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Abstract 

The ability to discriminate and update the threat or safety value of stimuli in the 

environment has clear health benefits. A common hallmark of many anxiety 

disorders is pervasive and sustained responding to stimuli that no longer signal 

threat, suggesting impaired fear regulation. Unfortunately, some populations, 

such as adolescents and those with anxious dispositions are particularly 

vulnerable to anxiety disorders. This body of work examines how individual 

differences in development and anxious disposition impact fear extinction, the 

key fear regulatory processes studied in this thesis. In a series of fear 

conditioning experiments adapted for developmental samples, we 

demonstrated individual differences in development and anxious disposition to 

predict substantial variability in fear extinction ability, as measured with 

psychophysiological and neural correlates. In a developmental sample, we 

found that younger age and age-related structural changes in the ventromedial 

prefrontal cortex (vmPFC) are important predictors of continued responding in 

the amygdala to learned threat vs. safety cues during fear extinction. In adult 

samples, however, we found intolerance of uncertainty to specifically predict 

elevated responses to both learned threat and safety cues in 

psychophysiological correlates and the amygdala during fear extinction, over 

and above other general measures of anxious disposition. More broadly, these 

findings highlight the potential of developmental and intolerance of uncertainty-

based mechanisms to help understand pathological fear in anxiety disorders 

and inform future treatment targets.    
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1. Introduction 
 

1.1 Fear generation and regulation 

 ‘Fear’ can be described as an evolutionarily conserved defence state 

that arises in response to imminent threat in the environment (Panksepp, 1998). 

For example, fear initiates a cascade of behavioural and physiological changes 

that prepare the organism for response readiness, heightened awareness and 

rapid evaluation of threat, in order to avoid harm (LeDoux, 1998). Such 

responses are contextually sensitive, are found across species (Panksepp, 

1998), and vary both interindividually and intraindividually (Davidson, 2002; 

Frijda, 1986). Fear responses are thought to originate from a combination of 

innate (Panksepp, 1998) and learnt adaptations throughout development (Izard, 

2011).  

 

Definition of fear generation 

An organism’s response to a stimulus evaluated as (or deemed) fearful. Fear 

generation can be operationalised by measuring responses to potential threat 

stimuli (subjective feelings, expressive behaviour, and physiology). 

 

Definition of fear regulation 

Voluntary or involuntary modulation of response intensity or duration to a 

stimulus evaluated as fearful. Fear regulation may be operationalised by 

measuring changes in responses to potential threat stimuli as a function of time 

or context. 
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1.1.1 Neurobiology of fear 

Classically, fear-generative and regulatory processes have been 

captured through experimental manipulations that present pain (e.g. shock), 

predator (e.g. spider, snake, course shapes), conspecific (e.g. faces) and 

unpredictable stimuli (Gamer & Büchel, 2009; Herry et al., 2007; Larson, 

Aronoff, Sarinopoulos, & Zhu, 2009; Larson, Aronoff, & Stearns, 2007; Mobbs 

et al., 2010; Ohman, Flykt, & Esteves, 2001; Öhman, Lundqvist, & Esteves, 

2001; Rhudy & Meagher, 2000; Thomas, Drevets, Whalen, et al., 2001; Whalen 

et al., 2001). Typically, across species, aversive stimuli, compared to neutral 

stimuli, evoke defensive responses (e.g. freezing, avoidance), indexed by 

increased vigilance and arousal within behavioural, physiological, and neural 

systems (Lang & Bradley, 2010; LeDoux, 1998). Neural circuits within the 

amygdala, anterior cingulate cortex, hypothalamus, and brainstem are primarily 

involved in fear expression across species (Gross & Canteras, 2012; Oler et al., 

2012; Shackman et al., 2011). Initially, the amygdala was thought to be 

specialised in threat detection  (Morris, Öhman, & Dolan, 1999; Whalen et al., 

2004), but recent evidence refutes this claim (Williams et al., 2006), suggesting 

that the amygdala is generally involved in vigilance and broader monitoring of 

salience (Rosen & Donley, 2006; Sander, Grafman, & Zalla, 2003; Whalen, 

2007). For example, a landmark study by Herry et al. (2007) found sustained 

amygdala activation and anxiogenic behaviour in both humans and animals to 

unpredictable neutral tones vs. predictable neutral tones. Furthermore, in 

humans, Herry et al. (2007) found unpredictable neutral tones vs. predictable 

tones to increase activation in the amygdala to angry faces during a concurrent 

dot probe task, suggesting unpredictability to modulate attention to aversive 
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stimuli (Herry et al., 2007). Quelling of the amygdala can be seen over time 

through habituation (Fisher et al., 2009), or by simply manipulating the proximity 

and predictability of aversive stimuli (Fisher et al., 2009; Herry et al., 2007; 

Mobbs et al., 2010; Sarinopoulos et al., 2009).  

During exposure to fearful stimuli, parts of the prefrontal cortex that are 

thought to be responsible for signalling safety, such as the ventromedial 

prefrontal cortex (vmPFC) have been found to inhibit the amygdala (Fisher et 

al., 2009; Mobbs et al., 2010). Complementary to these findings, recent 

intracranial electroencephalography and lesion studies in humans support a 

causal role of the vmPFC in the regulation of the amygdala (Christen & 

Grandjean, 2010; Motzkin, Philippi, Wolf, Baskaya, & Koenigs, 2015), and other 

fear generative regions (Motzkin, Philippi, Oler, et al., 2015; Motzkin, Philippi, 

Wolf, Baskaya, & Koenigs, 2014). For example, patients with damage to the 

vmPFC, compared to healthy controls, have been shown to exhibit heightened 

right amygdala activity whilst viewing aversive pictures and at rest (Motzkin, 

Philippi, Wolf, et al., 2015).  

A large body of work has also studied fear (and other emotions) 

generative and regulatory processes through experiments that present 

cognitive tasks during or after fear-relevant stimuli (Blair et al., 2007; Brown, 

van Steenbergen, Band, de Rover, & Nieuwenhuis, 2012; Dolcos & McCarthy, 

2006; Ihssen, Heim, & Keil, 2007; Kanske, Heissler, Schönfelder, Bongers, & 

Wessa, 2010; Morriss, Taylor, Roesch, & van Reekum, 2013; Schönfelder, 

Kanske, Heissler, & Wessa, 2013; Van Dillen, Heslenfeld, & Koole, 2009a; 

Wangelin, Löw, McTeague, Bradley, & Lang, 2011; Weinberg & Hajcak, 2011). 

During these experiments, as participants attempt to maintain attention on task 
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demands, in spite of competing emotional stimuli, increased recruitment of the 

ventral lateral prefrontal cortex (vlPFC), dorsal lateral prefrontal cortex (dlPFC) 

and dorsal medial prefrontal cortex (dmPFC), and decreased recruitment of the 

amygdala has been found (Blair et al., 2007; Dolcos & McCarthy, 2006; Kanske 

et al., 2010; Van Dillen, Heslenfeld, & Koole, 2009b). Whilst prefrontal activity in 

these experiments varies by task, similar activation is found in the amygdala 

across these experiments and in fMRI studies only using fear stimuli (Fisher et 

al., 2009; Mobbs et al., 2010) 

In an attempt to separate fear (and other emotion states) generative and 

regulatory processes further, researchers have typically used intentional or 

instructed tasks, where participants are asked to maintain, suppress (or 

decrease), enhance (or increase) or reframe responses to emotional stimuli 

such as pictures (Hajcak & Nieuwenhuis, 2006; Jackson, Malmstadt, Larson, & 

Davidson, 2000; Johnstone, van Reekum, Urry, Kalin, & Davidson, 2007; 

Ochsner, Bunge, Gross, & Gabrieli, 2002; Ochsner et al., 2004; Urry et al., 

2006; van Reekum et al., 2007), films (Goldin, McRae, Ramel, & Gross, 2008) 

and threat of shock (Delgado, Nearing, LeDoux, & Phelps, 2008; Kalisch, 

Wiech, Herrmann, & Dolan, 2006). Decrease, down-regulate and reframe 

instructions have been found to reduce physiological and event related potential 

correlates to affective picture stimuli (Hajcak, Moser, & Simons, 2006; Jackson 

et al., 2000; Moser, Hajcak, Bukay, & Simons, 2006; Moser, Krompinger, Dietz, 

& Simons, 2009; Schönfelder et al., 2013) and learned threat cues (Delgado et 

al., 2008). In the brain, reduced activity in the amygdala and increased activity 

in the prefrontal cortex are found to be common neural signatures of successful 

down-regulation of fear (Delgado et al., 2008) and more general negative affect 
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(Johnstone et al., 2007; Ochsner et al., 2002; Ochsner et al., 2004; Urry et al., 

2006), suggesting shared amygdala-prefrontal cortical mechanisms in 

instructed and uninstructed fear regulation (Blair et al., 2007; Dolcos & 

McCarthy, 2006; Fisher et al., 2009; Mobbs et al., 2010; Van Dillen et al., 

2009a). However, the exact site of activation in the prefrontal cortex varies 

depending on the timing and contents of emotion regulation instructions. For 

example, Urry et al. (2006) & Johnstone et al. (2007) presented auditory 

instructions during picture stimuli and found significant inverse coupling 

between the amygdala-vmPFC (but see, van Reekum et al., 2007). Conversely, 

Ochsner and colleagues (2004) presented written instructions before picture 

stimuli and found significant increases in dmPFC activation when participants 

were asked to make the negative pictures self-focused and significant 

increases in dlPFC and dmPFC when participants were asked to make the 

negative pictures situational-focused.  

In summary, fear generative and regulatory processes have been 

examined by manipulating fear stimulus proximity, relevance, and context. The 

research outlined above points to an extensive network of brain regions that 

respond to fearful situations. Notably, the amygdala and vmPFC have been 

identified to play critical roles in fear generative and regulatory processes, 

respectively.   

 

1.1.2 Neurobiology of fear conditioning 

Another approach in which to probe uninstructed fear generation and 

regulation is through fear conditioning paradigms (Quirk, 2011). Fear can be 

conditioned by repeatedly presenting a neutral stimulus (conditioned stimulus, 
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CS+) with an aversive stimulus, such as a shock or loud tone (unconditioned 

stimulus, US). Eventually, the presentation of the CS+ alone can induce a 

conditioned fearful response (e.g. increases in skin conductance or freezing). 

After conditioning, repeatedly presenting the CS+ alone results in the 

diminishment of conditioned responses to the CS+. This process is known as 

fear extinction. The reduction of the conditioned response over time during 

extinction is thought to reflect changes in contingency beliefs and harm 

expectancy (for review see, (Hofmann, 2008)). Conditioned responses can be 

prolonged during extinction by using a very aversive stimulus such as an 

electric shock, increasing unpredictability during conditioning (e.g. using a 50% 

pairing)  and by including neutral stimuli (CS-) without the US (e.g a control and 

safety signal comparison to the CS+) (LeDoux, 1996).  

Early lesion work in animals and fMRI studies have implicated the 

amygdala to be responsible for the storage of cued and contextual conditioning 

associations (Büchel, Morris, Dolan, & Friston, 1998; LaBar, Gatenby, Gore, 

LeDoux, & Phelps, 1998; LaBar, LeDoux, Spencer, & Phelps, 1995; LeDoux, 

Cicchetti, Xagoraris, & Romanski, 1990; Phelps, Delgado, Nearing, & LeDoux, 

2004), while is has been suggested that the hippocampus stores contextual 

conditioning associations only (Milad et al., 2007; Phillips & LeDoux, 1992). 

Unfortunately, amygdala subnuclei activation during fear conditioning cannot be 

captured with the resolution of fMRI. Experimental work with animals, however, 

has provided the field with substantial gains in elucidating the differential roles 

of the amygdala subnuclei and their connections to other regions (prelimbic, 

hippocampus) important in fear conditioning (Pare & Duvarci, 2012): The lateral 

amygdala (LA) receives input from the auditory cortex and thalamus, and is 
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thought to be responsible for converging CS-US associations. The medial 

central nucleus of the amygdala (Cem) projects to the thalamus, hypothalamus, 

and brainstem, and is therefore crucial in generating fear expression. Initially, it 

was hypothesised that the LA directly projected to the Ce. However, recent data 

indicates that LA neurons project directly to the lateral Ce (Cel) and indirectly to 

the medial Ce (Cem) via the basolateral amygdala (BLA) and intercalated cell 

masses (ITC) (Maren, 2011; Pape & Pare, 2010).        

Fear extinction relies on the coordinated action of the amygdala, 

hippocampus and vmPFC (or sgACC) (Quirk, 2011), which share extensive 

connections (McDonald, 1998; Pape & Pare, 2010). In human extinction studies 

using fMRI, and single cell recording studies in rodents, activity in the amygdala 

and subsequent fear expression (e.g. electrodermal activity in humans and 

freezing in rodents) have been shown to gradually decrease to CS+ relative to 

CS- stimuli across extinction (Büchel et al., 1998; LaBar et al., 1998; Phelps et 

al., 2004; Repa et al., 2001). A large body of work suggests the vmPFC to be 

responsible for the inhibition of the amygdala across the course of extinction. 

For example, infralimbic (vmPFC) lesioned rats display smaller decrements in 

freezing behaviour to CS+ trials across extinction. Thus, these rats require far 

more presentations of CS+ trials for successful fear diminishment (Milad, Vidal-

Gonzalez, & Quirk, 2004; Morgan & LeDoux, 1995; Morgan, Romanski, & 

LeDoux, 1993). Furthermore, stimulation of the infralimbic cortex during CS+ 

onset reduces fear expression from the Ce (Kim, Jo, Kim, Kim, & Choi, 2010; 

Maroun, Kavushansky, Holmes, Wellman, & Motanis, 2012; Milad & Quirk, 

2002; Quirk, Repa, & LeDoux, 1995). Continuing this line of work, more recent 

animal findings suggest the vmPFC to excite ITC, and the ITC to inhibit the 
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Cem. For example, impaired extinction is found when: (1) the ITC are lesioned 

(Likhtik, Popa, Apergis-Schoute, Fidacaro, & Paré, 2008), (2) the ITC are 

injected with neuropeptide S antagonists that reduce glutamatergic 

transmission (Jüngling et al., 2008) and vmPFC inputs to the ITC are silenced 

through optogenetics (Bukalo et al., 2015; Do-Monte, Manzano-Nieves, 

Quiñones-Laracuente, Ramos-Medina, & Quirk, 2015). Furthermore, in human 

fMRI studies, increased activity in the vmPFC is found for the CS+ during late 

extinction learning (Milad et al., 2007) and increased activity in both 

hippocampus and vmPFC in subsequent extinction recall sessions conducted a 

few days after initial fear acquisition (Kalisch, Korenfeld, et al., 2006; Phelps et 

al., 2004). These findings suggest that both the hippocampus and vmPFC are 

responsible for providing contextual information, and the vmPFC is directly 

involved in the long term inhibition of the central nucleus of the amygdala and 

subsequent fear expression (see the fear conditioning and extinction circuits in 

Fig 1, (Sotres-Bayon & Quirk, 2010)).  
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Figure 1. Prefrontal control of fear expression and extinction. During fear expression (left) and 

extinction (right) of auditory fear conditioning, tone responses from the amygdala (amyg) get 

integrated by the prelimbic (PL) or infralimbic (IL) prefrontal cortex with converging information from 

diverse sources such as hippocampus (Hipp), brainstem monoamines (Bstm), mediodorsal thalamus 

(MD), and orbital prefrontal cortex (OFC) to determine whether or not to produce a fear response. 

Fear excitation involves PL projections back to basal amygdala (BA), whereas fear inhibition involves 

IL projections to amygdala-intercalated cells (ITC). In turn, BA excites neurons in the medial division 

of the central nucleus of the amygdala (CeM) to produce fear responses, while ITCs inhibit these 

amygdala output neurons thereby inhibiting fear responses. Thus, the same conditioned stimulus (e.g. 

a tone) signals either high fear (red) or low fear (green) states in the appropriate circumstances. 

Figure and caption taken from Sotres-Bayon & Quirk, 2010. 

 



21 
 

 

1.1.3 Overlapping neurobiology of fear generative and regulatory 

processes 

Overall, the evidence above suggests that the amygdala and vmPFC 

share overlapping functions during fear habituation, extinction and time-locked 

reappraisal-based regulation (Delgado et al., 2008; Fisher et al., 2009; Ochsner 

et al., 2009; Schiller & Delgado, 2010; Urry et al., 2006). More specifically, the 

amygdala gives rise to fear generative processes, such as expression, through 

associative learning and monitoring of salience in the environment, whilst the 

vmPFC is implicated in fear regulatory processes, such as inhibition of the 

amygdala, through habituation, extinction, and cognitive modification (see Fig 2, 

(Etkin, Egner, & Kalisch, 2011)). The review above also identified other areas of 

the prefrontal cortex such as the dmPFC, dlPFC and vlPFC that are involved in 

down regulating fearful expression in the amygdala, however these areas of the 

prefrontal cortex appeared to be specific to certain contexts (see Fig 2), such as 

dual task demands (Blair et al., 2007; Dolcos & McCarthy, 2006; Van Dillen et 

al., 2009a) and anticipatory reappraisal-based regulation (Ochsner et al., 2002; 

Ochsner & Gross, 2005; Ochsner et al., 2004).  
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Figure 2. Activation foci associated with fear and its regulation. Predominantly dorsal ACC 

and mPFC activations are observed during classical (Pavlovian) fear conditioning (a), as well 

as during instructed fear paradigms, which circumvent fear learning (b). Likewise, 

sympathetic nervous system activity correlates positively primarily with dorsal ACC and 

mPFC regions and negatively primarily with ventral ACC and mPFC regions, which supports 

a role for the dorsal ACC and mPFC in fear expression (c). During within-session extinction,  

activation is observed in both the dorsal and ventral ACC and mPFC (d), whereas during 

subsequent delayed recall and expression of the extinction memory, when the imaging data 

are less confounded by residual expression of fear responses, activation is primarily in the 

ventral ACC and mPFC (e). Figure and caption taken from Etkin, Egner, & Kalisch, 2011. 
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1.2 Individual differences in fear generation and 

regulation  

Fear generative and regulatory processes are essential for health and 

protecting against psychopathology (Davidson, 1998). The extent to which 

these  processes develop across the lifespan for different individuals is of 

particularly importance, given the prevalence of fear-related behaviours seen in 

anxiety disorders, which are commonly reported to begin in youth and early 

adulthood (Kessler et al., 2005). The current section will review the functional 

and structural neurobiology (e.g. amygdala-vmPFC circuitry) of fear generative 

and regulatory processes in: (1) anxious disposition and anxiety disorders 

within adult and paediatric samples (e.g. between 8-18yrs), and (2) 

adolescence, which is a key developmental window of vulnerability to anxiety 

disorders. The following review will assess the commonalities in patterns 

shared across individual differences in anxious disposition and anxiety 

disorders, and developmental stage separately, with particular focus on the 

relevance of subclinical anxiety and developmental stage in identifying fear 

generative and regulatory processes associated with anxiety disorder risk. 

Differentiating between the different types of anxiety disorder is beyond the 

current scope of the thesis 

 

1.2.1 Anxious disposition and the anxiety disorders 

Fear is described as a phasic state of arousal to imminent threats, whilst 

anxiety is described as a tonic state of arousal to anticipated future threats 

(Grupe & Nitschke, 2013; Tovote, Fadok, & Lüthi, 2015). Both states are 

typically adaptive and share substantial neurobiological overlap (Tovote et al., 
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2015). However, chronic fear and anxiety can lead to adverse health effects 

and anxiety disorder development. Unfortunately, anxiety disorders are 

common (e.g. lifetime prevalence of 28.8%) and tend to begin during 

adolescence and early adulthood (Kessler et al., 2005). Anxiety disorders are 

characterised by exaggerated, inappropriate and persistent fear and anxiety to 

perceived threat, as well as pervasive avoidance behaviours of fear- and 

anxiety-inducing situations (Shin & Liberzon, 2009). Crucially, healthy 

individuals with anxious traits have been found to be at greater risk for anxiety 

disorder development (Beesdo, Knappe, & Pine, 2009; Maller & Reiss, 1992). 

Anxious disposition represents individual differences in the frequency, intensity 

and stability of experiences of fear and anxiety over time (Buhr & Dugas, 2002; 

Davidson, 2002; Meyer, Miller, Metzger, & Borkovec, 1990; Spielberger, 2010), 

and is typically measured in adults through self-report scales, such as the 

State-Trait Anxiety Inventory (STAI) (Spielberger, Gorsuch, & Lushene, 1970), 

Intolerance of Uncertainty (IU) (Buhr & Dugas, 2002), and many others (Meyer 

et al., 1990; Reiss, Peterson, Gursky, & McNally, 1986).  

More recently, researchers have been examining the neurobiological 

underpinnings of fear and anxiety in subclinical and clinically anxious 

populations, in order to separate fear and anxiety processes that: (1) are due to 

anxiety disorder vulnerability and extend to anxiety disorders, and (2) are 

consequential to an anxiety disorder. In the adult anxiety literature, a large 

corpus of data suggests anxious disposition to predict hyperactivity to potential 

threat stimuli in regions associated with negative affect, uncertainty and hyper-

vigilance such as the amygdala (Barrett & Armony, 2009; Etkin et al., 2004; 

Mujica‐Parodi et al., 2009; Schienle, Köchel, Ebner, Reishofer, & Schäfer, 



25 
 

2010; Somerville et al., 2013; Stein, Simmons, Feinstein, & Paulus, 2007), and 

hypoactivity in fear regulatory control regions such as the vmPFC (Mujica‐

Parodi et al., 2009; Sehlmeyer et al., 2011; Somerville et al., 2013; Xu et al., 

2013). Notably, such patterns are found for a variety of tasks, including viewing 

of fearful faces unconsciously (Etkin et al., 2004) and consciously (Mujica‐

Parodi et al., 2009), matching facial expressions (Stein et al., 2007), uncertainty 

manipulations (Schienle et al., 2010; Somerville et al., 2013), decision making 

(Xu et al., 2013) and cognitive tasks with and without fearful content (Bishop, 

2009). In addition, high trait anxiety is associated with increased arousal to 

learned threat and safety cues during fear learning, extinction and 

generalisation (Barrett & Armony, 2009; Browning, Behrens, Jocham, O'Reilly, 

& Bishop, 2015; Dunsmoor, Prince, Murty, Kragel, & LaBar, 2011; Gazendam, 

Kamphuis, & Kindt, 2013; Haddad, Pritchett, Lissek, & Lau, 2012; Indovina, 

Robbins, Núñez-Elizalde, Dunn, & Bishop, 2011; Sehlmeyer et al., 2011). 

Anxious individuals even display differences to non-anxious individuals within 

the amygdala-prefrontal circuit at rest. For example, at rest, they show greater 

relative right prefrontal activation (Blackhart, Minnix, & Kline, 2006; Davidson, 

2002), as well as poorer connectivity between amygdala and prefrontal cortical 

regions (Kim, Gee, Loucks, Davis, & Whalen, 2011). Similar patterns of 

activation within the amygdala and prefrontal cortex are found for a range of 

tasks and at rest for those with anxiety disorders (Etkin & Wager, 2007; Rauch, 

Shin, & Wright, 2003; Sylvester et al., 2012), suggesting that both subclinically 

anxious individuals and anxiety disorder patients share some basic 

disturbances in fear generative and regulatory processes (Davidson, 2002).  
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Furthermore, recent research suggests that subclinically anxious 

individuals and anxiety disorder patients may share underlying structural 

markers. For example, weaker structural integrity of the uncinate fasciculus, a 

white matter tract that communicates information between the amygdala-

vmPFC, has been shown in high trait anxious individuals, (Baur, Hänggi, & 

Jäncke, 2012; Kim & Whalen, 2009; Soliman et al., 2010) and in anxiety 

disorder patients (Baur et al., 2013; Phan et al., 2009; Tromp et al., 2012). In 

addition, there is consistent evidence for reduced grey matter volume in the 

cingulate and medial prefrontal regions for non-clinically anxious individuals 

(Kühn, Schubert, & Gallinat, 2011; Van Schuerbeek, Baeken, De Raedt, De 

Mey, & Luypaert, 2011) and anxiety disorder patients (Na et al., 2013; Shang et 

al., 2014; van Tol et al., 2010). However, the grey matter volume sizes of the 

amygdala are inconsistent across trait anxious and anxiety disorder patients, 

with some studies reporting smaller volumes (Alemany et al., 2013; Fisler et al., 

2013; Hayano et al., 2009) and others larger volumes (Baur et al., 2012; 

Cerasa et al., 2013; Redlich et al., 2014; Schienle, Ebner, & Schäfer, 2011), 

which appear to be lateralised mainly to the right amygdala. Importantly, these 

structural differences within amygdala-vmPFC circuitry may underlie the 

functional deficits observed in subclinically anxious individuals and anxiety 

disorder patients.  

 Crucially, surmounting evidence suggests shared functional markers in 

adults and paediatric samples (defined here as late childhood into adolescence, 

i.e. 8-18yrs) with anxious disposition and anxiety disorders (Beesdo, Knappe, et 

al., 2009). Children and adolescents with anxiety disorders have been reported 

to display heightened arousal in general (Bakker, Tijssen, van der Meer, 
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Koelman, & Boer, 2009; Krämer et al., 2012; Schmitz, Krämer, Tuschen‐Caffier, 

Heinrichs, & Blechert, 2011). Behavioural and imaging studies have found 

children and adolescents with anxiety disorders, relative to healthy controls, to 

show attentional biases to threat-relevant stimuli, indexed by faster behavioural 

responses and higher amygdala activity during passive viewing of fearful or 

angry faces (Beesdo, Lau, et al., 2009; Thomas, Drevets, Dahl, et al., 2001), 

dot probe tasks with fearful and angry faces (McClure et al., 2007; Monk et al., 

2006; Monk et al., 2008; Roy et al., 2008), faces following uncertain cues 

(Williams et al., 2014), and peer evaluation (Guyer et al., 2008), relative to 

neutral control conditions. In comparison, many studies have reported anxious 

youth to display heightened arousal during safe cues or contexts, suggesting 

proneness to threat generalisation. For example in fear conditioning paradigms, 

heightened arousal to learned safety cues has been shown in high trait anxious 

children (Haddad, Bilderbeck, James, & Lau, 2015; Jovanovic et al., 2014; 

Kadosh et al., 2015), children and adolescents with anxiety disorders (Lau et 

al., 2008b; Liberman, Lipp, Spence, & March, 2006; Waters, Henry, & 

Neumann, 2009) and in those who later develop an anxiety disorder (Craske et 

al., 2012). Furthermore, poorer connectivity between the amygdala and 

prefrontal regions is also observed in anxious youth, compared to non-anxious 

youth, during attentional tasks with faces (Monk et al., 2006; Monk et al., 2008), 

attentional tasks with affective images (Strawn et al., 2012) and peer evaluation 

(Guyer et al., 2008). Difficulties recruiting safety signalling regions to inhibit fear 

generative regions such as the amygdala may partly explain why anxious youth 

generalise threat.  
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Similarly to adult populations, children and adolescents have been 

shown to display activation patterns in amygdala-prefrontal circuitry that vary 

with anxious trait severity. For example, children and adolescent anxiety 

disorder patients with high intolerance of uncertainty (IU) scores (i.e. those who 

find uncertainty fearful and anxiety provoking) show hyperactivity of both the 

amygdala and prefrontal cortex during decision making, compared to children 

and adolescent patients with low IU scores and healthy controls (Krain et al., 

2008). These findings were specific to IU over and above other anxiety traits. 

Direct mapping between anxious traits and the contexts where they become 

relevant has many implications for identifying neural mechanisms and 

developing appropriate treatment strategies.    

 In paediatric samples and relative to adult samples (reviewed above), 

structural markers of anxiety are limited and inconsistent. Similar to the adult 

anxiety literature, amygdala volume size in anxious youth, compared to healthy 

controls, are found to be larger in the right and left amygdala, specifically the 

basolateral amygdala (De Bellis et al., 2000; Qin et al., 2014), smaller in the left 

amygdala (Blackmon et al., 2011; Milham et al., 2005; Mueller et al., 2013) or 

no different in the amygdala (Strawn, Chu, et al., 2013). For regions associated 

with fear extinction and emotion regulation, such as the vmPFC, anxious youth 

show decreased grey matter volume, compared to healthy youth (Blackmon et 

al., 2011; Mueller et al., 2013; Strawn et al., 2015). Furthermore, in longitudinal 

studies, cortical thickness and cortical surface area within the vmPFC is 

negatively associated with self-reported anxiety in children and adolescents 

(Ducharme et al., 2014; Newman et al., 2015). However, this effect is also 

reported to change with age, such that it diminishes with age (Newman et al., 
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2015) or the negative relationship shifts to a positive relationship with age (late 

adolescence) (Ducharme et al., 2014). The extent to which these structural 

differences in youth: (1) predict functional impairment of amygdala-vmPFC 

circuitry, (2) are predisposing factors, and (3) are consequential to an anxiety 

disorder, remain open questions.   

 Overall, from the literature reviewed above, those with anxious 

dispositions and/or anxiety disorders are generally shown to exhibit 

compromised fear generative and regulatory processes. This effect is 

predominantly shown via heightened and sustained arousal to threat and safety 

cues that manifests in aberrant recruitment of amygdala-vmPFC circuitry. 

Moreover, there is some evidence for structural abnormalities in amygdala-

vmPFC circuitry for anxious individuals that may underlie the functional 

recruitment patterns observed. Strikingly, there is also converging evidence for 

similar functional and structural markers within the amygdala-vmPFC circuit in 

anxious youth and adults. From these findings we can conclude that functional 

and structural risk markers may appear before anxiety disorder onset in 

subclinical populations with anxious dispositions. Furthermore, these data point 

to the potential emergence and formation of functional and structural risk 

markers during early adolescence, rendering this developmental period as a 

window of vulnerability to anxiety disorders.  

Whilst these findings are promising, many questions still remain 

regarding the specificity of anxious traits and their relationship with fear 

generative and regulatory processes during particular contexts. For example, 

much of the literature has focused on Trait Anxiety, which measures general 

feelings of apprehension and nervousness  (Spielberger, 2010). This measure, 
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however, does not specify the elicitor of fear and anxiety, making it difficult to 

infer when or in which context fearful or anxious feelings would arise. Notably, 

recent research has started to separate out particular facets of anxious 

disposition, such as IU, which may be more sensitive in identifying 

compromised fear generative and regulatory processes during uncertain 

contexts (Dunsmoor, Campese, Ceceli, LeDoux, & Phelps, In press; Krain et 

al., 2008). Furthermore, inconsistencies within the structural literature and 

limited longitudinal data make it difficult to infer what, when or how particular 

factors such as anxious traits during development predict structural and 

functional abnormalities in the amygdala-vmPFC circuit that may increase 

anxiety disorder risk (Ducharme et al., 2014; Newman et al., 2015; Pfeifer & 

Allen, 2012).  

 

1.2.2 Adolescence as a developmental window of vulnerability to anxiety 

disorders   

Typically, puberty (sexual reproducibility) starts between 8-14 years in 

females and 9-15 years in males, although there is substantial individual 

variability in puberty onset, developmental trajectories and completion (Abbassi, 

1998; Parent et al., 2003; Tanner & Whitehouse, 1976). Adolescence and early 

adulthood are times of exploration, change and stress, as new priorities emerge 

outside of the realms of home and school (e.g. career, peer relationships, 

identity) (Blakemore, 2012; Choudhury, 2009; Crone & Dahl, 2012; Somerville 

& Casey, 2010; Spear, 2000b). Alongside pubertal development and changes 

in environmental demands, the brain undergoes marked structural changes in 

white and grey matter density (Crone & Dahl, 2012; Lourenco & Casey, 2013; 
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Pfeifer & Allen, 2012; Spear, 2000a). During adolescence, observed global 

linear increases in white matter density are thought to reflect the optimisation of 

neuronal processing speed (Asato, Terwilliger, Woo, & Luna, 2010; Giorgio et 

al., 2008; Lebel & Beaulieu, 2011; Lebel, Walker, Leemans, Phillips, & 

Beaulieu, 2008; Paus et al., 1999), through increases in axon diameter, axon 

myelination and concentrations of iron (Connor & Menzies, 1996). The 

observed non-linear decreases in global grey matter density have been 

reported to signify the pruning and refining of synapses, neuropil and glial cells 

which may no longer be needed (Giedd, 2004; Giedd et al., 1999; Giedd, 

Keshavan, & Paus, 2008; Gogtay et al., 2004; Sowell et al., 2003; Toga, 

Thompson, & Sowell, 2006). Notably, local grey matter density decreases 

across childhood and adolescence, with most regions showing a steady 

decline. However, parietal and frontal regions are characterised by a rapid 

decline across adolescence into early adulthood, whilst temporal and occipital 

lobes increase steadily across adolescence into early adulthood (Giedd et al., 

1999; Østby et al., 2009; Sowell et al., 2003; Tamnes et al., 2010). Sex 

differences in brain maturation occur in tandem with pubertal and hormonal 

changes. For example, females typically reach peak cortical thickness across 

the cortex 1-2 years earlier than males, except for the occipital cortex, which 

appears to mature at the same time in males and females (Giedd et al., 1999; 

Tamnes et al., 2010). Subcortical regions such as the amygdala and 

hippocampus mature earlier, with variations in size related to sex and pubertal 

stage (Bramen et al., 2012; Bramen et al., 2011; Giedd, Snell, et al., 1996; 

Giedd, Vaituzis, et al., 1996; Herting, Maxwell, Irvine, & Nagel, 2012; Neufang 

et al., 2009).  
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Complementary to the structural findings outlined above, behavioural 

and functional magnetic resonance imaging (fMRI) studies have demonstrated 

adolescents to exhibit greater arousal towards affective information. For 

example, adolescents, relative to adults, show larger amygdala response and 

decreased or more diffuse activation in top down regulatory areas such as the 

vmPFC (Hare et al., 2008; Monk, McClure, et al., 2003) during passive viewing 

of fearful faces (Swartz, Carrasco, Wiggins, Thomason, & Monk, 2014; 

Thomas, Drevets, Whalen, et al., 2001) and during cognitive tasks with fearful 

faces embedded (Hare et al., 2008; Monk, McClure, et al., 2003). In studies 

examining neural correlates of emotion regulation, through intentional cognitive 

modification, adolescents have been found to recruit less vlPFC during 

attempted down regulation of negative affect (and other emotions), relative to 

adults (McRae et al., 2012; Vink, Derks, Hoogendam, Hillegers, & Kahn, 2014). 

Moreover, recent fear conditioning experiments point to increased propensity 

for fear learning and blunted fear extinction in adolescents, relative to adults 

(Baker & Richardson, 2015; Den & Richardson, 2013; Kim, Li, & Richardson, 

2011; Lau et al., 2011; Pattwell et al., 2012). For example, Lau et al (2011) 

found adolescent participants, compared to adults, to report less discrimination 

between learned threat and safety cues, as well as increased amygdala and 

decreased dlPFC activity to learned threat vs. safety cues during fear learning. 

In addition, adolescent mice and humans show resistant fear extinction to 

learned threat cues, indexed by continuous freezing in adolescent mice and 

skin conductance responding in adolescent humans (Baker & Richardson, 

2015; Kim, Li, et al., 2011; Pattwell et al., 2012). Rodent work has 

demonstrated this effect to originate from poor top down control of the vmPFC 
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on the amygdala (Kim, Li, et al., 2011; Pattwell et al., 2012). These findings 

suggest that adolescents may have difficulty inhibiting and updating learned 

threat associations to new safety associations because of competing fear 

conditioning and extinction memories (Baker & Richardson, 2015). It has been 

argued that this developmental effect may stem from brain maturation in 

structures vital for fear extinction, such as the vmPFC.  

Changes in connectivity between the amygdala and medial prefrontal 

cortex (mPFC) have also been found with age (Gabard-Durnam et al., 2014; 

Gee et al., 2013). Gee et al. (2013) found a developmental shift in processing of 

fearful faces, where children exhibited positive coupling between the amygdala 

and mPFC, and adolescents switched to a negative coupling between the 

amygdala-mPFC like that of adults. In addition, functional connectivity between 

the amygdala-mPFC during resting state has been found to increase across 

childhood and adolescence into adulthood (Gabard-Durnam et al., 2014). 

Furthemore, age-related structural integrity of the uncinate fasciculus (e.g. 

weaker in adolescence), a tract that is thought to relay information between the 

amygdala and vmPFC, predicts larger amygdala activation to sad and happy 

faces in adolescents (Swartz et al., 2014).  

 Taken together these findings suggest that in healthy adolescents, 

substantial structural and functional changes occur, alongside alterations in 

affective and cognitive functioning, environmental demands and puberty. More 

specifically, the imbalance between earlier growth of fear-generative regions 

such as the amygdala, and later pruning of fear-regulatory regions, such as the 

vmPFC, in combination with other developmental factors (Blakemore, Burnett, 

& Dahl, 2010; Hare & Casey, 2005; Somerville & Casey, 2010), likely leave 
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adolescents vulnerable to psychopathology, particularly anxiety disorders 

(Kessler et al., 2005; Paus, Keshavan, & Giedd, 2008). However, as noted by 

Pfeifer and Allen (2012), dual systems models of early subcortical and late 

prefrontal development may not capture the complexity of changes that occur 

during adolescence. More recently, to elucidate age-related changes in 

behaviour and brain, researchers in the field have been focusing on 

longitudinal, network-based, or structure-function integration approaches (Gee 

et al., 2013; Kim et al., 2013; Roy, Shohamy, & Wager, 2012; Swartz et al., 

2014; Vijayakumar et al., 2013).   

 

1.3 Principle questions 

This thesis expands research on individual differences in development 

(adolescence and early adulthood) and anxious disposition on fear-related 

neurobiology. From the review above, there remain questions regarding: (1) the 

extent to which age and age-related structural changes predict function of fear 

generative and regulatory processes, and (2) the specificity of anxious traits, 

such as IU, and their ability to predict function of fear generative and regulatory 

processes during adulthood and adolescence. This thesis aims to examine 

these questions by testing both adult and adolescent populations using a series 

of fear conditioning experiments in combination with measurements of 

behaviour, psychophysiology and functional/structural MRI.  

The following sections will outline, firstly, the efficacy and rationale of 

using fear conditioning as a tool for assessing individual differences (e.g. 

developmental stage and anxious disposition) in fear generation and regulation, 
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and secondly, the motivation behind each fear conditioning experiment of the 

thesis.        

 

1.3.1 Fear conditioning as a tool for assessing individual differences in 

fear generation and regulation 

 As highlighted above in the review, fear conditioning experiments can be 

used to break down fear generative and regulatory processes. For example, 

during fear extinction, fear generative processes can be measured and 

operationalised through behavioural, psychophysiological, and neural 

responses to learned threat and safety cues.  Similarly, during fear extinction, 

fear regulatory processes can be captured by measuring the diminution of 

behavioural, psychophysiological, and neural responses to learned threat and 

safety cues over time.  

Additionally, there are a few notable advantages of using fear 

conditioning paradigms over other fear regulation experiments. For example, 

fear extinction is uninstructed, implicit, controlled (simple with few stimuli), 

translational, and adaptable for different samples (e.g. developmental, animal, 

and human) (Graham & Milad, 2011; Milad & Quirk, 2012). Despite this, fear 

conditioning experiments have been criticised for lacking ecological validity 

because of the simplicity and unambiguity of the stimuli used (Balsam & 

Gallistel, 2009). However, fear conditioning stimuli aren’t necessarily 

unambiguous, for example an unreinforced CS+ without instruction contains 

elements of ambiguity to the perceiver. Furthermore, the abstract and simplistic 

nature of fear conditioning experiments may still be comparable to real life and 

prove valuable for examining individual differences in fear generation and 
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regulation processes during the learning of new safety experiences, particularly 

for developmental and anxious populations. For example, simple changes to 

stimulus contingency (threat to safety associations) during fear extinction may 

be useful for understanding: (1) how developmental changes may impact the 

learning of new safety information and (2) how future threat uncertainty may 

maintain learned fear in those who find uncertainty anxiety provoking, such as 

those who score high in IU. 

Furthermore, fear conditioning experiments are clinically relevant, given 

that current cognitive behavioural therapies for anxiety disorders in children and 

adults include aspects of exposure therapy that are based upon fear extinction 

principles (Cartwright‐Hatton, Roberts, Chitsabesan, Fothergill, & Harrington, 

2004; Luhmann, Ishida, & Hajcak, 2011). Substantial gains have been made in 

the treatment of anxiety disorders with cognitive behavioural therapies. For 

example, remission rates for anxiety disorder treatments is within the range of 

60-90% for adults (Bystritsky, 2006) and is within the range of 55-65% for 

children and adolescents (Cartwright‐Hatton et al., 2004; Gole, Schäfer, & 

Schienle, 2012). However, there still remain populations, particularly 

developmental, that are: (1) left without any treatment, (2) prone to relapse, (3) 

and treatment resistant (Bystritsky, 2006; Merikangas et al., 2010; Rapee, 

Schniering, & Hudson, 2009). Therefore, examining anxious disposition and 

developmental differences in fear generative and regulatory processes in 

healthy adolescent and adult populations may further our understanding of 

which anxiety disorder treatments to apply and when to apply them (Casey, 

Duhoux, & Cohen, 2010).  
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To summarise, the combination of advantages pointed out above 

outweigh, at present, the disadvantages and suggest that fear conditioning is 

an appropriate tool for examining individual differences in fear generative and 

regulatory processes, particularly within anxious disposition and development. 

 

1.3.2 Function of fear extinction circuitry in adults 

 The aim of the first two studies of the thesis is to create a fear 

conditioning paradigm that can: (1) replicate past fear extinction work and is 

appropriate for testing on an adolescent population, and (2) capture individual 

differences in anxious disposition. In the first study, we measure behaviour and 

psychophysiology during fear acquisition and extinction outside the MRI 

environment. In the second study we measure behaviour, psychophysiology 

and neural circuitry responses during fear acquisition and extinction in the MRI 

environment. Firstly, we hypothesised our designed fear conditioning paradigm 

to replicate behavioural, psychophysiological, and neural findings from past fear 

extinction studies. More specifically, we would expect evidence of conditioned 

responses to the learned threat vs. safety cue and diminishment of conditioned 

responses to the learned threat cue over time.  Secondly, we hypothesised IU 

to be a strong predictor of compromised fear extinction, compared to more 

general dispositional measures of anxiety. We argue that IU may be more 

closely and specifically aligned to underlying biases that disrupt fear extinction 

processes. For example, in the context of fear extinction, uncertainty 

surrounding learned contingency changes (i.e. CS-US pairings) may initiate 

threat generalization behaviour to both learned threat and safety cues in 

individuals who find uncertainty anxiety provoking, such as high IU individuals. 
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1.3.3 The role of age, structure and anxious disposition on fear extinction 

circuitry in adolescence and early adulthood 

 The third study of the thesis investigates how individual differences in 

developmental stage (adolescents through to early adulthood) and anxious 

disposition predict fear extinction. We will use the same experimental design for 

this study as the two previous studies, as the experimental design was made to 

extend to developmental populations. During the third study, we will measure 

behaviour, psychophysiology and neural responses in the MRI environment, 

whilst participants complete fear acquisition and extinction phases. Structural 

(sMRI, DTI) and anxious disposition (IU vs. STAI and PSWQ) data will also be 

collected from the third study. Based on the literature outlined above, we 

hypothesise that younger age and age-related structural changes in fear 

extinction circuitry will predict greater fear generation and poorer regulatory 

control during fear extinction. Lastly, we hypothesise that anxious disposition, 

specifically IU, to predict fear extinction ability. The relationship between 

anxious disposition and function of fear extinction circuitry may vary with age 
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2. Psychophysiological correlates 

of adult fear extinction and 

individual differences in 

intolerance of uncertainty 

2.1 Abstract 

In this chapter we sought to: (1) replicate past psychophysiological findings of 

fear extinction in a classic paradigm adapted for a developmental sample, and 

(2) assess whether individual differences in intolerance of uncertainty (IU), a 

potential risk factor for anxiety disorders, underlies compromised fear 

extinction. We tested these hypotheses by recording electrodermal activity in 38 

healthy participants during fear acquisition and extinction. We assessed the 

temporality of fear extinction, by examining early and late extinction learning. 

Across fear extinction, participants had greater uneasiness ratings and skin 

conductance response to the learned threat vs. safety cue. However, the 

temporality of fear extinction varied substantially with individual differences in 

IU. During early extinction, low IU was associated with larger skin conductance 

responses to learned threat vs. safety cues, whereas high IU was associated 

with no skin conductance discrimination. During late extinction, low IU predicted 

no difference in skin conductance between learned threat and safety cues, 

whilst high IU predicted continued fear expression to learned threat, indexed by 

larger skin conductance to threat vs. safety cues. Overall, these findings 
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suggest that the designed experiment can induce successful fear conditioning 

and is sensitive to capturing individual differences in IU.   

 

2.2 Introduction 

The ability to discriminate between threat and safety is crucial for 

survival. Through fear conditioning, an organism can associate neutral cues 

(conditioned stimulus, e.g. a visual stimulus such as a shape) with aversive 

outcomes (unconditioned stimulus, e.g. shock, loud tone). Repeated 

presentations of a neutral cue with an aversive outcome can result in fearful 

responding to the neutral cue alone (conditioned response). This learned 

association can also be extinguished by repeatedly presenting the learned 

threat cue without the aversive outcome, a process known as fear extinction 

(LaBar et al., 1998; Milad & Quirk, 2002; Phelps et al., 2004). During fear 

extinction, reduction in reactivity to the learned threat cue over time is thought 

to reflect changes in contingency beliefs and harm expectancy (for review see, 

(Hofmann, 2008)).  

Designing a fear conditioning experiment that can be applied to different 

samples (developmental, sub-clinical and clinical) has clear merit for a number 

of reasons. Firstly, fear extinction is clinically relevant, given that current 

exposure therapies for anxiety disorders are based on fear extinction models. 

Secondly, comparing fear extinction processes across different samples may 

help separate out risk factors and consequences of anxiety disorder onset that 

originate from changes in development and individual differences in anxious 

disposition. Thirdly, tying the two points above together, identification of when 

and how fear extinction processes become disrupted may inform future 
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treatment strategies and targets for anxiety disorders.  In the following sections 

we review previous literature on developmentally appropriate fear conditioning 

designs and the role of adult intolerance of uncertainty in fear extinction. Based 

on this literature, we then define the design and predictions of the first study.   

 

2.2.1 Fear conditioning designs for developmental samples   

Typically, in adult fear conditioning studies a more aversive electric 

shock stimulus is paired with a neutral cue (Delgado et al., 2008; LaBar et al., 

1998; Milad et al., 2009; Phelps et al., 2004). This has commonly been done 

because more aversive cues prolong the effects of conditioning (LeDoux, 

1998). However, for ethical or practical reasons, a handful of adult studies and 

the majority of studies on children and adolescents have used less aversive 

stimuli (e.g. white noise, loud tones, air puffs, human screaming, fearful faces 

and predatory animals) (Barrett & Armony, 2009; Britton et al., 2013; Büchel et 

al., 1998; Glenn et al., 2012; Grillon, Dierker, & Merikangas, 1998; Haddad, 

Lissek, Pine, & Lau, 2011; Johnson & Casey, 2015; Lau et al., 2011; Lau et al., 

2008a; Liberman et al., 2006; Monk, Grillon, et al., 2003; Neumann & Waters, 

2006; Neumann, Waters, & Westbury, 2008; Pattwell, Bath, Casey, Ninan, & 

Lee, 2011; Pattwell et al., 2012). Notably, with these study designs successful 

effects of fear conditioning and extinction has been found across a number of 

psychophysiological indices, such as skin conductance, fear-potentiated startle 

and behavioural ratings.  
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2.2.2 Psychophysiological correlates of fear extinction and the role of 

anxious disposition   

A large corpus of data suggests that fear extinction processes are 

disrupted in individuals with anxiety and trauma disorders, whom have been 

shown to display delayed fear extinction or even extinction-resistant fear 

(Graham & Milad, 2011; Milad & Quirk, 2012; Mineka & Oehlberg, 2008). For 

example, compared to non-anxious controls, anxious patients show elevated 

autonomic nervous system activity to both learned threat and safety cues at the 

start of extinction, and to learned threat cues across fear extinction (Blechert, 

Michael, Vriends, Margraf, & Wilhelm, 2007; Michael, Blechert, Vriends, 

Margraf, & Wilhelm, 2007; Milad et al., 2008; Milad et al., 2009). In two recent 

meta-analyses, however, only small differences in fear extinction behaviour 

were found between anxious and non-anxious adult individuals (Duits et al., 

2015; Lissek et al., 2005). Furthermore, findings have also been mixed from 

studies examining fear extinction behaviour and trait anxiety, as measured with 

the Spielberger State-Trait Anxiety Inventory (STAI; (Spielberger, Gorsuch, 

Lushene, Vagg, & Jacobs, 1983). For example, trait anxious individuals have 

been shown to display slower reductions in startle reactivity to both threat and 

safety cues (Gazendam et al., 2013), but not in skin conductance (Haaker et 

al., 2015) or expectancy ratings (Barrett & Armony, 2009; Gazendam et al., 

2013). These equivocal findings may stem from a lack of alignment between 

the STAI measure and the underlying biases that disrupt fear extinction 

processes. 

Only very recently has research begun to assess the role of intolerance 

of uncertainty (IU) in fear extinction (Dunsmoor et al., In press). IU is defined as 
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a dispositional tendency that affects how uncertain situations are perceived and 

interpreted. During uncertain situations, individuals with high IU scores may 

have difficulty accepting the possibility of future negative events, thus rendering 

ambiguous or even neutral cues as potentially threatening (Dugas, Buhr, & 

Ladouceur, 2004). Originally, IU was considered to be specifically related to 

Generalised Anxiety Disorder (Dugas et al., 2004). However, growing evidence 

suggests IU may be a transdiagnostic factor across many anxiety and mood 

disorders (Carleton, Fetzner, Hackl, & McEvoy, 2013; Gentes & Ruscio, 2011; 

McEvoy & Mahoney, 2012). Furthermore, the development of new disorder-

specific IU scales (Thibodeau et al., 2015), suggests that IU may be applicable 

to disorders such as specific phobia and PTSD, which are associated with 

compromised fear extinction.  

In the context of fear extinction, uncertainty surrounding learned 

contingency changes (i.e. CS-US pairings) may initiate generalised harm 

expectancy in high IU individuals, resulting in fearful responding to both learned 

threat and safety cues. Given the mixed findings above, it seems pertinent to 

further examine whether IU proves to be a more sensitive predictor of 

compromised fear extinction, over more general trait anxiety measures such as 

the STAI.  

 

2.2.3 Design and predictions 

Here we used cued fear conditioning to assess: (1) whether we can 

replicate psychophysiological findings from past fear extinction studies in a 

classic paradigm adapted for developmental populations, and (2) the 

relationship between individual differences in self-reported IU and 
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psychophysiological correlates of fear extinction. We measured skin 

conductance response (SCR) and ratings whilst participants performed the 

conditioning task. We used an aversive sound as an unconditioned stimulus 

and visual shapes as conditioned stimuli, similar to that of previous conditioning 

research in adults (Barrett & Armony, 2009; Büchel et al., 1998; Delgado et al., 

2008; Neumann & Waters, 2006; Phelps et al., 2004) and adolescents (Haddad 

et al., 2011; Johnson & Casey, 2015; Lau et al., 2011; Neumann et al., 2008; 

Pattwell et al., 2011; Pattwell et al., 2012).  

We hypothesised that, during fear extinction, participants would exhibit 

greater uneasiness ratings and skin conductance responses to the learned 

threat vs. safety cues, particularly during early extinction, compared to late 

extinction, evidencing successful conditioning and extinction respectively. 

Furthermore, we predicted that future threat uncertainty sensitivity would be 

associated with generalised fear expression to both learned threat and safety 

cues, and/or sustained fear expression to learned threat cues. Given that fear 

extinction paradigms are temporally sensitive (Gazendam et al., 2013; LaBar et 

al., 1998; Milad & Quirk, 2012; Phelps et al., 2004; Sehlmeyer et al., 2011), we 

expected this effect to be indexed by: (1) Larger responses in high IU 

individuals to both learned threat and safety cues in early fear extinction, across 

SCR and behavioural measurements, and (2) sustained responses in high IU 

individuals to learned threat cues vs. safety cues during late fear extinction, 

across SCR and behavioural measurements. We tested the specificity of the 

involvement of IU by comparing it with broader measures of anxiety, such as 

Spielberger State-Trait Anxiety Inventory, Trait Version (STAIX-2) (Spielberger 

et al., 1983) and Penn State Worry Questionnaire (PSWQ) (Meyer et al., 1990). 
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2.3 Methods 

2.3.1 Participants 

38 volunteers took part in this study (age range = 18-25 years; 32 

females & 6 males). The sample size was based on a power analysis (effect 

size f = 0.2, power level = 0.8 and significance level = 0.05), which suggested 

using an N of 36 (GPower 3.0.10). We recruited a few more participants 

because of likely subject attrition due to non-responding. All participants had 

normal or corrected to normal vision. Participants provided written informed 

consent and received course credit for their participation. Participants were 

recruited through advertisements and the University of Reading Psychology 

Panel. The procedure was approved by the University of Reading Ethics 

Committee. 

 

2.3.2 Conditioning task 

The conditioning task was designed using E-Prime 2.0 software 

(Psychology Software Tools Ltd, Pittsburgh, PA). Visual stimuli were presented 

using a screen resolution of 800 x 600 with a 60 Hertz refresh rate. Participants 

sat at approximately 60 cm from the screen. Sound stimuli were presented 

through headphones. 

Visual stimuli were light blue and yellow squares with 183 x 183 pixel 

dimensions that resulted in a visual angle of 5.78° × 9.73°. The aversive sound 

stimulus consisted of a fear inducing female scream (sound number 277) from 

the International Affective Digitised Sound battery (IADS-2) and which has been 

normatively rated as unpleasant (M= 1.63, SD = 1.13) and arousing (M= 7.79, 

SD = 1.13) (Bradley & Lang, 2007). We used Audacity 2.0.3 software 
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(http://audacity.sourceforge.net/) to shorten the female scream to 1000 ms in 

length and to amplify the sound by 15 db, resulting in a 90 db (~5 db) sound.  

 Acquisition and extinction phases were presented in two separate blocks 

(see Fig. 3). In acquisition, one of the squares (blue or yellow) was paired with 

the aversive 90 db scream (CS+), whilst the other square (yellow or blue) was 

presented alone (CS-). In extinction, both stimuli were unpaired (CS+, CS-). 

The third phase was a partial reacquisition, CS+ squares were paired with the 

sound 25% of the time, and the CS- remained unpaired (results not reported 

here).  

 Participants were instructed to attend and listen to the stimulus 

presentations, as well as respond to a rating scale that followed each trial. The 

rating scale asked how 'uneasy' the participant felt after each stimulus 

presentation, where the scale was 1 'not at all'- 9 'extremely'. Participants used 

pressed the keyboard with their dominant hand to respond. 

The acquisition phase consisted of 24 trials (12 CS+, 12 CS-), the 

extinction phase 32 trials (16 CS+, 16 CS-) and the reacquisition 30 trials (16 

CS+ (4 unpaired), 14 CS-; results not reported here). Experimental trials within 

the conditioning task were pseudo-randomised into an order, which resulted in 

no more than three presentations of the same stimulus in a row. Conditioning 

contingencies were counterbalanced, with half of the participants receiving the 

US with a blue square and the other half of participants receiving the US with a 

yellow square. 

The presentation times of the task were: 1500 ms square, 1000 ms 

sound (played 500 ms after the onset of a CS+ square), 3000 - 6450 ms blank 
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screen, 4000 ms rating scale, and 1000-2500 ms blank screen (see Fig. 3). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Conditioning task design 
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2.3.3 Procedure 

 Participants arrived at the laboratory and were informed on the 

procedures of the experiment. Firstly, participants were taken to the testing 

booth and given a consent form to sign as an agreement to take part in the 

study. Secondly, to assess emotional disposition we asked participants to 

complete a series of questionnaires presented on a computer in the testing 

booth. Next, physiological sensors were attached to the participants’ non-

dominant hand. Participants were simply instructed to: (1) maintain attention to 

the task by looking and listening to the coloured squares and sounds 

presented, (2) respond to the uneasiness scale using the keyboard and (3) to 

sit as still as possible. Participants were presented a conditioning task on the 

computer, whilst electrodermal activity, interbeat interval and behavioural 

ratings were recorded. After the task, subjects were asked to rate the valence 

and arousal of the sound stimulus using 9-point Likert scales ranging from 1 

(Valence: very negative; Arousal: calm) to 9 (Valence: very positive; Arousal: 

excited).  

 

2.3.4 Questionnaires 

To assess emotional disposition, we presented the following six 

questionnaires on a computer: Two versions of the Positive and Negative Affect 

Scales (PANAS-NOW; PANAS-GEN) (Watson, Clark, & Tellegen, 1988), 

Spielberger State-Trait Anxiety Inventory, Trait Version (STAIX-2) (Spielberger 

et al., 1983), Penn State Worry Questionnaire (PSWQ) (Meyer et al., 1990), 

Intolerance of Uncertainty (IU) (Buhr & Dugas, 2002) and the Barratt 

Impulsiveness Scale (BIS-11) (Patton & Stanford, 1995). We focused on IU 
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because of the intrinsic uncertainty within conditioning paradigms. The IU 

measure consists of 27 items, example items include “I must get away from all 

uncertain situations” and “Uncertainty makes me uneasy, anxious, or stressed”. 

Similar distributions and internal reliability of scores were found for the anxiety 

measures, IU (M = 63.92; SD = 19.56; range = 31-116; α = .94), STAIX-2 (M = 

44.02; SD = 9.33; range = 31-65; α = .90) and PSWQ (M = 51.60; SD = 11.56; 

range = 29-71; α = .88). Notably, the psychometric properties of the IU scale 

here match those presented in previous IU validation studies (Buhr & Dugas, 

2002; Dugas et al., 2004). We collected the other questionnaires to check for 

correlational consistency and specificity across anxiety measures, as well as to 

check for outlying values on IU due to mood or impulsivity.  

 

2.3.5 Behavioural data scoring and reduction 

 Rating data were reduced for each subject by calculating their average 

responses for each experimental condition using the E-Data Aid tool in E-Prime 

(Psychology Software Tools Ltd, Pittsburgh, PA).  

 

2.3.6 Physiological data acquisition and reduction 

Physiological recordings were obtained using AD Instruments (AD 

Instruments Ltd, Chalgrove, Oxfordshire) hardware and software. Electrodermal 

activity was measured with dry MLT116F silver/silver chloride bipolar finger 

electrodes that were attached to the distal phalanges of the index and middle 

fingers of the non-dominant hand. A constant voltage of 22mVrms at 75 Hz was 

passed through the electrodes, which were connected to a ML116 GSR Amp. 

Interbeat Interval (IBI) was measured using a MLT1010 Electric Pulse 
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Transducer, which was connected to the participant’s distal phalange of the ring 

finger. An ML138 Bio Amp connected to an ML870 PowerLab Unit Model 8/30 

amplified the electrodermal and interbeat interval signals, which were digitised 

through a 16-bit A/D converter at 1000 Hz. IBI signal was used only to identify 

movement artefacts and was not analysed. The electrodermal signal was 

converted from volts to microSiemens using AD Instruments software (AD 

Instruments Ltd, Chalgrove, Oxfordshire). 

Skin conductance responses (SCR) were scored when there was an 

increase of skin conductance level exceeding 0.03 microSiemens. The 

amplitude of each response was scored as the difference between the onset 

and the maximum deflection prior to the signal flattening out or decreasing. To 

be included, SCR onsets had to be within 7 seconds of CS onset. We used an 

extended SCR scoring window because the temporal signature of an aversive 

sound US may be more ambiguous than a traditional electric shock US, this 

SCR scoring window length is in line with previous fear conditioning studies that 

have used aversive sound stimuli as the US in both adults (Büchel et al., 1998; 

Soliman et al., 2010) and adolescents (Pattwell et al., 2012). 

Trials with no discernible SCR’s were scored as zero. The first trial of 

each experimental phase was excluded, to reduce contamination of averages 

from the unusually large SCR that typically occurs at the start of a session. 

SCR amplitudes were square root transformed to reduce skew. Trials with 

motion artefacts, as identified by distortions in both electrodermal and IBI 

signals, were discarded from the analysis. 1.3% (26 out of 1904) trials were 

removed from the analysis due to movement artefacts. SCR magnitudes were 

calculated from remaining trials by averaging SCR square root transformed 
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values and zeros for each condition. In acquisition, 33% of trials were scored as 

zero responses and in extinction 53% of trials were scored as zero responses 

 

2.3.7 Learning assessment 

To assess whether participants learned the association between the 

neutral 

cue and aversive sound, we calculated a conditioned response score for 

behavioural ratings and SCR magnitude in extinction. The conditioned 

response score was the first 2 CS+ trials – the first 2 CS- trials, similar to 

previous work assessing conditioned responses in extinction (Dunsmoor et al., 

In press; Milad et al., 2009; Phelps et al., 2004). A positive score indicated a 

larger differential response for CS+ vs. CS-, indexing a conditioned response. 

Based on this criterion, only three participants out of the thirty-eight participants 

were considered non learners. However, as removing them did not change the 

results reported here1, we decided to include these three participants for 

reasons of completeness. 

 

2.3.8 Rating and SCR magnitude analysis 

Effects of conditioning and IU differences across extinction were 

assessed by conducting a Condition (CS+, CS-) x Time (Early, Late) x IU 

repeated measures ANCOVA for behavioural ratings, and SCR magnitude, 

where IU was entered as a continuous mean centered predictor variable. The 

early part of extinction was defined as the first eight CS+ and eight CS- trials, 

                                                                 
1
 Results do not change when non-learners are removed: The main effect of Condition for SCR 

magnitude during fear extinction, without non-learners F(1,28) = 8.188, p =.008. Condition x 

Time x IU interaction for SCR magnitude during fear extinction without non-learners, F(1,28) = 
4.204, p = .05.  
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and the last part of extinction was defined as the last eight CS+ and eight CS- 

trials. We performed follow-up pairwise comparisons on the estimated marginal 

means, adjusted for IU. Any interaction with IU was followed up with pairwise 

comparisons of the means between the conditions for IU estimated at the 

specific values of + or - 1 SD of mean IU. These data are estimated from the 

ANCOVA of the entire sample, not unlike performing a simple slopes analysis in 

a multiple regression analysis. To check for specificity of findings with IU in 

extinction, we conducted a Condition (CS+, CS-) x IU repeated measures 

ANCOVA on behavioural ratings and SCR magnitude obtained in the 

acquisition phase.  

We performed hierarchical regression analyses on the resulting 

significant SCR magnitude and rating difference scores (CS+ – CS- early; CS+ 

– CS- late; CS+ early – CS+ late; CS- early – CS- late) for extinction and the 

anxiety measures to test for IU-specific effects over and above the variance 

shared with trait anxiety. We entered STAIX-2 and PSWQ in the first step and 

then IU in the second step.   

 

2.4 Results 

 

2.4.1 Questionnaires 

 As expected, the anxiety measures were positively correlated with each 

other, suggesting shared variance, IU with PSWQ, r(32) = .584, p < .001, IU 

with STAIX-2, r(32) = .815, p < .001, and PSWQ with STAIX-2, r(32) = .721, p < 

.001. 
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2.4.2 Ratings 

1 participant’s task rating data were missing due to a recording error, 

leaving rating task data for 37 participants. All remaining participants rated the 

sound stimulus as aversive (M = 2.33, SD = 1.56) and moderately arousing (M 

= 6.97, SD = 1.48), in accordance with the normative data provided with the 

IADS-2 set (Bradley & Lang, 2007). 

During acquisition participants significantly reported feeling more uneasy 

for the CS+ vs. CS- trials, F(1,35) = 105.993, p< .001 (see Table 1). 

During extinction, participants significantly reported feeling more uneasy 

to the CS+ vs. CS- trials across extinction, F(1,35) = 17.121, p< .001. In 

addition, there was a significant interaction of Condition x Time, F(1,35) = 

6.146, p = .016, revealing that the participants uneasiness ratings were larger to 

the CS+ vs. CS- during the early part of extinction, p < .001, and relative to the 

late part of extinction, p = .007 (for descriptive statistics of ratings, see Table 1). 

Furthermore, participants also reported feeling more uneasy at the start of 

extinction in general, compared to the end of extinction F(1,35) = 36.492, p< 

.001.  

Contrary to predictions, results revealed no IU differences for uneasiness 

ratings in any of the experimental phases, p’s >.3, F’s <.1,5, max F = 1.031. 
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Table 1.            
Summary of means (SD) for each dependent measure as a function of condition, separately for acquisition 
and extinction. 

 Acquisition  Extinction  Early Extinction  Late Extinction 

Measure CS+ CS-   CS+ CS-   CS+ CS-   CS+ CS- 

            

Physiological             
   Square root 
transformed 
SCR 
magnitude 
(μS) 

.79 
(.30)

b 
.33 

(.24)
a 

 

.31 
(.24)

d 
.25 

(.21)
c 

 

.32 
(.24)  

.28 
(.25)  

 

.29 
(.27)  

.22 
(.20)     

            

Behavioural            
   Uneasiness 
rating (1-9) 

6.14 
(1.73)

b 
3.10 

(1.73)
a 

 
2.70 

(1.25)
d 

2.14 
(1.09)

c 
 

3.12 
(1.28)

f 
2.41 

(1.30)
e 

 
2.28 

(1.35)
h
  

1.86 
(.98)

g 

                        

            
Note: SCR magnitude (μS), skin conductance magnitude measured in microSiemens. Superscripts indicate 
significant (p <.05) condition difference from: 

a
 Acquisition CS+, 

b
 Acquisition CS-, 

c
 Extinction CS+, 

d
 Extinction CS-, 

e
 Early Extinction CS+,

 f
 Early Extinction CS-, 

g
 Late Extinction CS+, 

h
 Late Extinction CS-. 
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2.4.3 SCR magnitude 

4 subjects were removed from the SCR magnitude analysis due to 1 non-

responding, 2 excessive movements, and 1 outlier on SCR magnitude from the early 

fear extinction CS+ vs. CS- difference score that was +6 SD from the group mean, 

leaving 34 participants.  

 As expected, CS+ stimuli elicited larger SCR magnitudes than CS- during 

acquisition, F(1,32) = 121.995, p< .001  (see, Table 1). There was no interaction 

between Condition x IU, F(1,32) = .323, p = .574. 

During extinction, SCR magnitude was on average greater for the CS+ vs. 

CS-, suggesting participants learned the CS-US contingency, F(1,32) = 9.145, p 

=.005 (see Table 1). Additionally, SCR magnitude decreased as a function of time for 

both conditions, F(1,32) = 5.446, p =. 026. However, no significant Condition x Time 

interaction was found, F(1,32) = .524, p = .473.  

Taking into account individual differences in IU we found, as predicted, 

significant Condition x Time x IU interaction, F(1,32) = 4.486, p =.042 in extinction. 

Further inspection of follow-up pairwise comparisons for early vs. late extinction at IU 

±1 SD from the mean on the regression line, showed that lower IU (1 SD below the 

mean) was associated with significantly greater SCR magnitude in early extinction to 

the CS+, relative to the CS-, p = .029, which dissipated over time (late extinction 

CS+ vs. CS-, p = .459) (see, Fig. 4). In contrast, higher IU (1 SD above the mean) 

was associated with no significant differences in early extinction between the CS+ 

and CS-, p = .980. In late extinction higher IU was associated with larger SCR 

magnitude to the CS+, relative to the CS-, p = .008 (see Fig. 4). Furthermore, high IU 

predicted a significant reduction in SCR magnitude to CS- in late extinction, relative 
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to CS- in early extinction, p< .001. This 3-way interaction qualified a significant Time 

x IU interaction, F(1, 32) = 4.304, p = .046. No other significant main effects or 

interactions were found with IU, p’s > .1, Max F = .985.   

We conducted hierarchical regression analyses on the effects that were 

significant in the ANCOVA above. Hierarchical regression analyses of early and late 

SCR magnitude difference scores in extinction revealed mixed specificity with IU 

over the STAIX-2 and PSWQ measures. We found no specificity of IU, over STAI 

and PSWQ measures for the CS+ vs. CS- early and late extinction difference scores 

(see Table 2). However, we did find specificity for IU, over and above the STAIX-2 

and PSWQ measures for CS- early – CS – late extinction difference scores (see 

Table 2). 
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Figure 4. Bar graphs depicting IU differences at ±1 SD from the estimated means 

during early and late fear extinction. Low IU scores were associated with 

significantly greater SCR magnitude responses to CS+ vs. CS- in early extinction, 

and no differences between stimuli in late extinction, suggesting typical fear 

expression and extinction respectively. High IU scores were associated with no 

SCR magnitude discrimination between CS+ and CS- in early extinction, but did 

show SCR magnitude discrimination between CS+ and CS- in late extinction, as 

well as a reduction in SCR magnitude to CS- in early vs. late extinction, suggesting 

threat generalization and compromised safety learning.  
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Table 2.                     

Summary of hierarchical regression analysis of anxiety measures predicting extinction difference scores  

 CS+ - CS- Early Extinction   CS+ - CS- Late Extinction   CS- Early Extinction - CS- Late Extinction  

Predictors B SE B β R
2
 F ∆ R

2
   B SE B β R

2
 F ∆ R

2
   B SE B β R

2
 F ∆ R

2
 

                     

Step 1    0.074 1.232 0.074     0.061 1.008 0.061     0.089 1.7 0.089 

  STAI 0.003 0.003 -0.39     0.006 0.004 0.322     0.007 0.004 0.439    

  PSWQ -0.006 0.004 0.258     -0.002 0.004 -0.125     -0.005 0.003 -0.377    

                     

Step 2    0.12 1.571 0.046     0.073 0.386 0.012     0.298 10.124 0.209* 

  STAI -0.001 0.006 -0.086     0.003 0.006 0.167     -0.002 0.005 -0.123    

  PSWQ 0.003 0.003 0.255     -0.002 0.004 -0.124     -0.006 0.003 -0.45    

  IU -0.003 0.002 -0.371     0.002 0.003 0.188     0.006 0.002 0.77    

                                          

                     

Note: * p < .01; ** p > .001 
              

  
            



59 
 

2.5 Discussion  

In the present study, we show: (1) successful fear conditioning using a 

developmentally appropriate design and, (2) that self-reported IU, a personality trait 

implicated in the maintenance of anxiety and depression (Carleton et al., 2013; 

Gentes & Ruscio, 2011; Grupe & Nitschke, 2013; McEvoy & Mahoney, 2012; 

Whalen, 2007), predicts elevated fear expression to both learned threat and safety 

cues.  

 

2.5.1 Comparison of findings with the existing fear extinction literature 

Consistent with previous research (Delgado et al., 2008; Gazendam et al., 

2013; LaBar et al., 1998; Milad et al., 2007; Phelps et al., 2004; Schiller et al., 2009; 

Soliman et al., 2010), we found a general effect of conditioning for participants, as 

shown by greater uneasiness ratings and SCR magnitude to the learned threat vs. 

safety cues during fear extinction. These results suggest that successful conditioning 

can be achieved when using developmentally appropriate design (e.g. a less 

aversive CS such as a sound stimulus), similar to that of past fear conditioning work 

in developmental samples (Haddad et al., 2011; Lau et al., 2011; Neumann et al., 

2008; Pattwell et al., 2011; Pattwell et al., 2012).  

Expanding previous research on individual differences in anxious disposition 

(Barrett & Armony, 2009; Dunsmoor et al., In press; Gazendam et al., 2013; Indovina 

et al., 2011; Sehlmeyer et al., 2011), we found the temporality of fear extinction to 

vary substantially, depending on individual differences in IU. Low IU was associated 

with larger SCR magnitude to learned threat cues, relative to safety cues during 

early extinction, and no differences in SCR magnitude between learned threat and 
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safety cues during late extinction, suggesting successful fear extinction. However, 

high IU was associated with increased SCR magnitude to both learned threat and 

safety cues during early extinction and larger SCR magnitude to learned threat cues, 

relative to safety cues in late extinction. Furthermore, high IU was uniquely 

associated with a reduction in SCR magnitude to learned safety cues from early to 

late extinction. This latter effect was specific to IU, over STAIX-2 and PSWQ 

measures. Taken together, these results suggest that intolerance of uncertainty may 

play an important role in disrupting fear extinction processes. 

 

2.5.2 Limitations  

Self-reported uneasiness ratings were not found to reflect individual 

differences in IU in our sample. Differences between self-reported and 

psychophysiological measures are often reported, perhaps due to lack of sensitivity 

of self-report metrics to capture such individual differences. Psychophysiological 

indices during fear extinction were better predicted by IU, over self-reported 

uneasiness ratings. Such findings suggest IU as a more suitable predictor of 

psychophysiological responses during fear extinction than moment-to-moment 

subjective ratings of uneasiness which only capture felt changes in state. However, 

the lack of relationship between psychophysiological and subjective ratings may be 

simply due to the time between phasic cue events and rating periods, suggesting 

that these measures may be related to different processes.  

We found no evidence of IU predicting differential psychophysiological 

responses during fear acquisition for the threat and safety cues. However, we used a 

100% reinforcement schedule in the acquisition phase, where the CS+ and US are 
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confounded. Furthermore, the 100% reinforcement schedule is very certain and 

unambiguous. Therefore, high IU individuals are not generally more aroused to the 

US and do not generalise fear to CS- cues during acquisition, at least during 100% 

reinforcement.  

 

2.5.3 Conclusions 

In conclusion, the findings from this study inform us that the adapted classic 

fear conditioning experiment for developmental samples can induce successful 

conditioning and capture individual differences in IU. With regards to anxious 

disposition and fear extinction in adults, high IU was associated with elevated fear 

expression to both threat and safety cues during early extinction, and continued fear 

expression to threat cues during late extinction. Moreover, IU was the best predictor 

of compromised fear extinction over other general measures of anxiety such as the 

STAI and PSWQ. These findings suggest a critical role of uncertainty-based 

mechanisms in the maintenance of learned fear.  
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3. Neural and psychophysiological 

correlates of adult fear extinction and 

individual differences in intolerance of 

uncertainty 

 

3.1 Abstract 

Extending Chapter 2, we assessed whether past psychophysiological and neural 

findings of fear extinction could be replicated in adults within the scanning 

environment. In addition, we sought to determine whether individual differences in IU 

underlie compromised recruitment of fear extinction circuitry. 22 healthy subjects 

completed a cued fear conditioning task with acquisition and extinction phases. 

During the task, pupil dilation, skin conductance response, and functional magnetic 

resonance imaging were acquired. We assessed the temporality of fear extinction, 

by splitting the extinction phase into early and late extinction. Threat uncertainty 

sensitivity was measured using self-reported intolerance of uncertainty (IU). Across 

fear extinction, participants had greater skin conductance response and activated 

right amygdala and vmPFC activity subthreshold to the learned threat vs. safety cue. 

Similarly to Chapter 2, the temporality of fear extinction varied substantially with 

individual differences in IU. During early extinction, we found that low IU scores were  

associated with larger skin conductance responses and right amygdala activity to 
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threat vs safety cues, whereas high IU scores were associated with no skin 

conductance discrimination and greater activity within the right amygdala to 

previously learned safety cues. In late extinction, low IU scores were associated with 

successful inhibition of threat cues, reflected in comparable skin conductance 

response and right amgydala activity to threat vs. safety cues, whilst high IU scores 

were associated with continued fear expression to learned threat, indexed by larger 

skin conductance and amygdala activity to threat vs. safety cues. In addition, high IU 

scores were associated with greater vmPFC activity to threat vs. safety cues in late 

extinction. Similar patterns of IU and extinction learning were found for pupil dilation. 

The results were specific for IU and did not generalise to self-reported STAI or 

PSWQ. Overall, the neural and psychophysiological patterns observed here suggest 

that the designed experiment can capture adult fear extinction behaviour and 

individual differences in anxious disposition, particularly IU. Furthermore, these 

results suggest that high IU is associated with the generalization of threat during 

uncertainty, which subsequently compromises fear extinction. These findings are in 

line with psychophysiological results from Chapter 2, further highlighting the 

importance of uncertainty-based mechanisms in the maintenance of learned fear.  

 

3.2 Introduction 

In Chapter 2, we demonstrated that: (1) common psychophysiological findings 

of fear extinction could be replicated in adults and, (2) psychophysiological indices of 

fear extinction were predicted by individual differences in IU. More specifically, high 

IU was characterised by elevated fear expression to both threat and safety cues 

during early extinction, and continued fear expression to threat cues during late 
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extinction. Taken together these findings suggest that high IU individuals may be 

prone to threat generalization and deficient safety learning during extinction. In the 

current Chapter, we aim to extend our understanding of previous findings in Chapter 

2. Firstly, we aim to investigate whether common psychophysiological and neural 

findings of fear extinction can be replicated in the scanning environment on adults. 

Secondly, we aim to investigate whether individual differences in IU underlie 

compromised recruitment of fear extinction circuitry.   

 

3.2.1 Critical neural circuitry underpinning fear extinction 

Past animal and human research using classical fear conditioning paradigms 

has demonstrated an important role of the amygdala in fear acquisition and 

expression, and of the ventromedial prefrontal cortex (vmPFC) in fear extinction 

(Büchel et al., 1998; LaBar et al., 1998; Milad et al., 2007). During fear acquisition, 

heightened amygdala activity and increased skin conductance has been observed in 

response to previously neutral cues that, through conditioning, have come to be 

associated with aversive outcomes (conditioned stimulus, CS+, e.g. shock or tone) 

(Büchel et al., 1998; Knight, Smith, Cheng, Stein, & Helmstetter, 2004; Neumann et 

al., 2008). Subsequent extinction training, which involves repeated presentations of 

the CS+ without the aversive outcome, results in reduced amygdala and skin 

conductance responsivity over time (Gazendam et al., 2013; Knight et al., 2004; 

LaBar et al., 1998). The vmPFC is critical for the fear extinction process and the 

observed reduction in amygdala and skin conductance responses to the CS+ over 

time (Milad & Quirk, 2012). For example, stimulation of the infralimbic cortex in rats, 

an area homologous to the human vmPFC, reduces responsiveness of amygdala 
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neurons and defensive freezing behaviour to conditioned tones (Milad & Quirk, 

2002). In both humans and animals, increased vmPFC activity to the CS+ has been 

observed in late extinction phases (Milad et al., 2009; Milad et al., 2007), and during 

subsequent extinction sessions, conducted a few days after initial fear acquisition 

(Kalisch, Korenfeld, et al., 2006; Phelps et al., 2004).  

 

3.2.2 Psychophysiological and neural correlates of fear extinction and the role 

of anxious disposition  

A large body of research using fear extinction paradigms has shown that 

individuals with anxiety/trauma disorders are prone to delayed fear extinction or even 

resistance to fear extinction (for reviews see, (Etkin & Wager, 2007; Graham & 

Milad, 2011; Milad & Quirk, 2012)). For example, compared to healthy controls, 

anxiety patients show elevated autonomic nervous system and amygdala responding 

and reduced recruitment of the vmPFC, to both threat and safety cues at the start of 

extinction, and to threat cues across fear extinction (Blechert et al., 2007; Michael et 

al., 2007; Milad et al., 2008; Milad et al., 2009). A series of recent studies has also 

shown that individuals with high trait anxiety and genetic predisposition for anxiety 

exhibit: (1) exaggerated autonomic nervous system responding to both threat and 

safety cues in the early phase of extinction learning (Gazendam et al., 2013), and (2) 

sustained autonomic nervous system responding, sustained amygdala activation and 

atypical activation in the medial prefrontal cortex to threat cues from the early to late 

phase of fear extinction (Barrett & Armony, 2009; Gazendam et al., 2013; Sehlmeyer 

et al., 2011; Soliman et al., 2010). Genetic evidence also points to similar temporal 

patterns of delayed fear extinction and increased risk for anxiety in both homozygote 
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and heterozygote Met allele carriers of the brain-derived neurotrophic factor (BDNF) 

Val66Met genotype in mice (Chen et al., 2006; Soliman et al., 2010; Yu et al., 2009) 

and humans (Felmingham, Dobson-Stone, Schofield, Quirk, & Bryant, 2013; Soliman 

et al., 2010). Furthermore, both the phenotypic and genetic results in mice and 

humans appear to be specific to fear extinction rather than fear acquisition (Barrett & 

Armony, 2009; Chen et al., 2006; Dunsmoor, Åhs, & LaBar, 2011; Felmingham et al., 

2013; Indovina et al., 2011; Sehlmeyer et al., 2011; Soliman et al., 2010; Torrents-

Rodas et al., 2013; Yu et al., 2009) but see (Gazendam et al., 2013; Indovina et al., 

2011), suggesting that individuals prone to developing an anxiety disorder have 

difficulty inhibiting learned threat cues and have a tendency to generalise threat to 

safety cues, rather than being more readily or strongly conditioned (Dunsmoor, Åhs, 

et al., 2011; Lissek et al., 2005).  

As noted in Chapter 2, simple changes to contingency during fear extinction 

are inherently uncertain and ambiguous. Despite this, the majority of fear extinction 

studies have focused predominantly on self-reported trait anxiety (Barrett & Armony, 

2009; Gazendam et al., 2013; Sehlmeyer et al., 2011) rather than self-reported IU 

(Dunsmoor et al., In press). IU is defined as a difficulty in accepting the possibility of 

future negative events, rendering ambiguous, uncertain or even neutral cues as 

threatening. In the context of fear extinction, changes to contingency may 

exacerbate future threat uncertainty. Indeed, in Chapter 2, we found high IU scores 

to be associated with equally high skin conductance to learned threat and safety 

cues, suggesting generalization of learned threat to safety cues. Furthermore, in late 

extinction learning, high IU scores were associated with continued fear expression to 

learned threat, indexed by larger skin conductance responses to learned threat vs. 
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safety cues. In addition, we found some evidence of specificity for IU in predicting 

fear extinction, over and above other anxious disposition measures. Given the 

findings outlined above, it seems pertinent to further examine whether: (1) the IU 

psychophysiological findings in Chapter 2 are supported by aberrant recruitment of 

amygdala-vmPFC circuitry during fear extinction, and (2) IU continues to be a more 

sensitive measure of compromised fear extinction over other broader measures of 

trait anxiety.   

 

3.2.3 Design and predictions 

In this Chapter, we used cued fear conditioning with acquisition and extinction 

phases to assess: (1) whether psychophysiological and neural findings from past 

fear extinction studies can be replicated using a classic paradigm adapted for 

developmental populations within the scanning environment, and (2) the relationship 

between individual differences in self-reported IU and in psychophysiological and 

neural correlates of fear extinction (same experimental design as in Chapter 2). We 

measured event-related fMRI, skin conductance response (SCR), pupil dilation and 

behavioural ratings whilst participants performed the conditioning task.  

Building upon the hypotheses from Chapter 2, we expected that during fear 

extinction, participants would exhibit greater uneasiness ratings, skin conductance, 

pupil dilation, amygdala and vmPFC activity to the learned threat vs. safety cues, 

evidencing successful conditioning and extinction respectively. We further 

hypothesised that, during fear extinction, threat uncertainty sensitivity would predict 

generalised fear expression to both learned threat and safety cues, and/or sustained 

fear expression to learned threat cues. Given our previous findings in Chapter 2, we 
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expected this effect to be indexed by: (1) Larger responses in high IU individuals to 

both learned threat and safety cues in early fear extinction, across our physiological 

and behavioural measurements, including relatively higher amygdala activation; (2) 

sustained larger responses across measures in high IU individuals to learned threat 

cues vs. safety cues during late fear extinction. We further predicted (3) an 

association between vmPFC activation and the management of responses to threat 

vs. safety cues during extinction in low IU individuals. We tested the specificity of the 

involvement of IU by comparing it with broader measures of anxiety, such as STAIX-

2 (Spielberger et al., 1983) and PSWQ (Meyer et al., 1990). 

 

3.3 Methods  

3.3.1 Participants 

Twenty-two right-handed volunteers were recruited from the University of 

Reading and local area through advertisements (M age = 23.59, SD age = 2.75; 12 

females & 10 males). The sample size was based on previous fear extinction studies 

conducted in the MRI environment (Milad et al., 2007; Phelps et al., 2004) and power 

analysis guidelines for fMRI (Mumford, 2012). All participants had normal or 

corrected to normal vision and were medication-free. Participants provided written 

informed consent and received a picture of their brain and £20 for their participation. 

The University of Reading’s Research Ethics Committee approved by the study 

protocol. 
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3.3.2 Conditioning task 

We used the same fear conditioning experiment as in Chapter 2 (see Chapter 

2, Methods, Conditioning task and Figure 3). Visual stimuli were presented through 

MRI-compatible VisualSystem head-coil mounted eye goggles (Nordic Neuro Lab, 

Bergen, Norway), which displayed stimuli at 60 Hz on an 800 × 600 pixel screen. 

Sound stimuli were presented through MRI-compatible AudioSystem headphones 

(Nordic Neuro Lab, Bergen, Norway). Participants used an MRI-compatible response 

box with their dominant right hand to respond. 

 

3.3.3 Procedure 

 Participants arrived at the laboratory and were informed of the experimental 

procedures. First, participants completed a consent form as an agreement to take 

part in the study. Second, a hearing test was performed with an audiometer to check 

for normative hearing (e.g.500-8000 Hz, below 30 dB). Third, participants completed 

a battery of cognitive tasks (results not reported here) and questionnaires on a 

computer outside of the scanner. Next, participants were taken to the MRI unit. We 

used a conditioning task inside the scanner, whilst concurrently recording ratings, 

electrodermal activity and pupil dilation. Participants were simply instructed to: (1) 

maintain attention to the task by looking and listening to the coloured squares and 

sounds presented, (2) respond to the uneasiness scale using the button box and (3) 

to keep as still as possible.  After scanning, participants rated the sound stimulus 

outside of the scanner.   
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3.3.4 Questionnaires 

The same questionnaires were presented from Chapter 2 (see Chapter 2, 

Methods, Questionnaires). Again, we focused on IU because of the intrinsic 

uncertainty within conditioning paradigms. Similar distributions and internal reliability 

of scores were found for the anxiety measures, IU (M = 53.04; SD = 15.68; range 27-

85; α = .90), STAIX-2 (M = 40.33; SD = 7.92; range = 27-53; α = .85) and PSWQ (M 

= 41.47; SD = 11.10; range = 20-65; α = .90).  

 

3.3.5 Sound stimulus rating 

Participants rated the valence and arousal of the sound stimulus using 9 point 

Likert scales ranging from 1 (Valence: negative; Arousal: calm) to 9 (Valence: 

positive; Arousal: excited). 

 

3.3.6 Behavioural data scoring and reduction 

 Ratings data from the conditioning task were reduced for each participant by 

calculating their average responses for each experimental condition. Missing data 

points were excluded. 

  

3.3.7 Physiological data acquisition and reduction 

Electrodermal recordings were obtained using AD Instruments (AD 

Instruments Ltd, Chalgrove, Oxfordshire) hardware and software. An ML138 Bio 

Amp connected to an ML870 PowerLab Unit Model 8/30 amplified the EDA signal, 

which were digitised through a 16-bit A/D converter at 1000 Hz. EDA was measured 

during the scanning session with MRI-safe MLT117F Ag/AgCl bipolar finger 



71 
 

electrodes filled with NaCl electrolyte paste (Mansfield R & D, St Albans, Vermont, 

USA) that were attached to the distal phalanges of the index and middle fingers of 

the left hand. A constant voltage of 22mVms at 75 Hz was passed through the 

electrodes, which were connected to a ML116 GSR Amp. Skin conductance 

responses (SCR) were scored when there was an increase of skin conductance level 

exceeding 0.03 microSiemens. The amplitude of each response was scored as the 

difference between the onset and the maximum deflection prior to the signal 

flattening out or decreasing. SCR onsets had to be within 7 seconds following each 

trial to be included. We used an extended SCR scoring window because the 

temporal signature of an aversive sound US may be more ambiguous than a 

traditional electric shock US, this SCR scoring window length is in line with previous 

fear conditioning studies that have used aversive sound stimuli as the US in both 

adults (Büchel et al., 1998; Soliman et al., 2010) and adolescents (Pattwell et al., 

2012). 

Trials with no discernible SCRs were scored as zero. The first trial of each 

experimental phase was excluded, to reduce contamination of averages from the 

orienting response. SCR amplitudes were square root transformed to reduce skew. 

Trials with motion artefacts were discarded from the analysis. SCR magnitudes were 

calculated from remaining trials by averaging SCR square root transformed values 

for each condition.  

Pupil dilation was recorded at a sample rate of 60 Hz through a built-in 

infrared camera on the head-coil mounted eye goggles (Nordic Neuro Lab, Bergen, 

Norway). Pupil dilation data was averaged for each 1000 ms window following 

stimulus onset, resulting in 5 windows of 1000 ms each. These data were baseline 
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corrected by subtracting 1000 ms preceding each stimulus onset from a blank 

screen. Trials were averaged per condition and time window for each participant.   

 

3.3.8 Learning assessment 

Similarly to Chapter 2, we assessed whether participants learned the 

association between the neutral cue and aversive sound, by calculating conditioned 

response scores for behavioural ratings, pupil dilation and SCR magnitude in 

extinction. The conditioned response score was the first 2 CS+ trials – the first 2 CS- 

trials. A positive score indicated a larger response for CS+ vs. CS-, indexing 

successful conditioning. This type of learning assessment procedure is commonly 

reported in the fear extinction literature (Dunsmoor et al., In press; Milad et al., 2009; 

Milad et al., 2007; Phelps et al., 2004). To reduce subject attrition, we labelled 

subjects as learners if they had a positive conditioned response score for any 

measure. Based on the learning assessment criterion, we identified four potential 

non-learners out of the 22 participants. Since removing the data of these 4 subjects 

did not change the results reported here2, we retained the data of all participants. 

 

3.3.9 Ratings and psychophysiology analysis 

Conditioning effects and IU differences across extinction were assessed by 

conducting a Condition (CS+, CS-) x Time (Early, Late) x IU repeated measures 

ANCOVA for behavioural ratings, SCR magnitude and pupil dilation. IU was entered 

                                                                 
2
 Results do not change when non-learners are removed: The main effect of Condition for SCR 

magnitude during fear extinction, without non-learners F(1,10) = 7.624, p =.020. Condition x Time x IU 
interaction for SCR magnitude during fear extinction without non-learners, F(1,10) = 8.380, p = .016. 
Extinction CS+ - CS- difference scores for early and late extinction in the right amygdala correlated 

with IU: Early extinction without non-learners, r(15) = -.66, p = .003,. Late extinction without non-
learners, r(15) = .71, p = .001. 
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as a continuous mean centered predictor variable. The early part of extinction was 

defined as the first eight CS+ and eight CS- trials, and the last part of extinction was 

defined as the last eight CS+ and eight CS- trials. For pupil dilation, which was 

based on second-by-second averaging, we also included the factor Window with 5 

levels representing seconds post-stimulus onset. We performed follow-up pairwise 

comparisons on the estimated marginal means, adjusted for IU. Any interaction with 

IU was followed up with pairwise comparisons of the means between the conditions 

for IU estimated at the specific values of + or - 1 SD of mean IU. These data are 

estimated from the ANCOVA of the entire sample, not unlike performing a simple 

slopes analysis in a multiple regression analysis. To check for specificity of findings 

with IU in extinction, we conducted a Condition (CS+, CS-) x Window x IU repeated 

measures ANCOVA on behavioural ratings, SCR magnitude and pupil dilation 

obtained in the acquisition phase.  

We performed hierarchical regression analyses on the resulting significant 

SCR magnitude and pupil dilation difference scores (CS+ - CS- early; CS+ - CS- 

late; CS+ early – CS+ late; CS- early – CS- late) for extinction and the anxiety 

measures to test for IU-specific effects. We entered STAIX-2 and PSWQ in the first 

step and then IU in the second step.   

 

3.3.10 MRI 

Participants were scanned with a 3T Siemens Trio set up with a 12 channel 

head coil (Siemens Inc., Erlangen, Germany). Three T2*-weighted echo planar 

imaging (EPI) functional scans were acquired for each phase of the conditioning task 

consisting of 161, 208, and 380 volumes respectively (TR = 2000 ms, TE = 30 ms, 
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flip angle = 90°, FOV = 192 × 192 mm, 3 × 3 mm voxels, slice thickness 3 mm with 

an interslice gap of 1 mm, 30 axial slices, interleaved acquisition).  

Following completion of the functional scans, fieldmap and structural scans 

were acquired, which comprised of a high-resolution T1-weighted anatomical scan 

(MP-RAGE, TR = 2020 ms, TE = 2.52 ms, flip angle = 90°, FOV = 256 × 256 mm, 1 

x 1 x 1 mm voxels, slice thickness 1 mm, sagittal slices), two fieldmaps (TR = 488 

ms, TE 1 = 4.98 ms, TE 2 = 7.38 ms, flip angle = 60°, FOV = 256 × 256 mm, slice 

thickness 4 mm with an interslice gap of 4 mm, 30 axial slices) and diffusion 

weighted images, which will not be further discussed here (TR = 6800ms, TE = 93 

ms, flip angle = 60°, FOV = 192 × 192 mm, slice thickness 2 mm with an interslice 

gap of 2 mm, b-value =1000, 64 axial slices, 30 diffusion gradients). 

 

3.3.11 fMRI analysis 

 FMRI analyses were carried out in Feat version 5.98 as part of FSL (FMRIB's 

Software Library, www.fmrib.ox.ac.uk/fsl). Brains were extracted from their 

respective T1 images by using the FSL Brain Extraction Tool (BET) (Smith, 2002). 

Distortion, slice timing and motion correction were applied to all extracted EPI 

volumes using FUGUE and MCFLIRT tools. Gaussian smoothing (FWHM 5mm) and 

a 50 second high pass temporal filter were applied.  

 A first-level GLM analysis was carried out for each functional scan run from 

acquisition and extinction. Separate regressors were specified for the experimental 

conditions of primary interest in each learning phase (acquisition: CS+/CS-, 

extinction: CS+ /CS-) by convolving a binary boxcar function with an ideal 

haemodynamic response (HR), which corresponded to the length of each trial (1500 

http://www.fmrib.ox.ac.uk/fsl
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ms). Regressors for the uneasiness rating period and six motion parameters were 

included to model out brain activity that was unrelated to the conditions of interest.  

We defined two main effect contrasts to reveal fear extinction-related activity. 

To examine temporal effects across extinction, we contrasted (CS+ vs. CS-)EARLY> 

(CS+ vs. CS-)LATE. We defined early extinction as the first eight trials for CS+ and 

CS- and the last eight trials for CS+ and CS-. Particular focus is given to the 

temporal effects across extinction, given our predictions. We also examined the 

overall effect of CS+ vs. CS- during extinction for comparison against the extant 

literature. All contrasts were normalised and registered to MNI standard space using 

FLIRT (Jenkinson, Bannister, Brady, & Smith, 2002). Second-level GLM analysis 

consisted of regressors for the group mean and demeaned IU scores using FSL's 

FLAME stage 1 + 2 procedure. Whole-brain analysis was carried out using cluster 

thresholding with a z = 2.3 and a corrected p < 0.05.  

We were specifically interested in the extent to which IU scores would be 

associated with the BOLD response in the amygdala and vmPFC for early and late 

extinction phases. Therefore, we performed small volume corrections on the left 

amygdala, right amygdala and vmPFC using cluster thresholding with a z = 2.3 and a 

corrected p < 0.05 on the IU x (CS+ vs. CS-)EARLY> (CS+ vs. CS-) LATE extinction 

contrast map. We used anatomically defined masks from the Harvard-Oxford cortical 

and subcortical structural atlases in FSL (Desikan et al., 2006). We selected the left 

amygdala, right amygdala and frontal medial cortex regions with a 50% probability 

threshold. For control purposes we also applied small volume corrections within the 

left amygdala, right amygdala and vmPFC on the IU x acquisition CS+ vs. CS-and 

the IU x extinction CS+ vs. CS- contrast maps.  
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To assess fear expression correspondence between the amygdala and 

psychophysiology measures, we correlated percent BOLD signal response from 

significant amygdala regions and SCR magnitude/pupil di lation. 

We performed hierarchical regression analyses on the resulting statistical a 

priori regions of interest difference scores from extinction (CS+ - CS- early; CS+ - 

CS- late; CS+ early – CS+ late; CS- early – CS- late) and the anxiety measures to 

test for IU-specific effects, STAIX-2 and PSWQ in the first and then IU in the second 

step.   

 

3.4 Results 

1 participant’s data were removed from all analyses due to having an extreme 

IU score that was +3 SD from the group mean. 

 

3.4.1 Questionnaires 

 As expected, the anxiety measures were positively correlated with each other, 

suggesting shared variance, IU with PSWQ, r(19) = .590, p = .005, IU with STAIX-2, 

r(19) = .619, p = .003, and PSWQ with STAIX-2, r(19) = .657, p = .001. 

 

3.4.2 Ratings 

Participants rated the sound stimulus serving as US as negative (M = 3.52, 

SD = 1.63) and moderately arousing (M = 5.23, SD = 2.14). With respect to the 

uneasiness ratings (on a scale from 1-10), a main effect of Condition was found for 

acquisition across all individuals, F(1,19) = 13.394, p = .002 . During acquisition, 

participants significantly reported feeling more uneasy for the CS+ relative to the CS- 
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trials, p = .002 (for descriptive statistics, see Table 3). We found no effect of 

Condition or Condition x Time for the uneasiness ratings during extinction, p’s >.1, 

F’s < 1 (see Table 3). Results revealed no IU differences for uneasiness ratings for 

any of the experimental phases, p’s >.3, F’s >.1, max F = 1.015. 
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Table 3.            

Summary of means (SD) for each dependent measure as a function of condition and phase. 

 Acquisition  Extinction  Early Extinction  Late Extinction 

Measure CS+ CS-   CS+ CS-   CS+ CS-   CS+ CS- 

            

Physiological             

   Square root transformed 
SCR magnitude (μS) .27 (.17)

b
 .13 (.11)

a
 

 

.16 (.13)
d
 .13 (.12)

c 

 

.20 (.17) .14 (.11) 

 

.13 (.14) .11 (.14)    

  Pupil dilation (Δmm) -.023 (.010)  -.024.(.010)   -.025 (.008)  -.024.(.013)   -.027.(.015)  -.026.(.018)   -.023.(.008)  -.023.(.022) 

            

Behavioural            

   Uneasiness rating (1-9) 3.61 (1.93)
b
 2.09 (1.50)

a
  1.67 (1.23)  1.75 (1.32)  1.84 (1.27)  1.88 (1.42)  1.49 (1.38)  1.41 (1.31) 

                        

            
Note: SCR magnitude (μS), skin conductance magnitude measured in microSiemens. Pupil dilation (Δmm) measured in delta millime ters. Significant comparisons are specified with * 
= p<.05, and ** = p < .01.  Superscripts indicate significant (p <.05) condition difference from: 

a
 Acquisition CS+, 

b
 Acquisition CS-, 

c
 Extinction CS+, 

d
 Extinction CS-, 

e
 Early 

Extinction CS+,
 f
 Early Extinction CS-, 

g
 Late Extinction CS+, 

h
 Late Extinction CS-. 
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3.4.3 SCR magnitude 

 7 subjects were removed from the SCR magnitude analysis due to 6 subjects 

not responding, which is not uncommon when recorded in an MRI setting (see 

Methods), and 1 subject with a recording error.  

As expected, larger SCR magnitudes were found for CS+ vs. CS- during 

acquisition, F(1,12) = 14.376, p = .003  (see Table 3) but there was no interaction 

between Condition x IU, F(1,12) = .564, p = .467. 

During extinction, we found greater SCR magnitude for the CS+ vs. CS-, 

F(1,12) = 5.369, p =.039 (see Table 3), but no significant interaction effect between 

Condition and Time, F(1,12) = 1.711, p = .215. However, as predicted, we found a 

significant Condition x Time x IU interaction, F(1,12) = 8.782, p = .012. Further 

inspection of follow-up pairwise comparisons for early vs. late extinction at IU ±1 SD 

from the mean revealed that at the low IU end (1 SD below the IU mean) is 

associated with the commonly reported extinction pattern, including discrimination 

between CS+ and CS- in early extinction, p = .026, but no significant differences 

between CS+ and CS- in late extinction, p = .139 (see Fig. 5a). Furthermore, low IU 

is associated with a reduction in SCR magnitude to the CS+ from early to late 

extinction, p = .006, but not to the CS- from early to late extinction, p = .425. High IU 

(captured at 1 SD above the mean) is associated with the opposite pattern, with no 

significant differences between CS+ and CS- in early extinction, p = .586, but 

discrimination between CS+ and CS- in late extinction, p = .014 (see Fig. 5a). In 

addition, high IU is not associated with differences in SCR magnitude between CS+ 

from early to late extinction, p = .525, and CS- from early to late extinction, p = .582. 
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No other significant main effects or interactions were found with IU, max F = 3.552, 

p’s >.08.   

We conducted hierarchical regression analyses on the effects that were 

significant in the ANCOVA above, creating difference scores by subtracting response 

to CS- from CS+. Hierarchical regression analyses of early and late SCR magnitude 

difference scores in extinction revealed mixed specificity with IU over the STAIX-2 

and PSWQ measures: (1) CS+ - CS- early extinction, first step: R2=.409, F(2,11) = 

1.108, p= .364, second step: ΔR2=.419, F(1,10) = .101, p= .757, (2) CS+ - CS- late 

extinction, first step: R2=.390, F(2,11) = .986, p= .404, second step: ΔR2=.755, 

F(1,10) = 9.737 p= .011, and (3) CS+ early – CS+ late extinction, first step: R2=.620, 

F(2,11) = 3.426, p= .70, second step: ΔR2=.664, F(1,10) = 1.023, p= .336.  

 

3.4.4 Pupil dilation 

One subject was removed from the pupil dilation analysis due to a recording 

error, leaving 20 participants. No effect of acquisition or extinction was found for the 

whole sample, p’s >.1, F’s < .2, Max F = 1.615 (see Table 3). We found a significant 

Condition x Time x IU interaction for pupil dilation during extinction, F(1,18) = 7.921, 

p = .011. Follow-up pairwise comparisons for early vs late at IU ±1 SD from the 

mean showed this effect to be driven by high IU scores, which were associated with 

greater relative pupil constriction for CS- relative to CS+ at trend during early 

extinction, p = .052, but did not display significant differences between CS+ and CS- 

in late extinction, p = .134 (see Fig. 5b). Furthermore, high IU was characterised by 

an increase in pupil constriction to the CS+ from early to late extinction at trend, p = 

.057, but not to the CS- from early to late extinction, p = .167. Low IU scores (1 SD 
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below the mean) were not associated with significant differences between condition 

and time, p’s > .065 (see Fig. 5b). No other significant interactions were found with 

IU, p’s >.1, Max F = 1.817.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Bar graphs depicting IU differences ±1 SD from the estimated means 

during early and late extinction learning. (A) SCR magnitude and (B) pupil 

dilation. Low IU were associated with significantly greater SCR magnitude 

responses to CS+ vs. CS- in early extinction, and no differences between stimuli 

in late extinction. High IU scorers showed no differences in SCR magnitude to 

CS+ and CS- stimuli in early extinction, and delayed discrimination in SCR 

magnitude to CS+ vs. CS- in late extinction. The pupil dilation results followed a 

similar pattern to the SCR magnitude results, albeit at trend. SCR magnitude 

(μS), skin conductance magnitude measured in microSiemens; Pupil dilation 

(Δmm) measured in delta millimeters.  
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Following up on the significant effects from the ANCOVA above, hierarchical 

regression analyses of early and late pupil dilation difference scores in extinction 

revealed specificity for IU over the STAIX-2 and PSWQ measures: (1) CS+ - CS- 

early extinction, first step: R2=.246, F(2,17) = .547, p= .589, second step: ΔR2=.646, 

F(1,16) = 9.772, p= .007, (2) CS+ early – CS+ late extinction, first step: R2=.075, 

F(2,17) = .048, p= .953, second step: ΔR2=.476, F(1,16) = 4.565, p= .048.  

 

3.4.5 fMRI 

 Likely because we had large individual variation in response patterns during 

extinction, our whole-brain analyses did not yield significant BOLD differences in our 

a-priori brain regions of interest often reported in the extinction literature (Büchel et 

al., 1998; LaBar et al., 1998; Milad et al., 2007; Phelps et al., 2004). However, the 

CS+ > CS- contrast map revealed vmPFC (voxels = 21, max Z = 2.83, x = -2, y = 50, 

z = -10) and left amygdala (voxels = 3, max Z = 2.39, x = -16, y = -4, z = -12) clusters 

at sub-threshold, z = 2.0, p =.045. In addition, found greater lateral occipital cortex 

and parietal lobule activation across extinction for the CS+ > CS- (see Table 4), as 

well as greater occipital pole activation in early extinction for the CS+ > CS-, relative 

to late extinction for the CS+ > CS-, suggesting increased attention for the 

conditioned stimulus.  

As expected, areas within the right amygdala and the vmPFC significantly 

correlated with IU scores during extinction (see Table 4, Fig. 6 & 7). We performed 

follow up correlations, to identify the source of the interaction effect from the 

significant IU x (CS+ vs. CS-)EARLY> (CS+ vs. CS-) LATE contrast. During early 

extinction, higher IU predicted increased activation to the CS-, relative to CS+ for the 
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right amygdala cluster, r(19) = -.58, p = .005 (see Fig. 6). There were no significant 

effects of IU in the vmPFC cluster during early extinction however, r(19) = -0.106, p = 

.646. During late extinction, IU was positively associated with activation to the CS+ 

relative to the CS- for the right amygdala cluster, r(19) = .47, p = .030 (see Fig. 6), 

and, unexpectedly, for the vmPFC cluster, r(19) = .62, p = .002 (see Fig. 7). In 

addition, higher IU predicted relative higher right amygdala activity from CS- early to 

CS- late, r(19) = .631, p =.002, suggesting generalization of threat to the CS- at the 

start of extinction. All other condition and time difference scores were not significant 

for the right amygdala and vmPFC, p’s > .125. Furthermore, the BOLD response in 

areas associated with vigilance, such as the opercularcortex, cingulate gyrus, lateral 

occipital cortex and precentral gyrus, significantly differed over time as a function of 

IU scores during extinction (see Table 4). 

A hierarchical regression analysis confirmed the significant extinction 

difference scores from the right amygdala and vmPFC were specific to IU versus 

STAIX-2 and PSWQ; adding IU in the second step significantly improved the model: 

(1) right amygdala for CS+ - CS- early extinction, first step: R2=.191, F(2,18) = 

.2.123, p= .149, second step: ΔR2=.404, F(1,17) = 6.090, p= .025, (2) right amygdala 

for CS+ - CS- late extinction, first step: R2=.099, F(2,18) = .987, p= .392, second 

step: ΔR2=.237, F(1,17) = 3.067, p= .098, (3) right amygdala CS- early vs. CS- late 

extinction, first step: R2=.334, F(2,18) = 1.127, p= .346, second step: ΔR2=.642, 

F(1,17) = 8.692, p= .009, and (4) vmPFC for CS+ vs. CS- late extinction, first step: 

R2=.122, F(2,18) = 1.255, p= .309, second step: ΔR2=.396, F(1,17) = 7.694, p= .013.  

We found no significant effects of IU during acquisition on a whole-brain basis 

or within the a-priori ROIs. Furthermore, we found no significant effects of IU across 
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the entire extinction phase (early and late collapsed) on a whole-brain basis, nor 

within the a-priori ROIs.    
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Table 4        

Significant activation patterns in a priori regions of interest and other brain regions during extinction.  

        
Extinction Brain region BA Voxels Max Z Location of max Z 
   (mm³)  X y Z 

               

A priori regions        
   (CS+ > CS-)EARLY > (CS+ > 
CS-)LATE x IU R amygdala  33 2.96 26 -8 -12 
   (CS- > CS+)EARLY > (CS- > 
CS+)LATE x IU R L vmPFC 10 40 2.92 -8 42 -16 

        

Outside a priori regions        

   CS+ > CS- 
L lateral occipital cortex, inferior parietal 
lobule 7/39 439 3.31 -38 -60 44 

   (CS+ > CS-)EARLY > (CS+ > 
CS-)LATE R occipital pole 18 643 3.88 34 -94 2 
   (CS- > CS+)EARLY > (CS- > 
CS+)LATE R precentral gyrus, postcentral gyrus  3-4/6 504 3.49 38 -24 38 

   (CS- > CS+)EARLY > (CS- > 
CS+)LATE x IU 

Cingulate gyrus, juxtapositional lobule, 
precentral gyrus, postcentral gyrus, 
parietal lobule 3-7/40 4267 3.99 -2 -8 60 

   (CS- > CS+)EARLY > (CS- > 
CS+)LATE x IU R central opercular cortex 6 361 3.16 56 -2 6 
   (CS- > CS+)EARLY > (CS- > 
CS+)LATE x IU L parietal operculum cortex 40 304 3.16 -52 -28 14 
   (CS- > CS+)EARLY > (CS- > 
CS+)LATE x IU R parietal operculum cortex 40 292 3.33 56 -26 18 
   (CS- > CS+)EARLY > (CS- > 
CS+)LATE x IU L cerebellum  274 3.29 12 -70 -18 
   (CS- > CS+)EARLY > (CS- > 
CS+)LATE x IU R lateral occipital cortex 37 259 3.23 46 -60 -8 

        

Note: Clusters for small volume corrected a priori regions and whole brain corrected regions outside a priori regions corrected for multiple comparisons at p < 
0.05. BA = Brodmann Areas. Location of cluster's maximum Z are in MNI space. R = right; L = left. 
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Figure 6. A: Right amygdala small volume correction from the (CS- > CS+) EARLY 

> (CS- > CS+) LATE x IU contrast in extinction. B: Significant correlations between 

percent signal change in the right amygdala for CS+ – CS- and IU scores during 

early and late extinction. High IU was associated with threat-like responses in 

the amygdala to CS- in early extinction and to CS+ in late extinction. These 

findings suggest high IU scorers generalise threat when faced with uncertainty, 

resulting in compromised safety learning. MNI coordinates; R, right; L, left.  
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Figure 7. A: vmPFC small volume correction from the (CS- > CS+) EARLY > (CS- > CS+) 

LATE x IU contrast in extinction. B: Significant correlations between percent signal change 

in the vmPFC for CS+ – CS- and IU scores during early and late extinction. During late 

extinction, high IU scores were associated with increased recruitment of the vmPFC to 

the CS+, relative to the CS-, suggesting attempts to down regulate fearful associations. 

MNI coordinates; R, right; L, left.  
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Figure 8. Correlations between percent signal change in the right amygdala and 

psychophysiology measures. The response in the right amygdala is significantly 

correlated with SCR magnitude and at trend with pupil dilation, suggesting 

correspondence between measures of fear expression. SCR magnitude (μS), skin 

conductance magnitude measured in microSiemens; Pupil dilation (Δmm) 

measured in delta millimeters.  
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3.4.6 Relationships between right amygdala and psychophysiology 

 Percent BOLD signal difference (CS+ vs. CS-) in the right amygdala 

correlated positively with SCR magnitude during early, r(12) = .540, p = .046, 

and late extinction, r(12) = .652, p = .012.(see Fig. 8). Percent BOLD signal in 

the right amygdala was not correlated with pupil dilation during early extinction, 

r(18) = .540, p = .246, but did correlate positively during late extinction, r(18) = 

.540, p = .052 (see, Fig. 8).   

 

3.4.7 Relationships between a-priori ROIs and ratings 

Uneasiness rating difference scores for early and late fear extinction did 

not significantly correlate with percent BOLD signal difference scores for early 

and late extinction in the a-priori ROIs, p’s > .3. 

 

3.5 Discussion 

Here, we show: (1) successful fear conditioning in psychophysiological 

and neural indices using a developmentally appropriate design in the scanning 

environment on adult participants, (2) and self-reported IU, a personality trait 

implicated in the maintenance of anxiety and depressive disorders (Grupe & 

Nitschke, 2013; McEvoy & Mahoney, 2012; Whalen, 2007), predicts 

psychophysiological and neural recruitment during fear extinction. Importantly, 

these data replicate and extend our findings from Chapter 2, further suggesting 

IU to be associated with threat generalization and deficient safety learning. 

Furthermore, these results were specific to an association between extinction 
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and IU, and did not generalise to other anxiety measures (STAIX-2, PSWQ), or 

associative learning phases (acquisition).  

 

3.5.1 Comparison of findings with the existing fear extinction literature 

In line with past fear extinction studies within the scanning environment 

(Delgado et al., 2008; Milad et al., 2007; Phelps et al., 2004; Schiller et al., 

2009; Soliman et al., 2010), we found greater SCR magnitude to the learned 

threat vs. safety cues during fear extinction across participants. Similar patterns 

were observed in the amygdala and vmPFC subthreshold. However, we did not 

find such patterns for the uneasiness ratings or pupil dilation data. In general, 

these results suggest successful conditioning can be achieved in adults when 

using a developmentally adapted design with a milder CS+ (e.g. a sound 

stimulus), similar to that of past developmental research (Haddad et al., 2011; 

Lau et al., 2011; Neumann et al., 2008; Pattwell et al., 2011; Pattwell et al., 

2012).  

Similarly, to Chapter 2, we found the temporality of fear extinction to vary 

substantially with individual differences in IU. In early extinction low IU was 

characterised by discrimination of threat and safety cues, where SCR 

magnitude and right amygdala response was larger to threat cues, relative to 

safety cues. High IU, however, was associated with fear expression to both 

learned threat and safety cues in early extinction, indexed by indiscriminate 

SCR magnitude. Furthermore, high IU was associated with larger pupil dilation 

(at trend) and right amygdala activity to safety vs. threat cues in early extinction. 

During late extinction, low IU predicted reduced SCR magnitude and right 
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amygdala activity to threat vs. safety cues, suggesting successful fear 

extinction, in line with previous extinction research (Milad et al., 2009; Milad et 

al., 2007; Phelps et al., 2004). High IU predicted larger SCR magnitude, pupil 

dilation (at trend) and right amygdala to threat vs. safety cues during late 

extinction, suggesting sustained fear expression to learned threat cues. Taken 

together, these results replicate the psychophysiological results from Chapter 2.  

We found that high IU was associated with increased vmPFC activation 

in response to threat vs. safety cues in late extinction. Whilst this pattern was 

not predicted, it is similar to previous studies that report hyperactivity of the 

prefrontal cortex during fear extinction for trait anxious individuals (Barrett & 

Armony, 2009) and during emotion regulation tasks for depressed patients 

(Johnstone et al., 2007). Overall, these findings suggest that high IU is 

associated with slower discrimination of threat from safety cues, which 

subsequently compromises fear extinction. 

  

3.5.2 Specificity of intolerance of uncertainty 

Notably, we found the fear extinction results to be specific to IU, over 

other broader measures of trait anxiety and worry (STAIX-X2 and PSWQ). The 

specificity of IU was strongly supported by neural indices, and partially 

supported in SCR magnitude and pupil dilation. Crucially, these results suggest 

uncertainty to be an important factor in maintaining learned fearful associations 

and hindering the formation of new safety associations. Furthermore, these 

data provide initial evidence that uncertainty may be the driver behind previous 

trait anxiety and fear extinction findings (Barrett & Armony, 2009; Gazendam et 



92 
 

al., 2013; Sehlmeyer et al., 2011; Soliman et al., 2010). These results call for 

further study of the neural basis underlying uncertainty-based maintenance of 

anxiety, which may prove useful for clinicians in improving and developing 

therapies.  

 

3.5.3 Limitations 

We were unable to show main effects of fear extinction in the 

behavioural ratings and pupil dilation data, and only subthreshold in amygdala-

vmPFC circuitry. This could have occurred for a few different reasons. Firstly, 

the aversiveness of the CS (sound) would likely be reduced in the scanning 

environment due to scanner noise, which may have weakened effects of 

conditioning in these measures. Secondly, variation in pupil dilation and brain 

indices was strongly associated with IU, suggesting that perhaps high IU 

individuals are more sensitive to conditioning than low individuals, even when 

the CS is only mildly aversive.  

We found no evidence of IU predicting differential recruitment of brain 

regions or psychophysiological reactivity to threat and safety cues during fear 

acquisition. However, we used a 100% reinforcement schedule in the 

acquisition phase, where the CS+ and US are confounded. Similarly to Chapter 

2, we can conclude that high IU individuals are not generally more aroused to 

the US and do not generalise fear to CS- cues during acquisition, at least 

during 100% reinforcement.  

Individual differences in IU were reflected in physiological and brain 

indices during extinction. However, self-reported arousal ratings did not reflect 
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individual differences in IU in our sample. Interestingly, psychophysiological and 

neural indices during fear extinction were better predicted by IU, over self-

reported uneasiness ratings. Such findings suggest IU to be a more suitable 

predictor of psychophysiological and neutral activity during fear extinction than 

moment-to-moment subjective ratings of uneasiness. However, as noted in 

Chapter 2, the lack of relationship between neural activity and subjective ratings 

may be simply due to the time between phasic cue events and rating periods.  

 

3.5.4 Conclusions 

In conclusion, the findings from this study confirm that the adapted fear 

conditioning experiment for developmental samples can induce successful 

conditioning and capture individual differences in IU within an adult sample in 

the scanning environment. Furthermore, we found individual differences in IU to 

specifically predict fear extinction capacity and associated responsivity in 

psychophysiology and amygdala-vmPFC circuitry. These findings suggest 

reduced flexibility in amygdala-vmPFC circuitry for high IU individuals. 

Importantly, converging evidence from Chapter 2 and this Chapter, suggest a 

critical role of uncertainty-based mechanisms in the maintenance of learned 

fear.  
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4. A multimodal brain imaging 

investigation of fear extinction 

across adolescence and early 

adulthood 

 

4.1 Abstract 

Previous research in rodents and humans points to an evolutionarily conserved 

profile of blunted fear extinction during adolescence. Building upon work from 

Chapters 2 & 3, we sought to examine the developmental effects of age (n = 

55; age = 12-28 yrs) and IU upon fear extinction circuitry using functional and 

structural magnetic resonance imaging. We used a developmentally 

appropriate fear conditioning paradigm that was designed and tested previously 

in Chapters 2 & 3. During fear extinction, we found that: (1) younger age was 

linearly associated with greater activity in the amygdala to learned threat vs. 

safety cues, and (2) (mid-) adolescents was associated with reduced 

recruitment of the vmPFC to learned threat vs. safety cues. Furthermore, less 

age-related thinning of grey matter probability within the vmPFC was 

associated with continued responding in the amygdala to learned threat vs. 

safety cues during fear extinction. However, we found no significant 

relationships between IU and functional and structural correlates of fear 
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extinction circuitry. Overall, these findings suggest both age and age-related 

changes in the structure and function of amygdala-vmPFC circuitry may 

underlie fear dysregulation, rendering (mid-)adolescents vulnerable to anxiety 

disorders. Further longitudinal work is needed to establish how individual 

differences in anxious disposition shape the function and structure of fear 

extinction circuitry across adolescence and into early adulthood. 

 

4.2 Introduction 

Adolescence and early adulthood are times of great change, exploration, 

and stress, with the emergence of puberty and new priorities outside of the 

realms of home and school (Blakemore, 2012; Choudhury, 2009; Crone & Dahl, 

2012; Somerville & Casey, 2010; Spear, 2000b). Alongside these changes, the 

brain undergoes marked structural developmental in growth and pruning (Crone 

& Dahl, 2012; Lourenco & Casey, 2013; Nelson, Lau, & Jarcho, 2014; Pfeifer & 

Allen, 2012; Spear, 2000a), particularly in those regions critical for fear 

extinction such as the vmPFC. Unfortunately, anxiety disorders are also 

frequently reported to emerge during adolescence (Kessler et al., 2005). Given 

ongoing development, adolescent populations may be less responsive to 

traditional forms of anxiety disorder treatment such as exposure therapy 

(Cartwright‐Hatton et al., 2004; Rapee et al., 2009). Therefore, examining the 

function and structure of fear extinction circuitry in healthy adolescents may 

further our understanding of how fear extinction processes develop, and 

highlight which anxiety disorder treatments to apply and when to apply them 

during this sensitive period (Casey, Glatt, & Lee, 2015). In the following 
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sections we outline previous literature on the impact of individual differences in 

developmental stage and anxious disposition upon function and structure of 

fear extinction circuitry. Based on this literature, we then outline the design and 

predictions of the final study of thesis.   

 

4.2.1 The impact of development upon function and structure of fear 

extinction circuitry 

The brain circuitry that is at the core of cued fear learning and fear 

extinction processes includes the amygdala and ventromedial prefrontal cortex 

(vmPFC) (Milad & Quirk, 2012). During fear acquisition, heightened amygdala 

activity is observed in response to previously neutral cues that, through 

conditioning, have come to be associated with aversive outcomes. Subsequent 

fear extinction training, which involves repeated presentations of the 

conditioned stimulus without the aversive outcome, results in reduced 

amygdala activity over time (Büchel et al., 1998; LaBar et al., 1998). The 

vmPFC is critical for the extinction process and the observed reduction in 

amygdala responses to the conditioned stimulus (Kalisch, Korenfeld, et al., 

2006; Milad & Quirk, 2002, 2012; Milad et al., 2007; Phelps et al., 2004).  

Importantly, recent research in rodents and human samples has shown 

distinctive developmental profiles of blunted fear extinction in adolescents (Kim, 

Hamlin, & Richardson, 2009; Kim, Li, et al., 2011; McCallum, Kim, & 

Richardson, 2010; Pattwell et al., 2011; Pattwell et al., 2012), such that 

adolescents continue to show signs of defensive responding (freezing in 

rodents and skin conductance response in humans) to previously learned threat 
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cues during fear extinction, suggesting a failure to update previous threat 

associations as safe (Kim, Li, et al., 2011; Pattwell et al., 2012). 

Immunohistochemical evidence in rodents points to reduced synaptic plasticity 

in the vmPFC during adolescence (Kim, Li, et al., 2011; Pattwell et al., 2012). 

Whilst blunted fear extinction has been shown to be evolutionarily conserved 

across species behaviourally in rodents and humans (Kim, Li, et al., 2011; 

Pattwell et al., 2012), the neural recruitment of fear extinction in adolescent 

humans has yet to be examined.  

Immature amygdala-prefrontal cortical interactions are thought to be 

responsible for this blunted fear extinction seen in adolescence (Hare & Casey, 

2005; Nelson et al., 2014; Pfeifer & Allen, 2012). A large body of research has 

shown fear extinction circuitry such as the amygdala and vmPFC to undergo 

substantial developmental change in structure. The amygdala shows steady 

linear increases of grey matter growth across late childhood and adolescence, 

whilst the vmPFC is characterised by quadratic change, such that substantial 

grey matter growth occurs across childhood and grey matter pruning across 

adolescence (Gogtay et al., 2004; Østby et al., 2009; Shaw et al., 2008; 

Wierenga et al., 2014). Furthermore, the uncinate fasciculus, a white matter 

tract that connects the amygdala and vmPFC, has a protracted growth across 

adolescence and into early adulthood (Giorgio et al., 2008; Tamnes et al., 

2010). No study to date has examined the relationship between age-related 

structural changes and functioning of fear extinction circuitry in human 

adolescents.   
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4.2.2 Individual differences in anxious disposition upon function and 

structure of fear extinction circuitry 

Questions also remain on how individual differences in anxious 

disposition shape the function and structure of fear extinction circuitry during 

development. A few cross-sectional studies of fear acquisition in adolescence 

have shown trait anxious youth to display more amygdala activation and startle 

responsivity to safety cues (Haddad et al., 2015; Haddad et al., 2012; Kadosh 

et al., 2015). No fMRI findings have yet been reported on the role of anxious 

disposition and development during fear extinction. In Chapters 2 & 3, we 

showed that adult individual differences in IU specifically predicted fear 

extinction capacity, over trait anxiety and worry. More specifically, high IU was 

associated with exaggerated fear responding to both threat and safety cues 

during extinction. It is unknown whether high IU during adolescence predicts 

similar fear extinction outcomes to that of high IU during adulthood.   

Structural abnormalities in fear extinction circuitry, such as reduced grey 

matter volume in the vmPFC and weaker integrity of the uncinate fasciculus 

have been frequently reported in adults with anxious disposition and anxiety 

disorders (Baur et al., 2012; Kim & Whalen, 2009; Phan et al., 2009; Shang et 

al., 2014; Soliman et al., 2010; Tromp et al., 2012). While the number of studies 

examining structural changes in anxious vs. non-anxious adolescents is limited, 

a handful of studies have suggested similar structural abnormalities in ventral 

portions of the prefrontal cortex and the uncinate fasciculus for anxious youth 

(Liao et al., 2014; Mueller et al., 2013; Newman et al., 2015; Strawn et al., 

2015; Strawn, Wehry, et al., 2013). Findings in the amygdala are less clear, 
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with some studies reporting larger volumes in the right and left amygdala, 

specifically the basolateral amygdala (De Bellis et al., 2000; Qin et al., 2014), 

smaller volumes in the left amygdala (Blackmon et al., 2011; Milham et al., 

2005; Mueller et al., 2013) or no difference in volume of the amygdala (Strawn, 

Chu, et al., 2013). There is still debate over when structural abnormalities 

emerge, either prior anxiety disorder onset or as a consequence of anxiety 

disorder onset.  

 

4.2.3 Design and predictions 

The age-related functional and structural evidence outlined above, 

combined with the frequently reported onset of anxiety (Kessler et al., 2005), 

suggest adolescence to be an important and vulnerable window of fear 

extinction circuitry development. Given on-going development of fear extinction 

circuitry, adolescent populations may be less responsive to traditional forms of 

anxiety disorder treatment that are based upon fear extinction models such as 

exposure therapy (Cartwright‐Hatton et al., 2004; Johnson & Casey, 2015; 

Rapee et al., 2009). Therefore, examining how individual differences in 

developmental stage and anxious disposition (particularly IU) predict function 

and structure of fear extinction circuitry may further our understanding of how 

fear extinction processes develop. To address these questions, in the current 

study, we used a cued conditioning paradigm with event-related functional 

magnetic resonance imaging (fMRI) and behavioural measures (identical to that 

previously used in Chapters 2 & 3). In addition, we collected structural magnetic 

resonance imaging (sMRI) and diffusion tensor imaging (DTI) data. We used an 
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aversive sound as an unconditioned stimulus and visual shapes as conditioned 

stimuli. CS-US pairings were 100% reinforced during fear acquisition and 

extinction to match that of developmental animal literature (Kim et al., 2009; 

Kim, Li, et al., 2011; McCallum et al., 2010; Pattwell et al., 2011; Pattwell et al., 

2012).  

We hypothesised that younger age would predict blunted extinction. We 

expected this effect to be indexed by greater amygdala activation and reduced 

vmPFC recruitment during fear extinction, accompanied by elevated 

psychophysiology and behavioural responses to learned threat vs. safety cues. 

In addition, based on our previous findings in Chapters 2 & 3, we hypothesised 

that high IU would be associated with generalised fear expression to both 

learned threat and safety cues, and/or sustained fear expression to learned 

threat cues. We predicted larger responses in behaviour, psychophysiology and 

amygdala, as well as reduced vmPFC activation to learned threat vs. safety 

cues during extinction in high IU individuals. Furthermore, we expected age-

related changes in: (1) structural integrity of the uncinate fasciculus and, (2) 

grey matter probability in the amygdala and vmPFC to predict amygdala 

activation during fear extinction to threat vs. safety cues. We also examined 

relationships between structural changes in the uncinate fasciculus, amygdala 

and vmPFC in relation to IU. In line with our prior work (Chapters 2 & 3), we 

also examined the time course (early vs late) of extinction, but we did not have 

specific predictions regarding the temporality of effects during fear extinction in 

this developmental sample. 
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4.3 Method 

4.3.1 Participants 

55 right-handed volunteers took part in this study (M age = 17.75yrs, SD 

age = 3.65yrs, range = 12-28yrs; 35 females & 20 males). The sample size was 

based on previous fMRI studies conducted on developmental samples (Hare et 

al., 2008; Swartz et al., 2014) and power analysis guidelines for fMRI (Mumford, 

2012). All participants had normal or corrected to normal vision. Adult 

participants provided written informed consent, adolescent participants provided 

written informed assent and parental/guardian consent, and received a picture 

of their brain and £20 for their participation. The procedure was approved by 

the University of Reading Ethics Committee. 

 

4.3.2 Conditioning task 

We used the same fear conditioning experiment as in Chapter 2 (Please 

see Chapter 2, Methods, Conditioning task and Figure 3). Visual stimuli were 

presented through MRI-compatible VisualSystem head-coil mounted eye 

goggles (Nordic Neuro Lab, Bergen, Norway), which displayed stimuli at 60 Hz 

on an 800 × 600 pixel screen. Sound stimuli were presented through MRI-

compatible AudioSystem headphones (Nordic Neuro Lab, Bergen, Norway). 

Participants used an MRI-compatible response box with their dominant right 

hand to respond. 
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4.3.3 Procedure 

 Participants arrived at the laboratory and were informed of the 

experimental procedures. First, participants (and parents/guardians) completed 

consent forms as an agreement to take part in the study. Second, a hearing test 

was performed with an audiometer to check for normative hearing (e.g.500-

8000 Hz, below 30 dB). Third, participants completed a battery of cognitive 

tasks (results not reported here) and questionnaires on a computer outside of 

the scanner. Next, participants were taken to the MRI unit. We used a 

conditioning task inside the scanner, whilst concurrently recording ratings, 

electrodermal activity and pupil dilation. Participants were simply instructed to: 

(1) maintain attention to the task by looking and listening to the coloured 

squares and sounds presented, (2) respond to the uneasiness scale using the 

button box and (3) to keep as still as possible.  After scanning, participants 

rated the sound stimulus outside of the scanner.   

  

4.3.4 Questionnaires 

The same questionnaires were presented from Chapter 2 (see Chapter 

2, Methods, Questionnaires). We focused on IU because of previous findings 

from Chapters 2 & 3. Similar distributions and internal reliability of scores were 

found for the anxiety measures, IU (M = 59.56; SD = 18.35; range = 31-105; α = 

.93), STAIX-2 (M = 43.15; SD = 9.73; range = 26-75; α = .90) and PSWQ (M = 

46.27; SD = 11.91; range = 23-71; α = .90).  
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4.3.5 Sound stimulus rating 

Participants rated the valence and arousal of the sound stimulus using 9 

point Likert scales ranging from 1 (Valence: negative; Arousal: calm) to 9 

(Valence: positive; Arousal: excited). 

 

4.3.6. Behavioural data scoring and reduction 

 Rating data were reduced for each subject by calculating their average 

responses for each experimental condition using the E-Data Aid tool in E-Prime 

(Psychology Software Tools Ltd, Pittsburgh, PA).   

 

4.3.7 Physiological data acquisition and reduction 

Skin conductance recordings were obtained using AD Instruments (AD 

Instruments Ltd, Chalgrove, Oxfordshire) hardware and software. An ML138 

Bio Amp connected to an ML870 PowerLab Unit Model 8/30 amplified the 

electrodermal activity signal, which were digitised through a 16-bit A/D 

converter at 1000 Hz. Skin conductance was measured during the fMRI 

scanning with MRI-compatible MLT117F silver/silver chloride bipolar finger 

electrodes that were attached to the distal phalanges of the index and middle 

fingers of the left hand. A constant voltage of 22mVms at 75 Hz was passed 

through the electrodes, which were connected to a ML116 GSR Amp.  

Skin conductance responses (SCR) were scored when there was an 

increase of skin conductance level exceeding 0.03 microSiemens. The 

amplitude of each response was scored as the difference between the onset 

and the maximum deflection prior to the signal flattening out or decreasing. 



104 
 

SCR onsets had to be within 7 seconds following each trial to be included. We 

used an extended SCR scoring window because the temporal signature of an 

aversive sound US may be more ambiguous than a traditional electric shock 

US, this SCR scoring window length is in line with previous fear conditioning 

studies that have used aversive sound stimuli as the US in both adults (Büchel 

et al., 1998; Soliman et al., 2010) and adolescents (Pattwell et al., 2012). 

Trials with no discernible SCRs were scored as zero. The first trial of 

each experimental phase was excluded, to reduce contamination of averages 

from the orienting response typically seen at the start of a session. SCR 

amplitudes were square root transformed to reduce skew. Trials with motion 

artefacts were discarded from the analysis. SCR magnitudes were calculated 

from remaining trials by averaging SCR square root transformed values and 

zeros for each condition.  

Pupil dilation was recorded at a sample rate of 60 Hz through a built-in 

infrared camera on the head-coil mounted eye goggles (Nordic Neuro Lab, 

Bergen, Norway). Pupil dilation data was averaged for each 1000 ms window 

following stimulus onset, resulting in 5 windows of 1000 ms each. These data 

were baseline corrected by subtracting 1000 ms preceding each stimulus onset 

from a blank screen. Trials were averaged per condition and time window for 

each participant.   

 

4.3.8 Learning assessment 

We used the same method as in Chapters 2 & 3. The conditioned 

response score was the first 2 CS+ trials – the first 2 CS- trials. A positive score 
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indicated a larger response for CS+ vs. CS-, indexing successful conditioning. 

To reduce subject attrition, we labelled subjects as learners if they had a 

positive conditioned response score for any measure (e.g. SCR, Pupil dilation 

and ratings). Based on the learning assessment criterion, we identified 11 

potential non-learners out of the 52 participants. Since removing the data of 

these 11 subjects did not change the results reported here3, we retained the 

data of all participants. 

 

4.3.9 MRI 

Participants were scanned with a 3T Siemens Trio set up with a 12 

channel head coil (Siemens Inc., Erlangen, Germany). Three T2*-weighted 

echo planar imaging (EPI) functional scans were acquired for each phase of the 

conditioning task consisting of 161, 208, and 380 volumes respectively (TR = 

2000 ms, TE = 30 ms, flip angle = 90°, FOV = 192 × 192 mm, 3 × 3 mm voxels, 

slice thickness 3 mm with an interslice gap of 1 mm, 30 axial slices, interleaved 

acquisition).  

Following completion of the functional scans, fieldmap and structural 

scans were acquired, which comprised of a high-resolution T1-weighted 

anatomical scan (MP-RAGE, TR = 2020 ms, TE = 2.52 ms, flip angle = 90°, 

FOV = 256 × 256 mm, 1 x 1 x 1 mm voxels, slice thickness 1 mm, sagittal 

slices), two fieldmaps (TR = 488 ms, TE 1 = 4.98 ms, TE 2 = 7.38 ms, flip angle 

                                                                 
3
 Age-related functional and structural findings did not change when non-learners were 

removed: Interaction between Condition x Age, F(1,37) = 5.592, p = .023 without non-learners. 
Significant quadratic correlation with early CS+ - CS- trials and age, p =.008 without non-

learners. Significant correlation of vmPFC grey matter probability with age, r(37) = -0.48, p = 
.002. vmPFC grey matter probability significantly correlated with bilateral amygdala activity to 
the CS+ vs. CS- during late extinction, r(37) = .327 p = .042. 
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= 60°, FOV = 256 × 256 mm, slice thickness 4 mm with an interslice gap of 4 

mm, 30 axial slices) and diffusion weighted images (TR = 6800ms, TE = 93 ms, 

flip angle = 60°, FOV = 192 × 192 mm, slice thickness 2 mm with an interslice 

gap of 2 mm, b-value =1000, 64 axial slices, 30 diffusion gradients (not 

analysed here). 

 

4.3.10 fMRI data acquisition and analysis  

 FMRI analyses were carried out in Feat version 5.08 as part of FSL 

(FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). Brains were extracted from 

their respective T1 images by using the FSL Brain Extraction Tool (BET) 

(Smith, 2002). Distortion, slice timing and motion correction were applied to all 

extracted EPI volumes using FUGUE and MCFLIRT tools (Jenkinson et al., 

2002). Gaussian smoothing (FWHM 5mm) and a 50 second high pass temporal 

filter were applied.  

 A first-level GLM analysis was carried out for each functional scan run 

from each learning phase. Separate regressors were specified for the 

experimental conditions of primary interest in each learning phase (acquisition: 

CS+/CS-, extinction: CS+ /CS) by convolving a binary boxcar function with an 

ideal haemodynamic response (HR), which corresponded to the length of each 

trial (1500 ms). Regressors for the uneasiness rating period, six motion 

parameters and any head movements above 1mm were included to model out 

brain activity or movement artefacts that were unrelated to the conditions of 

interest.  

http://www.fmrib.ox.ac.uk/fsl
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We defined two main effect contrasts to reveal fear extinction-related 

activity. To examine temporal effects across extinction, we contrasted (CS+ vs. 

CS-)EARLY> (CS+ vs. CS-) LATE. We defined early extinction as the first eight 

trials for CS+ and CS- and the last eight trials for CS+ and CS-. We also 

examined the overall effect of CS+ vs. CS- during extinction. All contrasts were 

normalised and registered to MNI standard space using FLIRT (Jenkinson et 

al., 2002). Second-level GLM analysis consisted of regressors for the group 

mean and demeaned age (days) using FSL's FLAME stage 1 + 2 procedure. 

Whole-brain analysis was carried out using cluster thresholding with a z = 2.3 

and a corrected p < 0.05. 

We were specifically interested in the extent to which age would be 

associated with the BOLD response in our apriori regions of interest for fear 

extinction. Therefore, we extracted mean percent BOLD signal change across 

voxels from the left amygdala, right amygdala and vmPFC on the (CS+ vs. CS-

)EARLY> (CS+ vs. CS-) LATE and CS+ vs. CS- extinction contrast maps. We 

created cluster masks of the left amygdala, right amygdala and vmPFC using 

co-ordinate foci from past (n of studies = 9) fMRI and PET fear extinction 

studies (Barrett & Armony, 2009; Büchel et al., 1998; Knight et al., 2004; LaBar 

et al., 1998; Linnman et al., 2012; Milad et al., 2007; Phelps et al., 2004; 

Sehlmeyer et al., 2011; Soliman et al., 2010), as well as coordinates from 

Chapter 3. For each cluster mask, we specified previous study foci’, a false 

discovery rate of p < .05 and minimum cluster size of 200mm3 in GingerALE . 

Clusters were transformed to MNI standard space using FLIRT (Jenkinson et 

al., 2002). Resulting amygdala clusters (left: -23, -4, -20, right: 23, -4, -20) were 
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354mm3. We expanded the vmPFC cluster to be more inclusive by taking the 

centre point (2, 38, -14) and applying a 10mm radius sphere (515 mm3). For 

control purposes we also extracted mean percent BOLD signal change in our 

apriori regions of interest on the CS+ vs. CS- acquisition contrast map.  

 

4.3.11 White matter integrity of the uncinate fasciculus 

Diffusion weighted image processing in FSL included corrections for 

motion, eddy currents and inhomogeneity's in the magnetic field. Then the 

tensor model was fitted using FDT (FMRIBS Diffusion Toolbox) in order to 

calculate FA values for each voxel, producing one FA image per subject. 

Voxels with FA values lower than 0.2 were removed. We created 25% 

probability masks of the left and right uncinate fasciculus (Swartz et al., 2014) 

from the JHU white-matter tractography atlas (Mori, Wakana, Van Zijl, & 

Nagae-Poetscher, 2005). These tract masks were transformed into diffusion 

space and applied to each subjects’ FA image, resulting in an FA value for each 

tract per subject. 

 

4.3.12 Grey matter probability in the vmPFC and amygdala 

 Processing of structural images was performed in FSL. First, structural 

images were brain-extracted using BET (Smith, 2002). Secondly, structural 

images were segmented based on tissue-type using FMRIB's Automated 

Segmentation Tool (FAST) (Zhang, Brady, & Smith, 2001). Thirdly, the left and 

right amygdala and vmPFC masks (same as outlined above) were transformed 

into structural space for each subject. Lastly, we extracted grey matter 
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probability estimates of the left and right amygdala and vmPFC from each 

subjects’ segmented structural image.  

 

4.3.13 Statistical analyses 

Main effects of conditioning and interactions with age and IU during fear 

extinction were assessed by conducting a Condition (CS+, CS-) x Time (Early, 

Late) x Age (days) and a condition (CS+, CS-) x Time (Early, Late) x IU 

repeated measures ANCOVA on behavioural ratings, skin conductance, pupil 

dilation and percent BOLD signal change in the amygdala and vmPFC. The 

early part of extinction was defined as the first eight CS+ and eight CS- trials, 

and the last part of extinction was defined as the last eight CS+ and eight CS- 

trials. Because age effects during fear extinction may be non-linear, we 

conducted curve estimation using quadratic fits on fear extinction difference 

scores (CS+ - CS- early; CS+ - CS- late; CS+ - CS- across extinction) and age 

(days).  

To check for specificity of findings in extinction, we conducted a 

Condition (CS+, CS-) x Age and a Condition (CS+, CS-) x IU repeated measure 

ANCOVA on behavioural ratings, skin conductance, pupil dilation and percent 

BOLD signal change in the amygdala and vmPFC in the acquisition phase.  

We correlated grey matter probability values of the left and right 

amygdala and vmPFC, as well as the FA values in the uncinate fasciculus with 

age (days), IU and the left and right amygdala percent BOLD signal difference 

scores from extinction. To assess the specificity of age and structure predicting 

amygdala function during extinction, we performed hierarchical regression 
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analyses on the amygdala response difference scores during extinction that 

showed significant relationships with both age and structure. We entered age in 

the first step and structure in the second step.   

 

4.4 Results 

Three participants did not complete the scanning procedure and three 

participants were removed due to excessive head movements ( > 3mm), 

leaving forty-nine participants for analysis (M age = 18.70yrs, SD age = 3.64yrs, 

range = 12-28yrs; 31 females & 18 males). 

 

4.4.1 Questionnaires 

 The anxiety measures were positively correlated with each other, 

suggesting shared variance, IU with PSWQ, r(47) = .635, p < .001, IU with 

STAIX-2, r(47) = .655, p < .001, and PSWQ with STAIX-2, r(47) = .772, p < 

.001. There were no significant linear or quadratic relationships between IU and 

age, p’s > .2. No significant linear or quadratic relationships between the 

anxiety measures and the dependant measures were found, p’s > .1. 

 

4.4.2 Ratings 

All subjects rated the sound stimulus as aversive and moderately 

arousing. Sound arousal ratings negatively correlated with age, r(47) = -.286, p 

= .047, such that the youngest individuals rated the sound as more arousing 

than the older individuals. Sound valence ratings did not correlate with age, 

r(47) =-.141, p = .333.   
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During extinction, participants significantly reported feeling more uneasy 

to the CS+ vs. CS- trials across extinction, F(1,47) = 5.094, p = .029, 

suggesting the US-CS contingency had been learned (see Table 5). In addition, 

participants also reported feeling more uneasy at the start of extinction, 

compared to the end of extinction F(1,47) = 6.875, p = .012. Contrary to 

predictions, there was no interaction of Condition x Time, F(1,47) = 1.004, p = 

.322. 

In the acquisition phase, participants significantly reported feeling more 

uneasy for the CS+ vs. CS- trials, F(1,47) = 72.123, p< .001 (see Table 5). 

Results revealed no age or IU differences for uneasiness ratings in any 

of the experimental phases, max F =3.953. 

 

4.4.3 SCR magnitude 

No significant main effects or interactions were found in extinction, max 

F = 2.053 (see Table 5).  

During acquisition, SCR magnitude was significantly larger for the CS+ 

vs. CS- trials, F(1,33) = 27.796, p< .001 (see Table 5).  

Results revealed no age or IU differences for SCR magnitude in any of 

the experimental phases, max F =2.353. 

 

4.4.4 Pupil dilation 

Pupil dilation data could not be collected from twelve subjects due to 

problems calibrating the goggles with participants, leaving thirty-seven subjects 
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with usable pupil dilation data. No significant main effects or interactions were 

found in acquisition or extinction, max F = 2.098 (see Table 5).  
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Table 5.            

Summary of means (SD) for each dependent measure as a function of condition and phase. 

 
Acquisition 

 
Extinction 

 
Early Extinction 

 
Late Extinction 

Measure CS+ CS-   CS+ CS-   CS+ CS-   CS+ CS- 

            

Physiological             

   Square 
root 
transformed 
SCR 
magnitude 
(μS) 

.27 
(.21)

b
  

.13 
(.13)

a
  

 

.15 
(.11) 

.13 
(.14) 

 

.14 
(.12) 

.12 
(.15) 

 

.13 
(.13) 

.12 
(.14) 

   
  Pupil 
dilation 
(Δmm) 

-.010 
(.017) 

 -.014 
(.026) 

 

 -.007 
(.029) 

 -.011 
(.022) 

 

 -.009 
(.029) 

 -.014 
(.029) 

 

 -.005 
(.032) 

 -.007 
(.022) 

            

Behavioural 
           

   
Uneasiness 
rating (1-9) 

3.36 
(2.03)

b
 

1.44 
(1.58)

a
 

 

1.04 
(1.16)

d
  

.92 
(1.14)

c
 

 

1.15 
(1.26)  

1.00 
(1.21) 

 

.93 
(1.13)  

.84 
(1.12) 

                        

            
Note: SCR magnitude (μS), skin conductance magnitude measured in microSiemens. Pupil dilation (Δmm) 
measured in delta millimeters. Significant comparisons are specified with letters = Acquisition CS+, a; 
Acquisition CS-, b; Extinction CS+, c; Extinction CS-, d. 
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4.4.5 fMRI  

 The whole-brain analyses did not yield significant BOLD differences in our a-

priori brain regions of interest often reported in the extinction literature (Büchel et al., 

1998; LaBar et al., 1998; Milad et al., 2007; Phelps et al., 2004). However, the CS+ > 

CS-)EARLY > (CS+ > CS-)LATE contrast map revealed a left amygdala cluster (voxels = 

77, max Z = 3.1, x = -22, y = 0, z = -26) at subthreshold, z = 2.0, p =.045, suggesting 

a conditioned response to the CS+ vs. CS- during early extinction. In addition, we 

found greater occipital pole activation in early extinction for the CS+ > CS-, relative 

to late extinction for the CS+ > CS-, suggesting increased attention for the 

conditioned stimulus (see Table 6). 

In the amygdala ROI during extinction, we found an interaction between 

Condition x Time, F(1,47) = 3.498, p = .068 (collapsed left and right amygdala as 

CS+ - CS- difference scores significantly correlated ,r(47) = .45 p < .001). Amygdala 

activation did not change as a function of time for the CS+, p = .826, but it did for the 

CS- at trend, p = .083. As expected, there was an interaction between Condition x 

Age, F(1,47) = 5.519, p = .023, such that younger age predicted greater amygdala 

activity to the CS+ vs. CS- (see Figure 9).4 No other significant main effects or 

interactions were found for the amygdala during fear extinction, max F = .666.  

In the vmPFC ROI during extinction, there was a significant negative 

quadratic correlation with early CS+ - CS- trials and age, p =.006, such that mid-

                                                                 
4
 Whole-brain analysis of the (CS+ > CS-) *decreasing age contrast map revealed bilateral amygdala 

clusters (Left amygdala, voxels = 133, max Z = 3.41, x = -30, y = -16, z = -6; Right amygdala, voxels = 
133, max Z = 3.01, x = 30, y = -6, z = -8 ) at sub-threshold, z = 2.0, p =.045.  
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adolescents exhibited blunting of vmPFC activity to the CS+ (see Figure 10)5. In 

addition, we observed a significant linear interaction between Time x Age, F(1,47) = 

6.131, p = .017, such that older age predicted greater vmPFC activation during late 

extinction. No other significant main effects or interactions were found for the vmPFC 

during fear extinction, max F = 3.001.  

During fear acquisition, amygdala activation was significantly larger to the 

CS+ vs. CS-, F(1,47) = 12.399, p = .001. All other effects or interactions during fear 

acquisition in the amygdala and vmPFC were non-significant, max F = 3.776.   

 

                                                                 
5
 Whole-brain analysis of the (CS+ > CS-)EARLY x (CS+ > CS-)LATE *increasing age contrast map 

revealed a dorsal medial prefrontal cortex cluster (voxels = 332, max Z = 3.63, x = -2, y = 56, z = 18 at 
subthreshold, z = 2.0, p =.045. 
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Table 6        
Regional activation patterns in response to stimuli presented 
during fear extinction             

        

Phase Brain region BA Voxels 
Max 
Z 

Location of 
max Z 

   (mm³)  x y z 

               

Extinction        

        

   CS- > CS+ 
Cingulate Gyrus, Precuneus 
Cortex, 7,24 825 3.63 2 -48 12 

   (CS+ > CS-)EARLY > 
(CS+ > CS-)LATE R Occipital Pole 17 315 4.34 28 -96 -4 
   (CS- > CS+)EARLY > 
(CS- > CS+)LATE L Occipital Pole 17 260 3.91 -28 -96 -6 

        

        

Note: Corrected cluster for multiple comparisons at p < 0.05. BA = Brodmann Areas. Location of cluster's maximum Z 
are in MNI space. R = right; L = left. 



117 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.  A: Bilateral amygdala region of interest. B: Younger age is significantly 

associated with greater bilateral amygdala activation to the CS+ vs. CS- across the fear 

extinction phase. R, right; L, left. Age, measured in days age is in years for display 

purposes only).  
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Figure 10.  A: vmPFC region of interest. B: Significant quadratic correlation between 

age and vmPFC response to the CS+ vs. CS- during fear extinction, such that mid- 

adolescents was associated with reduced vmPFC activation to the CS+ vs. CS- 

during early fear extinction. R, right; L, left. Age, measured in days (age is in years 

for display purposes only). 
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4.4.6 White matter integrity of the uncinate fasciculus 

Age effects. In line with predictions, we found positive correlations with 

age and structural integrity of the bilateral uncinate fasciculus (the left and right 

significantly correlated, r(47) = .73, p < .001, thus we collapsed across), r(47) = 

.30, p = .035, suggesting increased white matter integrity of this tract with age.  

Structure-Function relationships. Greater structural integrity of the 

bilateral uncinate fasciculus predicted at trend increased bilateral amygdala 

activity to CS+ vs. CS- during early extinction, r(47) = .24 p = .097, and reduced 

bilateral amygdala activity to CS+ vs. CS- during late extinction, r(47) = -.24 p = 

.084.  

Structure-IU relationships. IU did not significantly correlate with the 

bilateral uncinate fasciculus, r(47) = -.012, p = .933.  

 

4.4.7 Grey matter probability in the vmPFC and amygdala 

Age effects. As expected, we found a significant negative correlation of 

vmPFC grey matter probability with age, r(47) = -0.54, p < .001, suggesting 

greater grey matter thinning with age (see Figure 11). Furthermore, we found a 

significant positive correlation of bilateral amygdala (the left and right 

significantly correlated r(47) = .71, p < .001, thus we collapsed across left and 

right) grey matter probability with age, r(47) = .29, p = .041, suggesting steady 

linear growth with age. 

 Structure-Function relationships. We found no relationship between 

vmPFC grey matter probability and bilateral amygdala activity to the CS+ vs. 

CS- during early extinction, r(46) = -.16 p = .271. However, we found vmPFC 

grey matter probability to significantly predict bilateral amygdala activity to the 
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CS+ vs. CS- during late extinction, r(47) = .34 p = .017 (see Figure 11), 

suggesting that less vmPFC grey matter probability, indicative of grey matter 

thinning, is associated with reduced bilateral amygdala response to the CS+ vs. 

CS- during late extinction. Grey matter probability within the amygdala masks 

did not predict amygdala BOLD signal to CS+ vs. CS- in either early or late 

extinction, p’s > .6. 

Structure-IU relationships. IU did not significantly correlate with any of 

the grey matter ROI’s, p’s > .4.  

 

4.4.8 Hierarchical regression of predictors of amygdala response 

 A hierarchical regression analysis on the predictors of amygdala 

response during late extinction suggested no specificity of age and vmPFC grey 

matter probability: step one age, R2=.093, F(1,47) = .4.822, p= .033, and adding 

vmPFC grey matter probability in step two, ΔR2=.136, F(1,46) = 2.300, p= .136. 
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Figure 11. Top: Grey matter probability within the vmPFC significantly predicts 

age, such that older age is associated with reduced grey matter in the vmPFC, 

indicative of grey matter thinning. Bottom: reduced grey matter probability 

within the vmPFC significantly predicts less amygdala activity to CS+ vs. CS- 

during late fear extinction. 
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4.5 Discussion 

In the current study, we show that human development during 

adolescence and early adulthood, predicts amygdala and vmPFC recruitment 

during fear extinction. Our data suggest that younger age, particularly mid-

adolescence, is associated with blunted fear extinction, through reduced 

vmPFC and prolonged amygdala recruitment to learned threat vs. safety cues. 

Furthermore, as well as age, vmPFC grey matter probability was associated 

with continued responding in the amygdala to learned threat vs. safety cues 

during late extinction. However, we found no significant relationships between 

IU and functional and structural correlates of fear extinction circuitry. 

 

4.5.1 Age-related changes in function and structure of fear extinction 

circuitry 

Across fear extinction, younger age was characterised by increased 

amygdala activity to learned threat vs. safety cues, consistent with previous 

rodent and human fear extinction studies (Kim, Li, et al., 2011; Pattwell et al., 

2011; Pattwell et al., 2012), suggesting exaggerated fear expression during the 

period of adolescence. Furthermore, younger age was quadratically associated 

with reduced vmPFC activity to learned threat vs. safety cues during early 

extinction, in line with previous rodent work (Kim, Li, et al., 2011; Pattwell et al., 

2011; Pattwell et al., 2012), suggesting compromised fear inhibition during 

adolescence. Crucially, reduced vmPFC activity was observed during mid to 

late adolescence (e.g. 14-20 yrs), coinciding with the frequently reported age of 

anxiety disorder onset (Kessler et al., 2005). These data suggest that this group 
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of adolescents may be susceptible to impaired fear extinction, and perhaps the 

least responsive to current exposure-based therapies.  

Age predicted structure of fear extinction circuitry. In line with prior 

structural work (Giedd, 2004; Gogtay et al., 2004; Lebel & Beaulieu, 2011; 

Lebel et al., 2008; Østby et al., 2009; Tamnes et al., 2010; Wierenga et al., 

2014), younger age predicted less grey matter thinning in the vmPFC, steady 

grey matter growth within the bilateral amygdala and less thickening of the 

uncinate fasciculus.  These structural data suggest our experimental sample 

were typical of a developmental cohort.  

Alongside age, structural changes within the vmPFC and uncinate 

fasciculus both were associated with amygdala response during fear extinction. 

Notably, reduced grey matter probability in the vmPFC, indicative of grey matter 

thinning, is associated with reduced amygdala response to the learned threat 

vs. safety cues during late extinction. Similarly, stronger structural integrity of 

the uncinate fasciculus was associated with reduced amygdala response to 

learned threat vs. safety cues during late extinction, however this effect was at 

trend. We did not find grey matter probability in the amygdala masks to predict 

amygdala activity during extinction. From these results we can speculate that 

grey matter pruning in the vmPFC may be more predictive of blunted fear 

extinction during the adolescent period, over white matter thickening of the 

uncinate fasciculus and grey matter growth in the amygdala. However, both age 

and grey matter probability in the vmPFC was associated with amygdala 

response and there was no specificity for either measure. Future work with 

longitudinal designs may be able to elucidate the relationship between fear 
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extinction ability and vmPFC grey matter probability further by tracking the 

extent of thinning in the vmPFC across development.     

 

4.5.2 Individual differences in IU and fear extinction  

We did not find individual differences in IU (or STAI and PSWQ) to 

predict any dependent measure. The lack of IU effects could be due to: (1) 

weak statistical power i.e. too much variability within this sample due to the age 

range tested, and (2) developmental effects curbing or shielding IU-related fear 

extinction behaviour. Having said this, IU effects have been observed during 

adolescence in decision making tasks (Krain et al., 2008; Krain et al., 2006). 

However, decision making and fear conditioning tasks are not directly 

comparable and call upon different neural circuitry (with some overlap in the 

amygdala and vmPFC). Questions remain on how threat generalisation and 

deficient safety learning behaviours associated with high IU emerge during 

development. This question may be better assessed with: (1) large cross-

sectional designs with less developmental variability (e.g. smaller age ranges), 

or (2) with longitudinal designs where participants are first tested as 

adolescents and followed up as adults, or tested repeatedly across 

adolescence.  

 

4.5.3 Limitations 

We found no evidence of age predicting differential recruitment of brain 

regions involved in fear acquisition for the learned threat and safety cues. 

However, we used a 100% reinforcement schedule in the acquisition phase, 
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similar to previous rodent work (Kim, Li, et al., 2011; Pattwell et al., 2011; 

Pattwell et al., 2012), where the CS+ and US are confounded.  

We were unable to demonstrate main effects of conditioning in 

psychophysiological measures during extinction. This is most likely due to the 

scanning environment, which induces: (1) distortions upon psychophysiological 

signals, increasing the number of non-responders and decreasing the 

sensitivity of the measures, and (2) noise that may reduce the aversiveness of 

the CS (sound stimulus).  

 

4.5.4 Conclusions 

To conclude, we found that younger age was associated with blunted 

fear extinction. Younger age was associated with exaggerated amygdala 

response to learned threat vs. safety cues during fear extinction. Mid to late 

adolescence was associated with reduced vmPFC activity during early 

extinction. Furthermore, more grey matter probability within the vmPFC, is 

associated with continued responding in the amygdala to learned threat vs. 

safety cues during late extinction. These findings suggest that compromised 

amygdala-vmPFC recruitment during adolescence (particularly in mid- 

adolescence) may be explained by both age and age-related changes in 

structure of fear extinction circuitry.  
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5. General discussion 

 

5.1 Overview 

This body of work examined individual differences in development and 

anxious disposition on fear generative and regulatory processes during fear 

extinction. To assess these processes, we used an adapted fear conditioning 

experiment in combination with measurements of behaviour, psychophysiology 

and functional/structural MRI in adult and adolescent participants. We focused 

on a crucial but simplified brain model of fear extinction circuitry, comprising the 

coupling of the amygdala and vmPFC. We selected fear conditioning as our 

main experimental paradigm on the basis of it being adaptable for 

developmental samples and clinically relevant. During fear extinction, we 

measured and operationalised: (1) fear generative processes through 

behavioural, psychophysiological, and neural responses to learned threat and 

safety cues, and (2) fear regulatory processes by quantifying the reduction of 

behavioural, psychophysiological, and neural responses to learned threat and 

safety cues over time.  

Firstly, we hypothesised that we could achieve successful fear 

conditioning in both adults and adolescents using a developmentally 

appropriate design with an aversive sound as the US (rather than a traditional 

shock as the US), similar to other developmental fear conditioning studies 

(Johnson & Casey, 2015; Lau et al., 2011; Lau et al., 2008b; Neumann et al., 

2008; Pattwell et al., 2012). Secondly, based on the developmental literature, 

we hypothesised that age and age-related structural changes in fear extinction 
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circuitry would predict fear extinction ability, such that younger individuals would 

exhibit greater fear generation and reduced regulatory control to learned threat 

cues, resulting in poorer fear extinction. Thirdly, we hypothesised self-reported 

intolerance of uncertainty (IU) to predict fear extinction ability in adult and 

adolescent populations, over and above other general measures of anxious 

disposition. We argue that in the context of fear extinction, uncertainty 

surrounding learned contingency changes (i.e. CS-US pairings) may initiate 

greater fear generation to both learned threat and safety cues in individuals 

who find uncertainty anxiety provoking (high IU), subsequently compromising 

regulatory control, and resulting in poorer fear extinction.  

In Chapters 2 and 3, we demonstrated in adult participants: (1) 

successful fear conditioning using a developmentally appropriate design, and 

(2) that IU predicted compromised fear extinction in psychophysiological and 

neural measures (amygdala, vmPFC), over and above other anxiety measures. 

In Chapter 4, we observed younger age to be associated with blunted fear 

extinction in neural measures (amygdala, vmPFC). Furthermore, we found age-

related structural change in the vmPFC to predict responding in the amygdala 

during fear extinction. However, in this developmental sample, we did not 

observe an impact of individual differences in IU on function or structure of fear 

extinction circuitry.  

 

5.2 Review of studies  

5.2.1 Chapter 2 

In Chapter 2, we sought to: (1) replicate past psychophysiological 

findings of fear extinction in a classic paradigm adapted for a developmental 
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sample, and (2) assess whether individual differences in intolerance of 

uncertainty (IU), a potential risk factor for anxiety disorders, underlies 

compromised fear extinction. We investigated these questions by using 

classical conditioning of learned threat and safety cues, whilst recording SCR 

and behavioural ratings. Coloured squares and an aversive sound served as 

conditioned stimuli (Delgado et al., 2008; LaBar et al., 1998; Neumann & 

Waters, 2006; Phelps et al., 2004). The extinction phase was split into early and 

late, in order to capture the temporality of fear generative and regulatory 

processes. This experimental design was created on the basis of it being: (1) 

appropriate for both adult and adolescent populations, and (2) extendable to the 

scanning environment.    

Consistent with previous research examining fear extinction (Delgado et 

al., 2008; Gazendam et al., 2013; LaBar et al., 1998; Milad et al., 2007; Phelps 

et al., 2004; Schiller et al., 2009; Soliman et al., 2010), we found a general 

effect of conditioning for participants, as shown by greater SCR magnitude and 

behavioural ratings to learned threat vs. safety cues during fear extinction. 

These results confirmed this developmentally appropriate paradigm to induce 

successful fear conditioning in adult participants.   

 Furthermore, the results revealed that self-reported IU is associated with 

elevated fear expression to both learned threat and safety cues during fear 

extinction. Our data suggest that when contingencies are uncertain during 

extinction, high IU is associated with threat generalization, as shown by 

elevated SCR magnitude to both threat and safety cues during early extinction 

and threat cues in late extinction. Furthermore, IU was uniquely associated with 

a reduction in SCR magnitude to learned safety cues from early to late 
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extinction. From these results we concluded that individual differences in IU 

predicted variability in fear extinction behaviour.  

 

5.2.2 Chapter 3   

 In Chapter 3, we assessed whether: (1) past psychophysiological and 

neural findings of fear extinction could be replicated in adults within the 

scanning environment, and (2) individual differences in IU underlie 

compromised recruitment of fear extinction circuitry. Adult participants 

underwent the same classical conditioning procedure as in Chapter 2, whilst 

skin conductance, pupil dilation, behavioural ratings and fMRI were recorded.  

Similarly to Chapter 2 and consistent with previous research (Delgado et 

al., 2008; LaBar et al., 1998; Milad et al., 2007; Phelps et al., 2004; Schiller et 

al., 2009; Soliman et al., 2010), we found a general (albeit statistically 

subthreshold) effect of conditioning for participants in skin conductance and in 

amygdala/vmPFC regions. However, we did not show such effects in pupil 

dilation and behavioural measures. 

Findings from this study showed that self-reported IU is associated with 

psychophysiological and neural recruitment during fear extinction. These data 

further suggest that high IU is associated with generalising threat during early 

extinction, which subsequently delays fear inhibition of conditioned responses 

to threat cues during late extinction, as indexed by heightened 

psychophysiology and amygdala/vmPFC function during this extinction phase. 

Furthermore, the psychophysiology (partially) and fMRI results were specific to 

an association between extinction and IU, and not STAIX or PSWQ. 

Importantly, this experiment yielded strong individual difference effects, 
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suggesting the paradigm would be potentially useful for capturing individual 

differences due to developmental stage.  

 

5.2.3 Chapter 4   

Chapter 4 aimed to examine the psychophysiological and neural 

correlates of fear extinction during development. In addition, Chapter 4 aimed to 

examine the impact of age-related structural change and individual differences 

in IU on the function of fear extinction circuitry. Participants underwent the 

same experimental procedure as those outlined in Chapters 2 & 3. 

Results from this study showed that age is associated amygdala and 

vmPFC recruitment during fear extinction. More specifically, we observed 

younger age to be characterised by increased amygdala activity to learned 

threat vs. safety cues during fear extinction, consistent with previous rodent and 

human fear studies (Kim, Li, et al., 2011; Pattwell et al., 2011; Pattwell et al., 

2012; Strawn, Wehry, et al., 2013), suggesting exaggerated fear expression 

during development. Furthermore, younger age was quadratically associated 

(positive direction) with vmPFC activity to learned threat vs. safety cues during 

early extinction. More specifically, mid-adolescents displayed the least 

activation in the vmPFC to learned threat vs. safety cues during early extinction, 

in line with previous rodent work (Kim, Li, et al., 2011; Pattwell et al., 2011; 

Pattwell et al., 2012), suggesting compromised fear inhibition during this stage 

of development.  

Age was associated with the grey matter probability of structures related 

to fear extinction ability. In line with prior structural work (Giedd, 2004; Gogtay 

et al., 2004; Lebel & Beaulieu, 2011; Lebel et al., 2008; Østby et al., 2009; 
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Tamnes et al., 2010; Wierenga et al., 2014), younger age was associated with: 

(1) greater grey matter probability  in the vmPFC, suggesting less age-related 

grey matter thinning, (2) reduced grey matter probability in the bilateral 

amygdala, suggesting steady grey matter growth in this region with age, and (3)  

reduced structural integrity of  the uncinate fasciculus, suggesting thickening of 

this white matter tract with age. Crucially, age-related structural differences in 

grey matter probability within the vmPFC was associated with reduced 

amygdala response to the learned threat vs. safety cues during late extinction. 

Similarly, stronger structural integrity of the uncinate fasciculus was associated 

with reduced amygdala response to learned threat vs. safety cues during late 

extinction, however this effect was at trend. We did not find an association 

between amygdala grey matter and amygdala activity during extinction. There 

was no specificity of age or vmPFC grey matter predicting amygdala response 

during late extinction. 

We did not find any significant associations between individual 

differences in IU and the dependent measures. The lack of effects with IU may 

be simply related to weak statistical power or developmental phenomena (see 

below for further discussion).  

Whilst we showed main effects of fear extinction in the amygdala and 

behavioural ratings, we did not show main effects of conditioning in the vmPFC, 

SCR magnitude, and pupil dilation. In addition, we did not observe 

developmental effects on psychophysiology and behaviour (Johnson & Casey, 

2015; Pattwell et al., 2012), however developmental effects on these measures 

are not always found (Britton et al., 2013).  
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To summarise, these data suggest age and age-related structural 

change in the vmPFC may underlie the blunted fear extinction profile observed 

during adolescence. 

 

5.3 Comparison with previous fear extinction studies  

Consistent with previous research, we show evidence of successful 

conditioning in both adult and adolescent samples in Chapters 2-4, indexed by 

conditioned responses in psychophysiological and behavioural measurements 

to learned threat cues vs. safety cues during fear extinction (Milad et al., 2007; 

Pattwell et al., 2012; Phelps et al., 2004). Furthermore, in the two fMRI studies, 

we observed differential activity in regions associated with fear extinction, such 

as the amygdala and vmPFC (Barrett & Armony, 2009; Kalisch, Korenfeld, et 

al., 2006; LaBar et al., 1998; Milad et al., 2007; Phelps et al., 2004; Sehlmeyer 

et al., 2011; Soliman et al., 2010). Importantly, we found psychophysiological 

and neural responding during fear extinction to vary substantially, depending on 

individual differences in developmental stage and IU.  

In Chapters 2 and 3, we show that self-reported IU in adult samples was 

associated with psychophysiological and neural recruitment during fear 

extinction. In both Chapters 2 & 3, lower IU was associated with earlier 

discrimination of threat and safety cues during fear extinction, consistent with 

previous fear extinction studies (Milad et al., 2007; Phelps et al., 2004): SCR 

magnitude and right amygdala response was larger to threat cues, relative to 

safety cues during early extinction. Expanding previous research on individual 

differences in trait anxiety (Barrett & Armony, 2009; Gazendam et al., 2013; 

Indovina et al., 2011; Sehlmeyer et al., 2011; Soliman et al., 2010; Torrents-
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Rodas et al., 2013) and IU (Dunsmoor et al., In press), higher IU was 

associated with fear expression to both learned threat and safety cues in early 

extinction. More specifically, in Chapters 2 & 3 we found that higher IU scores 

were associated with indiscriminate SCR magnitude to both threat and safety 

cues during early extinction. In Chapter 3, we also found that higher IU is 

associated greater pupil dilation (at trend) and right amygdala activity to safety 

vs. threat cues in early extinction. In general, these results suggest that high IU 

individuals are prone to overestimating the value of potential threat when 

contingencies are uncertain. 

In Chapters 2 & 3, low IU was associated with reduced SCR magnitude 

(and reduced right amygdala activity in Chapter 3) to threat vs. safety cues in 

late extinction, suggesting successful fear extinction (LaBar et al., 1998; Milad 

et al., 2007; Phelps et al., 2004). However, high IU was associated with 

increased SCR magnitude (in both Chapters 2 & 3), pupil dilation (at trend) and 

right amygdala to threat vs. safety cues during late extinction, suggesting 

slower discrimination of threat and safety cues, and sustained fear expression 

to learned threat cues. Contrary to predictions, high IU was associated with 

increased vmPFC activation in response to threat cues in late extinction, similar 

to that shown in previous studies examining trait anxiety (Barrett & Armony, 

2009). Overall, findings from Chapters 2 and 3 suggest that high IU adults are 

slower to discriminate threat from safety cues, which subsequently 

compromises fear extinction. Given that we found specificity of IU over and 

above other measures of trait anxiety in Chapters 2 & 3, we argue that IU may 

be more closely aligned (than STAI and PSWQ) with the underlying cognitive 

biases that disrupt fear extinction processes. Importantly, these results suggest 
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that threat generalization and deficient safety learning may be strong candidate 

markers of IU based maintenance of fear and anxiety. 

Individual differences in IU (or STAI and PSWQ) were not associated 

with fear extinction behaviour in any dependent measure in Chapter 4. The lack 

of IU effects in this study could be due to experimental limitations, such as 

weak statistical power, or the choice of cohort sampling (across adolescence 

and early adulthood). Alternatively, non-linear developmental effects may curb 

or shield IU-related fear extinction behaviour during adolescence. However, this 

latter proposal is debatable: Firstly, a number of adolescent fMRI studies have 

found that trait anxiety and IU are associated with neural activity during fear 

conditioning (Haddad et al., 2015) and decision making (Krain et al., 2008; 

Krain et al., 2006), despite the task differences between fear extinction and 

decision making, these results still suggest that individual differences in anxious 

disposition (and specifically IU) can be captured during adolescence. Secondly, 

longitudinal survey research has shown that IU is highest at the start and end of 

secondary school education, suggesting that IU may have a unique 

developmental trajectory across adolescence (Dugas, Laugesen, & Bukowski, 

2012). Assessing the relationship between function of fear extinction circuitry 

and anxious disposition (and specifically IU) across development may be better 

achieved by using large cross-sectional designs with less developmental 

variability (e.g. smaller age ranges) or using longitudinal designs where 

participants are first tested as adolescents and followed up as adults, or tested 

repeatedly across adolescence.  

In Chapter 4, we found that younger age was associated with 

exaggerated amygdala activity and reduced vmPFC activity to learned threat 
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vs. safety cues across fear extinction, in line with previous rodent and human 

behavioural fear extinction studies (Den & Richardson, 2013; Johnson & Casey, 

2015; Kim, Li, et al., 2011; McCallum et al., 2010; Pattwell et al., 2011; Pattwell 

et al., 2012). Alongside age, grey matter probability in the vmPFC, indicative of 

grey matter thinning (Giedd, 2004; Lebel & Beaulieu, 2011), was associated 

with reduced amygdala response to the learned threat vs. safety cues during 

late extinction. As far as we are aware, our study was the first to examine or 

report: (1) function of fear extinction circuitry during adolescence, and (2) how 

age-related structural changes in fear extinction circuitry are related to function 

of fear extinction circuitry during adolescence. On this basis there is a scarcity 

of literature to compare our imaging results against. However, our fear 

extinction findings in Chapter 4 complement previous imaging studies of fear 

acquisition in adolescence (Haddad et al., 2015; Lau et al., 2011), as 

adolescents and adults both display different patterns of neural recruitment 

during fear acquisition and extinction. More specifically, during acquisition and 

extinction, adolescents exhibit greater activation in limbic regions to threat vs. 

safety cues, whilst adults display greater activation in prefrontal regions to 

threat vs. safety cues. Notably, in fear acquisition, older adolescents and adults 

reveal greater activation in the dlPFC to threat vs. safety cues (Haddad et al., 

2015; Lau et al., 2011), thought to reflect age-related differences in 

discrimination learning. In our fear extinction study, age was quadratically 

associated with vmPFC recruitment to threat vs. safety cues during early 

extinction, such that mid adolescents showed less vmPFC activity. These 

findings suggest that prefrontal regions with different developmental 

trajectories, such as the dlPFC and vmPFC, (Gogtay et al., 2004; Shaw et al., 
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2008) may play important and interacting roles in fear acquisition and extinction 

processes across adolescence.  

Taken together these results suggest that both age and age-related 

structural changes may underlie the difficulties that youth have in updating 

learned threat cues as safe. Future work with longitudinal designs  that 

incorporate structure-function based approaches may be able to elucidate the 

relationship between fear extinction ability and vmPFC grey matter further by 

tracking the extent of thinning in the vmPFC (Newman et al., 2015; Pfeifer & 

Allen, 2012). Furthermore, following age-related structural and functional 

changes in other prefrontal regions involved in fear regulation may prove useful 

in separating out the different developmental trajectories of fear acquisition and 

extinction processes that contribute to the adolescent profile.    

 

5.4 Comparison to other emotion regulation studies  

Beyond fear extinction, this body of work is also in line with previous 

research examining more broadly the role of individual differences in 

developmental stage and anxious disposition in emotion regulation. For 

example, similar activation of amygdala-vmPFC circuitry underlying fear 

extinction is also observed during other types of emotion regulation, such as 

habituation, reappraisal-based regulation and attentional tasks with emotional 

distractors (Bishop, 2009; Blair et al., 2007; Delgado et al., 2008; Fisher et al., 

2009; Ochsner et al., 2009; Urry et al., 2006).  

 In line with previous studies of anxious disposition that used a variety of 

emotion regulation tasks (Campbell-Sills et al., 2011; Etkin et al., 2004; Mujica‐

Parodi et al., 2009; Schienle et al., 2010; Somerville et al., 2013; Stein et al., 
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2007), we observed similar aberrant recruitment of amygdala-vmPFC circuitry, 

such that anxious disposition was associated with hyperactivity in the amygdala 

and vmPFC to potential threat stimuli. In anxious populations, the vmPFC is 

more commonly reported as hypoactive (Mujica‐Parodi et al., 2009; Sehlmeyer 

et al., 2011; Somerville et al., 2013; Xu et al., 2013), but hyperactivation has 

also been observed, and is thought to reflect effortful attempts in regulating 

emotions (Barrett & Armony, 2009; Campbell-Sills et al., 2011). Differences 

between previous studies of anxious disposition and emotion regulation, and 

the current fear extinction studies of the thesis lie in recruitment of other parts of 

the prefrontal cortex. For example, in previous studies of instructed emotion 

regulation, anxious individuals have also displayed increased activation in other 

parts of the prefrontal cortex when attempting to reduce responses to emotional 

stimuli (Campbell-Sills et al., 2011). As expected, we did not observe any 

differences in recruitment of these regions for anxious individuals during fear 

extinction.  

Importantly,  our results were specifically associated with IU, over and 

above other trait anxiety measures, suggesting a critical role of IU-based 

mechanisms in fear extinction, and potentially to other types of emotion 

regulation that rely on amygdala-vmPFC circuitry as well. For example, our 

findings support  previous emotion regulation work showing a specificity of IU in 

contexts that manipulate uncertainty with a variety of unpleasant, pleasant, and 

neutral stimuli e.g. (Gole et al., 2012; Krain et al., 2008; Krain et al., 2006; 

Luhmann et al., 2011; Schienle et al., 2010; Somerville et al., 2013). Similar, to 

our findings, previous studies have shown that high IU is associated with 

heightened amygdala responses and disrupted recruitment of the vmPFC to 
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cues that signal uncertainty (Krain et al., 2008; Schienle et al., 2010; Somerville 

et al., 2013). Previous work has also reported high IU individuals to show 

differences in regions that we did observe in our studies, such as the insula, 

ACC, and other parts of the prefrontal cortex, suggesting that IU may impact a 

variety of emotion regulation processes (Krain et al., 2008; Krain et al., 2006; 

Schienle et al., 2010; Simmons, Matthews, Paulus, & Stein, 2008).  

With regards to development, a key theme emerging from this thesis and 

the literature as a whole is that adolescents may have difficulty inhibiting 

emotional information more generally. There is ample evidence of adolescents 

exhibiting greater recruitment of the amygdala and reduced recruitment of top 

down control regions responsible for inhibition such as the vmPFC to affective 

information in a variety of contexts. For example, this has been observed in 

cognitive tasks with embedded faces (Hare et al., 2008; Monk, McClure, et al., 

2003) passive viewing of fearful faces (Swartz et al., 2014; Thomas, Drevets, 

Whalen, et al., 2001) and instructed emotion regulation tasks (McRae et al., 

2012; Vink et al., 2014). Based on this evidence, we can infer that adolescents 

may be drawn to highly arousing affective content, irrespective of valence.  

  

5.5 Broader implications and remaining questions 

Of note from the comparison of studies above is the different pattern of 

fear extinction behaviour that emerges as a function of individual differences in 

development and IU. Younger age is associated with compromised fear 

extinction through what appears to be a difficulty in updating the value of a 

learned threat cue to a safety cue. On the one hand this behaviour may be 

useful for driving adolescents away from potentially volatile situations when 
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they are beginning to establish independence (Somerville & Casey, 2010). On 

the other hand, this behaviour may become disruptive when the situation 

cannot be avoided and fear extinction is needed, leaving adolescence 

vulnerable to anxiety disorders. Interestingly, adults with high IU (over other trait 

measures), not only exhibit the difficulty in updating the value of a learned 

threat cue to a safety cue, but also generalise threat across cues. Importantly, 

these types of behaviours observed in the healthy cohort tested here are also 

commonly seen in both paediatric and adult samples with anxiety disorders 

(Lissek et al., 2005; Pine, 2007), suggesting that these behaviours may be 

apparent before any anxiety disorder diagnosis.  

The distinction between the impact of individual differences in 

developmental stage and IU upon fear extinction processes poses a few 

important questions: (1) Do the mechanisms serving adolescent-based 

difficulties in updating the value of learned threat cues to safety cues continue 

into adulthood for high IU individuals? (2) During development is there a 

common time of emergence for mechanisms serving IU-based threat 

generalisation behaviour? (3) Can the mechanisms serving adolescent-based 

and IU-based fear extinction behaviour predict concrete outcomes (i.e. anxiety 

and stress-related pathophysiology)? 

Overall, these findings suggest a critical role of age-related and 

uncertainty-based mechanisms in the maintenance of learned fear. Importantly, 

these results highlight an opportunity for further examination of structural and 

functional changes in amygdala-vmPFC circuitry during adolescence that relate 

to: (1) risk of anxiety disorder development, (2) effectiveness of current 

exposure based therapies, and (3) development of novel anxiety disorder 
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treatments that are age specific (Casey et al., 2015; Casey, Oliveri, & Insel, 

2014; Johnson & Casey, 2015; Rapee et al., 2009). Similarly, this body of work 

shows promise for the further development of: (1) recently implemented 

focused forms of anxiety disorder treatment, such as intolerance of uncertainty 

therapy (van der Heiden, Muris, & van der Molen, 2012) and, (2) novel 

experimental models of targeted therapies (Dugas et al., 2004; Dunsmoor et al., 

In press) in those demonstrating IU-based symptomatology that could 

specifically help manage uncertainty-based maintenance of learned fear. 

 

5.6 Conclusions 

The current thesis adds to a growing body of neurobiological research 

examining individual differences in fear regulation processes, which are 

essential for maintaining health and wellbeing. Specifically, we examined 

individual differences in development and IU on fear generative and regulatory 

processes during fear extinction, as measured with behavioural, 

psychophysiological and neural correlates. We focused on a crucial but 

simplified brain model of fear extinction circuitry, comprising the coupling of the 

amygdala and vmPFC.  

Importantly, we found a different pattern of fear extinction behaviour as a 

function of individual differences in development and IU. In our developmental 

sample, we found younger age and age-related structural changes in the 

vmPFC to be important predictors of continued responding in the amygdala to 

learned threat vs. safety cues during fear extinction. These findings suggest 

that development is associated with compromised fear extinction through a 

difficulty in updating the value of a learned threat cue to a safety cue. In our 
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adult samples, however, we found IU, over and above other general measures 

of anxious disposition, to specifically predict elevated responses to both learned 

threat and safety cues in psychophysiological correlates and the amygdala 

during fear extinction. These findings suggest that high IU adults are prone to 

both a difficulty in updating the value of a learned threat cue to a safety cue and 

in threat generalisation across cues. These developmental and IU effects on 

the functioning of the amygdala and vmPFC may extend to other types of fear 

generation and regulation that rely on this circuitry. In addition, such effects 

may extend to other relevant fear extinction circuitry and fear regulation circuitry 

more broadly, such as the hippocampus and other regions of the prefrontal 

cortex.  

However, as highlighted throughout the discussion, a number of 

outstanding issues remain regarding the emergence, timing and permanency of 

these effects on fear regulatory processes. Future work may be able to address 

these issues, and in particular the onset of IU-based mechanisms in 

adolescence, by using longitudinal designs with larger samples where 

development of fear extinction ability (and other forms of fear regulation) can be 

followed across adolescence into early adulthood. Furthermore, tracking the 

development of fear extinction circuitry (and other fear regulation circuitry) 

through structure-function and network based approaches, are likely to tease 

apart some of the nuances in the field and advance our understanding of 

individual differences in development. Alongside previous work, the current 

thesis highlights the relevance and potential of developmental and IU-based 

mechanisms to help understand pathological fear in anxiety disorders and 

inform future treatment targets. 
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Appendix 

Executive function in adolescents 

Behavioural and functional magnetic resonance imaging (fMRI) studies 

have demonstrated adolescents, relative to adults, to show a variety of deficits 

in cognitive control tasks, such as Anti-Saccade (Hwang, Velanova, & Luna, 

2010), Stroop (Adleman et al., 2002), Stop-Signal (Rubia, Smith, Taylor, & 

Brammer, 2007), Simon and Go/No Go (Rubia et al., 2006), as well as Visual 

Spatial Working Memory (Conklin, Luciana, Hooper, & Yarger, 2007; Luciana, 

Conklin, Hooper, & Yarger, 2005)  and Switch tasks (Rubia et al., 2006). In 

such tasks, adolescents are more susceptible to false alarms, display poorer 

error monitoring, and retain less information in memory, compared to adults. 

Additionally, fMRI data from these experiments show either decreased or more 

diffuse activation in regions of the prefrontal cortex that are associated with 

cognitive control, such as the dlPFC, vlPFC and ACC. 

To assess that our sample of adolescents in the third study displayed 

normative developmental trajectories of cognitive functioning, we asked them to 

complete a Stroop task, switch task and letter memory task.  

 

Participants 

52 right-handed volunteers were taken from Chapter 4 (M age = 

17.75yrs, SD age = 3.65yrs, range = 12-28yrs; 32 females & 20 males). Please 

refer to the participants and procedure sections from Chapter 4. 
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Cognitive tasks 

Participants completed three computerised cognitive tasks outside of the 

scanner. These tasks have been used previously with both adult and 

adolescent samples (Luna, Padmanabhan, & O’Hearn, 2010). Each cognitive 

task tests one of three aspects of executive control: inhibition, switching and 

updating (Miyake et al., 2000).  

 We used the Stroop task to measure inhibition ability (Adleman et al., 

2002). Stimuli for this task consist of words printed in one of four colours (red, 

blue, green or purple) to form three conditions: (1) in the Congruent condition 

coloured words printed in the same colour as the semantic meaning of the word 

(e.g. ‘‘blue’’ in blue ink). (2) In the Incongruent condition, colour words are 

printed in a colour different from the meaning of the word (e.g. ‘‘red’’ printed in 

blue ink).  The task consisted of 8 practice trials, 12 congruent test trials and 12 

incongruent test trials. Each word was presented for 1250 ms, followed by a 

blank screen for 750 ms. Participants responded using coloured keys on the 

keyboard.  

 We used a modified version of the Meiran task to measure switching 

ability (Christakou et al., 2009; Rubia et al., 2006). In this task participants are 

presented with a grid of four squares and fixation cross in the middle. Then, a 

red dot appears in one of the squares. A bi-directional arrow that points 

vertically or horizontally sits in the middle of the grid, which prompts the 

participant to respond whether the red dot is in the horizontal (left/right) or 

vertical (up/down) plane. In the switch trials the arrow in the middle of the grid 

changes directional plane. This occurs approx. every 4-6 trials. The task 

consisted of 8 practice trials, 180 repeat trials and 36 switch trials. The fixation 
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is presented for 800 ms, followed by an arrow for 200 ms and a red dot for 1400 

ms. Participants used the arrow keys on the keyboard to denote the location of 

the dot e.g. right arrow for when the arrow is horizontal and the dot is in either 

one of the right squares. 

To measure updating ability, we used the Letter Memory task (St Clair-

Thompson & Gathercole, 2006), which consists of presenting letters serially 

(e.g. 5, 7, 9 or 11 letter strings). Participants are required to recall the last four 

letters presented in each list. To ensure continuous updating, participants must 

rehearse the last four letters out loud throughout the task. The task consisted of 

2 practice trials and 12 testing trials. Each letter was presented for 2000 ms, 

followed by a 150 ms blank screen. The experimenter recorded the answers 

using pencil and paper. 

 

Cognitive task data reduction and analysis 

Reaction time and accuracy data for the Stroop and Meiran tasks were 

reduced for each subject by calculating the average responses for each 

experimental condition using the E-Data Aid tool in E-Prime (Psychology 

Software Tools Ltd, Pittsburgh, PA).  For both the Stroop and Meiran tasks, 

reaction time responses were considered to be valid if they were correct and 

were above 250 ms. Accuracy scores consisted of a correct score percentage.  

Responses to the Letter Memory task were coded using a point system 

for each trial. Participants could receive a maximum of 6 points per trial. A point 

for each correct letter (4 letters per answer), a point for letters in the correct 

order, and a point for completing the string with no hesitation or missing recall. 

A total score for all 12 trials was given to each participant.    
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Age differences for the Stroop and Meiran tasks were assessed by 

conducting a Condition (Stroop: Congruent, Incongruent; Meiran: Repeat, 

Switch) x Age repeated measures ANCOVA for the reaction times and 

accuracy scores. Age was entered as a continuous mean centered predictor 

variable. For the Letter Memory task we correlated the total Letter Memory 

score per participant against age.  

 

Results of cognitive tasks and age 

 For the Stroop task, participants were significantly more accurate, 

F(1,50) = 30.660, p< .001, and faster, F(1,50) = 189.950, p< .001, to respond to 

congruent vs. incongruent trials. There was an effect of age at trend on the 

accuracy of congruent vs. incongruent trials, F(1,50) = 3.419, p= .070, in that 

older age was associated with better accuracy on incongruent trials. However, 

there was no age effect on reaction times for the congruent vs. incongruent 

trials in the Stroop task, F(1,50) = 1.687, p=.2.    

 As expected, participants were generally slower to respond to switch vs. 

repeat trials, F(1,50) = 89.063, p< .001. Furthermore, younger age was 

associated with slower reaction times to the switch vs. repeat trials, F(1,50) = 

6.076, p= .017. The ANCOVA results for the Switch task revealed no main 

effects of condition or age x condition interaction on the accuracy scores, F’s < 

2.773. 

As predicted, age significantly correlated with Letter Memory task 

scores, r(50)= .440, p = .001, such that increasing age was associated with 

better updating ability.  

 


