A de novo virus-like topology for synthetic virions

[thumbnail of 22.09.16 Valeria Castelletto  Noble_et_al (1).pdf]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Noble, J. E., De Santis, E. ., Ravi, J., Lamarre, B., Castelletto, V., Ray, S. and Ryadnov, M. G. (2016) A de novo virus-like topology for synthetic virions. Journal of the American Chemical Society, 138 (37). pp. 12202-12210. ISSN 0002-7863 doi: 10.1021/jacs.6b05751

Abstract/Summary

A de novo ultra-small topology of viral assembly is reported. The design is a tri-faceted coiled-coil peptide helix, which self-assembles into monodisperse, anionic virions able to encapsulate and transfer both RNA and DNA into human cells. Unlike existing artificial systems, the virions share the same physical characteristics of viruses being anionic, non-aggregating, abundant, hollow and uniform in size, while effectively mediating gene silencing and transgene expression. These are the smallest virions reported to date with the ability to adapt and transfer small and large nucleic acids thus offering a promising solution for engineering bespoke artificial viruses with desired functions.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/67291
Identification Number/DOI 10.1021/jacs.6b05751
Refereed Yes
Divisions Interdisciplinary centres and themes > Chemical Analysis Facility (CAF)
Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry
Publisher American Chemical Society
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar