The onset and cessation of seasonal rainfall over Africa

[thumbnail of Open Access]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.
| Preview
Available under license: Creative Commons Attribution
[thumbnail of Permanent publisher embargo]
Text (Permanent publisher embargo) - Accepted Version
· Restricted to Repository staff only
Restricted to Repository staff only

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Dunning, C. M. orcid id iconORCID: https://orcid.org/0000-0002-7311-7846, Black, E. C. L. orcid id iconORCID: https://orcid.org/0000-0003-1344-6186 and Allan, R. P. orcid id iconORCID: https://orcid.org/0000-0003-0264-9447 (2016) The onset and cessation of seasonal rainfall over Africa. Journal of Geophysical Research: Atmospheres, 121 (19). pp. 11405-11424. ISSN 2169-8996 doi: 10.1002/2016JD025428

Abstract/Summary

Variation in the seasonal cycle of African rainfall is of key importance for agriculture. Here, an objective method of determining the timing of onset and cessation is, for the first time, extended to the whole of Africa. The method is applied to five observational datasets and the ERA-Interim reanalysis. Compatibility with known physical drivers of African rainfall, consistency with indigenous methods, and generally strong agreement between satellite-based rainfall datasets confirm the method is capturing the correct seasonal progression of African rainfall. The biannual rainfall regime is correctly identified over the coastal region of Ghana and the Ivory Coast. However, the ERA-Interim reanalysis exhibits timing biases over areas with two rainy seasons, and both ERA-Interim and the ARCv2 observational dataset exhibit some inconsistent deviations over West Africa. The method can be used to analyze both seasonal - interannual variability and long-term change. Over East Africa, we find that failure of the rains and subsequent humanitarian disaster is associated with shorter as well as weaker rainy seasons, e.g. on average the long rains were 11 days shorter in 2011. Cessation of the short rains over this region is 7 days later in El Niño and 5 days earlier in La Niña years with only a small change in onset date. The methodology described in this paper is applicable to multiple datasets and to large regions, including those that experience multiple rainy seasons. As such, it provides a means for investigating variability and change in the seasonal cycle over the whole of Africa.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/66825
Identification Number/DOI 10.1002/2016JD025428
Refereed Yes
Divisions Interdisciplinary Research Centres (IDRCs) > Walker Institute
Science > School of Mathematical, Physical and Computational Sciences > National Centre for Earth Observation (NCEO)
Science > School of Mathematical, Physical and Computational Sciences > NCAS
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher American Geophysical Union
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar