -10 

9 -9 -9 -9 -9 -9 -9 -9 -9 4.5 -10 

10 -10 -10 -10 -10 -10 -10 -10 -10 -10 5 
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High 

 1 2 3 4 5 6 7 8 9 10 

1 4 -2 -3 -4 -5 -6 -7 -8 -9 -10 

2 -2 4 -3 -4 -5 -6 -7 -8 -9 -10 

3 -3 -3 4 -4 -5 -6 -7 -8 -9 -10 

4 -4 -4 -4 4 -5 -6 -7 -8 -9 -10 

5 -5 -5 -5 -5 5 -6 -7 -8 -9 -10 

6 -6 -6 -6 -6 -6 4 -7 -8 -9 -10 

7 -7 -7 -7 -7 -7 -7 4 -8 -9 -10 

8 -8 -8 -8 -8 -8 -8 -8 4 -9 -10 

9 -9 -9 -9 -9 -9 -9 -9 -9 4 -10 

10 -10 -10 -10 -10 -10 -10 -10 -10 -10 4 

 

Figure 3: risky coordination games in experiment 2 

  

To summarise, in experiment 2, we test point predictions and treatment predictions for both 

theories, plus the hypothesis on bounded rationality: 

 

 Theory Prediction 

3 team reasoning a. choice of {7} in Low, {8} in Medium and {5} in High in HH 

b. identical distributions of choices in HC and HH  

4 CHTr a. choice of {2} or {3} in Low , {2} in Medium, and {1} or {2) 
in High, in HH 

b. lower choices in HH compared to HC 

5 hypothesis on 
bounded 
rationality 

a. relative performance of prediction 3a over 4a 
deteriorates across Low, Medium and High conditions 

b. relative performance of prediction 3b over 4b 
deteriorates across Low, Medium and High conditions 

Table 2: predictions for experiment 2 

 

4.2 Experiment 2: Procedures 

Experiment 2 was conducted at the CREED laboratory at the University of Amsterdam, in June 2010 

and June 2011. Each subject was given a show-up fee of 15 euros, in 30 experimental currency units. 

Separate samples were drawn from the same student population for Low, Medium and High. Sample 

sizes were 30, 28 and 32 respectively. All subjects played treatment HH first and HC second in order 
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to avoid biasing HH decisions in favour of team reasoning.  Instructions for each part of the 

experiment were given only after the previous part was finished. As in experiment 1, treatment HC 

was divided in two tasks and each subject played HC once actively, and once passively with the 

computer making her decision. The computer chose according to team reasoning.  Thus, there were 

three tasks per subject, two of which involved decision making. The experiment lasted 

approximately 30 minutes including instructions, comprehension questions and one sequence of the 

three tasks. No feedback was given on outcomes or earnings before the end of the experiment. 

Instructions are given in Appendix 2. 

 

4.3 Experiment 2: Results 

Figure 4 illustrates the distributions of choices in treatments HH and HC. We summarize the main 

observations regarding predictions 3-5 in the following results. 

 

Result 3. Point predictions of team reasoning are supported but its treatment prediction fails. 

The team reasoning point prediction 3a is strongly modal for choices in HH in each game, with 46%, 

50% and 50% of subjects making this choice in Low, Medium and High respectively. Its prediction 3b 

is tested with a chi-squared test (Table 3). This is not significant at the 5% level for any of the three 

tasks, but is significant at the 10% level for Medium and High (χ2(2) = 1.1, p=0.57; χ2(2) = 5.9, p = 

0.05,  χ2(2) = 5.4, p = 0.07 respectively). However, combining data from the three games results in a 

strong rejection of the null hypothesis (χ2(2) = 9.5; p<0.01). Thus, prediction 3b fails.  

 

Result 4. Point predicitons of CHTr are rejected but its treatment prediction is supported. 

Prediction 4a fares poorly in comparison to 3a, with relatively few subjects in HH choosing according 

to the CHTr point prediction. 7% of subjects conform to this prediction in Low, 4% in Medium and 

25% in High. However, as in experiment 1, one might interpret choices of {1} in Low and Medium as 

flawed attempts at CHTr. This would alter the proportions in Low and Medium to 13% and 29% 

respectively. 

 For CHTr’s treatment prediction 4b, a binomial test across the three games assesses whether 

subjects who change their choice between HC and HH do so randomly. 35 subjects changed their 

decisions, with 26 of these choosing a lower number in HH. The null hypothesis that switches to 

higher and lower numbers are equi-probable is rejected (2-tailed binomial test, p < 0.01). Thus, 4b is 

supported.  
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Figure 4: relative frequency distributions of strategy choices in experiment 2 
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Sample Bins Partitioned Distribution 
HH HC 

 

χ2  
(df) 

P-value 

Experiment 1 <10 
10 

 

16 38 
28 6 

 

23.2 
(1) 

<0.01 

Experiment 2: Low <7 

7 
>7 

 

7 4 

14 17 
9 9 

 

1.1 

(2) 

0.57 

Experiment 2: Medium <8 
8 

>8 
 

12 7 
14 12 

2 9 
 

5.9 
(2) 

0.05 

Experiment 2: High <5 
5 

>5 
 

9 3 
16 15 

7 14 
 

5.4 
(2) 

0.07 

Experiment 2:  Combined <5 
5 

>5 
 

23 9 
21 17 
46 64 

 

9.5 
(2) 

<0.01 

 

Table 3: partitioned distributions of choices in experiments 1 and 2, with Chi-squared tests 

Note: In each case, HH and HC choices were combined to determine the overall  mode of the distribution. The 
bins were then set as integers below, equal to and above this value in HH and HC separately. The requirement 
of the χ

2 
test that expected cell  frequencies are at least 5 precludes general use of a finer partition.   

 

Result 5. There is weak support for the bounded rationality hypothesis.  

Next consider the bounded rationality hypothesis that CHTr’s performance will improve with the 

complexity of the task relative to that of team reasoning theory. Prediction 5a can be assessed using 

a 2-tailed Z test of equality of proportions for i) Low vs Medium, ii) Low vs High and iii) Medium vs 

High, in HH, with Bonferroni correction for multiple comparison. For the team reasoning point 

predictions (3a), tests i)-iii) are not significant (Z=0.25, 0.26 and 0 respectively). For the CHTr point 

predictions (4a), test iii) is significant at the 5% level (Z = 2.54; p = 0.02), ii) at the 10% level (Z = 2.05; 

p = 0.08), and i) is not significant. However, this analysis is dependent on not viewing choices of {1} 

in Low and Medium as attempts at best-responding to randomisation. If instead we view choices of 

integers in the range  [1,3] as cohering with CHTr in each game, as seems natural, there is no 

significant difference at the 10% level for any case (Z = 1.44, 1.18 and 0.31 respectively). For 

prediction 5b, we have already noted that treatment differences emerge in Medium and High. In 

addition, we judge whether switches to higher and lower integers are equi -probable for each game 
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separately, using a 2-tailed binomial test. In Low, 63% of switches were to lower integers in HH (p = 

0.29), in Medium 75% (p = 0.02) and in High 82% (p = 0.01). 5b is therefore supported. 

 In summary, point predictions favour team reasoning (3a) but there is some support for CHTr 

in the sense that subjects tend to switch towards lower numbers in HH. There is only weak support 

for the bounded rationality hypothesis. Conformity with either theory’s point predictions does not 

change significantly across the 3 games, but players seem more likely to choose a higher number in 

HC than HH as difficulty increases. 

 

4.4 Interpretation of Experiment 2 

Overall the results of experiment 2 favour team reasoning over CHTr in all three games, despite our 

attempt to make things difficult for team reasoning.  We had expected that many subjects who 

choose the team reasoning strategy in HC would have played a low number in HH in the harder 

tasks. But only 7% of subjects behave in this manner. This apparent robustness of team reasoning 

suggests that coordination is not driven by beliefs about the rationality structure of the population, 

as posited by the CHTr account.  

 In spite of this, there is evidence of a slight tendency towards CHTr type behaviour as 

difficulty increases. It is clear from the failure of prediction 3b that team reasoning cannot be the 

only non-random process at work generating the observed data. The support for predictions 4b and 

5b is consistent with the strategic anticipation of unpredictable behaviour in the manner envisaged 

by the CHTr account, but this is a relatively minor feature of the data. Of subjects who chose the 

team reasoning strategy in HC, 83% also chose it in HH. It therefore seems unlikely that more 

cognitively able subjects’ expectations about others’ maths ability played much of a role.  

 A caveat to our results is that the manipulation of cognitive difficulty, as proxied by the 

proportion of correct choices in HC, may not have been as effective as intended. Though we lack 

direct measures of difficulty, the observed proportion playing the team reasoning prediction in HC 

does not monotonically decrease across Low, Medium and High. In fact these differences in 

proportions lack statistical significance, but compliance with team reasoning in HH in Experiment 1 

seems higher than that in HC in Experiment 2 (Medium and High) with marginal significance (2-tailed 

Z test, p=0.09). 
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5. Discussion  

The main result of this study, which is consistent across both experiments, is that the team 

reasoning predictions fare much better than the predictions of response to uniform randomisation 

in risky coordination games. It therefore seems implausible that CHTr could account for the evidence 

that has been claimed for team reasoning, outlined in section 2. When we simulate randomising 

players, we find differences in modal choices between HH and HC. When we simulate team 

reasoning, we do not. In the absence of a convincing alternative explanation of our data, the study is 

broadly supportive of team reasoning, though there are some features of the data it cannot explain.8  

 It is natural to speculate on the conditions giving rise to team reasoning, assuming this does 

underlie much of the data. A relevant hypothesis with empirical support is that common fate 

generates group identity (Campbell 1958, Brewer and Miller 1996, p42-43). In the games studied 

here, there is no difference in outcome between paired participants in any cell of the game matrix, 

so common fate is fully implemented. This may trigger group identity between participants even 

when the group is not pre-formed. Group identification might even be a default social attitude in 

situations where interests coincide. It seems natural to posit that group identity triggers team 

reasoning.    

 We conjectured that best-responding to randomisation was a plausible behavioural strategy 

where a cognitive hierarchy is likely to exist, and that this is more probable when tasks are more 

demanding. Therefore experiment 2 sought to increase the cognitive difficulty of the games. There is 

support in the data for a relatively weak tendency towards CHTr, when the tasks became more 

difficult. However, responding to randomisation did not become a very pronounced feature of the 

data. Moreover, we did not detect the difference between HH and HC treatments predicted by CHT r. 

This suggests that CHTr may have little behavioural significance for risky coordination games.  

 A further reason that the CHTr account performed relatively badly may be that uniform 

randomisation is not a good representation of what people do when a particular decision problem is 

beyond their ability to solve. This is suggested in particular by the pattern of HC choices in 

experiment 2, shown in Figure 4, in which the incorrect choices occurred with greater frequency 

above than below the correct answer. There, participants knew that their partner’s strategy would 

be computationally correct, regardless of its difficulty. It may therefore become defensible to choose 

a high number, if a subject knows the solution is not a low number. For example, if a subject in High 

                                                                 
8
 Capra et al (1999) and Goeree and Holt (2005) show that a stochastic generalization of an equilibrium, the 

Quantal Response equilibrium (QRE; McKelvey and Palfrey, 1995), charac terises more choices in minimum 
effort and traveller’s dilemma games than Nash equilibrium or potential function maxima. In Appendix 1 we 
compute the QRE for our risky coordination games. Given the empirically estimated “error” parameter μ=10 

just one QRE exists in all  games we study, in which players are most l ikely to choose numbers {1} {2} or {3}. For 
much lower error values, μ≤4.2, we obtain multiple QRE; in one of these QRE players choose the team 
reasoning number with a very high probability. 
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believed the answer to be 8, 9 or 10, with equal probability, they would expect equ i-probable 

payoffs of 8, -9, or -10 from choosing {8}, -9, 9 or -10 from {9}, and -10, -10 or 10 from {10}. Choices 

in the interval [1, 7] would be seen as dominated, {8} as stochastically dominated, and a risk neutral 

subject would choose between {9} and {10}. 

 It therefore seems that actual behaviour in games when people are cognitively challenged is 

a complex matter. For example in High, people who were not able to spot the solution may 

nonetheless have known that it was a number greater than, say, 3, if  they understood the 

mathematical notation. In HH, they then also have to weigh the probability that their partner 

regards the problem as easy. This aspect of their decision is not currently represented in any version 

of CHT, since CHT agents do not consider that others may be more sophisticated than themselves.  

  

6. Conclusions 

Previous studies implemented classic coordination games finding that choices cluster at PDE 

strategies, either of the original or transformed games. But these games elide the PDE with the best 

response to randomisation, so team reasoning and CHTr make the same predictions. We therefore 

tested the team reasoning explanation of coordination against CHTr, using a novel experimental 

game designed to clearly distinguish the two accounts. In this ‘risky coordination game’ subjects still 

have to match their decisions to win prizes, but suffer variable losses if they fail. The experiments 

reported are also the first attempt to test team reasoning against CHTr, since previous empirical 

studies of CHT in the context of coordination assumed CHTp.  

 Our data are consistent with team reasoning but not CHTr as the main driver of coordination. 

Although we studied conditions favourable to the latter by increasing the cognitive difficulty of the 

coordination problem CHTr still had only very limited success. It therefore seems that the 

explanatory mechanisms for focal points compatible with the evidence across all relevant 

experiments are i) team reasoning and ii) psychological salience. Our results count against CHTr and 

the principle of insufficient reason as explanations of play in classic coordination problems. 

 Team reasoning therefore remains a key ingredient of the explanation of coordination game 

data. To that extent, a question mark is raised against methodological individualism, in the sense of 

a commitment to explaining actions with reference only to reasons addressed to individuals. If a 

propensity to team reason became firmly empirically established, this would have wider 

implications. Team reasoning has also been invoked to explain play in prisoners’ dilemma and public 

good games (Bacharach, 2006), which serve as models of a great many important real -world 

situations. We therefore also judge that team reasoning should receive more attention from 
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economic researchers. On the other hand, it is possible that further individualistic explanations of 

coordination game data will be proposed and will merit testing. 

 One fruitful avenue for further team reasoning research might be to go beyond choice data. 

In common with the great majority of behavioural economics experiments, our trials test predictions 

of choices but do not provide direct evidence about cognitive processes. There is therefore also a 

role for qualitative or possibly neurological research in future, to probe the team reasoning 

hypothesis more directly.  
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Appendix 1 

Proof of CHT Predictions for Experiment 1 
 
Let j denote the opponent’s chosen integer. The difference in utility, defined over experimental 

tokens, from choosing {i+1} over {i} is: 

0 if j > i+1 

U(i+1) – U(-i-1) if j = i+1 

U(-i-1) – U(i)  if j = i 

U(-i-1) – U(-i) if j < i 

 

If U′(i) > 0 for all i and the player evaluates equally the probabilities that its opponent chooses any 

strategy {j} then we can ignore probabilities and probability weights. It follows that 

 }{~}1{ ii



 U(i+1)-U(i)+(i-1)[U(-i-1)-U(-i)] 0




      (1) 

 

For i=1 this reduces to U(2) - U(1) > 0, thus strategy {2} is always preferred to strategy {1}. Strategy 

{1} is in fact stochastically dominated by strategy {2}. For strategies {2},...,{10}, (1) implies { i+1} is 

weakly preferred to {i} if and only if 

 

U(i+1) - U(i) ≥ (i-1)[U(-i) - U(-i-1)]       (2) 

 

Consider i ≥ 3. Under EUT with either risk aversion or risk neutrality, and also under Prospect Theory, 

U(i+1) - U(i)  ≤  U(-i) - U(-i-1). Therefore (2) is not satisfied, and strategy { i} is preferred to strategy 

{i+1}. Hence, under standard models of choice under risk, strategies {2} and {3} are preferred to all 

other strategies.  

 Next, consider i=2. Under risk neutrality (2) holds with equality because of the assumption 

that U′=k, so {2}~{3}. Under risk aversion U″<0, and under Prospect Theory U′(x) < U′(-x). Either 

assumption implies that (2) does not hold, so {2} is strictly preferred to {3}.  

 Finally, as under risk neutral EUT, if each player believes that the other applies the principle 

of insufficient reason, then from an interim conclusion that {2}~{3}, it follows that {3} is preferred, 

since {3} is the best response to a 50/50 chance that j={2} and j={3}. Under CHT, if for level 1 players 

{2}~{3} then for levels 2 and above {3} is preferred, if agents at those levels infer equi-probable 

choices from indifference at lower levels. The distribution should therefore have a single mode at 

{3}, with the relative frequencies of {2} and {3} depending on those of level 1 and higher -level 

players. Parallel derivations can be given of CHT predictions in experiment 2. 
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Quantal Response Equilibria for risky coordination games. 

 

In the discrete choice QRE players pick an action with the probability that corresponds to the 

exponential of its expected payoff. Let   π = Ap   be the vector of expected payoffs in the game given 

by matrix A, when p is the vector describing probabilities that the opponent will pick different 

actions in the game. The player will choose an action according to the ‘logit response’ (McKelvey and 

Palfrey, 1995), with the probability proportional to the exponential of its expected payoff, weighted 

by the error parameter μ:  di = exp( πi/μ ). When μ→0 the model describes rational choice, while as 

μ→∞  the behaviour converges to uniform randomization.  In the symmetric QRE the player and the 

opponent use the same probabilities, that is,  p i = di / ∑n
k=1 dk. 

We follow Capra et al. (1999) and find QRE in our four risky coordination games by 

simulating logit response dynamics. The code used for the simulation in Mathematica is available on 

request from the authors. Starting from several thousand randomly drawn initial probabili ty 

distributions over the possible game actions, we repeatedly calculate the logit response until we 

detect that the dynamics has reached a fixed point where the distribution stops changing. This yields 

the set of QRE and their basins of attraction. For each game we find the QRE for the error parameter 

μ=10, suggested by Capra et al. (1999). For this parameter we find that all our games have a unique 

QRE in which players choose any number in {1,2,3} with a higher probability than any higher 

number.  

Other QRE which put a high probability on the team reasoning number exist only for much 

lower error parameters μ. For each game we estimate the maximal value of μ that permits a QRE in 

which the team reasoning number is played with the highest probability, by repeatedly decreasing μ 

in seps of 0.1 anf repeating the above procedure.  For our four risky coordination games we estimate 

these maximal error values and corresponding QRE probabilities to pick the team reasoning number 

as: 

- baseline:   μ=4.2,   p10 = 0.87 

- low:  μ=3,    p7 = 0.87 

- medium: μ=3.4,   p8 = 0.86 

- high:  μ=2.3,   p5 = 0.87 

In each of the above cases there exists a second QRE where players choose any number in {1,2,3} 

with a higher probability than any higher number. This QRE has by far the largest basin of attraction. 

The QRE analysis above suggests that the likelihood to observe team reasoning decreases as the 

games get harder and the players’ actions and beliefs become more noisy.  

   
 


