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Abstract 

 

Zymoseptoria tritici causes Septoria leaf blotch (SLB), the most important foliar disease in winter 

wheat in Northern Europe and the UK. Chemical control of Z. tritici has seen a continuous 

introduction and substitution of fungicides with distinct mode of actions, due to the development 

of fungicide resistance. Emergence of diverse resistance mechanisms and their fixation in field 

populations of Z. tritici represents a constant threat to the control of SLB by fungicides. The aim of 

this research was to determine the biological potential of Z. tritici to adapt to the multi-site 

inhibitors chlorothalonil and folpet, and the single-site succinate dehydrogenase inhibitor (SDHI) 

fluxapyroxad. In vitro microtitre plate based fungicide sensitivity assays indicated that there was 

evidence for reduced sensitivity to chlorothalonil or folpet in the Z. tritici field isolates tested. 

Field isolates obtained from plots treated with solo applications of chlorothalonil or folpet were 

less sensitive to the fungicides compared with isolates sampled from non-treated plots. No 

evidence was found for reduced sensitivity to fluxapyroxad in the same set of field isolates. RNA 

sequencing analysis of the genome-wide transcriptional response of the reference Z. tritici isolate 

IPO323 after exposure to chlorothalonil or folpet in the lag and log phase of growth revealed a 

compound-specific “functional gene expression signature”. In addition, several genes encoding 

glutathione S-transferase (GST),      ATP-binding cassette (ABC) or major facilitator superfamily 

(MFS) efflux pumps were significantly overexpressed in response to chlorothalonil or folpet 

exposure. In vitro evolutionary studies determined the course of evolution of resistance to the 

succinate dehydrogenase inhibitor (SDHI) fluxapyroxad in replicate populations of Z. tritici derived 

from the sensitive isolate IPO323. Resistance to fluxapyroxad arose mainly through alterations in 

the target protein that also often conferred cross-resistance to other SDHIs (e.g. fluopyram and 

carboxin). Additionally, overexpression of an ABC transporter or a GST gene was associated with 

resistance to fluxapyroxad and lower sensitivity to fluopyram or carboxin in a mutant without 

target-site alteration. The frequency of six amino acid substitutions in the target protein subunits 

sdhB, sdhC or sdhD – determined by SNP pyrosequencing assays – indicated that evolution of 

resistance was driven by a successive substitution of fitter mutants carrying distinct amino acid 

substitutions as selection at increasing concentrations of fluxapyroxad continued. 
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Chapter 1: Introduction 

1.1 Zymoseptoria tritici 

Zymoseptoria tritici (Desm.) Quaedvlieg & Crous (anamorph: Septoria tritici Roberge in Desmaz.) is 

a hemibiotrophic fungus that causes the septoria leaf blotch (SLB) disease in both bread (Triticum 

aestivum L.) and durum (Triticum turgidum ssp. durum L.) wheat (see Palmer and Skinner, 2002; 

Quaedvlieg et al., 2011). The SLB symptoms are characterised by development of chlorotic 

blotches on wheat leaves. Subsequently, the chlorotic spots become necrotic leaf lesions where 

asexual reproductive structures (i.e. pycnidia) and, at much later stage, sexual structures 

(pseudothecia) can be found (Fig. 1.1; Kema et al., 1996b).  

 

 

Figure 1.1 Septoria leaf blotch (SLB) symptoms on wheat leaves caused by Zymoseptoria tritici. 
Black dots within lesions are pycnidia which each can release hundreds of asexual pycnidiospores. 
(Source: Rothamsted visual communication unit). 

 

1.1.1 Zymoseptoria tritici infection process 

Zymoseptoria tritici infects wheat leaves mainly through stomata, and has a long temperate 

dependent latent period before symptoms are evident (Fig. 1.2). Typically, the primary inoculum 

source of SLB is airborne ascospores released from the sexual reproductive structures 

pseudothecia, which can develop in stubble from previous cropping during autumn and winter 

(Shaw and Royle, 1989a). Subsequent disease progress within the crop during spring and summer 

is mainly caused by the asexual stage of the fungus (Septoria tritici) (Hunter et al., 1999). Once 
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sexual ascospores or asexual pycnidiospores have landed on wheat leaves, germination occurs 

under high humidity conditions (Shaw, 1991). Light microscopy, scanning and transmission 

electron microscopy studies demonstrated that after spore germination, germ tubes grow 

randomly from the spore until they penetrate stomata without development of an appressorium 

within 48 hours post inoculation (Kema et al., 1996b). After stomatal penetration, the fungus can 

complete its asexual reproductive cycle within two or three weeks through intracellular growth 

without host cell penetration (see Deller et al., 2011; Kema et al., 1996b). Early in the colonisation 

phase there is a latency period of exceptionally slow growth that last approximately 7 days, 

depending on the strain-cultivar combination. During the latency period, the fungus colonises the 

sub-stomatal cavity and between the mesophyll cell layer of the leaf without a dramatic increase 

in biomass or visible symptoms development (Kema et al., 1996b; Keon et al., 2007; Pnini-Cohen 

et al., 2000). This initial symptomless phase has been linked with the secretion of an effector 

protein (i.e. Mg3LysM) by Z. tritici that suppress chitin (PAMP) recognition by the wheat chitin 

elicitor binding protein (TaCEBiP) and chitin elicitor receptor kinase1 (TaCERK1; Lee et al., 2014; 

Marshall et al., 2011). Under ideal conditions, after 7 to 10 days post infection fungal biomass 

increase dramatically and pycnidia formation begins. This increase in biomass coincides with the 

sudden death of wheat cells (Keon et al., 2007). During this phase the leaf becomes chlorotic and 

pycnidia become visible (Fig. 1.1). Keon et al. (2007) reported that the appearance of disease 

symptoms was restricted to inoculated leaf area in a susceptible wheat cultivar. This response 

displays biochemical features of programmed cell death (Rudd et al., 2008). This massive cell 

death may provide nutrients – to the fungus – as a consequence of the loss of host cell membrane 

integrity. Lastly, Z. tritici enters in the reproductive phase in the death tissue, forming pycnidia full 

of asexual spores in the substomatal cavities (Kema et al., 1996b). Under high humidity and 

rainfall conditions, pycnidiospores are extruded through the stomatal aperture as a spore-rich 

hydrophobic extracellular matrix known as cirrus (Duncan and Howard, 2000). These 

pycnidiospores are propagated via rain splash to stablish further cycles of infection. Under 

optimal experimental conditions in the Netherlands, the sexual cycle of Z. tritici can be completed 

in approximately 35 days (Kema et al., 1996a). In the UK, Z. tritici completes its cycle from 

pycnidium formation to pseudothecia in 62 up to 95 days under field conditions (Hunter et al., 

1999).  
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Figure 1.2 Infection cycle of Zymoseptoria tritici on winter wheat in the UK. (Source: Rothamsted visual communication unit). 
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1.1.2 Epidemiology and distribution 

Population structure studies have indicated high levels of genetic variability in Z. tritici 

populations. Zhan et al. (2003) reported that approximately 90 % of the global genetic variation of 

the fungus can be found in a single infected wheat field. This genetic variability can be explained 

by the high degree of sexual recombination (Cowger et al., 2008), generation of mutations during 

asexual reproduction (Hunter et al., 1999), and a large population size which reduces genetic drift 

(Szendro et al., 2013). For plant pathogens, asexual reproduction allows a rapid clonal 

multiplication of fitter phenotypes under specific conditions (McDonald and Linde, 2002). Sexual 

reproduction generates new genotypes through recombination, which increases the probability of 

adaptation to new threats, including fungicide exposure (Brown and Hovmoller, 2002; Wittenberg 

et al., 2009). Genes or mutated genes encoding resistance to fungicides may recombine with 

better fitness traits to originate new phenotypes that can spread under field conditions. 

Moreover, sexual ascospores of the new phenotypes can be wind-dispersed long distances, 

whereas dispersion of asexual spores can be limited to rain-splash events (Fraaije et al., 2005). 

Thus, the sexual stage of Z. tritici increases population size and speed the spread of fungicide 

resistance (Brent and Hollomon, 2007b). 

Septoria leaf blotch is the most important foliar disease of winter wheat in the UK (Fig. 1.3) and 

Northern Europe. Since the early 1980s, Z. tritici has been the most abundant foliar plant 

pathogen in wheat crops grown in the UK (Bearchell et al., 2005). Severe epidemics of Z. tritici can 

cause up to 50 % wheat yield losses (see Eyal et al., 1987; Royle et al., 1986). This reduction in 

wheat yield occurs when the upper three leaves in the crop (i.e. Leaf flag, Leaf 1 and Leaf 2) are 

infected by Z. tritici (Shaw and Royle, 1989b; Thomas et al., 1989). National surveys recorded that 

approximately 60 % of wheat crops was affected by Z. tritici in 2013 (CropMonitor, 2013). Despite 

of use of fungicides, the disease levels recorded for the leaf flag and leaf 2 were 0.2 and 0.7 % 

respectively. In 2012, a year with high disease pressure, the average severity of SLB in the flag leaf 

and leaf 2 was 5.0 and 9.6 %, respectively, and approximately 90 % of the wheat crops were 

affected by Z. tritici (Fig. 1.4; CropMonitor, 2012). 

Management of SLB can be achieved by the protection of the three upper wheat leaves from Z. 

tritici infection using fungicide applications and resistant wheat varieties (HGCA, 2014). Although 

less susceptible varieties to SLB are available, under north European conditions which often leads 

to high disease pressure, chemical control is the most reliable crop protection strategy against Z. 

tritici. Currently, the control of SLB involves two or three sprays with high rates of azoles (e.g. 

prochloraz, tebuconazole, metconazole, epoxiconazole or prothioconazole) mixed with succinate 
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dehydrogenase inhibitors (SDHIs; e.g. penthiopyrad, bixafen, isopyrazam, fluxapyroxad or 

boscalid) and/or preventive applications of multi-site inhibitor (i.e. chlorothalonil or folpet; HGCA, 

2014). 

 

 

Figure 1.3 National foliar disease incidence of septoria leaf blotch (Zymoseptoria tritici), 

powdery mildew (Blumeria graminis) and tan spot (Pyrenophora tritici-repentis). Approximately 

300 winter wheat crops across England were sampled every year. Disease incidence data was 

based on disease recorded for the flag and Leaf 2 (Adapted from CropMonitor, 2013). 
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Figure 1.4 National average foliar disease severity on Leaf 2 for septoria leaf blotch 

(Zymoseptoria tritici), powdery mildew (Blumeria graminis) and tan spot (Pyrenophora tritici-

repentis). Approximately 300 winter wheat crops across England were sampled each year 

(Adapted from CropMonitor, 2013). 
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1.2 Fungicide resistance 

Global crop production has been boosted in part by the use of fungicides to control crop diseases, 

improve quality and ensure crop production stability. The intense use of fungicides became more 

common since late 1960’s and increased selection pressure in fungal plant pathogen populations 

(Russell, 2005). Fungal populations under this selection pressure, perhaps, inevitably adapted to 

fungicides, therefore fungicide resistance became evident. Reduce sensitivity to aromatic 

hydrocarbons or dodine in Penicillium species or Venturia inaequalis, respectively, was one of the 

first reports of fungicide resistance (see Brent, 2012). Intriguingly, resistance to organomercurial 

fungicides in Pyrenophora avenae has been also reported (Noble et al., 1966). Cases of fungicide 

resistance became more common since 1970’s when new classes of fungicide were available and 

widely used in crop protection (Brent, 2012). Most of the novel selective fungicides impair 

particular metabolic pathways and bind to specific proteins. These specific site fungicides are 

considered as single-site fungicides whereas fungicides that affect diverse metabolic pathways are 

considered as multi-site fungicides (FRAC, 2014). Reduce sensitivity to single-site fungicides is 

commonly linked with changes in the target protein, whereas for multi-site fungicides many 

changes might be required. Typically, single-site fungicides can be absorbed and translocate in 

plant tissue, feature that enables a better disease control at low dose rate. However, this high 

fungicide efficacy in combination with fungal pathogens with short generation times and large 

production of propagules can lead to selection of less sensitive individuals carrying alterations in 

the target protein conferring resistance. Therefore, the emergence and development of 

resistance to single-site fungicides can be driven by diverse factor such as fungicide mode of 

action, usage and efficacy, and pathogen biology (see Lucas et al., 2015). 

Typically, the control of fungal plant pathogens has been characterised by sequential introduction 

and replacement of fungicides with distinct mode of action due to the emergence and 

development of fungicide resistance (Lucas et al., 2015; Van den Bosch et al., 2011). To achieve a 

long lasting disease control is necessary to understand what mechanisms underlay reduced 

sensitivity or resistance to fungicides. Diverse studies have reported a number of mechanisms 

conferring reduced sensitivity to fungicides, including alterations in the target site, increase 

production of the target protein, metabolic breakdown of the fungicide, and exclusion of the 

fungicide through ATP-ase dependent or other transporters (Fig. 1.5; see Brent and Hollomon, 

2007a; see Lucas et al., 2015; see Thind, 2011). 
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Figure 1.5 Representation of resistance mechanisms to single-site fungicides. Alteration in the 

target protein (A), overexpression of target protein (B), efflux pump detoxification, and 

degradation of fungicide (D). (Adapted from Lucas et al., 2015) 

 

1.2.1 Alteration of the target protein 

Perhaps the most common resistance mechanism is alteration in the target protein due to 

mutations in the encoding gene. Point mutations leading to amino acid substitution can confer 

resistance to most of the single-site fungicides, including methyl benzimidazole carbamates 

(MBC), quinone outside inhibitors (QoI), sterol-demethylation inhibitors (DMI), and succinate 

dehydrogenase inhibitors (SDHI; see Brent and Hollomon, 2007a; FRAC, 2013a). Distinct amino 

acid substitution in the target protein can confer different levels of resistance. Sierotzki et al. 

(2005) reported two distinct amino acid substitutions in the mitochondrial respiratory chain at the 

cytochrome b (complex III) that separately can confer different levels of resistance to QoIs in 

Plasmopara viticola. The amino acid substitution at codon 143 from glycine to alanine (G143A) 

confers higher levels of resistance than the amino acid substitution at codon 129 from 

phenylalanine to leucine (F129L). Moreover, high levels of resistance can be conferred by a single 

amino acid substitution. The amino acid substitution from glutamic acid to alanine at codon 198 
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(E198A) in the target protein β-tubulin confers high levels of resistance to most of the MBC 

fungicides in Z. tritici (Fraaije et al., 2005; Lucas and Fraaije, 2008). 

 

1.2.2 Overexpression of target protein 

Overexpression of the target protein can increase resistance to toxicants (Palmer and Kishony, 

2014). White (1997) reported an increase of mRNA levels of ERG16 encoding gene - the target 

protein of azole fungicides – in less sensitive strains of Candida albicans. Overexpression of the 

cyp51A gene – encoding the target protein of azole fungicides – in less sensitive Aspergillus 

fumigatus isolates was correlated with resistance to triazole fungicides (Mellado et al., 2007). 

Similarly, increased expression of the cyp51 gene in Penicillium digitatum can confer high levels of 

resistance to azole fungicides (Hamamoto et al., 2000). They found five replications of a 126bp 

tandem repeat – acting as an upstream transcriptional enhancer – in the promoter region in a 

resistant P. digitatum isolate. This increase in gene expression has been associated with changes 

in the cis- or trans-acting regulatory loci (see Li et al., 2007).  

 

1.2.3 Efflux pump detoxification 

Reduce fungicide accumulation due to increased activity of efflux pumps is a common resistance 

mechanism in both human and plant pathogens (de Waard et al., 2006; White, 1997). ATP-binding 

cassette transporters (ABC) and major facilitator superfamily transporters (MFS) are transporter 

proteins with low substrate specificity able to export toxic compounds. Typically, mutations 

leading to overexpression of ABC or MFS transporters lead to increase detoxification and reduced 

sensitivity to a number of toxicants (see Gulshan and Moye-Rowley, 2007; see Nikaido, 2009). 

Overexpression of two ABC transporters (CDR1 and CDR2) or a MFS transporter was observed in 

multidrug resistance (MDR) phenotypes of Candida spp. isolated from human patients treated 

with fluconazole fungicide (Morschhauser et al., 2007). Similarly, MDR field isolates of Botrytis 

cinerea showed overexpression of efflux pumps encoding genes (Kretschmer et al., 2009). They 

found mutations in the transcription factor of the ABC transporter AtrB gene or a rearrangement 

in the promoter region of the MFS transporter mfsM2 gene in MDR isolates with increased efflux 

activity. Recently, overexpression of the MgMFS1 gene in a field isolate of Z. tritici was associated 

with resistance to fungicides with different mode of action (Omrane et al., 2015). 
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1.2.4 Degradation of fungicide by metabolic enzymes 

An important group of metabolic enzymes involved in toxicant resistance are glutathione S-

transferases (GST; see Li et al., 2007). The GST is a phase II metabolic enzyme able of conjugating 

reduced glutathione to the electrophilic centres of exogenous or endogenous toxic compounds, 

resulting in detoxification (see Salinas and Wong, 1999). Shin et al. (2003) suggested that 

glutathione content and GST activity may be important factors in resistance to chlorothalonil in 

Saccharomyces cerevisiae. Additionally, fungal cytochrome P450 monooxigenases are enzymes 

involved in primary and secondary metabolism pathways (Brase et al., 2009) and able to detoxify 

a range of xenobiotics, including phenolic plant defence compounds (Lah et al., 2011). 

 

1.3 Septoria leaf blotch management and fungicide resistance 

Despite the efforts of wheat breeding programmes, disease management of SLB in Northern 

Europe and the UK is largely achieved by fungicide applications. However, field populations of Z. 

tritici have developed resistance to most of the systemic single-site fungicide used for its control, 

including methyl benzimidazole carbamates (MBC), quinone outside inhibitors (QoI) and sterol-

demethylation inhibitors (DMI).  

 

1.3.1 Methyl benzimidazole carbamate fungicides 

Resistance to MBC fungicides in UK Z. tritici field isolates was reported in 1984 (Griffin and Fisher, 

1985). Similarly, Leroux et al. (2007) reported shifts in sensitivity to MBC fungicides in Z. tritici 

field isolates collected in France between 1988 and 2005. Resistance to MBCs is associated with a 

mutation in the gene encoding β-tubulin, leading to an amino acid substitution from glutamic acid 

to alanine at codon 198 (E198A) of the target protein (Fraaije et al., 2005).  Evolution of resistance 

to MBC fungicides was marked by a sudden shift in sensitivity in Z. tritici field populations. Lucas 

and Fraaije (2008), using ancient archived SLB infected straw samples of wheat from the long-

term experiment “Broadbalk” at Rothamsted and an allele-specific PCR assay, detected a rapid 

increase in frequency of Z. tritici MBC-resistant variants (E198A) within populations between 1984 

and 1985. They suggested that the E198A variant was present in field populations at low 

frequencies before 1985, and applications of MBC fungicides in the Broadbalk plots increased its 

frequency dramatically in 1985. Currently, Z. tritici strains within UK field populations mainly carry 
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the A198 allele without any apparent penalty in fitness, even in absence of MBC fungicide 

selection pressure.    

 

1.3.2 Quinone outside inhibitor fungicides 

After the development of MBC resistance, control of SLB was mainly achieved through the use of 

azoles and, later, QoI fungicide applications. The QoI fungicides inhibit complex III, cytochrome 

bc1 (ubiquinol oxidase) at the Qo site (quinone oxidising pocket) affecting the mitochondrial 

respiration chain (Becker et al., 1981). After the introduction of the QoIs in the crop protection 

market in the UK in 1997, shifts in sensitivity were detected in Z. tritici field populations sampled 

in 2002 (Fraaije et al., 2003). Resistance to QoIs is caused by a point mutation in the cytochrome b 

target encoding gene, leading to the substitution of glycine to alanine at codon 143 (G143A) 

(Fraaije et al., 2003). Another substitution from phenylalanine to leucine at codon 129 (F129L) 

was also reported in a strain originating from Ireland but only confers low levels of resistance to 

QoIs (Fraaije et al., 2003). Once resistance to QoIs was detected in field populations, the 

frequency of Z. tritici strains carrying the G143A mutation increased rapidly, outcompeting “wild-

type” and F129L isolates under QoI fungicide selection pressure. Fraaije et al. (2005) detected an 

increase from 35 to 90 % of isolates carrying mutation G143A after just two field applications of 

QoIs in the same season. To date, Z. tritici G143A variants are distributed in many regions of 

wheat production around the world with no apparent fitness penalty (see Lucas et al., 2015). 

Torriani et al. (2009) suggested that resistance to QoIs arose through mutation G143A 

independently on at least in four occasions in Europe. Once resistance arose in Z. tritici 

populations, further long distance spread of resistance occurred through ascospores blown by 

wind mainly from west to east.  

Alternative respiration can also confer low levels of insensitivity to QoIs. Ziogas et al. (1997) 

reported reduced sensitivity to azoxystrobin in Z. tritici laboratory mutants. Lower sensitivity to 

QoIs was associated with increased activity of the alternative oxidase (AOX). However, this 

alternative resistance mechanism does not have a significant impact in planta.  As a result of QoI 

resistance development in Z. tritici field populations, the control of SLB disease now relies heavily 

on the use of DMI fungicides, especially azoles, and the recently introduced new generation of 

succinate dehydrogenase inhibitors. 

 



Chapter 1: Introduction 12 
 

1.3.3 Azole fungicides 

Azoles fungicides have been a key component in SLB management since the 1980s. Although 

variation in sensitivities against azole fungicides was initially observed in Z. tritici field populations, 

no shifts in sensitivity were detected in vitro (Gisi et al., 1997). Eventually, a subtle reduction in 

sensitivity – approximately a resistance factor of 10 – to the triazole fluquinconazole was 

observed in Z. tritici field populations collected between 1993 and 2005 (Mavroeidi and Shaw, 

2005). Cools et al. (2005) also reported reduced sensitivity – up to 40-fold less sensitivity – to 

epoxiconazole and flusilazole in Z. tritici field isolates sampled in the UK in 2003. Finally, Clark 

(2006) reported shifts in field efficacy and/or resistance to some older azole fungicides (e.g. 

tebuconazole, cyproconazole or propiconazole) after fungicide treatments. 

Resistance to some DMI – azole – fungicides has developed gradually. Azole fungicides bind to the 

sterol 14α-demethylase (CYP51) enzyme which catalyses the oxidative removal of the 14α-methyl 

group from the sterol core (Lamb et al., 1998). Inhibition of the CYP51 enzyme blocks ergosterol 

production and can cause accumulation of toxic 14α-methylated sterols which lead to pathogen 

growth inhibition and cell death. The reduced effectiveness of azole fungicides has been mainly 

linked to accumulation of different amino acid alterations – substitutions (e.g. D134G, 

V136A/C/G, Y137F, A379G, I381V, Y459D/S/N, G460D, Y461H/S and S524T) and a 6 bp deletion 

(DEL) resulting in the removal of two amino acids (codons 459 and 460) – and promoter changes 

in the target encoding gene, sterol 14α-demethylase (see Cools and Fraaije, 2013).  The impact of 

most target site changes on azole binding was confirmed by CYP51 protein modelling (Mullins et 

al., 2011) and yeast complementation studies (Cools et al., 2010). Azole docking studies with the 

CYP51 model of Z. tritici confirmed the role of Y137F in triadimenol resistance, whereas variants 

with I381V and V136A are generally less sensitive to tebuconazole and prochloraz. Additionally, 

the deletion of codons 459 and 460 confers resistance to tebuconazole and epoxiconazole but 

sensitivity to prochloraz when variants also have mutations A379G and I381V. Another resistance 

mechanism based on CYP51 overexpression, due to a 120 bp insertion in the predicted MgCYP51 

promoter has also recently been reported (Cools et al., 2012). Additionally, laboratory studies 

using heterologous expression of Z. tritici genes encoding efflux pumps (e.g. MgArt1, MgArt5 or 

Mgmfs1) in yeast showed that these genes can confer protection against a range of unrelated 

natural and synthetic toxic compounds, including azole and QoI fungicides (Roohparvar et al., 

2007a; Roohparvar et al., 2007b; Zwiers et al., 2002). 
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1.3.4 Succinate dehydrogenase inhibitor fungicides 

Carboxamide fungicides inhibit the succinate dehydrogenase (SDH) enzyme (Georgopoulos et al., 

1972). The SDH enzyme (complex II) transfers electrons from succinate to the ubiquinone pool as 

part of the mitochondrial respiration chain (Saraste, 1999).  SDH is a membrane-bound enzyme 

that consists of a flavoprotein (SDHA) and an  iron-sulphur protein (SDHB), which are anchored to 

the inner membrane of the mitochondria by two hydrophobic sub-units (SDHC and SDHD) 

(Horsefield et al., 2006). The fungicide carboxin was the first SDH inhibitor (SDHI) fungicide 

launched on to the market.  It was sold to control basidiomycete pathogens (Schmeling and Kulka, 

1966; Snel et al., 1970). Modifications of the carboxin molecule led later to the development of 

diverse groups of SDHIs that were able to control a number of ascomycete fungi (see Glattli et al., 

2010). Boscalid – introduced in the UK in 2005 – was the first of these “new” generation of 

carboxamides, with fungicidal activity against a wide range of plant pathogens affecting fruits, 

vegetables, canola and cereals (Stammler et al., 2008). Other members, including penthiopyrad, 

bixafen, isopyrazam and fluxapyroxad, were introduced later and provided excellent control of 

SLB (HGCA, 2013, 2014). However, laboratory studies have shown a high risk of resistance 

development against SDHIs in Z. tritici. Skinner et al. (1998) reported that resistance to carboxin in 

UV exposed mutants was linked to different mutations in the SDH target protein. Resistance to 

carboxin was conferred by a substitution from histidine to leucine or tyrosine at codon 267 

(H267L/Y) in the SDH gene encoding sub-unit B (SDHB). Other amino acid substitutions in SDHB 

(e.g. S221P/T, N225H/I, R265P and I269V/P), SDHC (e.g. T79I, S83G, L85P, N86K and H152R), and 

SDHD (e.g. D129E/G/S/T) have been reported to confer different levels of sensitivity to a range of 

SDHIs in Z. tritici laboratory mutants (Fraaije et al., 2012; Scalliet et al., 2012). Field monitoring of 

Z. tritici populations detected two isolates carrying amino acid substitutions in the SDH target 

protein (FRAC, 2013b). One isolate carrying an amino acid substitution from threonine to 

asparagine at codon 79 (T79N) in the SDHC encoding gene was found in France in 2012. The other 

isolate, carrying an amino acid substitution from tryptophan to serine at codon 80 (W80S) in SDHC 

encoding gene, was found in the UK in the same season. In vitro sensitivity assays indicated that 

both variants had low levels of insensitivity to SDHIs (FRAC, 2013b). The new generation of 

carboxamides are always applied in mixtures with other fungicides with different modes of action 

in UK cereal crop, which should reduce the chance for resistance emerging and slow down spread 

of resistance (FRAC, 2013b; HGCA, 2014).   
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1.3.5 Multi-site inhibitor fungicides 

Chlorothalonil and folpet are protective multi-site inhibitors with low risk for fungicide resistance 

development (FRAC, 2014). However, multi-site inhibitors offer lower disease control in field 

applications. Applications of folpet in a protectant situation at full label recommendation were 

able to reduce SLB symptoms from 25 to 17 %, whereas systemic single-site fungicides reduced 

disease levels from 25 to 5 % disease severity (HGCA, 2013). Although multi-site fungicides 

provide relatively poor SLB disease control, they are believed to reduce or delay fungicide 

resistance development to single-site inhibitors in Z. tritici when used in mixtures (HGCA, 2014). 

Chlorothalonil and folpet interact with thiol-containing proteins in the cell. It has been suggested 

that chlorothalonil exerts its fungicidal activity through inactivation of sulfhydryl groups of thiol-

containing proteins (e.g. cysteine, glutathione or CoA) leading to depletion in the cell (Vincent and 

Sisler, 1968). Vincent and Sisler (1968) also suggested that chlorothalonil might be able to inhibit 

thiol-containing enzymes involved in vital cellular process such glycolysis or respiration. Similarly, 

folpet is able to react with thiol-containing (e.g. glyceraldehyde 3-phosphate dehydrogenase; 

Siegel (1971b)) and non-thiol-containing proteins (i.e. lysozyme; Siegel, 1971a). 

Lower sensitivity to multi-site inhibitors has been reported in field isolates of plant pathogens. 

Holm et al. (2003) and more recently Fairchild et al. (2013) reported field isolates of Alternaria 

solani less sensitive to chlorothalonil fungicide. Similarly, less sensitive field isolates of Botrytis 

cinerea to folpet were reported after continuous applications of carboxamides and folpet in 

vineyards (Fourie and Holz, 2001). However, no genomic changes underlying lower sensitivity to 

multi-site inhibitors in field populations of plant pathogens have been reported. It has been 

suggested that resistance mechanisms such as metabolisation of fungicide or increased efflux 

pump activity might underlie lower sensitivity to multi-site inhibitors (Sisler, 1988). Fungicide 

metabolism through glutathione and glutathione S-transferase activity has been suggested to 

confer resistance to chlorothalonil in yeast (Shin et al., 2003). Resistance to diverse single-site 

fungicides with distinct modes of action in B. cinerea was conferred through alterations in the 

promoter region of genes encoding an ATP binding cassette (ABC) transporter or a major 

facilitator superfamily (MFS; Kretschmer et al., 2009). Leroux and Walker (2011) suggested, based 

on cross resistance studies, that overexpression of genes encoding ABC or MFS efflux pumps 

might confer resistance to a range of unrelated fungicides. Laboratory studies have reported that 

efflux via ABC (Zwiers et al., 2003; Zwiers et al., 2002) or MFS (Roohparvar et al., 2007a) 

transporters can protect Z. tritici against diverse natural metabolites and single-site fungicides. 
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However, to date, fungicide metabolism has not been associated with fungicide resistance in Z. 

tritici field populations. 

 

1.4 Genomics in fungicide research 

As a model microorganism, Zymoseptoria tritici has been subjected to a range of genetic studies. 

The reference Z. tritici isolate IPO323, originating from the Netherlands (Kema and van Silfhout, 

1997) was sequenced by Goodwin et al. (2011). The entire genome comprises approximately 40 

Mb. It is organised as 21 chromosomes ranging from approximately 0.4 to 6 Mb in size. 

Karyotyping studies (Mehrabi et al., 2007), and sexual crosses and genetic analysis of the progeny 

(Wittenberg et al., 2009) found a large variation in chromosome numbers in field isolates, 

including the reference isolate IPO323. These studies reported 13 core and up to eight 

dispensable chromosomes (Fig. 1.6). The core or essential chromosomes are always present in all 

field isolates and progeny; whereas the dispensable chromosomes can be absent in field isolates 

and recombinants. The dispensable chromosomes range in size from 0.3 to 0.7 Mb and represent 

approximately 12 % of the genome size.  They contain repetitive genomic DNA with 

approximately 650 genes, most of them with unknown function (Goodwin et al., 2011; Mehrabi et 

al., 2007). Currently, the function of these dispensable chromosomes in the lifestyle of the Z. 

tritici is unknown. However, it has been suggested that they may facilitate the evolutionary 

process of the fungus (Croll and McDonald, 2012; Croll et al., 2013). Stukenbrock et al. (2010) 

suggested that dispensable chromosomes may be involved in host specialisation in Z. tritici. 

Kellner et al. (2014) looking at genome-wide expression profiles of Z. tritici under axenic culture or 

plant infection, observed that genes residing on the dispensable chromosomes were expressed at 

a relative low level compared with genes on the essential chromosomes. Similar results were 

reported by Rudd et al. (2015). They observed a low expression of genes residing on the 

dispensable chromosomes compared to those genes on the essential chromosomes. This suggests 

that genes residing on the dispensable chromosomes may not play a large role in the pathogen’s 

life cycle in host tissue. Lopez-Leon et al. (1994) reported that the supernumerary, dispensable or 

B chromosome – in the grasshopper Eyprepocnemis plorans – contains mainly a 180-bp tandem 

repeat and ribosomal DNA. Genetic studies indicated no recombination of the dispensable 

chromosomes, suggesting that distributive disjunction – segregation in the absence of 

homologous recombination – may drive the meiotic process of these chromosomes in Z. tritici 

(Wittenberg et al., 2009).  Thus, dispensable chromosomes can be lost with no apparent penalty 

in fitness (Mehrabi et al., 2007; Wittenberg et al., 2009). Dispensable chromosomes have also 
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been reported in other fungal plant pathogens. Miao et al. (1991), using electrophoretic 

karyotype mapping identified a gene (pda6) in a dispensable chromosome of Nectria 

haematococca conferring protection against the phytoalexin pisatin. In addition to pda6, Han et 

al. (2001) identified other genes in the same dispensable chromosome of N. heamatococca that 

were expressed during the infection process of pea tissue. Shaw and Hewitt (1991) based on 

genetic studies in Myrmeleotettix maculatus (Shaw, 1984; Shaw and Hewitt, 1985) suggested that 

dispensable or B chromosomes might not have a function. 
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Figure 1.6   Representation of the 10,933 predicted genes and their distribution on the chromosomes of Zymoseptoria tritici. Location of genes is 

indicated by dark grey lines on each chromosome denoted in light grey.
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1.4.1 Genome-wide transcriptomic studies using microarray technology 

The development of cDNA microarray technology allowed us to assess the transcriptional 

response associated with toxicant exposure (Amin et al., 2002). Moreover, classification of 

differentially expressed sequences or genes into functional categories can provide insights into 

the putative metabolic pathways involved in the response to a given stress (Mewes et al., 1997). 

Jia et al. (2000) using an array comprising 1,529 open reading frames (ORFs) of Saccharomyces 

cerevisiae genes determined the transcriptional response of yeast after exposure to sulfometuron 

methyl (SM) – an inhibitor of amino acid biosynthesis. This array allowed detection of many 

altered metabolic pathways in yeast exposed to SM, such as amino acid and nucleotide 

biosynthesis, carbohydrate metabolism, sulphur assimilation and stress responses. Additionally, a 

link between SM exposure and impaired ergosterol metabolism was revealed in yeast (Jia et al., 

2000). Caba et al. (2005) using an Affymetrix probe array were able to identify gene expression 

signatures associated with genotoxic or cytotoxic stress in yeast. For example, genes encoding the 

glucosidase SUN4 – involved in cell wall organisation and biogenesis – or the IMP cyclohydrolase 

ADE17 were expressed in yeast only in response to bleomycin and cisplatin (Caba et al., 2005). 

Similarly, Liu et al. (2005), using microarray technology determined antifungal-specific changes in 

gene expression in Candida albicans after exposure to ketoconazole, amphotericin B, caspofungin 

or flucytosine. Genes involved in lipid, fatty acid and sterol metabolism were up-regulated in cells 

exposed to ketoconazole – an ergosterol inhibitor. Amphotericin B – another type of ergosterol 

inhibitor – induced expression of genes involved in transport of small molecules, and general cell 

stress. Caspofungin induced overexpression of genes encoding cell wall maintenance proteins, 

including the target protein β-1,3-glucan synthase. Exposure to flucytosine – a thymidylate 

synthase inhibitor – induced expression of genes involved in protein synthesis, purine and 

pyrimidine biosynthesis. Becher et al. (2011) determined the transcriptional response of Fusarium 

graminearum to tebuconazole. Genes involved in the ergosterol biosynthesis pathway were 

overexpressed in response to tebuconazole, in agreement with the mode of action of azole 

fungicides, as well as twelve ABC transporter encoding genes. Likewise, Cools et al. (2007), using 

Z. tritici, reported differential expression of genes involved in ergosterol biosynthesis, 

mitochondrial respiration and cell transport mechanisms upon exposure to an azole fungicide. 

They also reported overexpression of a vacuolar glutathione S-conjugated ABC transporter 

encoding gene (EST: mga1012f) in resistant and sensitive Z. tritici after epoxiconazole exposure, 

but expression of this gene did not appear to be linked to azole resistance. Genome-wide 

transcriptomic studies have also revealed expression of genes encoding mechanism conferring 

protection against toxicants. Cowen et al. (2002b) determined that resistance to the DMI 
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fungicide fluconazole in laboratory populations of C. albicans grown over 300 generations in the 

presence of the fungicide was conferred by overexpression of the efflux pumps ABC CDR2 or the 

MFS MDR1. Similarly, resistance to fluconazole through overexpression of the ABC transporter 

CaCDR1 in resistant-strains C. albicans obtained from patients (Marr et al., 1998) was confirmed 

by a cDNA microarray containing approximately 3,000 unigenes of the fungus (Xu et al., 2006). 

They also reported overexpression of other genes encoding ABC transporters (i.e. IPF7530, 

CaYOR1 and CaPXA1), oxidative stress response (i.e. IPF10565, CaALD5, CaGRP1, CaSOD2 and 

CaCTA1), and copper transport (i.e. CaCRD2) after fluconazole exposure in fluconazole-resistant C. 

albicans strains. Rogers and Barker (2002) also found differentially expressed genes in association 

with azole resistance in C. albicans. These genes were implicated to play a role in amino acid and 

carbohydrate metabolism; cell stress, cell wall maintenance; lipid, fatty acid and sterol 

metabolism; and small molecule transport. Liu et al. (2005) observed overexpression of the ABC 

transporter cdr1 in a sensitive C. albicans strain after ketoconazole, flucytosine, amphotericin B or 

caspofungin exposure. Interestingly, ketoconazole also induced overexpression of the ABC 

transporter cdr2 gene.  

 

1.4.2 Genome-wide transcriptomic studies through RNA sequencing technology 

Advances in DNA sequencing technologies – high-throughput sequencing, also called next-

generation sequencing (NGS) – have allowed to determine gene expression levels through a 

sequencing-based approach (Mardis, 2008; Schuster, 2008). Analysis of RNA by sequencing cDNA 

– also called RNA sequencing – provides a more sensitive method than microarray technology to 

characterise the transcriptional response of diverse organisms, tissues or cells under contrasting 

conditions (Wang et al., 2009). RNA sequencing technology has proved to be a reliable method to 

measure changes in gene expression (Marioni et al., 2008), discover novel transcribed regions 

(Bruno et al., 2010; Emrich et al., 2007) and detect mechanisms conferring protection against 

toxicants (Wacker et al., 2012). Sun et al. (2013) using RNA sequencing analysis reported reduced 

expression of genes encoding ABC transporters (i.e. CDR1 and CDR2) in the C. albicans laboratory 

mutant goa1Δ and ndh51Δ after fluconazole exposure. The gene Goa1p is required for electron 

transport in the respiratory chain complex I (Bambach et al., 2009), and Hdh51 encodes the 51-

kDa sub-unit of the NADH dehydrogenase in complex I (McDonough et al., 2002). It was suggested 

that disruption of the electron transport chain at complex I in mutants of C. albicans caused the 

down-regulation of the genes cdr1 and cdr2 (Sun et al., 2013) which are associated with 

resistance to azole fungicides (Cowen et al., 2002b; Marr et al., 1998). Interestingly, mutant 
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ndh51Δ showed down-regulation of genes involved in the ergosterol metabolic pathway which is 

affected by azole fungicides (Sun et al., 2013).  Wacker et al. (2012) were able to determine single 

nucleotide polymorphisms (SNPs) in target genes (i.e. plk1 and psmb5), and detoxification 

mechanisms (i.e. ABC transporters) conferring resistance to drugs (i.e. BI 2536 and bortezomib) in 

less sensitive laboratory mutant human cell lines through RNA sequencing.  

Studying whole-genome transcriptional responses to toxicants in different microorganisms has 

revealed reliable toxicant-specific responses, as predicted from their mode of action in some 

cases where this is known. In addition, transcriptional responses have also shown other metabolic 

pathways that may be affected in the target microorganisms. Furthermore, this knowledge has 

enabled identification of mechanisms conferring protection against toxicant compounds. 

However, to date, studies of the transcriptional responses of plant pathogens to fungicides 

through RNA sequencing are scarce. The coincidence of completion of Z. tritici genome sequence, 

availability of high-throughput sequencing techniques, and improved computational biology skills 

provide new opportunities to study the transcriptional response of Z. tritici to fungicides used in 

the control of SLB as outlined in this thesis. 

 

1.5 Evolutionary studies of fungicide resistance  

Fungal human (Anderson, 2005) or plant (Lucas et al., 2015) pathogen populations frequently 

evolve resistance to fungicides due to selection pressure imposed by continuous use of antifungal 

compounds. Development of fungicide resistance in plant pathogen populations, including Z. 

tritici, remains a major concern in agriculture (Lucas et al., 2015). As described in section 1.2, due 

to development of resistance to fungicides, the management of this fungal diseases relies on 

continuous substitution of fungicides with distinct mode of action (Van den Bosch et al., 2011). 

The main and long-term concern is the limited number of fungicides available to current and 

future management crop diseases.  

Studies of the evolution of fungicide resistance in plant pathogens populations are relatively rare. 

Typically, studies of the dynamics of fungicide resistance in plant pathogens populations, 

including Z. tritici, are based on field experiments  (see Van den Bosch et al., 2011) or 

mathematical model approaches (see van den Bosch and Gilligan, 2008). Field studies have looked 

at the evolution of resistance after resistant strains of Z. tritici are present in field populations and 

how fungicide usage drives the further spread of resistance (Fraaije et al., 2006; Mavroeidi and 

Shaw, 2006; Metcalfe et al., 2000). Mathematical models have tried to infer how fungicide usage 
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drives the dynamics of evolution  (see van den Bosch and Gilligan, 2008). Understanding the 

evolution of resistance may aid long-term management of fungicide resistance (Anderson, 2005). 

Thus, the evolutionary processes that may determine the fate of resistance in fungal plant 

pathogen populations, such the emergence of resistance mechanisms, their impact on pathogen 

fitness, and interaction with other resistance mechanisms need to be studied in more detail.  

Experimental evolution is an approach to study evolutionary processes in model microbial 

populations in response to determined conditions or threats (Kawecki et al., 2012). Selection 

exerted during evolutionary experiments can act on any or all traits of the microorganism, 

including genes related with fitness associated to the selection regimen (Lang et al., 2013). A long-

term experiment with Escherichia coli conducted over 60,000 generations since 1988 was 

undertaken to study the dynamics of adaptation and divergence in 12 replicate populations 

(Lenski et al., 1991). Detailed studies on these 12 replicate populations have found links between 

phenotypic and genetic evolution (Barrick et al., 2009) and correlated responses to new threats 

(Travisano and Lenski, 1996).  Cooper and Lenski (2000) reported the role of antagonistic 

pleiotropy and mutation accumulation in specialisation to new environments after 20,000 

generations in the E. coli-derived populations. Moreover, other studies on these 12 replicated 

populations reported an increase in mutation rate (Sniegowski et al., 1997), forces maintaining 

genetic variability (Barrick and Lenski, 2009) and the role of epistasis in adaptation (Khan et al., 

2011). In addition, it was possible to study the influence of historical contingency on new 

morphological (Travisano et al., 1995) and physiological (Blount et al., 2008) traits. 

In vivo or in vitro studies have provided evidence for the evolution of fungicide resistance in 

fungal human pathogens or other model microorganisms. White (1997) provided a well-

documented example of evolution of fungicide resistance in a population of C. albicans obtained 

from a single patient. Over a period of two years, 17 C. albicans strains were isolated from a single 

patient undergoing fluconazole treatment in that study. Resistance to fluconazole developed 

gradually through accumulation of distinct resistance mechanisms (i.e. overexpression of the 

genes encoding a major facilitator superfamily efflux pump, lanosterol 14 α-demethylase target 

and ABC transporters) in an evolutionary lineage of C. albicans. Similar resistance mechanisms 

were found in replicate populations of C. albicans after more than 300 generations at increasing 

concentrations of fluconazole in vitro (Cowen et al., 2002a). They found that resistance to 

fluconazole was conferred by overexpression of genes encoding ABC or MFS efflux pumps. 

Similarly, Anderson et al. (2003) determined the evolution of resistance to fluconazole in replicate 

populations of S. cerevisiae for  400 generations at increasing concentrations of the fungicide. 
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After 100 generations, some populations developed resistance to fluconazole through 

overexpression of two distinct genes encoding ABC transporters. Then, after 400 generations 

some  population accumulated an additional mutation in an unidentified gene (unk1) which 

seems to be linked to improved fitness at the highest concentration of fluconazole tested 

(Anderson et al., 2003). Therefore, experimental evolution studies can provide insights into how 

fungi adapt to new environments.  
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1.6 Project aims 

The evolution of fungicide resistance in Z. tritici remains as constant threat to wheat production in 

Northern Europe and the UK. Due to resistance development to the MBC, QoI, and some DMIs 

and recent detection of less sensitive field strains to SDHI fungicides in Z. tritici field populations, 

chemical options for the management of SLB are becoming even more limited. Multi-site 

inhibitors such chlorothalonil or folpet are also included in programmes for the chemical control 

of SLB to reduce or delay further fungicide resistance development. However, multi-site inhibitors 

offer lower disease control than single-site fungicides, particularly when Z. tritici hyphae have 

penetrated leaves. Identification of the biological potential for development of resistance 

mechanisms (i.e. target- or non-target-site) could inform new anti-resistance strategies. 

Therefore, the overall aim of this study was to investigate how Z. tritici is able to adapt to multi- 

and single-site fungicides. 

The following objectives were addressed: 

1. To determine the baseline sensitivities to chlorothalonil, folpet and fluxapyroxad in recent 

Z. tritici field isolates (Chapter 3). 

2. To characterise the genome-wide transcriptional response of Z. tritici after exposure to 

chlorothalonil or folpet using RNA sequencing technology (Chapter 4). 

3. To determine the course of evolution of resistance in vitro to the single-site fungicide 

fluxapyroxad in replicate populations of Z. tritici (Chapter 5). 
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Chapter 2: General Materials and Methods 

 

2.1. Media, sterilisation and antibiotics 

Solid culture medium Yeast extract Peptone and Dextrose agar (YPD) was purchased from 

ForMediumTM (Norwich, UK), and Sabouraud Dextrose broth (SDB) from Oxoid (Basingstoke, UK). 

All media were prepared according to the manufacturer’s instructions and autoclaved at 121 °C 

for 15 minutes. When required, the antibiotics penicillin G sodium and streptomycin sulphate 

(Sigma-Aldrich, Gillingham, UK) were added at a concentration of 100 µg/mL after cooling down 

the media below 50 oC.  

 

2.2. Isolation, maintenance and storage of Z. tritici from wheat leaves 

Wheat leaves of cultivar Consort with Septoria leaf blotch (SLB) symptoms were sampled from 

untreated plots and plots treated with fungicide at T1 (i.e. first and second node detectable) and 

T2 (i.e. flag leaf blade visible Tottman et al., 1979) from a field trial at Rothamsted in 2012 

(2012/R/WW/1208, Long Hoos 5). Symptoms of SLB in 2012 accounted for an average of 5 and 9.6 

% of the flag leaf and leaf 2, respectively (CropMonitor, 2012). Ten leaves, representative for Leaf 

3, were collected from each plot after no treatments or after two applications of chlorothalonil 

(Bravo 500 1.0 l/ha) or folpet (Phoenix 1.5 l/ha). (Fig. 2.1). SLB lesions were cut from the sampled 

leaves, attached to Whatman filter paper with staples and incubated under damp conditions 

(filter paper wetted by adding 500 µL of sterile distilled water (SDW)) in petri dishes sealed with 

parafilm. Incubation took place overnight at 20 °C in the dark to induce cirrhi production from 

pycnidia. Cirrhi from single pycnidia were collected using watchmaker’s forceps, dispersed in 30 

µL of SDW and plated out onto antibiotica amended YPD plates. Single spore strains of typical Z. 

tritici morphology (yeast like small pink/brown colonies) were sub-cultured by transferring single 

colonies to new YPD plates. Spores were retrieved with a loop after seven days incubation at 15 

°C in the dark and stored in 80 % glycerol at – 80 °C as a stock for further studies. Approximately 

18 isolates per plot were obtained in total. Yeast extract peptone and dextrose agar was used to 

grow Z. tritici because the media induces better yeast-like growth. This makes easier to harvest 

and recover Z. tritici spores (Bart Fraaije 2015, personal communication).  
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Figure 2.1 Experimental design of fungicide field trial at Rothamsted. Samples of Zymoseptoria 
tritici were collected from untreated plots (plots 8, 26 and 46), and plots treated twice with 
chlorothalonil (Bravo 500, 40.4 % i.a. Zeneca; treated plots 1, 24 and 42) or folpet (Phoenix 89.5 % 
i.a. ADAMA; treated plots 7, 25 and 37).  

 

2.3. Production of conidia suspensions 

Spores of Z. tritici isolates from 80 % glycerol stock suspension were plated out onto YPD plates 

for seven days at 15 °C in the dark, harvested with a loop and suspended in SDW. Spore 

concentration was determined under a microscope using a haemocytometer (Webber Scientific 

International Middlesex, UK). 

 

2.4. Standard growth curves in liquid media 

Spores from seven-day-old cultures of Z. tritici grown on YPD plates were harvested and 

suspended in 100 mL of fungicide amended SDB or SDB liquid media at a final concentration of 

5×105 spore/mL. Cultures were incubated at 21 °C in the dark on an orbital shaker at 200 rpm for 

96 hours. Mycelium growth was determined by measuring optical density at 600 nm in a 

spectrophotometer (BioPhotometer: Eppendorf, Hamburg, Germany) every 24 h according to the 

manufacturer’s instructions. Fungal growth phases (lag, log and stationary) were identified by 

plotting the optical density against time. 

 

2012/R/WW/1208
Control of Septoria Leaf Blotch 2012 N
Long Hoos 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

9m Bravo Phoenix Untreated

1.0 lt/ha 1.5 lt/ha -

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Bravo Phoenix Untreated
33m

1.0 lt/ha 1.5 lt/ha -

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Phoenix Bravo Untreated

1.5 lt/ha 1.0 lt/ha -

Farm 93m

3m

3m3m
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2.5. Fungicide in vitro sensitivity assays using microtitre plates 

Spore suspensions of Z. tritici strains, grown on YPD plates for seven days at 15 °C in the dark, 

were harvested and adjusted at 2.5×104 spore/mL concentration in SDW after counting spore 

suspensions under a microscope. Aliquots of 100 µL spore suspension were added to 100 µL 

double strength SDB amended with increasing fungicide concentrations in clear, flat-bottomed, 96 

well cell culture plates (Greiner Bio-One, Frickenhausen, Germany) (Fig. 2.2). Plates were 

incubated at 21 °C in the dark for 96 hours, and growth measured using absorbance readings at 

630 nm (A630nm) with a FLUOstar OPTIMA microplate reader (BMG Labtech GmbH, Offenberg, 

Germany). Absorbance was measured in a well-scanning mode with a 2×2 matrix of scanning 

points set at 3 mm diameter. Fungicide sensitivity was determined as the concentration which 

inhibited growth by 50% (EC50 in µg/mL). The EC50 values were calculated with the OPTIMA 

software v2.20OR2 which fits a dose-response curve. 

 

 

Figure 2.2 In vitro microtitre plate sensitivity testing. Every row corresponds to a single Z. tritici 
isolate and column to a specific fungicide concentration (e.g. chlorothalonil or folpet fungicide 
concentration shown in the figure). Wells were filled up with 100 µL of fungicide-amended 
Sabouraud dextrose liquid medium (SDB) and 100 µL of spore suspension (2.5X104 spore/mL).  
The first column was filled up with SDB as a control with no added fungicide. 

 

2.6. Total RNA extraction and quantification 

The referenced and sequenced Z. tritici isolate IPO323 (Goodwin et al., 2011; Kema and van 

Silfhout, 1997) was exposed to chlorothalonil or folpet in the lag or log phase growth. Spores of 

the IPO323 were harvested from seven-day-old cultures grown on YPD plates at 15 °C in the dark. 

For treatments in the lag phase growth, Z.tritici spores (5×105 spore/mL) were added to flasks 

Fungicide concentration 
0.02                                                                        20.0 µg/mL 
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containing 100 mL of SDB amended with chlorothalonil or folpet at 0.1 or 0.5 µg/mL final 

concentrations, respectively. After 24 h growth at 21 °C in the dark at 200 r.p.m, mycelia were 

harvested by vacuum filtration through 8 µm pore nitrocellulose filters (Millipore, Ireland) and 

snap frozen in liquid nitrogen. For treatments applied in the log phase of growth, IPO323 spores 

were suspended in 100 mL of SDB at a final concentration of 5×105 spore/mL. After 24 h 

incubation at 21 °C in the dark at 200 r.p.m, cultures were adjusted to 0.1 µg/mL of chlorothalonil 

or 0.5 µg/mL of folpet (Fig. 4.1B). Mycelia were harvested after further 24 h growth in the same 

conditions by vacuum filtration and snap frozen. IPO323 cultures  grown for 24 h or 48 h in the 

absence of fungicide were used as untreated controls for treatments applied in the lag or log 

phase growth, respectively. Technical degree fungicide was dissolved in acetone then diluted in 

SDW before adding to the SDB or inoculated-SDB 

Total RNA was extracted from overnight freeze-dried samples with TRIzol reagent (Invitrogen 

Carlsbad, USA) according to the manufacturer’s protocol with 1-bromo-3-chloropropane 

(Molecular Research Center, Cincinnati, USA) as the phase separating agent. RNA was purified by 

precipitating overnight in 4 M lithium chloride (Sigma-Aldrich, Steinheim, Germany) at -20 °C. 

Purified RNA was quantified with a Nanodrop spectrophotometer (Nano Technologies, Delaware, 

USA) according to manufacturer’s instruction.  Quality was determined by the ratios of absorption 

at 260/280 nm and 260/230 nm. Only samples with both ratios above 2.0 were used for further 

studies. 

 

2.7. First strand cDNA synthesis 

Ten micrograms of total purified RNA was reversed transcribed with random primers using the 

High-Capacity cDNA reverse transcription kit (Applied Biosystem, California, USA) according to the 

manufacturer’s protocol. Products of this reaction were diluted one in ten and stored at -20 °C for 

further use as a template in quantitative real-time PCR. 

 

2.8. Oligonucleotide primers design 

Primers for measuring gene expression in quantitative real-time PCR were designed in Geneious 

R6 v6.1.4 (Biomatters Ltd., Auckland, New Zealand) using Primer3 tool (Untergasser et al., 2012) 

and custom synthesised by Sigma-Aldrich (Haverhill, UK). Primer design parameters were set at: 

length 20 – 24 bp; melting temperature (Tm) 58 – 62 °C; product size 80 – 150 bp; and GC content 
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40 – 60 %. Only pairs of primers with similar GC content and Tm, and amplicon size around 120 bp 

were selected for qRT-PCR.  

 

2.9. Quantitative real-time PCR 

Gene expression was determined by quantitative real-time PCR (qRT-PCR) reactions using SYBR® 

Green JumpStart Taq ReadyMix (Sigma-Aldrich, Missouri, USA). Five microliters of diluted cDNA 

was used as template in a 20 µL reaction with 5 µM of each primer. Thermal cycling conditions 

were 95 °C for 2 min, 40 cycles at 95 °C for 15 seconds, 58 °C for 30 seconds and 72 °C for 40 

seconds, and SYBR Green fluorescent emission data collection was carried out at each 72 °C 

elongation step with the default settings. Following thermocycling, melt curves were run for all 

primers pairs to check for dimerization. Reactions were carried out on an ABI 7500 Real Time PCR 

System (Applied Bioscience, California, USA) or a Stratagene Mx300P QPCR System (Agilent 

Technologies, USA). Relative transcript abundance (RQ) of target genes was calculated by the 2-

[Δ][Δ]Ct method (Pfaffl, 2001), using β-tubulin as the endogenous control and samples from 

untreated IPO 323 isolate as calibrator: 

𝑅𝑅 = 2−∆∆𝐶𝐶 

   where: 

    ΔΔCt = ΔCt gene – ΔCt calibrator 

    ΔCt = Ct gene – Ct endogenous control 

    Ct = cycle at which threshold level of amplification is reached 

 

2.10. Genomic DNA extraction and quantification 

Seven-day-old spores of Z. tritici isolates grown on YPD plates at 15 °C in the dark were harvested, 

snap frozen and freeze dried overnight. Fungal biomass was placed into 2-mL screw top tubes 

with a 3.2 mm chrome steel bead (BioSpec Products Inc.) and homogenised using a FastPrep 

shaker (FP120, Bio101/Savant, MPBiomedicals, California, USA) at 4.5 m/s for 25 s. Samples were 

incubated with 900 µL of DNA extraction buffer [TEN (500mM NaCl, 400mM Tris-HCl, 50mM 

EDTA, pH 8.0), 2 % sodium dodecyl sulphate, 5mM Phenanthroline, 2 % polyvinylpyrrolidone K30 

and 1 % β-mercaptoethanol] at 65 °C for 20 min. Then 350 µL of cold 7.5 M ammonium acetate 

was added to each sample. The samples were kept on ice for 20 min and centrifuged at 13200 
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rpm for 15 min. Nine hundred microliter of supernatant was transferred into 2-mL micro-tubes 

prefilled with 900 µL of isopropanol, incubated at room temperature for 15 min and centrifuged 

at 13200 rpm for another 15 min. Finally, the DNA pellet was washed with 400 µL of 70 % ethanol, 

centrifuged at 13200 rpm for 5 min, dried and suspended into 200 µL of sterile distilled water.  

DNA was quantified with a Nanodrop spectrophotometer (Nano Techonologies, Delaware, USA) 

according to manufacturer’s instruction and diluted to 20 or 100 ng/µL for further studies. 

 

2.11. Polymerase chain reactions 

PCR reactions were carried out in a Biometra T3000/T3 thermocyclers (Biometra GmbH, 

Göttingen, Germany) using Phusion High Fidelity DNA polymerase (Finnymes, Espoo, Finland), 

Easy-A High Fidelity PCR cloning enzyme (Stratagene, La Jolla, California, USA) or Red Hot DNA 

polymerase (ABgene, Epsom, Surrey, UK). Reactions contained 20 or 100 ng of template DNA, 200 

µM of each deoxynucleotide triphosphate (dNTP), and 0.5 µM of each primer in 1× buffer 

reaction. For reactions using Red Hot DNA polymerase, MgCl2 was added at a final concentration 

of 1.5 mM. Sterile distilled water was included as negative control. Amplification conditions are 

given in table 2.1. 

PCR products were mixed with 20 % (v/v) DNA loading dye (Bioline, UK) and separated in ethidium 

bromide-stained 1 – 3 % (w/v) agarose gels in 1×TBE buffer (0.8 M Tris Borate, 20 mM Na2EDTA). 

Five microliters of PCR product or 4 µL of 25 or 100 bp Gene ruler ladder (HyperLadder, Bioline) 

were loaded into gels. Gels were electrophoresed at 120 V for 30 min and exposed to 320 nm UV 

light in a transilluminator (Syngene, Marylan, USA) to visualise DNA fragments.  
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Table 2.1 DNA polymerases used in PCR reactions. 

DNA polymerase Application Units of polymerase 
(50 µL reaction) 

Thermocycling 
parameters 

Phusion High Fidelity 
DNA polymerase 

Gene amplification for 
sequencing the sdh 
subunits B and D 
encoding gene. 

1.0 95 °C – 1 min 
30 cycles at 

95 °C – 15 s 
70 °C – 30 s 
72 °C – 1 min 

72 °C – 5 min 
Easy-A High Fidelity 
PCR cloning enzyme 

Gene amplification for 
sequencing the sdh 
subunit C encoding 
gene. 

2.5 95 °C – 1 min 
30 cycles at 

95 °C – 40 s 
65 °C –  30 s 
72 °C – 2.5 min 

72 °C – 7 min 
Red Hot DNA 
polymerase 

Routine PCR 1.25 94 °C – 2 min 
40 cycles at 

94 °C – 10 s 
58 °C – 30 s 
72 °C – 30 s 

72 °C – 4.50 min 
  

 

2.12. Statistical analysis 

Statistical analysis of general data was carried out in GenStat 16th edition v16.1.0.10916, 

Microsoft Excel 2010 using the Analysis TookPak add-ins or SigmaPlot v12.3. Specific statistical 

analysis techniques used for specific data sets are explained in detail in the relevant sections. 
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Chapter 3: Sensitivity of field populations of Zymoseptoria tritici to multi- and single-

site inhibitors 

 

3.1 Introduction 

Management of fungal plant pathogens relies extensively on fungicide usage when other 

alternatives such as host resistance or cultural approaches are unable to provide adequate 

disease control.  With current varieties and intensity of growing, fungicides are the most 

important tool for control of Septoria leaf blotch (SLB) (HGCA, 2014), the most important foliar 

disease in winter wheat in the UK since the 1980s (Bearchell et al., 2005). Zymoseptoria tritici (aka 

Mycosphaerella graminicola Desm.) Quaedvlieg & Crous, the causal agent of SLB, is able to 

overcome host resistance and can cause up to 50 % wheat yield loss in severe epidemics (Royle et 

al., 1986). Currently, under north European conditions, chemical control is the most reliable crop 

protection strategy against Z. tritici. However, Z. tritici has developed resistant to several systemic 

single-site fungicides with diverse modes of action including the methyl-benzimidazole 

carbamates (MBCs) (Griffin and Fisher, 1985), the quinone-outside inhibitors (QoIs) (Fraaije et al., 

2005) and some sterol-demethylation inhibitors (DMIs) (Clark, 2006).  Resistance development 

against MBC and QoI fungicides has been associated with selection for less sensitive strains 

carrying a single amino acid substitution in the target proteins. An amino acid substitution from 

glutamic acid to alanine  at codon 198 (E198A) in the β-tubulin encoding gene, and a substitution 

from glycine to alanine at codon 143 (G143A) in the cytochrome b encoding gene have conferred 

high levels of resistant to benzimidazole and strobilurin/Quinone outside Inhibitor  (QoI) 

fungicides, respectively (Fraaije et al., 2005). The mutation E198A remains at high frequency in Z. 

tritici UK field populations and therefore presumably imposes no fitness penalty in the absence of 

MBC fungicides. Similarly, mutation G143A can be found at high frequency in Z. tritici field 

population in the UK and Northern Europe with no apparent fitness penalty (see Lucas et al., 

2015). Although, the combination of QoIs and Z. tritici can have a high risk of fungicide resistance 

development, low frequency or no evidence of mutation G143A can be found in South Europe 

(Siah et al., 2010) or North Africa (Boukef et al., 2012; Stammler et al., 2012). Thus, strubirulin 

fungicides are still used to control SLB and exerting selection pressure on Z. tritici populations 

(Sierotzki, 2015 personal communication). In contrast, resistance to other some other DMI 

fungicides has developed gradually; selection for less sensitive isolates has led to accumulation of 

different amino acid alterations and promoter changes in the target encoding gene, sterol 14α-
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demethylase (see Cools and Fraaije (2013)). Although some azole fungicides still provide 

acceptable control of Z. tritici at full rate, resistance evolution in this plant pathogen remains a 

constant threat. 

Currently, the management of SLB relies on mixtures of fungicides with different modes of action. 

The SLB fungicide programme relies on application of high doses of azoles in mixture with the 

new-generation of succinate dehydrogenase inhibitors (SDHIs) and/or the multi-site inhibitor 

chlorothalonil (HGCA, 2014). It has been suggested that chlorothalonil inhibits many thiol 

dependent reactions in fungal and yeast cells (Shin et al., 2003; Vincent and Sisler, 1968), and 

folpet reacts with thiol compounds in fungal cells (see Lukens (1966)). The new-generation of 

carboxamides affect succinate dehydrogenase (Sdh) of the mitochondrial respiration chain 

(complex II) (Fraaije et al., 2012; Scalliet et al., 2012). Using a range of carboxamide fungicides, 

laboratory mutational studies have shown a high risk of fungicide resistance development in Z. 

tritici (Fraaije et al., 2012; Scalliet et al., 2012; Skinner et al., 1998). In contrast, the risk of 

fungicide resistance development to multi-site fungicides (e.g. chlorothalonil and folpet) is 

considered low as they interfere directly with many cell processes (FRAC, 2014). However, multi-

site inhibitors give poorer SLB disease control than systemic single-site fungicides, particularly 

when applied after infection of the host plant. Applications of folpet or chlorothalonil in a 

protectant situation at full label recommendation are able to reduce from 25 to 17 or 9 % of SLB 

symptoms, respectively, whereas some systemic single-site fungicides can reduce from 25 to 5  % 

disease severity (HGCA, 2013). Although multi-site fungicides give a relative poor SLB disease 

control, they aim to reduce or delay fungicide resistance development in Z. tritici when used in 

mixtures with systemic single-site inhibitors (HGCA, 2015). 

Monitoring of resistance to a specific fungicide is based on comparison of the sensitivity profile of 

the target fungus population before market introduction (i.e. baseline sensitivity), with that after 

exposure to fungicides. Shifts in sensitivity can be detected by comparing sensitivity profiles to 

the baselines, preferably using stored reference strains to allow comparison under the same 

experimental conditions (Bernhard et al., 2002). Evolution of resistance in Z. tritici to single-site 

fungicides has been extensively studied, using both sensitivity baselines to compare changes in 

phenotypic distribution, and directly detecting resistance mechanisms with molecular techniques 

when genetic markers linked to fungicide resistance are available (e.g. cytochrome b G143A and 

QoI resistance). Although resistance of Z. tritici to single-site inhibitors is well documented, little is 

known about its adaptation to multi-site inhibitors. In this chapter, I present the chlorothalonil, 

folpet and fluxapyroxad sensitivity status using Z. tritici field isolates sampled from a fungicide 
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field trial at Rothamsted in 2012. Outcomes from this study indicate selection of Z. tritici for less 

sensitive field isolates to the multi-site inhibitors chlorothalonil (Bravo 500) and folpet (Phoenix) 

in a year of high disease pressure. In contrast, no shifts in sensitivity to the single-site fungicide 

fluxapyroxad were found in the same trial. 
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3.2 Materials and methods 

3.2.1 Isolate collection 

Isolates for this study were obtained from an annual fungicide field trial at Rothamsted (see 

chapter 2). This fungicide field trial aims to detect shifts in sensitivity in Z. tritici field populations 

against a range of fungicides with different modes of action.  It uses a susceptible wheat variety, 

Consort, to promote high natural infection levels (HGCA, 2007). A total of 165 Zymoseptoria tritici 

field isolates were obtained, as described in chapter 2, section 2.2. Fifty five isolates from plots 

treated with formulated chlorothalonil (Bravo 500), 56 isolates from plots treated with 

formulated folpet (Phoenix), and 54 isolates from untreated plots were included in the in vitro 

fungicide sensitivity assays against chlorothalonil or folpet. A total of 135 isolates randomly 

sampling from these 165 isolates were tested against fluxapyroxad. Nine isolates did not grow 

enough for the sensitivity test. The reference Z. tritici isolate IPO323 (Goodwin et al., 2011; Kema 

and van Silfhout, 1997) was also included as a control in all tests. 

 

3.2.2 In vitro fungicide sensitivity assays 

Sensitivity tests were carried out as described in chapter 2, section 2.5. Double strength SDB 

medium was amended with increasing concentrations of chlorothalonil or folpet (0.019, 0.039, 

0.078, 0.156, 0.313, 0.625, 1.25, 2.5, 5, 10 and 20 µg/mL) or fluxapyroxad (0.002, 0.005, 0.015, 

0.046, 0.14, 0.4, 1.2, 3.7, 11.1, 33.3 and 100 µg/mL). Technical grade chlorothalonil and folpet (10 

mg/mL) were dissolved in dimethylsulphoxide (DMSO) before dilution in the liquid media. 

Formulated fluxapyroxad as emulsifiable concentrate (62.5 g/L EC) (BASF, Ludwigshafen, 

Germany) was dissolved in SDW at 10 mg/mL as a stock concentration before dilution. Microtitre 

wells were filled with 100 µL of fungicide-amended SDB and 100 µL of spore suspension (2.5×104 

spore/mL). After four days incubation, absorbance A630nm was recorded using a FLUOstar OPTIMA 

microplate reader. Fungicide sensitivity was determined as the 50 % effective concentration to 

inhibit growth using a dose-response relationship according to OPTIMA software v2.20OR2. 

Results are given as EC50 values in microgram of fungicide per millilitre (µg/mL) to each isolate. 

The presented chlorothalonil and folpet EC50 values are the averages of four independent 

experiments. Fluxapyroxad sensitivity testing was only done once. For every in vitro sensitivity 

test, Z. tritici field isolates were re-grown from the glycerol stock suspension stored at -80 °C.  
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3.2.3. Statistical analysis 

Calculated EC50 values by treatment were analysed by Kolmogorov-Smirnov two-sample test (KS-

test) in GenStat v16. The KS-test looks for the greatest difference between two cumulative 

distributions. The test statistic is the largest distance between the distributions, D, found (at any 

point along the x-axis).  

Pearson’s correlation coefficient between log10-EC50 values of all pairs of fungicide was estimated 

in SigmaPlot v12.3. 
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3.3 Results 

3.3.1 Baseline sensitivity of Z. tritici field isolates to chlorothalonil 

Chlorothalonil sensitivity (EC50) values were determined for 165 Z. tritici field isolates obtained in 

the annual fungicide field trial at Rothamsted in 2012. On average, these ‘2012’ isolates were less 

sensitive to chlorothalonil than the reference Z. tritici isolate IPO323, which had an average EC50 

of 0.09 µg/mL (Table 3.1). Chlorothalonil EC50 values in field isolates taken from untreated plots or 

after treatment with chlorothalonil or folpet ranged from 0.08 to 0.23, 0.11 to 0.36 and 0.09 to 

0.31 µg/mL, respectively. Isolates taken from plots treated with chlorothalonil were skewed to 

greater EC50 values compared with isolates from plots left untreated or treated with folpet (Fig. 

3.1). These isolates sampled after two field applications of chlorothalonil were less sensitive to 

chlorothalonil (Kolmogorov-Smirnov two-sample test, D=0.5, χ2 approximation = 21.9, 2 df, 

p<0.001) than isolates collected from plots left untreated (Fig. 3.3A). Similarly, isolates from plots 

treated with two applications of folpet tended to be less sensitive to chlorothalonil (Kolmogorov-

Smirnov two-sample test, D=0.3, χ2 approximation = 11.9, 2 df, p = 0.003) than isolates sampled 

from untreated plots (Fig. 3.3A).  

 

3.3.2 Baseline sensitivity of Z. tritici field isolates to folpet 

In general, the recent ‘2012’ Z. tritici field isolates sampled at Rothamsted were less sensitive to 

folpet than the reference isolate IPO323, which had an average EC50 of 0.53 µg/mL (Table 3.1). 

Folpet EC50 values in field isolates taken from untreated plots or plots treated with chlorothalonil 

or folpet ranged from 0.35 to 0.87, 0.43 to 1.58 and 0.43 to 1.65 µg/mL, respectively. Although no 

positive skew distribution of folpet EC50 values was observed, the frequency of isolates with 

greater folpet EC50 values was higher in isolates taken from plots treated with two sprays of 

formulated chlorothalonil or folpet (Fig. 3.2; folpet: Kolmogorov-Smirnov two-sample test, D=0.6, 

χ2 approximation = 40.4, 2 df, p<0.001; chlorothalonil: D=0.5, χ2 approximation = 22.3, 2 df, 

p<0.001) than isolates collected from untreated plots (Fig. 3.3B). 
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Figure 3.1 Frequency distribution of chlorothalonil EC50 values of Z. tritici isolates recovered 
from untreated plots (A), plots treated with chlorothalonil (B) or folpet (C).  

 

R
el

at
iv

e 
Fr

eq
ue

nc
y

0.00

0.05

0.10

0.15

0.20

0.25

R
el

at
iv

e 
Fr

eq
ue

nc
y

0.00

0.05

0.10

0.15

0.20

0.25

Chlorothalonil log10 [EC50(g/mL)]

-1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4

R
el

at
iv

e 
Fr

eq
ue

nc
y

0.00

0.05

0.10

0.15

0.20

0.25

Median = -0.89
Std. Dev. = 0.09
n = 54

Median = -0.81
Std. Dev. = 0.11
n = 55

Median = -0.84
Std. Dev. = 0.12
n = 56

A

B

C



Chapter 3: Sensitivity of Z. tritici to fungicides 38 
 

 

Figure 3.2 Frequency distribution of folpet EC50 values of Z. tritici isolates recovered from 
untreated plots (A), plots treated with chlorothalonil (B) or folpet (C).  
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Figure 3.3 Cumulative frequency distribution of chlorothalonil (A) and folpet (B) EC50 values of Z. 
tritici isolates sampled from untreated plots or from plots treated with chlorothalonil or folpet. 
Sensitivity values are the mean of four independent experiments. Sensitivity of the reference 
IPO323 isolate is indicated by the arrow. 
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Table 3.1. Sensitivities of Zymoseptoria tritici field isolates sampled from untreated plots or 
plots treated with chlorothalonil or folpet.  

Treatment n 

Chlorothalonil 
(µg/mL) 

 Folpet 
(µg/mL) 

EC50±SE1 
(mean) 

SD  EC50±SE1 
(mean) 

SD 

Untreated 54 0.131±0.004 0.03  0.623±0.018 0.13 
Chlorothalonil2 55 0.168±0.007 0.05  0.863±0.034 0.25 
Folpet3 56 0.151±0.006 0.04  0.911±0.029 0.23 
1EC50 are the mean of four independent experiments base on the physical concentration scale. 
2Two applications of chlorothalonil (Bravo 500 1.0 L/ha) 
3Two applications of folpet (Phoenix 1.5 L/ha) 
 

 

3.3.3 Baseline sensitivity of Z. tritici field isolates to fluxapyroxad 

The fluxapyroxad sensitivities (EC50 values) were determined for 126 Z. tritici field isolates 

sampled at Rothamsted in 2012. These field isolates had similar EC50 values to the reference 

isolate IPO323 (0.04 µg/mL) regardless of the treatment given to the plot from which they came 

(Table 3.2). Calculated fluxapyroxad EC50 values in isolates sampled from untreated plots or plots 

treated twice with chlorothalonil or folpet ranged from 0.02 to 0.11, 0.01 to 0.11, and 0.01 to 0.14 

µg/mL, respectively (Fig. 3.4). Isolates from plots treated with chlorothalonil, folpet or water had 

similar distributions of sensitivity to fluxapyroxad (Fig. 3.5; Kolmogorov-Smirnov two-sample 

tests: chlorothalanil-water: D=0.2, χ2 approximation = 3.4, 2 df, p = 0.18; folpet-water: D=0.2, χ2 

approximation = 3.1, 2 df, p = 0.22).  

Table 3.2. Sensitivities of Z. tritici field isolates taken from untreated plots or plots treated with 
chlorothalonil or folpet. 

  Fluxapyroxad 
(µg/mL) 

Treatment n EC50±SE1 
(mean) 

SD 

Untreated 45 0.046±0.003 0.02 
Chlorothalonil2 37 0.044±0.005 0.03 
Folpet3 44 0.049±0.004 0.03 
1EC50 are the mean of four independent experiments base on the physical concentration scale. 
2Two applications of chlorothalonil (Bravo 500 1.0 L/ha) 
3Two applications of folpet (Phoenix 1.5 L/ha) 
 

 

 



Chapter 3: Sensitivity of Z. tritici to fungicides 41 
 

 

Figure 3.4 Frequency distribution of fluxapyroxad EC50 values of Z. tritici isolates sampled from 
untreated plots (A), plots treated with chlorothalonil(B) or folpet (C).  
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Figure 3.5 Cumulative frequency distribution of fluxapyroxad EC50 values of Z. tritici isolates 
sampled from untreated plots or plots treated with chlorothalonil or folpet. Sensitivity of the 
reference non-adapted IPO323 isolate is indicated by the arrow. 
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3.3.4 Cross resistance  

Chlorothalonil and folpet sensitivity values of the 2012  field isolates were significantly correlated 

regardless of the treatment applied to the plot from which they came (Fig. 3.6; r = 0.60, p<0.001, 

n = 165).  No evidence was found of separate slopes (p = 0.4, F-test) in the relation between folpet 

and chlorothalonil EC50 of isolates taken from plots sprayed with chlorothalonil, folpet or left 

untreated, but the intercepts differed (Fig. 3.6D). Correlations between folpet and chlorothalonil 

sensitivity of isolates from plots treated with two applications of chlorothalonil, folpet or left 

untreated were 0.62, 0.55 and 0.51 respectively (p<0.001 in all cases, n = 55, 56, 54). 

 

Figure 3.6 Correlation between chlorothalonil and folpet log10EC50 values of Z. tritici isolates 
sampled from plots treated with chlorothalonil, folpet or left untreated. Parallel curve analysis 
(all isolates): isolates from chlorothalonil treated plots: log10 folpetEC50 = 
0.37+0.57*Log_chlorothalonil (SEs 0.05, 0.07); isolates from folpet treated plots: log10 folpetEC50 = 
0.42+0.57* Log_chlorothalonil (SEs 0.06, 0.07); and isolates from untreated plots: log10 folpetEC50 
= 0.29+0.57*Log_chlorothalonil (SEs 0.06, 0.07). R2 = 0.51, S2 = 0.008, 161 df 
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Taking all populations together, sensitivity to chlorothalonil and fluxapyroxad were uncorrelated 

(Fig. 3.7; r = 0.15, p = 0.105, n = 126). Sensitivity to folpet and fluxapyroxad were weakly but 

significantly correlated (Fig. 3.7; r = 0.23, p = 0.009, n = 126) 

 

 

Figure 3.7 Correlation between fluxapyroxad and chlorothalonil or folpet log10EC50 values of Z. 
tritici field isolates. 
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3.4 Discussion 

3.4.1 Multi-site inhibitors chlorothalonil and folpet 

Although multi-site inhibitors (i.e. chlorothalonil) have been used for many years for SLB control 

in wheat, no shifts in sensitivity in Z. tritici have been reported before. In this study, selection for 

Z. tritici isolates less sensitive to chlorothalonil (from 0.09 to 0.36 µg/mL) or folpet (from 0.43 to 

1.65 µg/mL) was observed after two solo field applications of formulated chlorothalonil (Bravo 1.0 

L/ha) or folpet (Phoenix 1.5 L/ha). These selection differentials may have been greater than 

average because the environmental conditions during 2012 resulted in a high disease pressure 

(CropMonitor, 2012) and a susceptible cultivar Consort (HGCA, 2007) was used. This environment 

may have allowed the fittest Z. tritici isolates to multiply more rapidly in presence of the fungicide 

(Gisi et al., 1997) than in an average season or on a more resistant cultivar.  

Selection for less sensitive strains has been reported in other plant pathogens after continuous 

applications of multi-site inhibitors. Holm et al. (2003) reported significantly reduced sensitivity in 

Alternaria solani field isolates after several applications of chlorothalonil in potato. Recently, 

Fairchild et al. (2013) reported A. solani field isolates resistant to chlorothalonil. Reduced 

sensitivity to folpet has been reported in Botrytris cinerea in vineyards under intense fungicide 

programmes of carboxamides and folpet (Fourie and Holz, 2001). Nevertheless, shifts in sensitivity 

to multi-site inhibitors can be temporary, once the fungicide applications stop the population can 

become sensitive again (Holm et al., 2003). This is because sensitive strains are fitter in the 

absence or in the presence of a low dose of the fungicide (Van den Bosch et al., 2011) and sexual 

recombination breaks down beneficial combinations of genes which have to be re-selected each 

year (Linde et al., 2002).  

 Sisler (1988) suggested that low sensitivity to multi-site inhibitors might arise from resistance 

mechanisms such as detoxification, reduced uptake or increased efflux of fungicide. Multiple drug 

resistance caused by increased fungicide efflux activity after overexpression of efflux transporter 

genes has been reported in B. cinerea (Kretschmer et al., 2009). Detoxification by glutathione S-

transferase activity has been suggested to confer resistance to chlorothalonil in Saccharomyces 

cerevisiae (Shin et al., 2003). To date, there has been no report of mechanisms that reduce 

sensitivity to multi-site inhibitors in Z. tritici. However, low levels of insensitivity to chlorothalonil 

and folpet was measured for Z. tritici field populations studied here, suggesting that detoxification 

mechanisms might be operating. Further studies are needed to identify the resistance 

mechanisms that are linked to insensitivity to chlorothalonil or folpet. In chapter 5, expression of 
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genes encoding related-detoxification mechanisms in Z. tritici isolate IPO323 after exposure sub-

lethal concentrations of chlorothalonil or folpet is presented. 

 

3.4.2 Single-site inhibitor fluxapyroxad 

No shift in sensitivity to fluxapyroxad was found in the sampled Z. tritici populations during the 

season. The Z. tritici field isolates had not been previously exposed to fluxapyroxad, as this 

fungicide was launched into the UK cereal market in 2012. Thus, the sensitivity distributions 

presented here can be considered as the reference baseline sensitivity for further studies.  

A low but significant correlation in sensitivity between fluxapyroxad and folpet was observed in 

this study. This correlation could be due to expression of genes encoding general detoxification 

mechanisms (e.g. ATP-binding cassette transporters that are able to reduce fungicide 

concentration in the fungal cell: Zwiers et al. (2003)). Interestingly, constitutive overexpression of 

a putative ABC transporter (abct-2) encoding gene was identified in a lab mutant of Z. tritici strain 

with reduced sensitivity to fluxapyroxad; but no mutations were detected in the sdh sub-unit B, C 

and D encoding genes (Chapter 6). The same ABC transporter (abct-2) encoding gene was also 

overexpressed in the Z. tritici isolate IPO323 after exposure to chlorothalonil or folpet (Chapter 5). 

Although, shifts in sensitivity to multi-site inhibitors are linked to general detoxification 

mechanisms, they generally do not confer high levels of resistance. 

However, in vitro evolutionary studies determined target site mutations in the sdh subunits B, C 

and D encoding genes conferring resistance to fluxapyroxad and other new-generation 

carboxamide fungicides (Chapter 6). This indicates that the risk of resistance development based 

on target-site mutations to fluxapyroxad in Z. tritici is high. In addition, extensive field monitoring 

across Europe and the UK have identified two Z. tritici isolates with reduced sensitivity to the 

new-generation of SDHI fungicides. These less sensitive isolates carried target site mutations in 

the sdh subunit C encoding gene at codon 79 (T79N) or 80 (W80S) (FRAC, 2013) but due to low 

resistance factors and low frequencies of these strains field performance has not been affected. It 

is particularly interesting that a mutation at codon 79 in the subunit C (T79I) was also found in the 

evolutionary studies (Chapter 6). Shifts in sensitivity to single-site inhibitors caused by single 

amino acid substitutions often remain permanent in field populations, even in absence of the 

fungicide where there is no fitness cost associated with mutations (Fraaije et al., 2003; Griffin and 

Fisher, 1985).  Thus, further monitoring of specific mutations (especially T79N) is required. 
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3.5 Conclusions 

Field applications of formulated chlorothalonil or folpet selected for less sensitive Z. tritici field 

isolates at Rothamsted. Further monitoring of chlorothalonil and folpet sensitivities across the UK 

and Northern Europe would determine the sensitivity landscape in Z. tritici to multi-site inhibitors 

at large scales and improve our understanding of how pathogens can adapt to anti-fungal 

compounds. Correlation of sensitivities between chlorothalonil and folpet, and fluxapyroxad and 

folpet suggests that similar detoxification mechanisms might underlie lower sensitivity to these 

fungicides in Z. tritici. Little is known about the mode of action of multi-site inhibitors. Therefore, 

it is important to understand multi-site inhibitors’ modes of action. Insights into this are 

presented in chapter 4.  
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Chapter 4: Insights into the transcriptional response of Zymoseptoria tritici to multi-site 

inhibitors 

 

4.1 Introduction 

Fungicide resistance to single-site fungicides is widespread in Zymoseptoria tritici populations and 

remains a constant threat for wheat production (see chapter 3).  Currently, the management 

program of Septoria leaf blotch (SLB) involves applications of multi-site inhibitors (e.g. 

chlorothalonil or folpet) as straights or in mixture with azoles and/or SDHIs to reduce and/or delay 

fungicide resistance development (FRAC, 2014; HGCA, 2014). Although chlorothalonil and folpet 

have a low risk for resistance development (FRAC, 2014), they can select for less sensitive Z. tritici 

field isolates in solo applications (Chapter 3). Typically, some mechanisms underlying lower 

sensitivity to fungicides can be inferred from their mode of action (see Cools and Hammond-

Kosack (2013)). However, the mode of action of chlorothalonil and folpet remains unclear. 

Therefore, it is important to study the mode of action of these two fungicides to understand the 

process of adaptation to multi-site inhibitors. 

Current understanding of chlorothalonil and folpet indicates that these fungicides are fungitoxic 

by depletion of thiol-containing proteins in the pathogen. Chlorothalonil (2,4,5,6-

tetrachloroisophthlonitrile) is a halogenated benzonitrile fungicide with a broad spectrum of 

action against plant pathogens (FRAC, 2014). Vincent and Sisler (1968) suggested that 

chlorothalonil exerts its fungicidal action by alkylation of sulfhydryl groups of thiol-containing 

proteins (e.g. cysteine, glutathione, and CoA) and their subsequent depletion in the cell. 

Additionally, It has been suggested that chlorothalonil might inhibit physiological processes 

depending on thiol-containing enzymes, like glucose oxidation and possibly respiration (Vincent 

and Sisler, 1968). On the other hand, folpet [N-(trichloromethylthio)phthalimide] is a phthalimide 

fungicide (FRAC, 2014). Typically, folpet reacts with both thiol-containing (e.g. glutathione, alcohol 

dehydrogenase and glyceraldehyde 3-phosphate dehydrogenase) and non-thiol-containing 

proteins (i.e. lysozyme) in the cell (Siegel, 1971a, b; Siegel and Sisler, 1968b). Reactions with thiols 

produce trichloromethylthio (SCCl3) then thiophosgene (S=CCl2), and further reactions of 

thiophosgene with thiols can produce thiazolidine-2-thione-4-carboxylic acid (TTCA) (Lukens, 

1966). Some evidence indicates that reactions of SCCl3 and S=CCl2 with thiol-containing proteins 

are the basis of folpet’s fungicidal action in plant pathogens (Siegel, 1971b; Siegel and Sisler, 

1968a, b). Although glutathione (GSH) depletion by chlorothalonil or folpet is associated with 
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fungitoxicity, GSH along with glutathione S-transferase (GST) is also related with cell defence 

against free radicals and xenobiotics (Cummins et al., 2013; Pastore et al., 2003; Shin et al., 2003). 

This picture lacks detail and none of the work cited used Z. tritici as target pathogen. Thus, the 

metabolic pathways and/or cell process that chlorothalonil or folpet can affect in Z. tritici need 

confirmation.  

Recent progress in nucleic acid manipulation and sequencing has enabled the transcriptional 

response associated with chemical exposure to be determined. Genome-wide expression studies 

are used to determine changes in response to xenobiotics in human and plant pathogens to gain 

insights into the molecular pathways or target-site proteins affected by the toxicant (Becher et al., 

2011; Cools et al., 2007; Cowen et al., 2002; Lindsey et al., 2011; Liu et al., 2005; Rogers et al., 

2007; Xu et al., 2006). Cools et al. (2007) reported differential expression of genes involved in 

ergosterol biosynthesis, mitochondrial respiration and cell transport mechanisms upon exposure 

to an azole fungicide.  They used a cDNA microarray representing around 25 % of the Z. tritici 

genome as expressed sequence tags (EST). However, high-throughput (“next-generation”) DNA 

sequencing has emerged as alternative to microarrays for genotyping, analysis of methylation 

patterns, identification of transcripts binding sites and gene expression (Cokus et al., 2008; Korbel 

et al., 2007; Mikkelsen et al., 2007; Nagalakshmi et al., 2008). Analysis of RNA by sequencing 

cDNA at large scale has proved to be a reliable method to study changes in gene expression 

between organisms, tissues, conditions or treatments (An et al., 2014; Marioni et al., 2008; 

Mortazavi et al., 2008; Nagalakshmi et al., 2010). 

Typically, genome-wide expression studies generate large datasets of gene expression profiles. 

The challenge now relies on the interpretation of these gene expression profiles to gain insights 

into their biological function (Subramanian et al., 2005). Functional annotation of DNA sequences 

is an approach to facilitate genomic data mining (see Curtis et al., 2005). The Gen Ontology (GO) is 

the most extensive database that classifies genes or sequences products with similar function into 

a hierarchy structure (Ashburner et al., 2000). Other databases such as InterPro (Labarga et al., 

2007), Enzyme Encode (Schomburg et al., 2004), KEGG pathways (Kanehisa et al., 2014) or FunCat 

(Ruepp et al., 2004) also classify expressed sequences as product functions and can be used in 

genomic data mining. Bioinformatics methods using the Gene Ontology or other databases as 

framework to analysis large gene sets have allowed to gain biological interpretation of gene 

expression profiles  (see Huang da et al., 2009). Enrichment analysis, a variant of gene set 

enrichment analysis (Subramanian et al., 2005), determines differences in functional classes 

between two sets of genes or sequences, based on their available functional annotation (Conesa 
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et al., 2005). Becher et al. (2011) using enrichment analysis detected differentially expressed 

genes encoding the ergosterol-biosynthesis pathway in Fusarium graminearum upon 

tebuconazole exposure. Moreover, enrichment analysis of genome-wide expression profiles in 

diverse organisms has revealed detoxification pathways in response to iron, copper (Jo et al., 

2008), insecticides (Yang et al., 2013), or herbicides (An et al., 2014) exposure. 

In the first phase of the work reported in this chapter, I used a custom design Affymetrix 

GeneChip expression array to characterise the genome-wide transcriptional response of the 

sequenced Z. tritici isolate IPO323 (Goodwin et al., 2007) to chlorothalonil or folpet in vitro during 

log phase growth. However, there was no correlation between microarray data and quantitative 

RT-PCR results, possible due to mis-hybridisation among probes on the microarray. Therefore, 

these results were not reliable. In the second approach, the sequenced Z. tritici isolate IPO323 

was exposed in vitro to chlorothalonil or folpet during the lag and log phase of growth, and the 

gene expression response was determined with RNA-seq technology using an Illumina platform. 

Comparing treated and control samples, small but consistent changes in gene expression were 

detected. Functional annotation and enrichment analysis of the significantly differentially 

expressed genes (DEGs) determined that transcripts from several distinct functional classes of 

genes were particularly enriched in reaction to chlorothalonil or folpet. These findings provide 

insights into the metabolic pathways that might be affected by chlorothalonil or folpet in Z. tritici. 

In addition, a detailed analysis of chlorothalonil- and folpet-DEGs identified several genes 

encoding detoxification mechanisms, such glutathione S-transferase, ATP-binding cassette (ABC) 

transport, and major facilitator superfamily (MFS) drug efflux transport. 
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4.2 Materials and methods 

4.2.1 Transcriptional response of Z. tritici to chlorothalonil or folpet using an Affymetrix 

GeneChip expression array 

4.2.1.1 Growth of fungal cultures, and RNA extraction for Affymetrix GeneChip expression array 

and quantitative RT-PCR 

The sequenced Z. tritici isolate IPO323 originally from the Netherlands (Goodwin et al., 2011; 

Kema and van Silfhout, 1997) was grown on YPD plates for seven days at 15° C in the dark.  Spores 

were suspended in 100 mL of sabouraud dextrose broth (SDB) at final concentration 5×105 

spore/mL and incubated at 21° C in the dark at 200 r.p.m. After 24 h incubation, cultures were 

adjusted to 0.1 µg/mL of chlorothalonil or 0.5 µg/mL of folpet - approximate EC50 concentration 

previously determined – (Chapter 3). Fungal biomass was harvested by filtration after 24 h further 

fungicide exposure. Filtered biomass was snap frozen in liquid nitrogen and stored at -80° C for 

further total RNA extraction from untreated and treated samples of three replicate experiments 

as described in chapter 2, section 2.6. Technical grade fungicides were dissolved in acetone then 

diluted in SDW before adding to the cultures.  

Aliquots of 25 µL of purified total RNA from 200 ng/µL stocks were sent to SourceBioScience 

imaGenes (Berlin, Germany) for synthesis, hybridisation and scan of a custom Affymetrix 

GeneChip expression array according to the manufacture’s protocol (GeneChip® 3’ IVT Express Kit, 

Affymetrix). Quality control of the samples was carried out using nanodrop ND-1000 UV-VIS 

spectrophotometer (Thermo Fisher Scientific, Wilmingtong, DE, U.S.A.) and Agilent 2100 

Bioanalyzer G2938A (Santa Clara, CA, U.S.A.) according to manufacturer’s instruction. 

The “Affymetrix GeneChip Mycosphaerella graminicola expression array” (code 

MgramEXPs520703; P/N 520703) has a density of 11µm 100-3660 array format GeneChip 

containing 49079 probe sets – 11 probe sets (perfect match/mismatch) per gene. Approximately, 

69 % of the probe sets correspond to nuclear and mitochondrial Z. tritici genes, 21 % to wheat 

(Triticum aestivum) genes and 10 % to Pyrenophora tritici-repentis genes.  

 

4.2.1.2 Transcriptomic analysis of Affymetrix GeneChip expression array. 

Statistical analysis was carried out by SourceBioScience imaGenes as part of their provided service 

using the Expression consoleTM software v1.4 according to manufacturer’s manual (Affymetrix, 

Santa Clara, CA, U.S.A.). Raw data were annotated manually as the annotation file was not 
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available. The SourceBioScience imaGenes analysis pipeline is as follow: raw data are read in, and 

normalised by quantile normalisation method. After normalisation, all gene expression values 

lower than 0 % quantile were set to the value of this 0 % quantile to eliminate low level signals. 

After normalisation, M versus A analysis (i.e. log ratios versus mean average intensity) was carried 

out to identify dependent bias in the microarray data. Comparisons were performed between two 

chips, datapoint by datapoint (gene by gene), after log-transformation. Significant (p<0.05; 

q<0.05) differentially expressed genes were identified by comparing fold-changes (ratios) and log 

fold-changes of treated versus control samples, and applying t-test statistics on quantile 

normalised signal intensities for each gene. 

 

4.2.2 Transcriptional response of Z. tritici to chlorothalonil and folpet using Next Generation 

RNA sequencing (RNA-seq) 

Based on the results obtained with the Affymetrix GeneChip expression array, a different 

approach was undertaken for the RNA-seq technology. This time, chlorothalonil or folpet was 

added in the lag and log phase growth of Z. tritici (Fig. 4.1). This is because typically, EC50 values 

are determined by adding the fungicide in the lag phase (Chapter 3; FRAC, 2012). 

 

4.2.2.1 Growth of fungal cultures, and RNA extraction for sequencing and quantitative RT-PCR 

The sequenced Z. tritici isolate IPO323 (Goodwin et al., 2011) was grown on YPD plates for seven 

days at 15° C in the dark. For treatments in the lag phase growth (Fig. 4.1A), Z.tritici spores (5×105 

spore/mL) were added to flasks containing 100 mL of SDB amended with chlorothalonil or folpet 

at 0.1 or 0.5 µg/mL final concentrations, respectively. These concentrations were chosen to 

generate a gene expression profile “baseline” in response to the approximate EC50 values 

previously determined (Chapter 3). After 24 h growth at 21 °C in the dark at 200 r.p.m, mycelia 

were harvested by vacuum filtration and snap frozen in liquid nitrogen. For treatments applied in 

the log phase of growth, IPO323 spores were suspended in 100 mL of SDB at a final concentration 

of 5×105 spore/mL. After 24 h incubation at 21 °C in the dark at 200 r.p.m, cultures were adjusted 

to 0.1 µg/mL of chlorothalonil or 0.5 µg/mL of folpet (Fig. 4.1B). Mycelia were harvested after 

further 24 h growth in the same conditions and snap frozen. IPO323 cultures  grown for 24 h or 48 

h in the absence of fungicide were used as untreated controls for treatments applied in the lag or 

log phase growth, respectively. Technical grade fungicide was dissolved in acetone then diluted in 

SDW before adding to the SDB or inoculated-SDB containing flasks. 
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Total RNA extraction from triplicate untreated and treated samples was carried out as described 

in chapter 2, section 2.6. Aliquots of 20 µL of purified total RNA at a concentration of 100 ng/µL 

were sent to the TGAC, Norwich, UK for sequencing. The sequencing was carried out in 9 

samples/lane on the Illumina HiSeq 2000 using 100bp single-end reads, with an average yield of 

21,614,254 reads per sample.  

 

 

             

Figure 4.1 Application of fungicides in the lag (A) and log (B) phase growth of the reference Z. 
tritici isolate IPO323. Fungicide application and sample collection are indicated by the arrows. 

 

4.2.2.2 Transcriptomic analysis of RNA sequencing. 

Raw data generated from RNA sequencing and contained in libraries were checked as follows. The 

Phred quality score (Q) of each library was determined with the FastQC option on the Galaxy 

platform v0.5 (Cock et al., 2013) with the default settings. Differential analysis of RNA-seq data 

was carried out with “Tuxedo tools” as described in Trapnell et al. (2012) on Galaxy with the 

default settings (Fig 4.2). The reference Z. tritici isolate IPO323 genome (Goodwin et al., 2011) was 

used as reference in the analysis. Reads were mapped against the reference genome with TopHat 

(v2.0.6). Reads per kilobase of exon model per million mapped reads (RPKM; Mortazavi et al., 

2008) were calculated with Cufflinks (v2.1.1) for reference annotations but excluding genes 

annotated as rRNA. Significantly (p<0.05; q<0.05) differentially expressed genes (DEGs) between 

untreated control and fungicide treated samples were determined with Cuffdiff. Analysis was 

performed on the three biological replicates of each fungicide. Chlorothalonil-DEGs or folpet-

DEGs refer to transcripts mapped to specific gene induced by chlorothalonil or folpet exposure, 

respectively. Gene expression ratios (fold-changes) of significant DEGs were transformed to binary 

logarithms (log2).  
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The significantly DEGs were mapped onto the Z. tritici reference genome using OmmniMapFree 

software v2008.07.17 (Antoniw et al., 2011). Log2-transformed gene expression ratios of 

significantly DEGs were plotted as heatmaps. Heatmaps were done in R software v1.15.3 using 

gplots package.  This function uses a euclidean measure to arrange genes according to similarity in 

patter of gene expression and complete agglomeration method for clustering analysis (Eisen et 

al., 1998; Frigui and Krishnapuram, 1997). 

 

 

 

Figure 4.2 Diagram of RNA-seq data analysis workflow on Galaxy platform using “Tuxedo tools”. 
Adapted from Trapnell et al. (2012). 
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4.2.2.3 Enrichment analysis of significantly differentially expressed genes  

The reference Z. tritici isolate IPO323 genome was functionally annotated with gene ontology 

(GO), protein sequence analysis and classification (InterPro), Enzyme Code, and Kyoto 

encyclopaedia of genes and genomes (KEGG) database using Blast2Go v2.7.0 software (Gotz et al., 

2008). Firstly, the Z. tritici whole-genome sequence was downloaded from the Joint Genome 

Institute (JGI) (Grigoriev et al., 2011) and blasted against the database of the National Center for 

Biotechnology Information (NCBI) using the Blastp option in Blast2GO. Blastp was carried out with 

the default parameters except for the “number of Blast hits” that was set to 20. The GO 

annotation was carried out using the “Run annotation step” option with the default settings. 

Annotation expander (ANNEX) option was used to improve the annotation (see Myhre et al., 

2006). InterPro terms were obtained from InterProScan at EBI (Labarga et al., 2007) by the 

“InterPro search function” in Blast2GO. Finally, Enzyme Code and KEGG pathway map annotations 

were retrieved from the KEGG database (Kanehisa et al., 2014) through the “mapping engine” 

option in Blast2GO.  

Enrichment analysis was carried out in Blast2GO with the “enrichment analysis (Fisher’s Exact 

Test)” option. The enrichment analysis determines statistical differences in functional classes - 

denoted by GO terms – between two groups of sequences (Conesa et al., 2005). The list of 

significantly (p<0.05) DEGs of each treatment or any particular set of genes was loaded in 

Blast2GO and compared against the whole-genome of Z. tritici previously annotated. The cutoff 

for FDR-corrected p values was set to 0.05. The enrichment analysis in Blast2Go uses Fisher’s 

exact test, corrects for multiple testing and tests if GO terms are significantly associated with a 

group of selected genes (Bluthgen et al., 2005). The results is a list of significantly (p<0.05) 

enriched GO terms with their adjusted p value. Enriched graphs or GO DAGs (i.e. direct acyclic 

graphs) were done in Blast2GO with the option “Make Enriched Graph”. 

 

4.2.3 Quantitative Real-Time PCR 

Transcriptional levels of selected genes were measured with quantitative RT-PCR to validate the 

microarray and RNA-seq results, using purified total RNA from independent growth experiments. 

Total RNA extraction from triplicate untreated and treated samples was carried out as described 

in chapter 2, section 2.6. Ten micrograms of total purified RNA was reversed transcribed and 

diluted one in ten (see chapter 2, section 2.7). The top five significantly (p<0.05) up- or down-

regulated DEGs from each treatment in the microarray or RNA-seq experiments were selected for 
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validation. The selected genes were targeted with primers (Table 4.1 and 4.2) designed as 

described in chapter 2, section 2.8. 

Quantitative RT-PCR reactions were carried out using the SYBR® Green JumpStart Taq ReadyMix 

(Sigma-Aldrich, Missouri, USA) in a final volume of 20 µL containing 5 µL of diluted cDNA and 0.25 

µM of each primer (Table 4.1 and 4.2). Thermal cycling conditions were as described in chapter 2, 

section 2.9. Reactions were carried out on the ABI 7500 Real-Time PCR System (Applied 

Biosystems). Relative transcript abundance (RQ) of target genes was calculated by the 2-[Δ][Δ]Ct 

method (Pfaffl, 2001), using β-tubulin as endogenous control (Cools et al., 2007) and samples 

from the untreated controls as calibrators (see chapter 2, section 2.9). Relative transcript 

abundance of selected genes was compared to transformed gene expression ratios obtained in 

the microarray or RNA-seq experiments on a log2 scale. Pearson’s correlation coefficients 

between log2-transformed gene expression ratios obtained with microarray, RNA-seq and qRT-

PCR were calculated in SigmaPlot v12.3 (Systat Software, Erkath, Germany). 

 

Table 4.1 Selected top most up- or down-regulated genes in the microarray experiment and 
primers used for qualitative RT-PCR 

Gene ID JGI target gene/EST ID1 
Gene 

expression 
(Log2 change) 

Sequence (5’ – 3’) 

Forward Reverse 

β-tubulin e_gw1.1.861.1  AGAGAGCCTCGTTGTCAATGC CGGTATGGGAACACTTCTCATCAG 

Chlo-U1 fgenesh1_pg.C_chr_13000088 +1.8 TCCTCTCTCACCTTCAGCCGCA TCAGCAGCACCATCACCCTCCT 

Chlo-U5 fgenesh1_pg.C_chr_17000025 +1.7 TTCGCCTACCCTGCCTTACTCG TGCTTCATCTGCCCATCCATTTGC 

Chlo-U6 e_gw1.17.1.1 +1.6 ACGTCAGGGAGACCAAGGACCA TTCGCGGTGGTGTTCAGTGC 

Chlo-U7 estExt_Genewise1.C_chr_170015 +1.5 CGCCATCAACCTCAACGCCAT CGCCCACTTCTTCGCCTACTCT 

Chlo-D1 mgb0512f -1.9 AGGGCACAATAGCGGCGACA TGTCTGAGCAGCGCCCATCT 

Chlo-D2 mg0007f -1.8 AGAAGCAACGACGACGGCCT TGGCATTGTCTACGCCCAGGAC 

Chlo-D3 e_gw1.1.628.1 -1.8 ACCTTGCCAGTGCTGCGAGT TCCGTAAGGCTGCGACCGTT 

Chlo-D4 fgenesh1_pg.C_chr_3000553 -1.8 CAGCATTCCACCTCGCCCATCT AAAGAGAGTCGTGCCTGTGCCG 

Chlo-D6 mgc06h12f -1.7 AGGCTTCTTCGCCTATGCTGCT CCGGGTTCTCGACCTTCTCGAA 

Fol-U1 estExt_fgenesh1_pg.C_chr_11419 +0.7 TCGGTGGGCTTCACAGGCAT CCGCTCGCATCAACCTCAAACA 

Fol-U2 e_gw1.3.952.1 +0.6 ACTACTACGCCAACGGCCAACA AGCTTGTGCCCGAACACCCA 

Fol-U3 fgenesh1_kg.C_chr_12000213 +0.6 AGAGGCGGAGACGATGTGATGG AGCGATGGAGAGTGTGGAGTGC 

Fol-U4 estExt_fgenesh1_pg.C_chr_110320 +0.6 TTGGGCGAAGAAGGCGCTGT AACCGCAAACACAATCCCGCC 

Fol-U5 e_gw1.8.1046.1 +0.6 GGTGCGGTGGTCTGCATAGGAA ATGGTGGACGTGCCTGCGAA 

Fol-D1 mgc06h12f -1.3 AGGCTTCTTCGCCTATGCTGCT CCGGGTTCTCGACCTTCTCGAA 

Fol-D3 fgenesh1_pg.C_chr_4000634 -0.9 GGTCCAGTCACCGATTCCACCA AAAGCCAAGGGTCTCGCCGT 

Fol-D4 fgenesh1_pg.C_chr_2000103 -0.9 AAACGCTGGCTGGTCCGTGT TTGGCTTGCTCGGCTTCGGT 

Fol-D5 fgenesh1_pg.C_chr_8000511 -0.8 TGCGAGGGTTCGTTGCTGTGT CGGTGGTTCGGGCTTCGTATCA 

Fol-D6 fgenesh1_pg.C_chr_7000261 -0.8 GCGGCCATTGAACGATTGACCC CGCATCCACCGCAACGAACA 
1The Join Genome Institute (JGI) fungal program (Grigoriev et al., 2011) 
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Table 4.2 Selected top most up- or down-regulated genes in the RNA-seq experiment and primers 
used for qualitative RT-PCR 

Gene ID JGI target gene ID1 
Gene 

expression 
(Log2 change) 

Sequence (5’ – 3’) 

Forward Reverse 

β-tubulin e_gw1.1.861.1  CGCATGATGGCCACCTTCTC GCAGAAGGTCTCGTCGGAATT 

LagChlo-U1 estExt_fgenesh1_pg.C_chr_20058  +1.8 GATCGTCTCCACCATCGTCTT ATCCGCTGCTATGAGAAGAACC 

LagChlo-U2 estExt_fgenesh1_kg.C_chr_60209  +1.4 CGTCAAGGAGAACAAGGAGAACTA GGTGTTCAGTGCGACCCTTAAT 

LagChlo-U3 estExt_Genewise1Plus.C_chr_80251 +1.3 CGTGGGTGGGAAACTGAGAAT GCTCTGTCGATTACTCCGAAAG 

LagChlo-U4 gw1.2.2194.1 +1.2 GGACGAGAGGAAAGTTGGAGTA CAACCCTCAGCACACCATCTT 

LagChlo-U5 fgenesh1_pg.C_chr_4000436 +1.2 CGTCGATATCAACACCGAACAT CATGGTAGAAGTCGGAGTGATC 

LagChlo-D1 e_gw1.8.1362.1 -2.9 ATGTCCGCTGCAACACAATC TCTGGTACGAATCTCTGGCTTC 

LagChlo-D2 estExt_fgenesh1_pg.C_chr_11227 -2.2 GTAGGATTGAGCAAGGACGAGAA CTCGCTCCCAGGAATCTTGTAAA 

LagChlo-D3 estExt_Genewise1Plus.C_chr_10184 -1.8 GCAACATCAGAATTACGGCATGAG TGGCAGCTTGATTCCGATTGT 

LagChlo-D4 estExt_fgenesh1_kg.C_chr_140021 -1.6 CTCCAGGACTCCTCTCGGTAA GTCCTCCTCGTCGTTGATCTC 

LagChlo-D5 gw1.1.1940.1 -1.6 GACTTGAGGTTGTTGAGGCATATG CATCCCAACTCCACTCCCAATC 

LagFol-U1 gw1.2.2368.1 +2.3 GTGGTTTCGGAGGCGGATTT GCCTGAACCTGAGCCCTTTC 

LagFol-U2 gw1.11.380.1 +2.0 CCAGATGCAACACCACCGATAG AGGCGACCATCAGAATCGATAC 

LagFol-U3 fgenesh1_pg.C_chr_4000212 +1.9 ACCAAACGCACCCACTGATAC GAAAGGCCAGAGGTCCGAGTA 

LagFol-U4 estExt_fgenesh1_pg.C_chr_20058 +1.8 CGGTCTGTTGCACAAGGTTCTA GCTGTAAGACGATGGTGGAGAA 

LagFol-U5 fgenesh1_pg.C_chr_4000425 +1.7 CTGCCGCTCCCAATTGACAAA GTAGTGCGGTTCTCCTCCTGTA 

LagFol-D1 e_gw1.1.3942.1 -1.1 ACCCGTCCCGAGTCGTAAAG CAGCTTGCACGTCACTACCATA 

LagFol-D2 estExt_Genewise1Plus.C_chr_10891 -0.9 GAAGAAGGACGAGGCCATGAA CGGTTGTGCTGATGTCGTAAC 

LagFol-D3 fgenesh1_pm.C_chr_1000920 -0.9 GCAGAAAGATGGAGACGGCAATT GCTTCAAACAACCCGATGACAAA 

LagFol-D4 fgenesh1_pg.C_chr_5000064 -0.8 ACCAGTACACCGTCTCATCTG TATTGATCGCTTGCCACGATTG 

LagFol-D5 gw1.1.1706.1 -0.8 GCCATACTCGGATGCAACTTTC GAATCACCTCCGCTTCGATCAA 

LogChlo-U1 estExt_Genewise1Plus.C_chr_40627 +2.3 GTCCTCACGCTTGCCTTCAA TGTCCAGGAACCAGCTCAACAT 

LogChlo-U2 estExt_fgenesh1_pm.C_chr_120122 +1.9 GAACAGGGTCCAATCTCTATCG ACCATTGCTTCGGGACTAGAG 

LogChlo-U3 estExt_Genewise1Plus.C_chr_100358 +1.4 CTCAACACTCAGACCGCAAAC CCTATCACCACCACATCATACTC 

LogChlo-U4 estExt_Genewise1Plus.C_chr_13116 +1.4 GGATACGTGGAAGCCGAAAGT CGTGGATGTTGGTGTCGTTTC 

LogChlo-U5 estExt_fgenesh1_pg.C_chr_60151 +1.3 TCCAATACGACTCACCTCCAATAC AGGTTGGATGGGCAGGTAGTT 

LogChlo-D1 fgenesh1_pg.C_chr_16000068 -1.3 GAGCAGAGCGAGGAAGTTGTAT GCTTGCGAATTGTTGCTTTCTTC 

LogChlo-D2 fgenesh1_pg.C_chr_3000370 -1.3 GTAGTCGTAGTGTCGGTAATTTGT GAACATTCCCGGTACCACATCT 

LogChlo-D3 fgenesh1_pg.C_chr_7000254 -0.9 GATTGATCAGGATGCTGGGAGAT CCACATCTTCCGACTCGTACT 

LogChlo-D4 fgenesh1_pg.C_chr_12000014 -0.9 GTCTGTCGGAGGGCCAAGAA GCAGCAGAGAACGCAAAGAG 

LogChlo-D5 gw1.10.406.1 -0.9 CATGTTGCCTGTTACCAAGAATCT CACATATCGCATCGGTCCAGAAG 

LogFol-U1 e_gw1.2.536.1 +2.1 CCGAAGACATTGATTCTGCTCTT CAGGCGTTGTCTCCAGAATG 

LogFol-U2 fgenesh1_pg.C_chr_10000003 +2.0 TCCTCCATTCGGTACAAGATCA GACGTTGAGATCGGTCATACTC 

LogFol-U3 e_gw1.4.1123.1 +1.9 CGGAATGGAATGGTCGTGATTG CGTTCCCAGCCCAAACAAAGT 

LogFol-U4 fgenesh1_pg.C_chr_3000638 +1.8 CTCACGGCATTCCCATCATTC GGCTCATCATTTGACCTTCGATA 

LogFol-U5 fgenesh1_pg.C_chr_19000003 +1.8 ACAGAAGAAGAGGATCAGGTCATA GTCTTCGAGTTGTTTCTCCTGAT 

LogFol-D1 estExt_Genewise1Plus.C_chr_120164 -1.6 CTGGCGGTTATGACGATGAATGT CAATGACCGTCGCAGTGATC 

LogFol-D2 e_gw1.6.1406.1 -1.5 GCTGCCCGAGATCTTCATTCT GCGTTCAAAGTGATGCCGTATG 

LogFol-D3 fgenesh1_pg.C_chr_1001542 -1.2 CAGACTCAGACGACGCCTTAC CTATCCCGACCCTTGACGATTT 

LogFol-D4 estExt_Genewise1Plus.C_chr_13616 -1.2 GCTCCTTTGGGTACTGCTCTT GGATTTCTTCGGCATCCATGAA 

LogFol-D5 estExt_fgenesh1_pg.C_chr_40586 -1.2 GCACGCTTGGAGTCTCATATG GGGAGTGCATCGGAGTAGTC 

1The Join Genome Institute (JGI) fungal program (Grigoriev et al., 2011) 
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4.3 Results 

4.3.1 Transcriptional response of Z. tritici to chlorothalonil or folpet using an Affymetrix 

GeneChip expression array. 

4.3.1.1 Genome-wide expression response of Z. tritici to chlorothalonil or folpet 

There were 6,317 probe sets significantly (p<0.05; q<0.05) differentially expressed on the 

microarray after exposure of Z. tritici isolate IPO323 to 0.1 µg/mL of chlorothalonil. Approximately 

75 % of these probe sets corresponded to Z. tritici genes, 20 % to wheat genes and 5 % to P. tritici-

repentis genes. The change in expression level of probe sets annotated as Z. tritici genes ranged 

from -1.9 to +2.0 log2 units. Fewer probe sets (685) were significantly (p<0.05; q<0.05) 

differentially expressed on the microarray after exposure to folpet. Approximately, 45 % of the 

significantly differentially expressed probe sets corresponded to Z. tritici genes, 40 % to wheat 

genes and 15 % to P. tritici-repentis genes.  The change in expression of folpet probe sets 

annotated as Z. tritici genes ranged from -1.3 to +0.72 log2 units. 

 

4.3.1.2 Validation of Affymetrix GeneChip expression array results by quantitative RT-PCR 

The four genes in the expression array data most up-regulated in the presence of chlorothalonil 

(Chlo-U1, Chlo-U5, Chlo-U6 and Chlo-U7) and the five genes most down-regulated (Chlo-D1, Chlo-

D2, Chlo-D3, Chlo-D4 and Chlo-D6) were validated by qRT-PCR, using the same RNA samples as 

those used in the microarray. Small changes in gene expression (from -1.6 to +0.7 log2 units) were 

found with the qRT-PCR, similar to those obtained with the microarray. However, changes 

measured by qRT-PCR and microarray were not significantly correlated (Fig. 4.3; r=0.48, n=9, 

p=0.19). Similarly, changes in gene expression in response to folpet of the five most up-regulated 

(Fol-U1, Fol-U2, Fol-U3, Fol-U4 and Fol-U5) and most down-regulated (Fol-D-1, Fol-D3, Fol-D4, Fol-

D5 and Fol-D6) measured by qRT-PCR were not significantly correlated (Fig. 4.4; r=0.23, n=10, 

p=0.52) with changes measured by the microarray. In the presence of folpet, changes in relative 

transcript abundance measured by qRT-PCR ranged from -1.8 to +0.6 log2 units, which was similar 

to the changes determined with the microarray. 
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Figure 4.3 Correlation of gene expression of selected Z. tritici genes as determined by 
Affymetrix GeneChip expression array and qRT-PCR after 24 h exposure to 0.1 µg/mL of 
chlorothalonil in the log phase growth. 

 

 

Figure 4.4 Correlation of gene expression of selected Z. tritici genes as determined by 
Affymetrix GeneChip expression array and qRT-PCR after 24 h exposure to 0.5 µg/mL of folpet 
in the log phase growth. 
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4.3.2 Transcriptional response of Z. tritici to chlorothalonil or folpet using RNA sequencing. 

A total of 18 libraries were generated from RNA-sequencing with at least a Phred quality score Q 

of 30 till base-pair 100. Nine libraries of treatments applied in the lag phase of growth had an 

average of sequencing depth of 20 million reads. Approximately 94 % of the reads were mapped 

on the Z. tritici isolate IPO323 reference genome (Table 4.3). The other nine libraries, with 

treatments applied in the log phase of growth, had an average of 23 million reads. Approximately 

93 % of the reads were mapped on the Z. tritici reference genome (Table 4.3). 

 

Table 4.3 Summary of the Z. tritici isolate IPO323 transcriptome sequencing. 

Growth Phase Treatment Sequencing Depth 
(reads) 

Phred Quality 
Score 

(Q) 

Mapped Read to the 
Reference Genome 

(%) 

Lag Phase Untreated 24 h 23,323,271 30 93.53 

  Untreated 24 h 14,708,750 30 92.91 

  Untreated 24 h 12,397,510 30 93.08 

  Chlorothalonil 23,772,611 30 93.37 

  Chlorothalonil 23,767,042 30 93.37 

  Chlorothalonil 21,185,856 30 93.43 

  Folpet 26,131,290 30 93.61 

  Folpet 21,889,997 30 91.97 

  Folpet 40,420,854 30 92.85 

Log Phase Untreated 48 h 21,739,748 30 94.09 

  Untreated 48 h 22,526,784 30 94.56 

  Untreated 48 h 19,588,972 30 93.79 

  Chlorothalonil 20,788,327 30 94.20 

  Chlorothalonil 21,269,962 30 94.18 

  Chlorothalonil 15,635,753 30 94.08 

  Folpet 19,280,171 30 93.76 

  Folpet 20,386,665 30 93.90 

  Folpet 20,243,005 30 94.66 
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Based on the number of predicted genes (10,933) in the Z. tritici isolate IPO323 reference genome 

(Goodwin et al., 2011), approximately 6 and 11 % of the IPO323 genes were significantly 

differentially expressed after exposure to chlorothalonil in the lag or log phase growth, 

respectively. Approximately 4 and 28 % of Z. tritici genes were differentially expressed after 

exposure to folpet in the lag or log phase growth, respectively.  

The expression of 27 genes was consistently modulated in presence of either fungicide in either 

phase of growth (Fig. 4.5). Cluster analysis of these genes identified groups of genes with similar 

expression patterns in presence of chlorothalonil or folpet in the lag or log phases of growth (Fig. 

4.6). Based on the available functional annotation, these 27 genes were mainly associated with 

carbohydrate metabolism, signal and transcriptional regulation, cell wall glycoproteins, phosphate 

transport, stress response, and MFS drug efflux pump activity (Fig. 4.6). 

 

 

 

Figure 4.5 Comparison of the significantly (p<0.05; q<0.05) differentially expressed genes in Z. 
tritici after 24 h exposure to either 0.1 µg/mL  of chlorothalonil or 0.5 µg/mL  of folpet in either 
the lag or log phase growth.  
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Figure 4.6 Expression pattern and putative function of the 27 genes consistently modulated in Z. 
tritici after 24 h exposure to either 0.1 µg/mL of chlorothalonil or 0.5 µg/mL folpet in either the 
lag or log phase of growth. Functional annotation of genes was carried out using Blast2GO 
software. 
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4.3.2.1 Genome-wide expression response of Z. tritici to chlorothalonil. 

RNA-seq analysis found 668 genes which were significantly (p<0.05, q<0.05; Supplementary Table 

4.1s) differentially expressed after 24 h exposure to chlorothalonil in the lag phase. Approximately 

44 % of the DEGs showed increased expression (from +0.31 to +1.84 log2 change) while 66 % 

showed decreased expression (from -2.93 to -0.30 log2 change). Most of the significantly DEGs 

(approximately 98 %) were mapped to the 13 essential chromosomes of the Z. tritici isolate 

IPO323 genome (Fig 4.7). No GO-terms were significantly (p<0.05) commoner in the genes with 

significant changes in expression in response to chlorothalonil (Fisher’s exact test with multiple 

testing correction of FRD<0.05). The top five up- or down-regulated genes were related mainly to 

protein folding or degradation (e.g. heat shock protein Hsp20, protein kinase and cyclin-like F-

box), or glucose metabolism (i.e glycoside hydrolase and glycosyltransferase) (Table 4.4). 

Comparison of chlorothalonil-DEGs in the lag or log phase treatment (Fig. 4.5) detected a set of 

271 genes that were modulated only if chlorothalonil was added in the lag phase of growth 

(Supplementary Table 4.2s). Functional annotation and enrichment analysis of these genes 

revealed GO-terms that were significantly enriched (p<0.001; Fisher’s exact test with multiple 

testing correction of FRD<0.05; Supplementary Table 4.3s). Enriched GO-terms in the biological 

process category were related to phosphorelay signal transduction system and signal transduction 

by phosphorylation (Fig. 4.8). Enriched GO-terms in the molecular function category included 

phosphorelay sensor kinase activity as the most specific GO-term (Fig. 4.9). Only protein histidine 

kinase complex GO-term was enriched in the cellular component category (Fig. 4.10). 
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Figure 4.7 Distribution of the 668 significant (p<0.05; q<0.05) differentially expressed genes in 
the reference Z. tritici isolate IPO323 genome and their gene expression ratio (log2 fold-change) 
after 24 h fungicide to 0.1µg/mL of chlorothalonil in the lag phase growth. Location of significant 
differentially expressed genes is indicated by black lines on each chromosome denoted in grey. 

 

Table 4.4 The most significantly (p<0.05; q<0.05) differentially expressed genes in the Z. tritici 
after 24 h exposure to 0.1 µg/mL chlorothalonil in the lag phase growth. 

Gene ID JGI gene ID1 Description2 Log2  
(change) 

LagChlo-U1 estExt_fgenesh1_pg.C_chr_20058  Hypothetical protein +1.8 

LagChlo-U2 estExt_fgenesh1_kg.C_chr_60209  Heat shock protein Hsp20 +1.4 

LagChlo-U3 estExt_Genewise1Plus.C_chr_80251 Glycoside hydrolase, family 16 +1.3 

LagChlo-U4 gw1.2.2194.1 Heat shock protein Hsp20 +1.2 

LagChlo-U5 fgenesh1_pg.C_chr_4000436 H+-transporting two-sector ATPase, A subunit +1.2 

LagChlo-D1 e_gw1.8.1362.1 Hypothetical protein -2.9 

LagChlo-D2 estExt_fgenesh1_pg.C_chr_11227 Cyclin-like F-box (protein binding) -2.2 

LagChlo-D3 estExt_Genewise1Plus.C_chr_10184 Protein kinase, core -1.8 

LagChlo-D4 estExt_fgenesh1_kg.C_chr_140021 Hypothetical protein -1.6 

LagChlo-D5 gw1.1.1940.1 Glycosyltransferase, family 28 -1.6 
1 The Join Genome Institute (JGI) fungal program (Grigoriev et al., 2011)  
2 Description based on Blast2Go results 
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Figure 4.8 Biological process enriched graph of genes exclusively expressed in the lag phase of growth of Z. tritici after 24 h exposure to 0.1 µg/mL of 
chlorothalonil. Fisher’s exact test with multiple testing correction of FDR<0.05. Nodes are coloured according to their FDR value in Fisher’s exact test 
against the whole Z. tritici genome. 
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Figure 4.9 Molecular function enriched graph of genes exclusively expressed in the lag phase of 
growth of Z. tritici after 24 h exposure to 0.1 µg/mL of chlorothalonil. Fisher’s exact test with 
multiple testing correction of FDR<0.05. Nodes are coloured according to their FDR value in 
Fisher’s exact test against the whole Z. tritici genome. 
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Figure 4.10 Cellular component enriched graph of genes exclusively expressed in the lag phase 
of growth of Z. tritici after 24 h exposure to 0.1 µg/mL of chlorothalonil. Fisher’s exact test with 
multiple testing correction of FDR<0.05. Nodes are coloured according to their FDR value in 
Fisher’s exact test against the whole Z. tritici genome. 
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More genes - a total of 1,151 - were differentially expressed (p<0.05, q<0.05; Supplementary 

Table 4.4s) in Z. tritici after exposure to chlorothalonil in the log phase of growth. Approximately 

54 % of the chlorothalonil-DEGs were up-regulated (from +0.23 to +2.26 log2 change) and the rest 

46 % were down-regulated (from -1.57 to -0.23 log2 change). According to functional annotation, 

top DEGs in the log phase of growth were related to transport of nitrogen or sodium, and 

heterocaryon incompatibility (Table 4.5). Most of the chlorothalonil-DEGs (approximately 98%) 

were located on the essential chromosomes of the genome (Fig. 4.11). Functional annotation and 

enrichment analysis of the significant chlorothalonil-DEGs revealed diverse GO-terms that were 

significantly enriched (p<0.001; Fisher’s exact test with multiple testing correction of FRD<0.05; 

Supplementary Table 4.5s). Enriched GO-terms in the biological process category were related to 

oxidative phosphorylation, cellular respiration, alpha-amino acid catabolic process, glucose 

catabolic process and proton transport (Fig. 4.12). Enriched GO-terms in the molecular function 

category included cofactor binding, oxidoreductase activity, and oxidoreductase activity actin on 

NAD(P)H (Fig. 4.13). Proton-transporting V-type ATPase V1 Domain and mitochondrion GO-terms 

were enriched in the cellular component category (Fig. 4.14).   

 

Table 4.5 The most significant (p<0.05, q<0.05) differentially expressed genes in the Z. tritici after 
24 h exposure to 0.1 µg/mL chlorothalonil in the log phase growth. 

Gene ID JGI gene ID Description2 Log2 
(change) 

LogChlo-U1 estExt_Genewise1Plus.C_chr_40627 Na+/solute symporter +2.3 

LogChlo-U2 estExt_fgenesh1_pm.C_chr_120122 Formate/nitrite transporter +1.9 

LogChlo-U3 estExt_Genewise1Plus.C_chr_100358 Pyridine nucleotide-disulphide oxidoreductase, class-II +1.5 

LogChlo-U4 estExt_Genewise1Plus.C_chr_13116 Arginase +1.4 

LogChlo-U5 estExt_fgenesh1_pg.C_chr_60151 “BPD_TRANSP_INN_MEMBR” +1.3 

LogChlo-D1 fgenesh1_pg.C_chr_16000068 Hypothetical protein -1.3 

LogChlo-D2 fgenesh1_pg.C_chr_3000370 Hypothetical protein -1.3 

LogChlo-D3 fgenesh1_pg.C_chr_7000254 Zinc finger, RING-type -0.9 

LogChlo-D4 fgenesh1_pg.C_chr_12000014 Hypothetical protein -0.9 

LogChlo-D5 gw1.10.406.1 Heterokaryon incompatibility -0.9 
1 The Join Genome Institute (JGI) fungal program (Grigoriev et al., 2011)  
2 Description based on Blast2Go results 
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Figure 4.11 Distribution of the 1,151 significantly (p<0.05; q<0.05) differentially expressed genes 
in the reference Z. tritici isolate IPO323 genome and their gene expression ratio (log2 fold-
change) after 24 h exposure to 0.1 µg/mL of chlorothalonil in the log phase growth. Location of 
significant differentially expressed genes is indicated by black lines on each chromosome denoted 
in grey. 
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Figure 4.12 Biological process enriched graph of the significantly (p<0.05; q<0.05) differentially expressed genes in Z. tritici after 24 h exposure to 0.1 
µg/mL of chlorothalonil in the log phase growth. Fisher’s exact test with multiple testing correction of FDR<0.05. Nodes are coloured according to their 
FDR value in the Fisher’s exact test against the whole Z. tritici genome. 
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Figure 4.13 Molecular function enriched graphs of the significantly (p<0.05; q<0.05) 
differentially expressed genes in Z. tritici after 24 h exposure to 0.1 µg/mL of chlorothalonil in 
the log phase growth. Fisher’s exact test with multiple testing correction of FDR<0.05. Nodes are 
coloured according to their FDR value in the Fisher’s exact test against the whole Z. tritici genome. 



Chapter 4: Z. tritici genome-wide transcriptional response 72 
 

 

 

 

Figure 4.14 Cellular component enriched graphs of the significantly (p<0.05; q<0.05) 
differentially expressed genes in Z. tritici after 24 h exposure to 0.1 µg/mL of chlorothalonil in 
the log phase growth. Fisher’s exact test with multiple testing correction of FDR<0.05. Nodes are 
coloured according to their FDR value in the Fisher’s exact test against the whole Z. tritici genome. 
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In addition, comparing DEGs from each treatment (Fig. 4.5), a set of 293 genes was detected to be 

modulated only if chlorothalonil was added in the log phase growth (Supplementary Table 4.6s). 

No GO-terms were significantly (p<0.05) commoner in this set of genes (Fisher’s exact test with 

multiple testing correction of FRD<0.05). The top five up- or down-regulated genes were related 

to transport and metabolism of nitrogen, and heterocaryon incompatibility (Table 4.6)  

 

Table 4.6 Probable functions of genes exclusively modulated in Z. tritici after 24 h exposure to 0.1 
µg/mL of chlorothalonil in the log phase of growth. 

JGI Gene ID1 Hits min. 
eValue 

Similarity 
(mean %) Description2 log2 

(change) 
estExt_fgenesh1_pg.C_chr_110320 20 0 74.6 nitrate transporter +1.2 

estExt_Genewise1Plus.C_chr_40795 20 0 84.05 mfs sugar transporter +1.1 

estExt_Genewise1Plus.C_chr_20574 20 0 61.65 pq loop repeat protein +1.1 

fgenesh1_pg.C_chr_7000585 1 0 100 t-type voltage-gated ca2+ alpha1i 
subunit 

+0.9 

estExt_fgenesh1_pg.C_chr_100170 20 0 78.75 nitrate reductase +0.8 

fgenesh1_pg.C_chr_16000068 1 9.69E-144 100 hypothetical protein  -1.3 

fgenesh1_pg.C_chr_3000370 1 9.40E-97 100 hypothetical protein  -1.3 

fgenesh1_pg.C_chr_7000254 3 0 69.33 hypothetical protein  -1.0 

fgenesh1_pg.C_chr_12000014 1 5.91E-39 100 hypothetical protein  -0.9 

gw1.10.406.1 20 6.81E-110 59.7 heterokaryon incompatibility 
protein 

-0.9 

1 The Join Genome Institute (JGI) fungal program (Grigoriev et al., 2011)  
2 Description based on Blast2Go results 

 

A total of 33 genes were modulated in both the lag and log phase after chlorothalonil exposure 

(Fig. 4.5 and 4.15; Supplementary Table 4.7s). No GO-terms were significantly (p<0.05) commoner 

in this set of genes (Fisher’s exact test with multiple testing correction of FRD<0.05). 

Approximately, 75 % of these genes have functional annotation. Genes related to transport of 

carbohydrate or proteins across the cell membrane, and protein binding were identified (Fig. 

4.15). Interestingly, genes involved in carbon catabolite or nitrogen metabolite repression were 

down- or up-regulated after chlorothalonil exposure in the lag or log phase, respectively. Carbon 

catabolite or nitrogen metabolism repression can be regulated by environmental and internally 

changes of glucose or nitrogen availability (see Kim et al., 2013; see Marzluf, 1993). 
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Figure 4.15 Expression patter and putative function of 33 genes consistently modulated in 
either the lag or log phase of growth of Z. tritici after 24 h exposure to 0.1 µg/mL of 
chlorothalonil, but not statistically significant modulated in response to folpet. Functional 
annotation of genes was carried out using Blast2Go software. 
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4.3.2.2 Genome-wide expression response of Z. tritici to folpet. 

A total of 419 genes were significantly (p<0.05, q<0.05; Supplementary Table 4.8s) differentially 

expressed in response to folpet. Approximate 78 % of these showed increased gene expression 

(from +0.31 to +2.33 log2 change) and around 22 % showed reduced expression (from +1.07 to -

0.31 log2 change). Approximate 97 % of folpet-DEGs were located on essential chromosomes (Fig. 

4.16). 

 

 

 

Figure 4.16 Distribution of the 419 significant (p<0.05; q<0.05) differentially expressed genes in 
the reference Z. tritici isolate IPO323 genome and gene expression (log2 fold-change) after 24 h 
exposure to 0.5µg/mL of folpet in the lag phase growth. Location of significant differentially 
expressed genes is indicated by black lines on each chromosome denoted in grey. 

 

  

Log
2
 (fold-change) 

Co
un

t 

Chlorothalonil Folpet 



Chapter 4: Z. tritici genome-wide transcriptional response 76 
 

The 419 significant folpet-DEGs lie disproportionately (p<0.05) in any functional groups. However, 

some GO-terms were enriched (p<0.001; Fisher’s exact test with multiple testing correction of 

FDR<0.05; Supplementary Table 4.9s) when the analysis was restricted to significant DEGs with 

expression ratio > +1.0 and < -1.0 log2 change (53 genes; Supplementary Table 4.10s). In 

particular, GO-terms connected with proteolysis, peptidase activity (serine-type carboxypeptidase 

and aspartic-type endopeptidase activity), and gene products acting in extracellular region were 

significantly commoner than expected from the distribution of terms in the whole dataset (Fig. 

4.17). The top ten DEGs in response to folpet were mainly genes connected with catabolic activity, 

such as lipase, aspartic peptidase, cutinase, alcohol dehydrogenase zinc-type and thioesterase 

(Table 4.7).  

 

Table 4.7 The most significant (p<0.05; q<0.05) differentially expressed genes in the Z. tritici after 
24 h exposure to 0.5 µg/mL folpet in the lag phase growth. 

Gene ID JGI gene ID1 Description2 Log2  
(change) 

LagFol-1U gw1.2.2368.1 Hypothetical protein +2.3 

LagFol-2U gw1.11.380.1 Lipase, GDSL +2.0 

LagFol-3U fgenesh1_pg.C_chr_4000212 Hypothetical protein +1.9 

LagFol-4U estExt_fgenesh1_pg.C_chr_20058 Unique hypothetical protein Z. tritici +1.8 

LagFol-5U fgenesh1_pg.C_chr_4000425 Aspartic Peptidase A1 +1.7 

LagFol-1D e_gw1.1.3942.1 Cutinase -1.1 

LagFol-2D estExt_Genewise1Plus.C_chr_10891 
Zinc-containing alcohol dehydrogenase 
superfamily (ADH) -0.9 

LagFol-3D fgenesh1_pm.C_chr_1000920 family transcriptional -0.9 

LagFol-4D fgenesh1_pg.C_chr_5000064 Hypothetical protein -0.8 

LagFol-5D gw1.1.1706.1 Thioesterase superfamily -0.8 
1 The Join Genome Institute (JGI) fungal program (Grigoriev et al., 2011)  
2 Description based on Blast2Go results 

 

Additionally, comparing DEGs from each treatment identified 166 genes that were modulated 

only in the lag phase after folpet exposure (Supplementary Table 4.11s). This set of genes lies 

disproportionately in any functional groups (Fisher’s exact test with multiple testing correction of 

FRD<0.05). Interestingly, top five up- or down-regulated genes with functional annotation were 

involved mainly in catabolic activity (e.g. lipase, aspartic peptidase and thioesterase) (Table 4.8). 
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Figure 4.17 Biological process, molecular function and cellular component enriched graph of the significantly (p<0.05; q<0.05) differentially expressed 
genes in Z. tritici after 24 h exposure to 0.5 µg/mL of folpet in the lag phase growth. Fisher’s exact test with multiple testing correction of FDR<0.05. 
Nodes are coloured according to their FDR value in Fisher’s exact test against the whole Z. tritici genome. 
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Table 4.8 Probable functions of genes exclusively modulated in Z. tritici after 24 h exposure to 0.5 
µg/mL of folpet in the lag phase of growth. 

JGI Gene ID1 Hits min. 
eValue 

Similarity 
(mean %) Description2 log2 

(change) 
gw1.11.380.1 20 0 63.5 Lipase, GDSL +2.0 

fgenesh1_pg.C_chr_4000425 20 0 48.5 Aspartic Peptidase A1 +1.7 

fgenesh1_pg.C_chr_8000551 1 1.13E-75 100 hypothetical protein  +1.6 

estExt_fgenesh1_kg.C_chr_30061 1 1.99E-40 100 hypothetical protein  +1.5 

fgenesh1_pg.C_chr_9000039 1 1.81E-65 100 hypothetical protein  +1.5 

e_gw1.1.3942.1 20 3.95E-71 62.4 cutinase -1.1 

fgenesh1_pm.C_chr_1000920 20 0 63.7 family transcriptional -0.9 

fgenesh1_pg.C_chr_5000064 2 3.7E-107 85.0 hypothetical protein  -0.8 

gw1.1.1706.1 20 7.82E-67 68.5 thioesterase superfamily protein -0.8 

fgenesh1_pg.C_chr_20000061 4 0 57.8 hypothetical protein  -0.8 
1 The Join Genome Institute (JGI) fungal program (Grigoriev et al., 2011)  
2 Description based on Blast2Go results 

 

Exposing Z. tritici to folpet in the log phase modulated more genes (3,091; p<0.05, q<0.05; 

Supplementary Table 4.12s) than in the lag phase. Approximately, 52 % of the folpet-DEGs were 

up-regulated (from +0.23 to +2.13 log2 change) and the rest, 48 %, were down-regulated ranging 

from -1.57 to -0.23 log2 change. Around 98 % of the folpet-DEGs were located on the essential 

chromosomes Z. tritici genome (Fig. 4.18). Functional annotation and enrichment analysis 

revealed more diverse GO-terms enriched (p<0.001; Fisher’s exact test with multiple testing 

correction of FRD<0.05; Supplementary Table 4.13s) than the chlorothalonil treatment - also in 

the log phase -. In the biological process category, GO-terms connected with cellular respiration, 

oxidative phosphorylation, carboxylic acid metabolic process (e.g. synthesis and metabolism of 

sulphur-, branched- and α-amino acids), translation, glycolysis, proton transport and ribosome 

biogenesis were significantly enriched (Fig. 4.19). In the molecular function category, cofactor 

binding, FMN binding, structural constituents of ribosomes, oxidoreductase, and “oxidoreductase 

activity acting on NAD(P)H, quinone or similar compound as acceptor” were significantly enriched 

(Fig. 4.20). In the cellular component category, GO-terms related to structure of ribosome, 

mitochondrion (i.e. mitochondrial membrane and inner mitochondrial membrane), and gene 

products localised in the cytosol were significantly enriched (Fig. 4.21). Additionally, genes 

involved in glycosylation were the most up- and copper transport the most down-regulated (Table 

4.9). 
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Figure 4.18 Distribution of the 3,091 significantly (p<0.05; q<0.05) differentially expressed genes 
in the reference Z. tritici isolate IPO323 genome and gene expression (log2 fold-change) after 24 
h exposure to 0.5 µg/mL of folpet in the log phase growth. Location of significant differentially 
expressed genes is indicated by black lines on each chromosome denoted in grey. 

 

Table 4.9 The most significant (p<0.05, q<0.05) differentially expressed genes in the Z. tritici after 
24 h exposure to 0.5 µg/mL folpet in the log phase growth. 

Gene ID JGI gene ID1 Description2 Log2 
(change) 

LogFol-U1 e_gw1.2.536.1 Glycosyltransferase Family 2 protein +2.1 

LogFol-U2 fgenesh1_pg.C_chr_10000003 Hypothetical protein +2.0 

LogFol-U3 e_gw1.4.1123.1 Hypothetical protein +1.9 

LogFol-U4 fgenesh1_pg.C_chr_3000638 Hypothetical protein +1.8 

LogFol-U5 fgenesh1_pg.C_chr_19000003 Myb, DNA-binding +1.8 

LogFol-D1 estExt_Genewise1Plus.C_chr_120164 copper transporter (Ctr) -1.6 

LogFol-D2 e_gw1.6.1406.1 Hypothetical protein -1.5 

LogFol-D3 fgenesh1_pg.C_chr_1001542 Voltage-gated potassium channels -1.2 

LogFol-D4 estExt_Genewise1Plus.C_chr_13616 Flavoprotein monooxygenase (oxidoreductase activity) -1.2 

LogFol-D5 estExt_fgenesh1_pg.C_chr_40586 Hypothetical protein -1.2 
1 The Join Genome Institute (JGI) fungal program (Grigoriev et al., 2011)  
2 Description based on Blast2Go results 
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Log
2
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Figure 4.19 Biological process enriched graph of the significant (p<0.05; q<0.05) differentially expressed genes in Z. tritici after 24 h exposure to 0.5 
µg/mL of folpet in the log phase growth. Fisher’s exact test with multiple testing correction of FDR<0.05. Nodes are coloured according to their FDR value 
in Fisher’s exact test against the whole Z. tritici genome. 
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Figure 4.20 Molecular function enriched graph of the significant (p<0.05; q<0.05) differentially 
expressed genes in Z. tritici after 24 h exposure to 0.5 µg/mL of folpet in the log phase growth. 
Fisher’s exact test with multiple testing correction of FDR<0.05. Nodes are coloured according to 
their FDR value in the Fisher’s exact test against the whole Z. tritici genome. 
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Figure 4.21 Cellular component enriched graph of the significantly (p<0.05; q<0.05) differential 
expressed genes in Z. tritici after 24 h exposure to 0.5 µg/mL of folpet in the log phase growth. 
Fisher’s exact test with multiple testing correction of FDR<0.05. Nodes are coloured according to 
their FDR value in the Fisher’s exact test against the whole Z. tritici genome. 
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Comparing DEGs from each treatment, a total of 2,003 genes of the 3,091 folpet-DEGs were 

modulated only in the log phase after folpet exposure (Supplementary Table 4.14s). Enrichment 

analysis of these genes found GO-terms enriched (p<0.001; Fisher’s exact test with multiple 

testing correction of FRD<0.05; Supplementary Table 4.15s) with genes involved in translation, 

cellular amino acid biosynthesis and metabolism, glycolipid metabolism, membrane lipid 

biosynthesis, and assembly of cellular macromolecules complex in the biological process category 

(Fig. 4.22). In the cellular component category, a GO-term related to structure of the ribosomes 

was significantly enriched (Fig. 4.23; p<0.001; Fisher’s exact test with multiple testing correction 

of FRD<0.05). No GO-terms in the molecular function category were significantly (p<0.05) 

enriched (Fisher’s exact test with multiple testing correction of FRD<0.05) with genes only 

modulated in presence of folpet in the log phase of growth.  

Comparison between genes modulate in the lag and log phase of growth - in presence of folpet - 

identified 55 genes commonly expressed (Fig. 4.5 and 4.24; Supplementary Table 4.16s). No GO-

terms were significantly (p<0.05) commoner in the genes with significant changes in expression in 

response to folpet in either lag or log phase of growth (Fisher’s exact test with multiple testing 

correction of FRD<0.05). Based on the functional annotation available, 44 genes are related to 

structure and transport across the cell membrane, oxidoreductase or hydrolase activity, and 

protein, zinc ion, RNA or DNA binding (Fig. 4.24). 
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Figure 4.22 Biological process enriched graph of genes exclusively modulated in the lag phase of growth of Z. tritici after 24 h exposure to 0.5 µg/mL of 
folpet. Fisher’s exact test with multiple testing correction of FDR<0.05. Nodes are coloured according to their FDR value in Fisher’s exact test against the 
whole Z. tritici genome. 
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Figure 4.23 Cellular component enriched graph of genes exclusively modulated in the lag phase 
of growth of Z. tritici after 24 h exposure to 0.5 µg/mL of folpet. Fisher’s exact test with multiple 
testing correction of FDR<0.05. Nodes are coloured according to their FDR value in Fisher’s exact 
test against the whole Z. tritici genome. 
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Figure 4.24 Expression pattern and putative function of 55 genes consistently modulated in 
either the lag or log phase of growth of Z. tritici after 24 h exposure to 0.5 µg/mL of folpet, but 
not statistically significant modulated in response to chlorothalonil. Functional annotation of 
genes was carried out using Blast2GO software. 
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4.3.2.3 Comparison between chlorothalonil and folpet genome-wide expression response in Z. 

tritici 

A total of 133 genes were consistently modulated in the lag phase after either chlorothalonil or 

folpet exposure (Fig. 4.5; Supplementary Table 4.17s). Enrichment analysis of these genes found 

GO-terms enriched (p<0.001; Fisher’s exact test with multiple testing correction of FRD<0.05; 

Supplementary Table 4.18s) with genes involved in aspartic-type endopeptidase in the molecular 

function category (Fig. 4.25). GO-terms in the biological process or cellular component category 

were not significantly enriched (p<0.05; Fisher’s exact test with multiple testing correction of 

FRD<0.05). Based on these results and previous enrichment analysis, it was possible to identified 

specific functional gene expression profiles in Z. tritici in response to either chlorothalonil or 

folpet in the lag phase of growth. Annotated genes related to proteolysis (i.e. aspartic-type 

endopeptidase activity) were up-regulated by both fungicides, with exception of genes products 

acting in the carboxy-terminal end of proteins or peptides (i.e. serine-type carboxypeptidase 

activity) – which were only induced by folpet (Fig. 4.26). Additionally, most of the genes involved 

in cell wall products acting in the external region of the cell were also up-regulated only in 

response to folpet (Fig. 4.27). In contrast, genes related with structure and function of 

transmembrane proteins in the cell – histidine kinase complex - were only up-regulated by 

chlorothalonil in the lag phase of growth (Fig. 4.27). 

On the other hand, a total of 787 genes were modulated in the log phase after either 

chlorothalonil or folpet (Supplementary Table 4.19s). Enrichment analysis of these genes found 

GO-terms enriched (p<0.001; Fisher’s exact test with multiple testing correction of FRD<0.05; 

Supplementary Table 4.20s) with genes related to glucose and cellular amino acid catabolism, 

ornithine metabolism, transport of electrons in the mitochondrial membrane (i.e. NADH 

dehydrogenase activity), and active transport by ATP hydrolysis in the biological process category 

(Fig. 4.28). In the molecular function category GO-terms related to NADH dehydrogenase activity, 

and proton-transporting ATPase activity were significantly enriched (Fig. 4.29; p<0.001; Fisher’s 

exact test with multiple testing correction of FRD<0.05).   GO-terms related to proton-

transporting V-type ATPase, proteasome, and mitochondrial membrane were significantly 

enriched in the cellular component category (Fig. 4.30; p<0.001; Fisher’s exact test with multiple 

testing correction of FRD<0.05). Taking into account these results and previous enrichment 

analysis results, functional gene expression profiles in Z. tritici in response to either chlorothalonil 

or folpet exposure in the log phase were identified. Genes related to respiration in the 

mitochondrion were communally modulated by either chlorothalonil or folpet (Fig. 4.31). Genes 
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related to protein degradation were also modulated by both fungicides, but genes related to 

protein synthesis were modulated only by folpet (Fig. 4.32). Similarly, genes related to catabolism 

of glucose or cellular amino acids, and metabolism of ornithine were modulated by both 

fungicides, whereas genes related to metabolism of cellular amino acids and glycolipids were 

modulated only by folpet (Fig. 4.33) Genes related to catabolism of α-amino acids were associated 

with chlorothalonil exposure (Fig. 4.33). Genes related to transport across the cell membrane - 

mediated by proton-transporting V-type ATPase – were modulate by both fungicides, whereas 

genes related to structure of the cell membrane were modulated only by folpet in the log phase 

of growth of Z. tritici (Fig. 4.34). 
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Figure 4.25 Molecular function enriched graph of genes modulated in the lag phase of growth of 
Z. tritici after 24 h exposure to either 0.1 of chlorothalonil or 0.5 µg/mL of folpet. Fisher’s exact 
test with multiple testing correction of FDR<0.05. Nodes are coloured according to their FDR value 
in the Fisher’s exact test against the whole Z. tritici genome.  
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Figure 4.26 Functional groups of genes related to proteolysis - denoted by their GO-term - 
modulated in the lag phase of growth of Z. tritici after 24 h exposure to either chlorothalonil or 
folpet. Selected functional groups of genes shown were the most specific GO-terms with a 
statistically significant (p>0.05) FDR value in figures 4.17 and 4.25. 

 

 

Figure 4.27 Functional groups of genes related to signaling in the cell membrane or gene 
products acting externally - denoted by their GO-term – modulated only in the lag phase of 
growth of Z. tritici after 24 h exposure to either chlorothalonil or folpet. Selected functional 
groups of genes shown were the most specific GO-terms with a statistically significant (p>0.05) 
FDR value in figures 4.8, 4.9, 4.10 and 4.17. 
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Figure 4.28 Biological process enriched graph of genes modulated in the log phase of growth of Z. tritici after 24 h exposure to either 0.1 µg/mL of 
chlorothalonil or 0.5 µg/mL of folpet. Fisher’s exact test with multiple testing correction of FDR<0.05. Nodes are coloured according to their FDR value in 
the Fisher’s exact test against the whole Z. tritici genome. 
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Figure 4.29 Molecular function enriched graph of genes modulated in the log phase of growth of 
Z. tritici after 24 h exposure to either 0.1 µg/mL of chlorothalonil or 0.5 µg/mL of folpet. Fisher’s 
exact test with multiple testing correction of FDR<0.05. Nodes are coloured according to their FDR 
value in the Fisher’s exact test against the whole Z. tritici genome. 
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Figure 4.30 Cellular component enriched graph of genes modulated in the log phase of growth of Z. tritici after 24 h exposure to either 0.1 µg/mL of 
chlorothalonil or 0.5 µg/mL of folpet. Fisher’s exact test with multiple testing correction of FDR<0.05. Nodes are coloured according to their FDR value in 
the Fisher’s exact test against the whole Z. tritici genome. 
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Figure 4.31 Functional groups of genes related to respiration in the mitochondria - denoted by 
their GO-term - modulated in the log phase of growth of Z. tritici after 24 h exposure to either 
chlorothalonil or folpet. Selected functional groups of genes shown were the most specific GO-
terms with a statistically significant (p>0.05) FDR value in figures 4.28, 4.29 and 4.30. 

 

 

Figure 4.32 Functional groups of genes related to protein synthesis or degradation - denoted by 
their GO-term - modulated in the log phase of growth of Z. tritici after 24 h exposure to either 
chlorothalonil or folpet. Selected functional groups of genes shown were the most specific GO-
terms with a statistically significant (p>0.05) FDR value in figures 4.28, 4.29 and 4.30. 
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Figure 4.33 Functional groups of genes related to glucose or amino acids synthesis catabolism - 
denoted by their GO-term - modulated in the log phase of growth of Z. tritici after 24 h 
exposure to either chlorothalonil or folpet. Selected functional groups of genes shown were the 
most specific GO-terms with a statistically significant (p>0.05) FDR value in figures 4.28, 4.29 and 
4.30. 

 

 

Figure 4.34 Functional groups of genes related to structure or function of the cell membrane - 
denoted by their GO-term - modulated in the log phase of growth of Z. tritici after 24 h 
exposure to either chlorothalonil or folpet. Selected functional groups of genes shown were the 
most specific GO-terms with a statistically significant (p>0.05) FDR value in figures 4.28, 4.29 and 
4.30.
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4.3.2.4 Genes encoding putative detoxification mechanisms in Z. tritici in response to either 

chlorothalonil or folpet 

A detailed inspection of chlorothalonil- and folpet-DEGs detected several up-regulated genes 

encoding detoxification mechanisms during the lag or log phase of growth. Twenty genes 

encoding putative glutathione S-tranferase (GST) were overexpressed in response to folpet only in 

the log phase; nine of the 20 genes were also overexpressed in presence of chlorothalonil in the 

same phase of growth (Fig. 4.35).  

Additional, genes encoding putative ATP-binding cassette (ABC) transport components in Z. tritici 

(Zwiers et al., 2003) were modulated by both fungicides. The expression of four putative ABC 

transporters encoding genes was induced by chlorothalonil exposure; the expression of one of 

them was only induced in the log phase (Fig. 4.36). Folpet exposure induced expression of three 

or two putative ABC transporters in the lag or log phase exposure, respectively (Fig. 4.36). The 

expression of two ABC transporters was up-regulated by chlorothalonil or folpet exposure in the 

lag phase. 

The expression of genes encoding putative major facilitator superfamily (MFS) drug efflux 

transporters (Roohparvar et al., 2007) were also modulated by chlorothalonil or folpet exposure. 

Four genes encoding MFS transporters were up-regulated when chlorothalonil was added in the 

lag phase; whereas one gene with different sequence was up-regulated in presence of folpet in 

the same phase growth. On the other hand, six genes were up-regulated in the log phase of 

growth after exposure to folpet. No genes were overexpressed after chlorothalonil exposure in 

the log phase (Fig. 4.37). 
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Figure 4.35 Expression of genes encoding putative glutathione S-tranferase (GST) in Z. tritici 
after 24 h exposure to 0.1 µg/mL of chlorothalonil (A) or 0.5 µg/mL of folpet (B) in the lag or log 
phase growth. 
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Figure 4.36 Expression of genes encoding putative ATP-binding cassette (ABC) transport 
components in Z. tritici after 24 h exposure to 0.1 µg/mL of chlorothalonil (A) or 0.5 µg/mL of 
folpet (B) in the lag or log phase growth. Gene sequence estExt_Genewise1.C_chr51261 is also 
called MgAtr5 (Zwiers et al., 2002) and e_gw1.9.8.1 is also called MgAtr7 (Zwiers et al., 2007). 
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Figure 4.37 Expression of genes encoding putative major facilitator superfamily (MFS) drug 
efflux transport components in Z. tritici after 24 h exposure to 0.1 µg/mL of chlorothalonil (A) or 
0.5 µg/mL of folpet (B) in the lag or log phase growth.  
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4.3.2.5 Validation of RNA sequencing results by quantitative RT-PCR 

Changes in transcription after exposure to chlorothalonil or folpet were estimated by quantitative 

RT-PCR for 40 selected genes to validate the RNA-seq analyses (Table 4.2). Genes for qRT-PCR 

were selected based on their gene expression ratio in RNA-seq. The top five up- or down-

regulated genes in presence of chlorothalonil in the lag phase (LagChlo-U1, LagChlo-U2 LagChlo-

U3, LagChlo-U4, LagChlo-U5, LagChlo-D1, LagChlo-D2, LagChlo-D3, LagChlo-D4 and LagChlo-D5) or 

log phase (LogChlo-U1, LogChlo-U2 LogChlo-U3, LogChlo-U4, LogChlo-U5, LogChlo-D1, LogChlo-

D2, LogChlo-D3, LogChlo-D4, LogChlo-D5) were selected. An equal number of genes was selected 

in the folpet treatments applied in the lag (LagFol-U1, LagFol-U2, LagFol-U3, LagFol-U4, LagFol-U5, 

LagFol-D1, LagFol-D2, LagFol-D3, LagFol-D4 and LagFol-D5) or log phase of growth (LogFol-U1, 

LogFol-U2, LogFol-U3, LogFol-U4, LogFol-U5, LogFol-D1, LogFol-D2, LogFol-D3, LogFol-D4 and 

LogFol-D5).  

Transformed gene expression ratios obtained with qRT-PCR and RNA-seq analysis were 

significantly correlated in three of the four treatments (Fig. 4.38B chlorothalonil in the log phase, 

r=0.92, n=10, p<0.001;  Fig. 4.39A folpet in the lag phase, r=0.91, n=9, p<0.001; Fig. 4.39B folpet in 

the log phase, r=0.96, n=10, p<0.001), with the exception of chlorothalonil in the lag phase (Fig,. 

4.38A; r=0.22, n=10, p=0.54). 
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Figure 4.38 Gene expression comparison of selected Z. tritici genes using RNA-seq and qRT-PCR. 
RNA samples taken from cultures after 24 h exposure to 0.1 µg/mL of chlorothalonil in the lag 
(A) or log (B) phase growth. 
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Figure 4.39 Gene expression comparison of selected Z. tritici genes using RNA-seq and qRT-PCR. 
RNA samples taken from cultures after 24 h exposure to 0.5 µg/mL of folpet in the lag (A) or log 
(B) phase growth.  

qRT-PCR Gene expression (Log2 fold-change)

-2 -1 0 1 2 3

R
N

A
-s

eq
 G

en
e 

ex
pr

es
si

on
 (L

og
2 

fo
ld

-c
ha

ng
e)

-3

-2

-1

0

1

2

3

qRT-PCR Gene expression (Log2 fold-change)

-1 0 1 2 3 4

R
N

A
-s

eq
 G

en
e 

ex
pr

es
si

on
 (L

og
2 f

ol
d-

ch
an

ge
)

-2

-1

0

1

2

3

A 

B 



Chapter 4: Z. tritici genome-wide transcriptional response 103 
 

4.4 Discussion 

Profiling genome-wide expression after exposure to an antifungal compound has in other cases 

allowed getting insights into the mode of action and/or detoxification mechanisms (Amin et al., 

2002). Using an Affymetrix GeneChip expression array, I intended to characterise the genome-

wide transcriptional response of the reference Z. tritici isolate IPO323 to chlorothalonil and folpet. 

However, there was no correlation of gene expression changes between microarray 

measurements and quantitative RT-PCR. Furthermore, the large proportion of folpet-DEPSs 

annotated as wheat genes suggested possible mis-hybridisation on the microarray. This mis-

hybridisation might be due to differences in hybridisation properties among probes on the 

microarray (Gautier et al., 2004). Therefore, results from the Affymetrix GeneChip expression 

array are not reliable to characterise the transcriptional response of Z. tritici to chlorothalonil and 

folpet.  

As an alternative approach, changes in gene expression were measured using RNA-seq technology 

when Z. tritici isolate IPO323 was exposed to chlorothalonil or folpet in the lag or log phase of 

growth. Gene expression of selected genes obtained with the RNA sequencing was significantly 

correlated with quantitative RT-PCR in most of the treatments, with the exception of 

chlorothalonil in the lag phase of growth. Marioni et al. (2008) found some discrepancies in gene 

expression between quantitative RT-PCR and RNA-seq or microarray technology. They selected 

five or six genes called differentially expressed from the RNA-seq or microarray technology, 

respectively, and measured gene expression through quantitative RT-PCR. Results from the 

quantitative RT-PCR confirmed four of five genes as differentially expressed from RNA-seq, and 

only two of six genes from the microarray technology. Marioni et al. (2008) argued that 

discrepancies in gene expression between technologies may be due to either false positive 

discovery or differences in the genomic region that both quantitative RT-PCR and RNA-seq 

targeted. In my study, top up- or down-regulated DEGs – in response to chlorothalonil exposure in 

the lag phase – had a q-value of 0.001831 (Supplementary Table 4.1s) which indicates a low false 

discovery rate. The q-value is the proportion of false discoveries incurred from p-values as or 

more extreme (Storey, 2002; Storey and Tibshirani, 2003). Thus, discrepancies in gene expression 

between quantitative RT-PCR and RNA-seq might be due to differences in the genomic region that 

both technologies target. Nevertheless, the detection of differentially expressed genes with 

Illumina platform is highly replicable even for genes with low expression (Marioni et al., 2008). 

Overall, small changes in gene expression level between treated and untreated samples were 

observed. Interestingly, diverse studies looking at effect of nutrient starvation (e.g. glucose, 
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nitrogen or phosphate) on gene expression also reported small changes in gene expression level 

in yeast (Conway et al., 2012; Kresnowati et al., 2006; Wu et al., 2004). Although chlorothalonil or 

folpet induced small changes in gene expression in Z. tritici, these changes were statistically 

significant. Functional annotation and enrichment analysis of significant differentially expressed 

genes found specific functional gene expression profiles for chlorothalonil and folpet. Moreover, 

most of the chlorothalonil- or folpet-DEGs were located on the core essential chromosomes of Z. 

tritici, indicating that dispensable chromosomes (Mehrabi et al., 2007; Wittenberg et al., 2009) 

may not play a large role in the response to chlorothalonil or folpet.  

The results discuss here provide a snapshot of the genome-wide expression profile of Z. tritici 

after 24 h exposure to chlorothalonil or folpet under in vitro conditions. Earlier in vitro studies 

showed that chlorothalonil is able to reduce 21 or 99 % growth of S. pastorianus after eight hours 

exposure to 0.25 or 2 µg/mL, respectively, and thiols content in fungal cells of Neurospora crassa 

after two hours exposure to 2 or 4 µg/mL of the fungicide (Vincent and Sisler, 1968). Similarly, 

folpet is able to reduce approximately 50 % dehydrogenase activity after one hour exposure 

(Siegel, 1971b). Although chlorothalonil or folpet can impair metabolic pathways within few hours 

after exposure, the transcriptional response of Z. tritici measured in my study after 24 hours 

fungicide exposure can provide insights into the putative affected metabolic pathways. Cools et 

al. (2007) or Becher et al. (2011) were able to detect changes in gene expression in Z. tritici or F. 

graminearum, respectively, after 24 h exposure to an azole fungicide. They found significant 

differentially expressed genes related with ergosterol biosynthesis – the target site of azole 

fungicides – and transport mechanisms across the cell membrane. However, the sampling of only 

a single time point makes difficult to determine whether the transcriptional response was 

conserved during the fungicide exposure time course. In addition, in planta studies might be 

needed to elucidate the mode of action of chlorothalonil or folpet taking into account the plant-

pathogen interaction. Comparing transcriptional response in both axenic culture and in planta 

may help to identify fungal genes specifically expressed during fungicide exposure (Kellner et al., 

2014; Rudd et al., 2015). This can be particularly challenging due to extremely slow grow of Z. 

tritici during the early phase of colonization in wheat leaf (Kema et al., 1996; Keon et al., 2007; 

Pnini-Cohen et al., 2000). The slow rate growth can make difficult or impossible to get enough 

fungal biomass to extract RNA and detect changes in gene expression. Nevertheless, the 

transcriptional response presented here can be considered as baseline for further studies looking 

at transcriptional response of Z. tritici during fungicide exposure. 
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4.4.1 Genome-wide expression response of Z. tritici to chlorothalonil 

Chlorothalonil is a multi-site fungicide with a broad spectrum of action, controlling a wide range 

of plant pathogens (FRAC, 2014). Earlier studies suggested that chlorothalonil exerts its fungicidal 

action by inactivation of thiol-containing compounds like cysteine, glutathione and Coenzyme A  

(Vincent and Sisler, 1968). Glutathione and glutathione S-transferase are involved in protecting 

the cell against oxidative stress and diverse xenobiotics (see Penninckx (2000); (Shin et al., 2003)). 

Nine genes encoding glutathione S-tranferase (GST) were up-regulated in Z. tritici after exposure 

to chlorothalonil in the log phase growth. However, no genes related to glutathione metabolism 

were significantly differentially expressed in the lag phase. This suggests a possible low content or 

depletion of glutathione in spores of Z. tritici during the lag phase due to chlorothalonil exposure. 

Shin et al. (2003) suggested that glutathione content and GST activity in yeast cells can be linked 

to chlorothalonil resistance. They reported reduction of glutathione content in yeast cells in 

presence of chlorothalonil.  

Although gene expression after chlorothalonil exposure in the lag phase between RNA-seq and 

quantitative RT-PCR was no correlated, Marioni et al. (2008) indicated that RNA-seq data are 

reliable. Enrichment analysis of genes expressed only in the lag phase after chlorothalonil 

exposure found functional groups of genes related to structure and function of protein histidine 

kinase complex. The protein histidine kinase complex (PHK) is a transmembrane protein receptor 

dimer (see Stock et al., 2000; Yamada et al., 2009). The PHK along with its associated response 

regulator (RR) (Yamada et al., 2009) allow cells to sense and mediate signaling pathways in 

response to extracellular stimulus - including nutrients, changes in osmolarity or antibiotics - 

(Skerker et al., 2005; see Wolanin et al., 2002). It has been suggested that dicarboximide and 

phenylpyrrole fungicides exert their fungicidal action by interfering with the osmotic signal 

transduction pathway in the histidine kinase and MAP kinase cascade (El-Mowafy et al., 2013; 

Fillinger et al., 2012; Yoshimi et al., 2003). Moreover, antibiotics like vancomycin or penicillin 

affect the PHK function, which in turn induces cell death and lysis in bacteria (Moreillon et al., 

1990; Novak et al., 1999). Thus, it is possible that chlorothalonil might exert its fungicidal activity 

in Z. tritici spores by interacting with PHK in the cell membrane that in turn modulates other 

signal transduction pathways, possible nutrients signaling.  

Interestingly, genes related to carbon catabolite repression or nitrogen regulatory proteins were 

down- or up-regulated in the lag or log phase only after chlorothalonil exposure, respectively. 

Nitrogen regulatory proteins regulate expression of genes encoding permeases and catabolic 

enzymes in response to nitrogen availability as part of the nitrogen metabolite repression 
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pathway (Haas and Marzluf, 1995; see Marzluf, 1993). Similarly, carbon catabolite can be 

modulated by a glucose signaling pathway, which regulates gene transcription through the 

Ras/protein kinase A signal transduction pathway (New et al., 2014; Ozcan et al., 1996). Although 

no relationship between PHK and carbon catabolite or nitrogen metabolite repression has been 

reported, these signaling transduction pathways rely largely on external stimulus. This indicates 

that chlorothalonil may interact with signal sensors in the cell membrane and induce 

a        limited-nutrient stress response in Z. tritici. Further studies are needed to determine to 

what extent chlorothalonil interacts with Z. tritici cell membrane sensors and to elucidate which 

metabolic pathways might be associated with alterations in the PHK.  

In contrast to the lag phase, most of the enriched functional groups of genes in response of 

chlorothalonil in the log phase were similar to those found in response to folpet in the same 

phase of growth. The exception seems to be a functional group of genes related to catabolism of 

α-amino acids, which are categorised as cellular amino acids. However, genes related to 

catabolism of cellular amino acids were modulated by folpet exposure in the log phase. This large 

similarity in functional gene expression indicates that chlorothalonil may induce similar stress 

response in Z. tritici as folpet upon exposure in the log phase. To this end, the possible metabolic 

pathways affected by chlorothalonil remains elusive due to no specific respond was found in Z. 

tritici when chlorothalonil was added in the log phase of growth. A discussion of functional groups 

of genes detected in response to chlorothalonil and folpet exposure is presented in section 4.4.3. 

 

4.4.2 Genome-wide expression response of Z. tritici to folpet 

Folpet exerts its fungicidal action by reacting primarily with either thiol-containing proteins with 

sulfhydryl groups (e.g. glutathione, glyceraldehyde 3-phospahate dehydrogenase or alcohol 

dehydrogenase) or non-thiol-containing proteins (e.g. α-chymotrypsin or lysozyme) in the cell 

(Lukens, 1966; Siegel and Sisler, 1968b).  GO-terms associated with glutathione metabolism were 

not preferentially associated with folpet-DEGs. However, a detailed inspection of the folpet-DEGs 

identified 20 genes up-regulated, which were involved in glutathione catabolism (i.e. glutathione 

S-transferase (GST)) in the log phase. In the lag phase a single GST encoding gene was down-

regulated and none up-regulated. This difference might be related to cellular glutathione content 

in Z. tritici cell in the lag or log phase. Siegel (1971b) indicated that folpet toxicity is reached when 

approximately 90 % of the glutathione has reacted with the fungicide. Although glutathione 

content was not determined in Z. tritici, the large number of up-regulated genes encoding GTS in 
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the log phase suggests a higher concentration of glutathione than in the lag phase. However, GST 

activity is also related to detoxification of xenobiotics in the cell (Lukens, 1966; Siegel, 1971b). The 

large activity of GST in the log phase of Z. tritici indicates a possible detoxification mechanism 

protecting against folpet. 

Enrichment analysis of the most differentially expressed genes in the lag phase after folpet 

exposure found functional groups of genes with peptidase activity related to proteolysis. Genes 

related to serine-type carboxypeptidases were particularly overexpressed after folpet exposure 

only in the lag phase. Overexpression of these proteolytic enzymes in Z. tritici may be due to 

direct interaction with folpet. The serine carboxypeptidases are glycoproteins with a free 

sulfhydryl group (Cooper and Bussey, 1989; Dal Degan et al., 1992) to which folpet have affinity 

(Lukens and Sisler, 1958). Additionally, the serine-type carboxypeptidase is an exopeptidase that 

releases single amino acids from the C-terminal of extracellular peptide or proteins (see Rao et al., 

1998). These free amino acids can be further absorbed into the cell to overcome nutrient 

requirements (see Breddam, 1986). Interestingly, an amino acid transporter encoding gene was 

overexpressed in either the lag or log phase only in response to folpet. This suggests internal 

demand of nutrients in Z. tritici, possibly of nitrogen. To this end, folpet may exert its fungicidal 

action during the lag phase of growth of Z. tritici by an initial interaction with serine-type 

carboxypeptidases in the cell membrane.  

In contrast, enrichment analysis of genes expressed only in the log phase after folpet exposure 

found more diverse functional groups significantly enriched. GO-terms associated with protein 

synthesis (e.g. translation or ribosome structure), biosynthesis or catabolism of cellular amino 

acids, glycolipid metabolism, and membrane lipid biosynthesis were preferentially associated with 

folpet exposure in the log phase. Synthesis of proteins is carried out by ribosomes, which consist 

of two subunits. The small ribosomal subunit (40S) initiates protein synthesis through binding 

initiation factors that help to translate the information contained in mRNA (Rabl et al., 2011). On 

the other hand, the large ribosomal subunit (60S) synthetises peptide bonds formation and 

contains the polypeptide exit tunnel (Klinge et al., 2011). Cycloheximide – a glutarimide antibiotic 

– inhibits protein synthesis by binding on the ribosomal protein subunit 60S, possible in the 

polypeptide exit tunnel (Fried and Warner, 1982; see Klinge et al., 2011; Schneider-Poetsch et al., 

2010). Interestingly, a total of 15 or 21 genes encoding the ribosomal proteins subunits 40S or 

60S, respectively, were up-regulated in Z. tritici only when folpet was added in the log phase. This 

large response of genes involved in the structure of ribosomes suggests that folpet might interact 

directly with ribosomal proteins. Siegel and Sisler (1968b) reported that folpet is able to bind to 
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purified proteins of Saccharomyces pastorianus. However, they found that folpet-protein binding 

is weak and folpet is released as gas. Santos et al. (2009) reported increased activity of protein 

translation in yeast cells exposed to mancozeb which is another multi-site inhibitor. Mancozeb – 

an ethylene-bis-dithiocarbamate complex with manganese and zinc – has affinity with 

sulfhydryl  (-SH) containing proteins (Vaccari et al., 1999).  Further studies are needed to 

determine to what extent folpet binds to ribosomal proteins and to affect protein synthesis.  

Additionally, functional groups of genes related to cell membrane structure (i.e. glycolipid 

metabolism or membrane lipid biosynthesis) were particularly down-regulated in Z. tritici when 

folpet was added in the log phase. It has been suggested that aromatic hydrocarbons fungicides 

affect the structure of lipid in the cell membrane (see FRAC, 2014). Radzuhn and Lyr (1984) 

reported that etridiazole - an aromatic hydrocarbon – is able to lyse cell membrane phospholipids 

into free fatty acids and lysophosphatides. Genes related to integral membrane protein, plasma 

membrane fusion protein or glycosyltransferase proteins were modulated in either the lag or log 

phase only in folpet exposure. These genes were typically down-regulated when folpet was added 

in the log phase of growth. It is not surprising that folpet may interact and possible bind to the Z. 

tritici cell membrane since it is one of the external structures of the fungal cell. Siegel and Sisler 

(1968b) reported lower affinity of folpet to cell wall fragments of S. pastorianus. They found that 

approximately 15 % of the total folpet was bound to cell walls fragments. 

  

4.4.3 Common genome-wide expression response in Z. tritici to chlorothalonil or folpet. 

Functional groups of genes related to aspartic-type endopeptidase were preferable associated 

with chlorothalonil or folpet exposure only in the lag phase. Endopeptidases are proteolytic 

enzymes that cleave peptide bonds in the inner regions of polypeptides away from the N- 

or        C- ends (see Davies, 1990). These proteolytic enzymes can be found in many cell 

compartments, including cytosol, vacuole or cell membrane (Teichert et al., 1989; ten Have et al., 

2004; ten Have et al., 2010). Functions of endopeptidases range from degradation of proteins and 

peptides under nitrogen or carbon starvations (Takeshige et al., 1992; Zubenko and Jones, 1981) 

to pathogenicity (see Monod et al., 2002). Zymoseptoria tritici was not grown under starvation 

conditions in vitro. The overexpression of genes encoding aspartic-type endopeptidase in 

response to either chlorothalonil or folpet exposure suggests that Z. tritici was undergoing 

nutrient starvation-like stress. This nutrient starvation-like stress might be induced by alterations 

in the carbon catabolite or nitrogen metabolite repression pathway – exerted by chlorothalonil 
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exposure – and/or activity of the serine-type carboxypeptidase – exerted by folpet exposure. 

Exopeptidases as serine-type carboxypeptidase work together with endopeptidases during the 

catabolism of proteins. The endopeptidases breakdown long polypeptide chains producing large 

number of free ends, and the exopeptidases release single amino acids from the free ends 

(Monod et al., 2002). Thus, genes related to proteolytic enzymes – aspartic-type endopeptidase – 

may be associated to an indirect stress response through perturbations in the cell membrane 

exerted by either chlorothalonil or folpet.  

In contrast to lag phase, enrichment analysis determined that when chlorothalonil or folpet was 

added in the log phase, transcription of genes associate with respiration, glucose or cellular amino 

acid catabolism, ornithine metabolism, structure and function of proton-transporting V-type 

ATPase V1 domain, and proteasome structure was increased more than others. Several fungicides 

with diverse mode action are known to impair respiration by inhibiting directly complex I, II or III 

in the mitochondrial respiratory chain (see FRAC, 2014). Interestingly, chlorothalonil or folpet 

induced overexpression of genes putative involved in the structure of the complex I 

(NADH:ubiquinone oxidoreductase) of the respiratory chain in Z. tritici. The complex I – also 

referred as NADH dehydrogenase - is the largest enzyme of the respiratory chain (see Brandt, 

2006). It has been suggested that activation of the NADH dehydrogenase may be induced through 

a signal transduction pathway led by alkylated sulfhydryl groups on G proteins in the cell 

membrane (Marques and Bicho, 1997). Chlorothalonil or folpet interact with compounds 

containing sulfhydryl groups (Lukens and Sisler, 1958; Vincent and Sisler, 1968). However, a gene 

encoding a putative G-protein-couple receptor (i.e. estExt_fgenesh1_pg.C_chr_90429) was down-

regulated after chlorothalonil or folpet exposure in the log phase. Thus, chlorothalonil or folpet 

impair respiration possible through direct interaction with the NADH:ubiquinone oxidoreductase 

in Z. tritici. Although there is no report that folpet affects mitochondrial respiration, it is known 

that folpet reduces dehydrogenase activity in the cell (Siegel, 1971b). In addition, changes in 

respiration by chlorothalonil exposure in S. pastorianus and Neurospora crassa have been 

reported previously (Vincent and Sisler, 1968).  

Alterations in glucose metabolism by chlorothalonil or folpet have been reported previously. 

These two fungicides bind to dehydrogenase enzymes, particularly folpet that has affinity for the 

glyceraldehyde 3-phosphate dehydrogenase, which plays a large role in glycolysis (Siegel, 1971b; 

Siegel and Sisler, 1968b; Vincent and Sisler, 1968). In agreement, transcription of genes related to 

glucose catabolism was increased in Z. tritici when chlorothalonil or folpet was added in the log 
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phase. Thus, both fungicides are able to impair glucose metabolism in the log phase of growth of 

Z. tritici. 

Transcription of genes putative involved in the structure of V-type H+ ATPase V1 domain was 

increased if chlorothalonil or folpet was added in the log phase of growth of Z. tritici. The V-type 

H+ ATPase is a multi-subunit protein complex enzyme that hydrolyses ATP to generate a gradient 

of protons across diverse biological membranes via active transport of H+ (see Beyenbach and 

Wieczorek, 2006). The protein complex comprises two major ring structures a cytoplasmic V1 

complex that interacts with ATP and an integral membrane V0 complex that mediates H+ or Na+ 

transport (see Murata et al., 2005; Nelson, 2003). Thus, V-type ATPase is responsible for 

intracellular acidification (see Nishi and Forgac, 2002). Expression of genes encoding the V-type H+ 

ATPase complex under diverse stress conditions has been observed before. Cells undergoing 

stress conditions such salinity, drought, excess of heavy metals tend to modulate V-type H+ 

ATPase activity to overcome the stress (see Dietz et al., 2001). Dias et al. (2010) reported that 

genes involved in the V-type H+ ATPase pump structure or function were needed in yeast cells to 

overcome mancozeb exposure. They argued that H+ pumps ATPase encoding genes are needed to 

regulate intracellular pH due to mancozeb reduced internal pH in yeast cells. Golldack and Dietz 

(2001) suggested that expression of genes encoding structure of the V-type ATPase under salinity 

stress might be due to signal transduction pathway led by G-proteins in the cell membrane. 

However, a gene encoding a putative G-protein-couple receptor (i.e. 

estExt_fgenesh1_pg.C_chr_90429) was down-regulated in Z. tritici if chlorothalonil or folpet was 

added in the log phase. To this end, the direct effect of these two fungicides on V-type H+ ATPase 

V1 domain remains elusive. Further studies are needed to determine to what extent chlorothalonil 

or folpet alter physiological pH or bind directly to V-type ATPase components in Z. tritici cells.  

Proteasomes are protein complex (26 S proteasome) involve in degradation of mis-folded or 

particular proteins by the ubiquitin-dependent protein signaling pathway (Peters et al., 1994). The 

ubiquitin-proteasome system (UPS) degrades targeted proteins into small oligopeptides at 

particular time or in response to specific events such mutations or oxidative stress (see 

Baumeister et al., 1998). Oligopeptides can be degraded further into amino acids, which can be 

recycled for synthesis of new proteins (see Glickman and Ciechanover, 2002), glucose via 

gluconeogenesis (see Hers and Hue, 1983) or as nitrogen source (Shaibe et al., 1985). Up-

regulation of genes related to proteasome structure indicates a controlled proteolytic activity in Z. 

tritici exerted by chlorothalonil or folpet exposure in the log phase. Previously in this chapter, 

transcription of genes involved in protein synthesis was increased in response to folpet exposure 
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in the log phase. It is possible that mis-folded proteins due to folpet exposure might be targeted 

for degradation through the proteolytic activity of proteasomes. Santos et al. (2009) through 

expression proteomics reported an increased in proteasome activity in yeast cells exposed to 

mancozeb. Similarly, Dias et al. (2010) reported that genes related with proteosomal function are 

needed to overcome mancozeb exposure in yeast cells. Moreover, Chondrogianni et al. (2005) 

reported overexpression of genes encoding proteasome sub-units to degrade oxidised proteins in 

human fibroblast cells.   

Moreover, up-regulation of genes related to catabolism of cellular amino acids after 

chlorothalonil or folpet exposure suggest that hydrolysed proteins might undergo further 

reduction. Overexpression of genes involved in ornithine metabolism indicates that cellular amino 

acids might be used as nitrogen source when chlorothalonil or folpet is added in the log phase. 

Ornithine and urea are intermediated products in the catabolism of arginine – a α-amino acid – 

(see Racke and Warnken, 2010). Further degradation of ornithine – to glutamate – can be used as 

nitrogen source in yeast (Shaibe et al., 1985; Whitney and Magasanik, 1973). Although expression 

of genes related to protein synthesis was not linked to chlorothalonil exposure, the 

overexpression of genes related to catabolism of cellular- or α-amino acids suggests that these 

amino acids might be used to overcome nitrogen requirements in Z. tritici fungal cells. However, 

Z. tritici did not grow under limited-nitrogen conditions in this study. Therefore, increase in 

transcription of genes involved in proteasome components, and protein or amino acid catabolism 

in Z. tritici indicates indirect stress response against alterations in other metabolic pathways (e.g. 

synthesis of proteins) induced mainly by folpet and to less extent by chlorothalonil. 

 

4.4.4 Detoxification mechanisms in response to chlorothalonil or folpet exposure 

To gain insights into the detoxification mechanisms associated to chlorothalonil or folpet 

exposure, Z. tritici was exposed to sub-lethal concentrations of these two fungicides in either lag 

or log phase of growth. However, enrichment analysis of the DEGs from each treatment did not 

find functional groups of genes – denoted by their GO-term – associated with non-target-site 

detoxification mechanisms (e.g. GST, ABC transporter or MFS drug efflux pump). A detail 

inspection of chlorothalonil- or folpet-DEGs in the lag or log phase detected small changes in gene 

expression of genes encoding putative GST, and ABC transport or MFS drug efflux pump 

components. 
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Nine genes encoding glutathione S-tranferase (GST) were up-regulated when chlorothalonil was 

added only in the log phase of growth. These genes were also overexpressed in response to 

folpet. It is well known that GST metabolises diverse xenobiotics by catalysing glutathione-

conjugates (Morrow et al., 1998; Pastore et al., 2003). Additionally, three genes encoding ABC 

transport and four genes encoding MFS drug efflux transport were up-regulated in the lag phase 

exposure; whereas only one gene encoding ABC transport components was up-regulated in the 

log phase. A MSF encoding gene in Z. tritici (MgMFS1) was reported to reduce sensitivity to a 

range of natural toxic compounds in heterologous expression in yeast (Roohparvar et al., 2007). 

Similarly, Zwiers et al. (2003) reported overexpression of genes encoding ABC transporters of Z. 

tritici - in heterologous expression in yeast - to a range of fungicides or plant metabolites. 

Similarly, a large number of genes encoding GST (20) were overexpressed in Z. tritici when folpet 

was added only in the log phase. Additionally, three or two genes encoding ABC transporters were 

up-regulated in the lag or log phase, respectively, in respond to folpet. Interestingly, two of those 

genes encoding ABC transporters (estExt_Genewise1Plus.C_chr_11491 or 

estExt_Genewise1.C_chr_41071) were also expressed in response to chlorothalonil in the lag 

phase. Other six genes encoding MFS efflux /drug transport were up-regulated after folpet 

exposure in the log phase; whereas one MFS efflux/drug encoding gene was expressed only in the 

lag phase. It is possible that genes encoding GST or ABC transport components might underlie 

lower sensitivity to both chlorothalonil and folpet in Z. tritici, as sensitivity values of these two 

fungicides were significantly correlated (Chapter 3). Interestingly, the gene 

estExt_Genewise1.C_chr_41071 – a putative ABC transporter – was overexpressed in a Z. tritici 

laboratory mutant strain, which is resistant to fluxapyroxad (Chapter 5). 
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4.5 Conclusions 

Using next generation RNA sequencing, I identified subtle but consistent changes in gene 

expression in Z. tritici in response to chlorothalonil or folpet. Functional annotation and 

enrichment analysis of differentially expressed genes in response to chlorothalonil or folpet found 

specific functional groups of genes associated to each fungicide. Transcription of genes related to 

structure or function of the protein histidine kinase complex was increased when chlorothalonil 

was added in the lag phase; whereas no specific group of genes was detected when chlorothalonil 

was added in the log phase of growth.  Transcription of genes related to serine-type 

carboxypeptidase with activity in the extracellular region was increased when folpet was added in 

the lag phase; whereas transcription of genes related to protein synthesis or cellular amino acid 

metabolism was increased when folpet was added in the log phase. Additionally, transcription of 

genes related to membrane lipid synthesis was decreased only when folpet was added in the log 

phase. On the other hand, several functional groups of genes were modulated by chlorothalonil or 

folpet exposure in the lag or log phase of growth. Transcription of genes related to aspartic-type 

endopeptidase activity was increased when chlorothalonil or folpet was added in the lag phase. 

Transcription of genes related to respiration, proteasome complex, glucose or cellular amino acids 

catabolism, ornithine metabolism, or proton-transporting V-type ATPase V1 domain was increased 

in response to either chlorothalonil or folpet exposure in the log phase. In addition, transcription 

of genes encoding detoxification mechanisms such ABC transporter or MFS drug efflux was 

slightly increased in Z. tritici after exposure to either chlorothalonil or folpet in either lag or log 

phase. Likewise genes encoding GST were slightly up-regulated only in the log phase after 

chlorothalonil or folpet exposure. Further studies are needed to confirm if these compound-

specific responses are conserved in other strains of Z. tritici and can serve as valid “functional 

gene expression signatures” for these two fungicides. 
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Chapter 5: Evolution in vitro of fungicide resistance of Zymoseptoria tritici to 

fluxapyroxad 

 

5.1 Introduction 

Evolution of resistance to fungicides in human or plant pathogens arises from the interaction of 

mutation rate, selection and genetic drift (Cowen et al., 2000; Huang et al., 2012; Taylor and 

Feyereisen, 1996). Populations require genetic variability to adapt to new environments or 

toxicants. Despite natural standing variation (see Barrett and Schluter, 2008; Hawkins et al., 

2014), genetic variability can arise from de novo mutations (Lenski, 2004; Torriani et al., 2009). 

The mutation frequency and the order in which beneficial mutations accumulate can drive the 

evolutionary adaptation of pathogens to toxicants (Cowen et al., 2000; Weinreich et al., 2006). 

Laboratory evolution studies give the opportunity to investigate the process of adaptation to new 

threats including toxicants. Lenski et al. (1991) founded a     long-term evolution experiment from 

a single Escherichia coli bacterium in 1988 to characterise the dynamics of adaptive evolution over 

long-term periods under a constant environment. Since then, 12 replicate E. coli-derived 

populations have been evolving for over 60,000 generations. Diverse studies on these 12 

replicated populations have found parallel phenotypic and genetic evolution. Increase and 

subsequent decline in fitness have been observed over time (Lenski and Travisano, 1994). 

Populations that evolved modifications in DNA supercoiling show parallel changes in gene 

expression pattern (Cooper et al., 2003). Moreover, three genes have been identified carrying 

distinct mutations in all 12 populations (Cooper et al., 2001; Woods et al., 2006). Interestingly, 

after approximately 31,500 generations only one population evolved the capability to use citrate 

(Ci+) as carbon source (Blount et al., 2008).  The Ci+ phenotype reached high frequency in the 

population but coexisted with phenotypes that are unable to use citrate (Ci-).  

Studies looking at development of resistance to toxicants have also found a parallel increase of 

resistance in replicate populations. Cowen et al. (2002) reported parallel development of 

resistance to fluconazole after 330 generations in four replicate populations of Candida albicans. 

Resistance was conferred by overexpression of either an ATP-binding cassette transporter or a 

multidrug major facilitator transporter gene. Similarly, resistance to fluconazole in Saccharomyces 

cerevisiae was also found to be conferred by overexpression of two ABC transport component 

encoding genes  (pdr5 or snq2) after 400 generations in replicate populations subjected to 

increasing concentrations of the fungicide (Anderson et al., 2003). Toprak et al. (2012) also found 
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parallel development of resistance in 12 replicate populations of E. coli after approximately 20 

days under an increasing concentration of antibiotics. Resistance was conferred by combination 

of mutations in three distinct genes or by accumulation of mutations in one single gene. Although 

in vitro experimental evolutionary studies using diverse microorganisms have provided insights 

into the evolutionary adaptation to toxicants, little is known in plant pathogen populations about 

the evolutionary paths toward resistance and its fixation. 

In this study, I determined the course of evolution of resistance to a new succinate 

dehydrogenase inhibitor in replicate populations of Zymoseptoria tritici starting from the sensitive 

isolate IPO323 (Goodwin et al., 2011). Zymoseptoria tritici is a highly adaptable plant pathogen 

(Zhan and McDonald, 2004). Due to resistance development to the methyl-benzimidazole 

carbamates (MBCs) (Griffin and Fisher, 1985), the quinone-outside inhibitors (QoIs) (Amand et al., 

2003; Fraaije et al., 2005) and some sterol-demethylation inhibitors (DMIs) (Clark, 2006), chemical 

control of Septoria leaf blotch (SLB) has been marked by a continuous succession of fungicides 

with diverse modes of action. Options for the chemical control of SLB are currently limited.  

Recently, a new generation of carboxamide fungicides that inhibit the succinate dehydrogenase 

(SDH) enzyme has been launched in the crop protection market (FRAC, 2014). The SDH enzyme 

also known as succinate:quinone oxidoreductase (SQR) transfers electrons from succinate in the 

citrate acid cycle to the ubiquinone pool in the mitochondrial respiration chain (Saraste, 1999). 

The SDH is a membrane-bound enzyme (complex II) that consists of a flavoprotein (SDHA) and 

an  iron-sulphur protein (SDHB), which are anchored to the inner membrane of the mitochondria 

by two hydrophobic sub-units (SDHC and SDHD) (Horsefield et al., 2006). Carboxamides exert 

their fungicidal action by physically blocking the transfer of succinate-derived electrons after 

binding in the ubiquinone-binding pocket (Qp), formed by the sub-units SDHB, SDHC and SDHD 

(Fraaije et al., 2012; Huang et al., 2006; Scalliet et al., 2012).  

Currently, the new-generation of carboxamides (SDHIs) (e.g. penthiopyrad, bixafen, isopyrazam, 

fluxapyroxad or boscalid) can be sold mixed with azoles to reduce or delay fungicide resistance 

development in Z. tritici (FRAC, 2013; HGCA, 2014). However, mutational laboratory studies and 

field surveys have reported a number of target-site (Qp) mutations in Z. tritici conferring 

resistance or lower sensitivity to SDHIs. Skinner et al. (1998) reported a target-site mutation in the 

sdh sub-unit B encoding gene which conferred a high level of resistance to carboxin.  It was an 

amino acid substitution from histidine to leucine or tyrosine at codon 267 (H267L/Y).  Mutation 

H267L/Y has been reported in other mutational studies in Z. tritici to confer resistance to a range 

of SDHIs.  In  particular, the H267L variant confers resistance to all SDHIs, including fluopyram 
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(Sierotzki and Scalliet, 2013). Other amino acid substitutions in the SDH sub-unit B (e.g. S221P/T, 

N225H/I, R265P or I269V/P), sub-unit C (e.g. T79I, S83G, L85P, N86K or H152R), and sub-unit D 

(e.g. D129E/G/S/T) have been reported to confer lower sensitivity to a range of SDHIs in Z. tritici 

laboratory mutants (Fraaije et al., 2012; Scalliet et al., 2012). Field surveys detected two Z. tritici 

field isolates with reduced sensitivity to SDHIs, one carrying an amino acid substitution from 

threonine to asparagine at codon 79 (T79N), the other a substitution of  tryptophan by serine at 

codon 80 (W80S) in the SDH sub-unit C (FRAC, 2013). Therefore, variation in resistance to SDHIs 

exists in Z. tritici field populations as predicted in mutational experiments. However, two 

questions still remain unanswered: i) Is there any fitness penalty associated to amino acid 

substitutions in the target protein (Qp) conferring lower sensitivity to SDHIs?, and ii) Will field 

selection drive these mutations to fixation in Z. tritici field populations, as in the case of resistance 

to MBCs or QoIs?. 

In the present study, the emergence and subsequent dynamics of genomic adaptive changes 

conferring resistance to the SDHI fluxapyroxad in Z. tritici was investigated in vitro. The sensitive 

isolate IPO323 was exposed to increasing concentrations of fluxapyroxad in replicate populations 

at three different starting concentrations each with or without exposure to UV light. The 

experimental evolution study presented here was carried out with a controlled and known 

population size (107 spores) to reduce genetic drift (Szendro et al., 2013). Additionally, since the 

sensitive isolate Z. tritici IPO323 was used as progenitor of all populations, no external genotypes 

entered in the mutant populations and no genetic exchange among populations occurred, 

mutation was the only source of genetic variability. Therefore, alterations in the target-site (Qp) 

or overexpression of genes encoding detoxification mechanisms conferred adaptive advantages in 

the presence of fluxapyroxad and were selected to high frequencies, but genotypes requiring 

large numbers of simultaneous changes to confer resistance could not be generated. 
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5.2 Material and Methods 

5.2.1 Generation of Z. tritici fluxapyroxad-resistant mutants 

The reference Z. tritici isolate IPO323 (Goodwin et al., 2011; Kema and van Silfhout, 1997) was 

used to generate laboratory resistant mutants to fluxapyroxad. Aliquots of 100 µL of IPO323 spore 

suspension at 107 spores/mL concentration were plated out onto yeast extract peptone and 

dextrose agar (YPD) plates amended with 0.4 % (v/v) DMSO, and 0.04, 0.06 or 0.08 µg/mL of 

fluxapyroxad formulated as emulsifiable concentrate (62.5 g/L EC) (BASF, Ludwigshafen, 

Germany). Two YPD plates per each fluxapyroxad concentration were inoculated. An equal 

number of plates were inoculated and exposed to 300 J/m2 of UV light using an UV Crosslinker 

(model: XLE-1000/FB, Spectroline, New York, NY, USA). UV-exposed and non-UV-exposed cultures 

were incubated at 21 °C in the dark for seven days.  

After seven days incubation, spores were harvested from the cultures and quantified as described 

in chapter 2, section 2.3. Cultures with at least 107 spores/mL were exposed to another round of 

fungicide selection.  An aliquot of 100 µL of spore suspension at 107 spores/mL from each culture 

was transferred to new YPD plates amended with 0.4 % (v/v) DMSO and a two-fold increased 

concentration of fluxapyroxad and left untreated or exposed to 300 J/m2 of UV light before 

further incubation (Table 5.1). The remaining spore suspension of each culture was suspended in 

80 % (v/v) glycerol and stored at -80 °C. Cultures with less than 107 spores/mL concentration were 

kept on the same fluxapyroxad concentration for another seven days at 21 °C in the dark or till 

they reached the spore concentration needed to be plated out on a doubled fungicide 

concentration. Every series of fungal cultures was kept separately, as an independent population, 

designated from IPOFluxa9 to IPOFlux20. 

Putative fluxapyroxad-resistant mutants were isolated after ten rounds of selection (Table 5.1). 

Twenty single colonies of putative fluxapyroxad-resistant mutants grown on YPD were isolated 

from each culture/population, plated out on  new YPD plates for another seven days at 21 °C in 

the dark, harvested, and stored in 80 % glycerol (v/v) at -80 °C for further use. Putative 

fluxapyroxad-resistant mutants were named in progressive number order according to the 

population from which they came (e.g. from IPOFluxa9-1 to IPOFluxa9-20). 
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Table 5.1 Treatments used in the generation of Z. tritici IPO323-derived laboratory mutants 
resistant to fluxapyroxad. 

Population ID UV light 
( J/m2) 

Fluxapyroxad concentration at each round of selection 
(µg/mL) 

1 2 3 4 5 6 7 8 9 101 
IPOFluxa9 0 

0.04 0.08 0.16 0.32 0.64 1.28 2.56 5.12 10.24 20.48 IPOFluxa10 0 
IPOFluxa11 300 
IPOFluxa12 300 
            
IPOFluxa13 0 

0.06 0.12 0.24 0.48 0.96 1.92 3.84 7.68 15.36 30.72 
IPOFluxa14 0 
IPOFluxa15 300 
IPOFluxa16 300 
            
IPOFluxa17 0 

0.08 0.16 0.32 0.64 1.28 2.56 5.12 10.24 20.48 40.96 
IPOFluxa18 0 
IPOFluxa19 300 
IPOFluxa20 300 
1Fluxapyroxad concentration was increased two-fold in every round of selection. 

 

5.2.2 In vitro fungicide sensitivity testing of putative fluxapyroxad-resistant mutants 

Sensitivity tests were carried out as described in chapter 2, section 2.5. Double strength SDB 

medium was amended with increasing concentrations of fluxapyroxad, fluopyram (0.002, 0.005, 

0.015, 0.046, 0.14, 0.4, 1.2, 3.7, 11.1, 33.3 and 100 µg/mL) or carboxin (0.06, 0.05, 0.14, 0.41, 

1.23, 3.70, 11.11, 33.33, 100, 300 and 900 µg/mL). Technical grade fluopyram (10 mg/mL; 32462 

Fluka, Sigma-Aldrich, UK) or carboxin (50 mg/mL; 45371 Fluka, Sigma-Aldrich, UK) was dissolved in 

dimethylsulphoxide (DMSO) before dilution in the liquid media. Formulated fluxapyroxad as 

emulsifiable concentrate (62.5 g/L EC) (BASF, Ludwigshafen, Germany) was dissolved in SDW at 10 

mg/mL as a stock concentration before dilution. Microtitre wells were filled with 100 µL of 

fungicide-amended SDB and 100 µL of spore suspension (2.5×104 spore/mL) of IPO323-derive 

putative fluxapyroxad-resistant mutants. After four days incubation, absorbance (A630nm) was 

recorded using a FLUOstar OPTIMA microplate reader. Fungicide sensitivity was determined as 

the concentration which inhibited growth by 50%, using a dose-response relationship estimated 

with OPTIMA software v2.20OR2. Results are given as EC50 values in microgram of fungicide per 

millilitre (µg/mL). Fluxapyroxad, fluopyram or carboxin EC50 values are the average of two 

independent experiments. For every in vitro sensitivity test, IPO323-derived fluxapyroxad-

resistant mutants were re-grown from the glycerol stock suspension stored at -80 °C. The 

progenitor/reference isolate IPO323 was included in the sensitivity test as control. 
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5.2.3 Detection of SDH sub-unit B, C or D amino acid substitutions in fluxapyroxad-resistant 

mutants. 

Based on the results of the fungicide sensitivity test, two fluxapyroxad-resistant mutants with 

each of the highest, medium or lowest fluxapyroxad EC50 values were selected after ten rounds of 

selection from each population for sequencing of the succinate dehydrogenase (sdh) genes 

encoding sub-units B, C and D.  

Genomic DNA for sequencing was extracted, as described in chapter 2 section 2.10, from frozen 

and overnight freeze dried seven-day-old spores of selected fluxapyroxad-resistant mutants 

grown on YPD plates at 15 °C in the dark. The sdh gene encoding sub-unit B, C or D were PCR 

amplified and sequenced using specific primers (Table 5.2).  

Polymerase chain reactions were carried out on a Biometra T3000/T3 thermocycler (Applied 

Biosystems California, USA) in a final volume of 50 µL containing 50 ng of fungal template DNA. 

Polymerase chain reactions for amplification of the sdhB or sdhD encoding genes contained 0.5 

µM of each primer (Table 5.2), 200 µM of dNTP, 1x Phusion HF buffer, and 1.0 units of Phusion 

High Fidelity DNA polymerase (Thermo Fisher Scientific, New England Biolabs, UK). Polymerase 

chain reactions for amplification of sdhC encoding gene contained 0.2 µM of each primer (Table 

5.2), 200 µM of dNTP, 1x of Easy-A reaction buffer and 2.5 units of Easy-A High Fidelity PCR 

cloning enzyme (Stratagene Corporation). Amplification conditions were as described in chapter 

2, section 2.10 (Table 2.1). 

Purified PCR products were sequenced by MWG Eurofins Genomics (Wolverhampton, UK) using 

specific primers for each sdh sub-unit B, C or D encoding genes (Table 5.2). Sequences were 

assembled and aligned with Geneious v.6.1.4 software, and amino acid substitutions determined 

after sequence analysis. 
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Table 5.2 Primers used to amplify and sequence the succinate dehydrogenase (sdh) sub-unit B, C 
or D genes in Z. tritici IPO323-derived mutants. 

Primer ID/Source Target gene Sequence (5’ – 3’) Application 

sdhB 752F1 sdhB TAAACACTCCACGCCTCACG Amplification of sdh sub-unit B gene 
SDH2_ST1R2  GTCTTCCGTCGATTTCGAGAC Amplification of sdh sub-unit B gene 
Mgsdhbf13   ACTCTTCTCACATACCACACA Sequencing of sdh sub-unit B gene 
Mgsdhbr13   CTTTCCAATCATCTCGTTCCAT Sequencing of sdh sub-unit B gene 
       
sdhC 888F1  sdhC TCCTGTCCTGTGATCCTGGA Amplification of sdh sub-unit C gene 
sdhC 1768R1   TCCCTTGGGTCCTGATGTAC Amplification of sdh sub-unit C gene 
Mgsdhcf13   GGCACATCGCGTCTCACG Sequencing of sdh sub-unit C gene 
       
SDHD_NEW1RMG2 sdhD GGCATCATCGTCAAGCAAG Amplification of sdh sub-unit D gene 
sdhD 1826R1  CAATTCTTCTTGGCAGCAACA Amplification of sdh sub-unit D gene 
Mgsdhdf13  CTCACCCTCACCGTCGCC Sequencing of sdh sub-unit D gene 

1Hawkins, N.J. (2013) (unpublished) 
2Dubos et al. (2013) 
3Fraaije et al. (2012) 
 

 

5.2.4 Quantification of SDHI-resistance conferring alleles in Z. tritici IPO323-derived mutant 

populations using SNP pyrosequencing assays 

A pyrosequencing SNP detection assay was developed to determine the frequency of key DNA 

mutations linked with SDHI resistance in populations IPOFluxa9, IPOFluxa18, IPOFluxa19 and 

IPOFluxa20 selected after ten rounds of selection. Fluxapyroxad-resistant mutants carrying DNA 

mutations causing specific amino acid substitutions and the reference isolate IPO323 were 

included as positive and negative control, respectively. DNA was extracted, as described above, 

from mutant populations grown on YPD plates at 15 °C in the dark for seven days. Primers 

targeting regions in the sdh sub-unit B, C or D encoding genes conferring amino acid substitutions 

related to resistance to succinate dehydrogenase inhibitors were designed with the 

Pyrosequencing Assay Design software (Table 5.3) (version 1.0.6; Biotage, Uppsala, Sweden).  

Amplification of target regions was carried out on a Biometra T3000/T3 thermocyclers (Applied 

Biosystems California, USA) in a final volume of 50 µL PCR reaction containing 50 ng of fungal 

template DNA, 0.2 units of OneTag DNA polymerase (New England BioLabs, Massachusetts, USA), 

1x OneTaq standard reaction buffer, 200 µM of dNTP, and 0.2 µM of each primer (Table 5.3). 

Thermocycling conditions were 94 °C initial denaturation for 30 seconds, 40 cycles at 94 °C for 15 

seconds, 56 °C for 15 seconds and 72 C for 15 seconds, and a final DNA extension at 68 °C for 5 
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minutes. Fifteen microliters of biotin labelled amplified products from the previous PCR were 

captured in a mastermix reaction containing three microliters of Streptavidin Sepharose HP beads 

(GE Healthcare, Uppsala, Sweden), 37 µL of binding buffer (10 mN of Tris-HCl at pH 7.6, 2M of 

NaCl, 1 mM of EDTA, 0.1 % Tween 20), and 25 µL of sterile distilled water.  The reaction was 

incubated for 10 minutes at room temperate in an Orbis plate shaker (Mikura, West Sussex, UK). 

Bound PCR products on the beads were aspired, purified and made single-stranded using the 

Pyrosequencing Vacuum Prep Tool (Biotage) as follows.  Beads were aspired onto filters, washed 

with 70 % (v/v) ethanol for 10 seconds, incubated in denaturing buffer (0.2 M NaOH) for 10 

seconds, and washed in washing buffer (10 mM of Tris-acetate, pH 7.6) for 10 seconds. 

Beads with single-stranded PCR products were transferred into a PSQ 96-well (Biotage) containing 

0.5 µM of sequencing primer (Table 5.3) and 45 µL of annealing buffer (20 mM of Tris-acetate, 2 

mM  magnesium acetate, pH 7.6). Pyrosequencing reactions were carried out on a PyroMark 

Q96ID (Biotage, Uppsala, Sweden) according to the manufacturer’s instructions using a PyroMark 

GoldQ96 QSA Reagent kit (Biotage). Dispensation orders were TGCTGACAC to detect H276Y, 

CGACGTCGA to detect N225T, CAGCTATGC to detect T79I, TACTGAGTA to detect S83G, 

ACTAGCTCA to detect H152R, and CGTCAGTCT to detect I50L.  

Allele frequencies in IPO323-derived fluxapyroxad-resistant mutant populations carrying specific 

amino acid substitution were estimated with the PyroMark ID SNIP v. 23.2 (Biotage) software. 

Frequency values are the mean of two technical replicate pyrosequencing reactions. 
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Table 5.3 Primers used to determine frequency of amino acid substitution in the succinate 
dehydrogenase (sdh) genes in Z. tritici IPO323-derived population mutants. 

Primer ID Amino acid substitution Sequence (5' - 3') Application 

267S sdhB - H267Y CATGAGCTTGTACCGAT Sequencing primer  
267BioR1  

CAGGTCCTTGAGCAATTCAGA PCR amplification 
267bF  

CGCACTCAACAACAGCATGA PCR amplification 
       
225S sdhB - N225T GCCCATCCTACTGGT Sequencing primer  
225F  

ATCTTGCCCATCCTACTGGTG PCR amplification 
225BioR  

CCATCGGTATGACTGGAGAAG PCR amplification 
       
79S sdhC - T79I GCCGAGAGGTACCAG Sequencing primer  
79BioF  

GCCCCACCTCGCAATCTA PCR amplification 
79R  

TGAGGGCCGAGAGGTACCA PCR amplification 
   

    
83S sdhC - S83G CGCGGTTGAGGGCCS Sequencing primer  
83BioF  

CCCCACCTCGCAATCTACAAAC PCR amplification 
83R  

CCGTGACGCGGTTGAGGG PCR amplification 
       
152S sdhC - H152R CGTATCCCACACCAAA Sequencing primer  
152BioF  

CCGGTGACGTTTCATTCGTT PCR amplification 
152R  

TAATCATACTCGCCGTATCCCACA PCR amplification 
      
50S sdhD - I50L GGAAGAGGAGGGAGAA Sequencing primer  

50BioF   TCCGGCTTCCAGACCACTG PCR amplification 

50R   TTGCGGAAGAGGAGGGAGA PCR amplification 
1Bio means 5’ biotin labelled primer. 
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5.2.5 Gene expression studies through quantitative RT-PCR. 

To examine changes in mRNA levels following the introduction of fungicide, the reference Z. tritici 

isolate IPO323 and the IPO323-derived fluxapyroxad-resistant mutant IPOFluxa9-7, with no 

target-site mutation in the Qp, were exposed to their respective approximate EC50 or EC80 

concentrations of fluxapyroxad in vitro as follows. Spores of the IPO323 or IPOFluxa9-7 were 

grown on YPD plates at 15 °C in the dark for seven days. Flasks containing 100 mL of SDB 

amended with formulated fluxapyroxad to give a final concentration of 0.04 or 0.19 and 0.39 or 

1.56 µg/mL were inoculated with spores from seven-day old cultures of IPO323 or IPOFluxa9-7, 

respectively, at final concentration of 5×105 spore/mL. After 24 h growth at 21 °C in the dark at 

200 r.p.m, fungal biomass was harvested by vacuum filtration and snap frozen in liquid nitrogen. 

IPO323 or IPOFluxa9-7 grown for 24 h in absence of fungicide was used as the untreated control. 

Formulated fluxapyroxad (0.1 mg/mL) (EC 62.5 g/L EC, BASF) was dissolved in SDW before adding 

to the SDB. 

Total RNA extraction from triplicate untreated and treated samples was carried out as described 

in chapter 2, section 2.6. Ten micrograms of total purified RNA was reverse transcribed and 

diluted one in ten (see chapter 2, section 2.7). Gene expression of genes encoding sdh sub-unit B, 

C or D, alternative oxidase (AOX), seven ATP-binding cassette (ABC) transporters, seven major 

facilitator superfamily (MFS) drug efflux transporters and seven glutathione S-transferase (GST) 

(Chapter 4) was determined with quantitative RT-PCR using specific oligonucleotide primers 

(Table 5.4) designed as described in chapter 2, section 2.8. The selected genes encoding 

transporters or GSTs were the seven most up-regulated genes in the Z. tritici isolate IPO323 after 

exposure to chlorothalonil or folpet in the lag or log phase of growth (Chapter 4). The aox 

encoding gene was included because overexpression can confer lower sensitivity to other 

fungicides that affect respiration (QoI) through non-target site mutations (Miguez et al., 2004).  

Quantitative real-time PCR reactions were carried out using SYBR® Green JumpStart Taq 

ReadyMix (Sigma-Aldrich, Missouri, USA) in a final volume of 20 µL containing 5 µL of diluted 

cDNA and 0.25 µM of each primer (Table 5.3). Thermal cycling conditions were 95 °C for 2 min, 40 

cycles at 95 °C for 15 seconds, 58 °C for 30 seconds and 72 °C for 40 seconds. Fluorescence was 

measured at each 72 °C elongation step. Reactions were carried out on a Stratagene Mx300P 

QPCR System (Agilent Technologies, USA). Normalised relative quantities (NRQ) of target genes  

were calculated by the 2-[Δ][Δ]Ct method (Pfaffl, 2001), using β-tubulin as the endogenous control 

and samples from the untreated IPO323 isolate as calibrator. Results are presented as ratios to 

the control treatment for data on the log2 (NRQ) scale.  
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Table 5.4 Selected genes in the RNA-seq experiment and primers used for qualitative RT-PCR 

Gene ID 
 

JGI gene ID1 
 

Sequence (5’ – 3’) 
 

Forward Reverse 

sdhB estExt_Genewise1Plus.C_chr_70864 CGAAGACAAAGACCTTCCACATCT TCAGAGCATCCAACATCATAGGA 

sdhC fgenesh1_kg.C_chr_8000081 CTTCGGACTCCTCTACCTCG CACACCAAATGCCTCACTCC 

sdhD estExt_Genewise1.C_chr_40018 TCCGCCATCACCGACTACTT CCCGCAGTCAAACCAATATCG 

AOX estExt_Genewise1Plus.C_chr_60388 GCACAAGGCGTCTTCTTCAA GGCGATTTCACGGGTGTAAGT 

        

ABCT1 e_gw1.9.8.1 GCTCCCAGATAAGGCCGAAGA TTGTACACCAGCCCATCCGATA 

ABCT2 estExt_Genewise1.C_chr_41071 GCCATCCCTATCGCTCTCATC GAAGCCAGACAGTTCCCATCAT 

ABCT3 estExt_Genewise1Plus.C_chr_11491 GGTGACAAGGTGGATGATGATC CAGTCGGAGCAAAGCAGAATC 

ABCT4 estExt_Genewise1.C_chr_51261 AGACTGGGCTATGCGGAAATC GGTGAGCGTTGGAAAGAAGAG 

ABCT5 e_gw1.6.23.1 GGGACAACAACACAGACTTCAA CGGTATGCAGTGAAGTGATGAT 

ABCT6 estExt_fgenesh1_pm.C_chr_20184 GACGTGTGCAGTTGTGTATGG GGGTCTCGGTCTCCTGTTTAAG 

ABCT7 estExt_Genewise1.C_chr_80997 AAGCCGAGAGTGAGATGAAGAG TAGACGGATCCATGCCATCGATA 

        

MFS1 estExt_fgenesh1_kg.C_chr_70313 GTGGATGGTTATTGGATACCTCAT CCCACAATGAGAGCGATTTGA 

MFS2 e_gw1.1.2469.1 GGACGAATTGGGTTGTGGTGATT CCTCCTCCTTCCTCTTCCTCTT 

MFS3 estExt_Genewise1.C_chr_11110 GCCCATTGAGCGAGGTGTAT GCGAGGCTATCAAGAGACCTTTG 

MFS4 e_gw1.7.95.1 GCCAGACCCATGTACTCTAAGT CTTCCTTATTCTCGACCCGTAGA 

MFS5 estExt_Genewise1Plus.C_chr_22238 GGCGACGTTCACACATACATAC GAGGTCAGAAATCCGGCTTGAA 

MFS6 gw1.1.2530.1 GGAGTTCATGCCGAGGAAGAG GCCATTCCCAATCGCCACAAT 

MFS7 estExt_Genewise1Plus.C_chr_12354 GCAACTCATTCTCTCTGCATTCT ACTTCCAATCGCCAGTTTCTTTG 

    

GST1 estExt_Genewise1Plus.C_chr_32118 CATCATGAGACCATACCCGAAAG GTACTTGCTGCCGAAGAGTTT 

GST2 estExt_fgenesh1_kg.C_chr_30405 CATCAGCCAGAACATCCAGAAG ACGGGTCACATAGGACAGAATG 

GST3 estExt_fgenesh1_pg.C_chr_30174 CTCGGATCGCATTCTTCCATCAG ATCTGCACCGTTTCCTTCGATTT 

GST4 fgenesh1_pm.C_chr_1000191 GCCGAGAATGAGGGACCTTA ATCCTTCATGATCCTTCCATACAC 

GST5 fgenesh1_pg.C_chr_7000293 TTGTCAATCGAAGCGTCCACTA CCTCCACCATCTCAGCGAATG 

GST6 estExt_fgenesh1_kg.C_chr_70091 CGGGTAATGGAAAGGGACGATAT ACCCACTTTAACAAATGCGGAAAC 

GST8 estExt_fgenesh1_kg.C_chr_10601 GATACATTCACGGACGGCAAAC GATACATTCACGGACGGCAAAC 
1The Join Genome Institute (JGI) fungal program (Grigoriev et al., 2011) 
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5.2.6 In vitro fitness study on fluxapyroxad-resistant mutants 

Fungal growth of the 54 sequenced IPO323-derived fluxapyroxad-resistant mutants was 

determined in vitro in liquid medium. Microtitre wells were filled with 100 µL of double strength 

SDB and 100 µL of spore suspension (2.5×104 spore/mL) of the fluxapyroxad-resistant mutants 

grown on YPD plates at 15 °C in the dark for seven days. The parental isolate IPO323 was also 

included in every plate used. Inoculated microtitre wells were incubated at 21 °C in the dark. 

Absorbance (A630nm) was recorded every 24 h using a FLUOstar OPTIMA microplate reader. There 

were eight technical replicates (wells) for each biological replicate of a variant, where a variant is 

formed from a number of fluxapyroxad-resistant mutants carrying similar amino acid substitution 

in the sdh gene sub-unit B, C or D (i.e. SDHB_H267L/Y, SDHB_N225T and SDHD_I50L, SDHC_T79I, 

SDHC_S83G, or SDHC_H152R) or non-mutation (i.e. NM) in the encoding gene. The average 

absorbance was calculated over technical replicates at each time point. 

 

5.2.7 Statistical analysis 

Calculated EC50 values were analysed using ANOVA to compare the populations, taking account of 

concentration used for their generation and UV light treatment. The model was: 

Log10(EC50)ijkl = constant + UVi + Concj + (UV.Conc)ij + (UV.Conc.Population)ijk + Eijkl 

where constant is the grand mean; UVi, i=1,2 (UV, non-UV) is the light status; Concj, j = 1, 2, 3 

(0.04, 0.06, 0.08 µg/mL) is the concentration of fluxapyroxad used; Populationk, k = 1,…,9 

(IPOFluxa9, 11,12,13,15,16,18,19,20) are the populations; and l = 1,….,20 (isolates) are the 

biological replicates. The standard error of the difference (SED) on the degrees of freedom from 

the ANOVA was used to construct a least significant difference (LSD) at the 5% level of significance 

with which to compare relevant means. Additionally, population resistance distributions were 

compared using the Kolmogorov-Smirnov two-sample test   (KS-test) in GenStat (2014, 17th 

edition, ©VSN International, Hemel Hempstead, UK). The KS-test looks for the greatest difference 

between two cumulative distributions. The test statistic is the largest distance between the 

distributions, D, found (at any point along the x-axis).  

The average absorbance values at each time point from each fluxapyroxad-resistant mutant was 

analysed in two stages. For stage one, a linear regression line was fitted to the profile for each 

fluxapyroxad-resistant mutant to estimate the intercept (i.e. absorbance at time zero) and slope 

(i.e. growth rate). In stage two, a linear mixed model was fitted to the sets of intercepts and 
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slopes taking account of the plates used and testing for differences between seven genotypes 

formed from the 54 fluxapyroxad-resistant mutants, and the parental isolate IPO323. The model 

was: 

bijk = Constant + Varianti + Platej + (Plate.Plate_Plot)jk + Eijk 

where constant is the grand mean; Varianti, i = 1,…, 8 (NM, SDHB_H267L/Y, SDHB_N225T, 

SDHD_I50L, SDHC_T79I, SDHC_S83G, SDHC_H152R and the parent isolate) indicates the eight 

variants; Platej, j = 1,…,5 are the five plates used; Plate_Plotk, k = 1,…,11 are the set of eight wells 

per fluxapyroxad-resistant mutant – including the parent isolate – per plate used; and Eijk is the 

error term. The constant and the Variant terms in the model are fixed effect (treatment) terms 

and all other terms are random (variance component) terms. 

Normalised relative quantity (NRQ) values of selected target genes were transformed to the 

logarithmic (log2) scale and analysed using ANOVA in GenStat. The ANOVA model was: 

Log2(NRQ)ij = Constant + Conci + Eij 

with constant being the grand mean and where Conci, i=1,2,3 (control, EC50, EC80) is the 

concentration and j=1,2,3 is for the three biological replicates. The log2(NRQ) values were 

calculated assuming an efficiency of 2 for the target and reference gene (Pfaffl, 2001). Results are 

presented as ratios to the control treatment, using the log2 (NRQ) means. 
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5.3 Results 

5.3.1 Generation of fluxapyroxad-resistant Z. tritici mutants 

Exposing the Z. tritici isolate IPO323 to 300 J/m2 of UV light resulted in approximately 45 % 

survival (Fig. 5.1). Six fluxapyroxad-resistant mutant populations (IPOFluxa11, IPOFluxa12, 

IPOFluxa15, IPOFluxa16, IPOFluxa19 and IPOFluxa20) derived from the sensitive Z. tritici isolate 

IPO323 were obtained after ten rounds of selection at increasing fungicide concentrations and 

300 J/m2 UV light exposure (Fig. 5.2). Three fluxapyroxad-resistant mutant populations 

(IPOFluxa9, IPOFluxa13 and IPOFluxa18) were obtained using the same series of fungicide 

concentrations but without UV light exposure (Fig 5.2; Table 5.1). 

 

 

Figure 5.1 Effect of UV light exposure on the reference Z. tritici isolate IPO323 colonies survival. 
Survival values are the mean of three biological replicates. Standard error is denoted by bars. 
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Population IPOFluxa9 was obtained after 17 weeks, and populations IPOFluxa11 and IPOFluxa12 

were obtained after 12 weeks, using a fluxapyroxad series rising from 0.04 to 20.48 µg/mL (Fig. 

5.2A). Populations IPOFluxa13 was obtained after 18 weeks, and populations IPOFluxa15 and 

IPOFluxa16 were obtained after 12 weeks, using a fluxapyroxad, series rising from 0.06 to 30.72 

µg/mL (Fig. 5.2B). Populations IPOFluxa18, IPOFluxa19 and IPOFluxa20 were obtained after 12 

weeks exposure, using a fluxapyroxad series starting at 0.08 g/mL and ending at 40.96 µg/mL (Fig. 

5.2C). A total of 180 fluxapyroxad-resistant mutants, 20 strains from each population, were 

isolated from the final populations.  

  



Chapter 5: Development of resistance to SDHIs in Z. tritici 129 
 

 

Figure 5.2 Progression of Z. tritici IPO323-derived populations through growth on YPD plates 
amended ten successively doubled concentrations of fluxapyroxad starting from 0.04 µg/mL 
(A), 0.06 µg/mL (B) or 0.08 µg/mL (C) of fluxapyroxad. Cultures IPOFluxa11, 12, 15, 16, 19 and 20 
were also exposed to 300 J/m2 of UV light. 
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5.3.2 Sensitivity of fluxapyroxad-resistant mutants to fluxapyroxad 

On average, mutant isolates from the selected populations were less sensitive to fluxapyroxad 

than the reference Z. tritici isolate IPO323, which had an average EC50 value of 0.02 µg/mL in this 

study (Fig. 5.3; Table 5.5). No significant differences (p = 0.190, F-test) were detected between 

EC50 values of the nine populations studied. Fluxapyroxad sensitivity values ranged from 0.19 to 

51.84 µg/mL (Fig. 5.3).There was no strong association between exposure to UV or the initial 

fluxapyroxad concentration. However, Kolmogorov-Smirnov test – a nonparametric test – 

detected significant differences between IPOFluxa9 and IPOFluxa11 or IPOFluxa12 (Kolmogorov-

Smirnov two-sample tests: IPOFluxa11 vs IPOFluxa9: D=1, χ2 approximation = 40, 2 df, p < 0.001; 

IPOFluxa12 vs IPOFluxa9: D=1, χ2 approximation = 40, 2 df, p < 0.001). The IPOFluxa9 had lower 

fluxapyroxad EC50 values, from 0.19 to 0.47 µg/mL (Fig. 5.3).  

 

Figure 5.3 Sensitivities to fluxapyroxad of Z. tritici IPO323-derived mutant populations after ten 
rounds of selection on YPD amended with 0.04 (IPOFluxa9, 11, 12), 0.06 (IPOFluxa13, 15, 16) or 
0.08 (IPOFluxa18, 19, 20) µg/mL of fluxapyroxad as starting concentration. Fungicide 
concentration was increased two fold every round of selection. Populations IPOFluxa11, 12, 15, 
16, 19 and 20 were also exposed to 300 J/m2 of UV light. Sensitivity values are the mean of two 
independent experiments. Star indicates the mean of each population (SED = 0.03567 on 170 df; 
LSD (5%) = 0.07042). Closed circles indicate values beyond the 90th and 10th percentiles. 
Sensitivity of the parent IPO323 isolate is indicated by the arrow. 
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Table 5.5 Succinate dehydrogenase inhibitor (SDHI) sensitivities of Z. tritici IPO323-derived laboratory mutant populations obtained after ten rounds of in 
vitro selection on YPD plates amended with 0.04 (IPOFluxa9, 11, 12), 0.06 (IPOFluxa13, 15, 16) or 0.08 (IPOFluxa18, 19, 20) µg/mL of fluxapyroxad as 
starting point or with 300 J/m2 of UV light exposure.  

Population UV 
exposure n 

Fungicide 
Fluxapyroxad  Fluopyram  Carboxin 

EC50 ± SE 
(µg/mL)1 SD 

 

EC50 ± SE 
(µg/mL)1 SD 

 

EC50 ± SE 
(µg/mL)1 SD 

IPOFluxa9 - 20 0.32 ± 0.02 0.09   0.56 ± 0.05 0.22   7.69 ± 0.46 2.03 
IPOFluxa11 + 20 1.5 ± 0.04 0.17   3.54 ± 0.11 0.50   75.93 ± 2.9 12.97 
IPOFluxa12 + 20 1.60 ± 0.07 0.33   3.10 ± 0.43 1.92   26.42 ± 1.77 7.91 
   

 
    

 
  

   
  

   IPOFluxa13 - 20 0.89 ± 0.03 0.14   0.06 ± 0.004 0.02   69.30 ± 9.68 43.31 
IPOFluxa15 + 20 2.16 ± 0.13 0.58   4.63 ± 0.27 1.21   338.6 ± 45.17 202.00 
IPOFluxa16 + 20 2.02 ± 0.08 0.37   89.1 ± 6.11 27.32   85.60 ± 35.70 159.83 
   

    
  

   
  

   IPOFluxa18 - 20 0.90 ± 0.06 0.27   0.09 ± 0.01 0.04   47.55 ± 1.81 8.08 
IPOFluxa19 + 20 1.83 ± 0.12 0.55   32.15 ± 10.19 45.58   20.01 ± 1.16 5.19 
IPOFluxa20 + 20 2.23 ± 0.22 0.99   2.59 ± 0.52 2.33   24.48 ± 4.04 18.08 
1EC50 values are the mean of two independent experiments base on the physical concentration scale. 
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5.3.3 Sensitivity of fluxapyroxad-resistant mutants to fluopyram 

Most of the fluxapyroxad-resistant mutants were also less sensitive to fluopyram than isolate 

IPO323, which has an average EC50 value of 0.10 µg/mL (Fig. 5.4). There were significant (p<0.001, 

F-test) differences between populations. This response depended strongly on population, with a 

clear decrease in sensitivity in seven populations (Fig. 5.4; IPOFluxa9, 11, 12, 15, 16, 19 and 20), 

but no change in two non-UV exposure populations (Fig. 5.4; IPOFluxa13 and IPOFluxa18). 

Populations IPOFluxa13 or IPOFluxa18 had the lowest fluopyram EC50 values, ranging from 0.03 to 

0.20 µg/mL (Fig. 5.4). The other populations ranged from 0.28 to >100.0 µg/mL (Fig. 5.4). 

Differences in fluopyram sensitivities between IPO323-derived mutant populations indicate that 

diverse target-site (Qp) mutations may underlie lower sensitivity or resistance to the fungicide. 

 

Figure 5.4 Sensitivities to fluopyram of Z. tritici IPO323-derived mutant populations after ten 
rounds of selection on YPD amended with 0.04 (IPOFluxa9, 11, 12), 0.06 (IPOFluxa13, 15, 16) or 
0.08 (IPOFluxa18, 19, 20) µg/mL of fluxapyroxad as starting concentration. Fungicide 
concentration was increased two fold every round of selection. Populations IPOFluxa11, 12, 15, 
16, 19 and 20 were also exposed to 300 J/m2 of UV light. Sensitivity values are the mean of two 
independent experiments. Star indicates the mean of each population (SED = 0.10 on 170 df; LSD 
(5%) = 0.20). Closed circles indicate values beyond the 90th and 10th percentiles. Sensitivity of the 
parent IPO323 isolate is indicated by the arrow. 
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5.3.4 Sensitivity of fluxapyroxad-resistant mutants to carboxin 

The IPO323-derived fluxapyroxad-resistant mutants with carboxin EC50 values ranging from 4.56 

to 491 µg/mL (Fig. 5.5) were less sensitive to carboxin than the reference Z. tritici isolate IPO323 

(average EC50 value of 1.7 µg/mL) regardless of the treatment given to the population from which 

they came (Fig. 5.5, Table 5.5). This lower sensitivity to carboxin was expected, since fluxapyroxad 

and carboxin are SDHI carboxamide fungicides (FRAC, 2014). However, there were significant 

differences between populations (Fig. 5.5; p<0.001, F-test).  

 

Figure 5.5 Sensitivities to carboxin of Z. tritici IPO323-derived mutant populations after ten 
rounds of selection on YPD amended with 0.04 (IPOFluxa9, 11, 12), 0.06 (IPOFluxa13, 15, 16) or 
0.08 (IPOFluxa18, 19, 20) µg/mL of fluxapyroxad as starting concentration. Fungicide 
concentration was increased two fold every round of selection. Populations IPOFluxa11, 12, 15, 
16, 19 and 20 were also exposed to 300 J/m2 of UV light. Sensitivity values are the mean of two 
independent experiments. Star indicates the mean of each population (SED = 0.0912 on 170 df; 
LSD (5%) = 0.180). Closed circles indicate values beyond the 90th and 10th percentiles. Sensitivity 
of the parent IPO323 isolate is indicated by the arrow. 
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5.3.5 Key amino acids substitutions in the SDH sub-unit B, C or D in fluxapyroxad-resistant 

mutants 

Based on the results of the fluxapyroxad sensitivity test, 54 fluxapyroxad-resistant mutants were 

selected and the genes encoding sdh sub-unit B, C and D sequenced. Mutations encoding seven 

different amino acid substitutions in the Qp were detected in 48 of these. Three amino acid 

substitutions were detected in the SDH sub-unit B; exchange from histidine to tyrosine or leucine 

at codon 267 (H267Y/L) or from asparagine to threonine at codon 225 (N225T). Three other 

amino acid substitutions were detected in the SDH sub-unit C; exchange from threonine to 

isoleucine at codon 79 (T79I), from serine to glycine at codon 83 (S83G) or from histidine to 

arginine at codon 152 (H152R). One amino acid substitution was detected in the SDH sub-unit D; 

an exchange from isoleucine to leucine at codon 50 (I50L) (Fig. 5.6). Only one fluxapyroxad-

resistant mutant carrying two amino acid substitutions (SDHB_N225T, SDHD_I50L) was detected. 

Six fluxapyroxad-resistant mutants, all from the IPOFluxa9 population, did not carry amino acid 

substitutions in the target-site Qp. Pyrosequencing assays of  IPOFluxa9 confirmed the absence of  

target-site (Qp) mutations (see section 5.3.6).  

The distribution of amino acid substitution-associated mutations indicated that selection of 

mutations occurred at random across populations (Fig. 5.7). Most of the amino acid substitutions 

conferred cross-resistance to fluopyram and/or carboxin, with the exception of amino acid 

substitution SDHB_H267Y, which was more sensitive to fluopyram (Fig. 5.7E and H; Table 5.6). 

Fluxapyroxad-resistant mutants without change in the target-site Qp showed also lower 

sensitivity to both fluopyram and carboxin (Fig. 5.7B and C; Table 5.6). 
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Figure 5.6 Location of key amino acid substitutions in the sdh sub-units in IPO323-derivated 
fluxapyroxad-resistant mutants. Partial sdh sub-units sequences of Zymoseptoria tritici (Zt), 
Alternaria alternata (Aa), Alternaria solani (As), Aspergillus oryzae (Ao), Corynespora casiicola 
(Cc), Botrytis cinerea (Bc), and Saccharomyces cerevisiae (Sc). Stars indicate positions where 
amino acid substitutions were found. Conserved residues are shaded in black or grey 
corresponding to 100 or 80 % conservation, respectively.  

sdhB                                                            * 
Zt  169 QFYKQYKSIKPYLQRDTAPPDGKENRQSVADRKKLDGLYECILCACCSTSCPSYWWNSEE 
Aa  179 LFYKQYRSVKPYLQRTTAAPDGREFRQSKEDRKKLDGLYECILCACCSTSCPSYWWNQEE 
As  180 LFYKQYRSVKPYLQRSTAAPDGREFRQSKEDRKKLDGLYECILCACCSTSCPSYWWNQEE 
Cc  180 LFYKQYRSVKPYLQRDTPAPDGREYRQSKEERKKLDGLYECILCACCSTSCPSYWWNQEE 
Ao  151 QFYKQYKSIKPYLQRETKTEDGLEYRQSPEERKKLDGLYECILCACCSTSCPSYWWNSEE 
Bc  174 QFYKQYKSIKPYLQHTDPAPEGKEYLQSKEDRKKLDGLYECILCACCSTSCPSYWWNSEE 
Sc  139 NFYQQYKSIQPYLQRSSFPKDGTEVLQSIEDRKKLDGLYECILCACCSTSCPSYWWNQEQ 
 
sdhB                                          * 
Zt  229 YLGPAVLLQSYRWINDSRDEKTAQRKDALNNSMSLYRCHTILNCSRTCPKGLNPALAIAE 
Aa  239 YLGPAVLLQSYRWIADSRDEKKAERQDALNNSMSLYRCHTILNCSRTCPKGLNPALAIAE 
As  240 YLGPAVLLQSYRWIADSRDEKKAERQDALNNSMSLYRCHTILNCSRTCPKGLNPALAIAE 
Cc  240 YLGPAVLLQSYRWIADSRDEKTAQRQDALNNSMSMYRCHTILNCSRTCPKGLNPALAIAE 
Ao  211 YLGPAILLQSYRWLADSRDEKTAERKHALDNSMSVYRCHTILNCSRTCPKGLNPARAIAE 
Bc  234 YLGPAILLQSYRWLADSRDQKKEERKAALDNSMSLYRCHTILNCSRTCPKGLNPGLAIAE 
Sc  199 YLGPAVLMQAYRWLIDSRDQATKTRKAMLNNSMSLYRCHTIMNCTRTCPKGLNPGLAIAE 

sdhC                                *   * 
Zt   51 SHARNEILAKQRLNRPVAPHLAIYKPQITWYLSALNRVTGVAASGAFYAFGLLYLAAPSL 
Aa   40 QSEAAEILAKQRVNRPVSPHLAIYKPQITWYASSLNRITGITLSGSLYLFGIAYLIAPYT 
As   40 QSEAAEILAKQRINRPVSPHLAIYRPQITWYASSLNRITGITLSGSLYLFGIAYLIAPYT 
Ao   52 TSDPTKILAQQRLNRPVSPHLSIYRPQITWIGSSFHRITGFALSGSLYLYATAYLASPLL 
Bc   52 PKDSYNILVEQRKLRPVAPHLTIYQPQIPWIMSGLNRITGCILSGGFYVFGAAYLASPLF 
Cc   40 ESQAQEILAKQRIQRPVSPHLSIYRPQITWYASSFNRITGVALSGGLYLFGFAYLAAPTL 
Sc   61 AIAEEQILNKQRAKRPISPHLTIYQPQLTWYLSSLHRISLVLMGLGFYLFTILFGVSGLL 
 
sdhC                                              * 
Zt  111 GWHLESAALAASFG-AWPVLLQVLTKTILALPVTFHSLNGVRHLVWDTASMITNKQVQTT 
Aa  100 GWHLETQSMVATVA-AWPAAVKAGLKAFYAFPFFFHSFNGLRHLAWDVGIGFKNQQVIRT 
As  100 GWHMETQSMVATVA-AWPAAAKAGLKAFYAFPFFFRSFNGLRHLSWDVGIGFKNQQVIRL 
Ao  112 GWHLESASVAAAFA-ALPIVAKVLLKGFMALPFTYHCFNGVRHLVWDLGRGITNQQVIKS 
Bc  112 GWHLDTASMVAAFG-AWPLAAKFLAKFTLAMPFTYHSFNGLRHLAWDMGKTFKNATVVKT 
Cc  100 GWHLETQSMVAAVA-AWPVAAKVAAKISIAMPFFFHSLNGLRHLSWDIGLGFKNKAVIQT 
Sc  121 GLGLTTEKVSNWYHQKFSKITEWSIKGSFAYLFAIHYGGAIRHLIWDTAKELTLKGVYRT 

sdhD        * 
Zt   46 ARRPI----LPPLPQV---IRGGVNDPAPVKEPSPSHGSYHWTMERLVSAALIPL-TIVP 
Aa   61 QRNQI----LPPLPQK---IIGTTNDPVPVPDPDYAHGSYHWSFERIVSAGLIPL-TIAP 
As   61 QRTQI----LPPLPQK---IIGTTNDPVPVPDPDYAHGSYHWSFERIVSAGLIPL-TIAP 
Ao   41 AKKQI----LPPLPQT---IQGTMNDPAPIPTPHPSEGSYHWTFERAISAGLVPL-TIAP 
Cc   33 QRQQI----LPPLPQK---IEGTLNDPARVPDPSPSHGSYHWSFERAISAGLIPL-TIAP 
Bc   60 GRQSI----LPPLPQS---IDGTSNDAAAVPKPSPSHGSYHWTFERLIAVGLVPL-TVAP 
Sc   28 AKKSLTIPFLPVLPQKPGGVRGTPNDAYVPPPENKLEGSYHWYMEKIFALSVVPLATTAM 
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Figure 5.7 Mapping of associated amino acid substitutions in the succinate dehydrogenase (sdh) complex on IPO323-derived mutant populations of Z. 
tritici after ten rounds of selection in vitro on YPD amended with 0.04 (A, B, C), 0.06 (D, E, F) or 0.08 (G, H, I) µg/mL of fluxapyroxad as starting point.  
sdhB:  H267Y, H267L and N225T; sdhC:  T79I,  S83G and  H152R; sdhD:  I50L; Non-mutation. Black filled or empty dots and black filled 
triangles are IPO323-derived mutants not sequenced. Fungicide concentration was increased two fold every round of selection. Populations IPOFluxa11, 12, 
15, 16, 19 and 20 were also exposed to 300 J/m2 of UV light. Sensitivity of the parent isolate IPO323 is indicated by the arrow. 
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Table 5.6 Succinate dehydrogenase inhibitors (SDHIs) sensitivities of IPO323-derived fluxapyroxad-resistant mutants carrying different mutations in the 
sdhB, C or D genes.   

Strain/mutant sdh variants Corresponding 
codon changes 

n 

Fungicide 

Fluxapyroxad  Fluopyram  Carboxin 
EC50 ± SE 
(µg/mL)1 SD RF2  EC50 ± SE 

(µg/mL) SD RF  EC50 ± SE 
(µg/mL) SD RF 

IPO323  None 1 0.02 ± 0.004 - -  0.10 ± 0.01 - -  1.71 ± 0.29 - - 

Non-mutation  None 6 0.32 ± 0.05 0.12 14  0.67 ± 0.15 0.36 7  7.65 ± 0.50 1.22 5 

B-H267L CAC > CTC/CTT 11 2.14 ± 0.52 1.74 94  7.04 ± 3.19 10.57 70  254.68 ± 61.39 203.62 149 

B-H267Y CAC > TAC 12 0.93 ± 0.09 0.33 40  0.09 ± 0.01 0.05 0.9  82.77 ± 29.16 101.03 48 

B-N225T, D-I50L AAC > ACC, ATT > CTT 1 1.88 ± 1.10 - 51  0.79 ± 0.08 - 8  5.33 ± 0.81 - 3 

C-T79I ACC > ATC 3 1.01 ± 0.04 0.07 44  0.90 ± 0.12 0.21 9  16.82 ± 1.74 3.02 10 

C-S83G TCG > GGG 6 2.17 ± 0.33 0.81 94  >100.00 0.00 >990  17.83 ± 2.51 6.15 10 

C-H152R CAT > CGT 15 2.12 ± 0.21 0.80 92  3.72 ± 0.48 1.88 37  30.99 ± 2.01 7.79 18 
1EC50 values are the mean of two independent experiments base on the physical concentration scale. 
2Resistance factors (RFs) of laboratory-mutants carrying the same sdh variant were calculated as the fold-change in mean EC50 compared with the mean EC50 value of the 
reference Z. tritici isolate IPO323.
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5.3.6 Allele frequency of SDHI-resistance conferring alleles in Z. tritici IPO323-derived mutant 

populations using SNP pyrosequencing assays 

The frequency of six amino-acid substitutions in Qp was determined, by pyrosequencing, at each 

transfer to a higher fungicide concentration in four selection lines. Population IPOFluxa9 was 

selected because no mutations in the Qp were detected in sequenced isolates (Fig. 5.7A, B, and 

C). Populations IPOFluxa18, 19 and 20 were included because fluxapyroxad-resistant isolates from 

these populations carried a range of amino acid substitutions in Qp (Fig. 5.7G, H and I).  

Amino acid substitution SDHB_H267Y was only detected in IPOFluxa18. It was present from round 

of selection (RS) four to ten with an approximate allele frequency of 100% (Fig. 5.8A). The 

SDHB_N225T and SDHD_I50L amino acid substitutions were detected only in IPOFluxa20. The 

SDHB_N225T amino acid substitution was detected between RS-4 and RS-9 at low frequency (< 5 

%), and at RS-10 with an approximate allele frequency of 7 % (Fig 5.8C). SDHD_I50L was detected 

at low frequency (< 2 %) between RS-3 and RS-6, and at RS-10 with an approximate allele 

frequency of 14 % (Fig. 5.8C).  

The amino acid substitution SDHC_T79I was detected in IPOFluxa19 or IPOFluxa20 at RS-3 with an 

approximate allele frequency of 6 and 8 %, respectively, with an increase in frequency (to around 

80%) at RS-5. The SDHC_T79I allele frequency decreased from approximately 80% to 6% at RS-8; it 

was undetectable after RS-8 in IPOFluxa19 (Fig. 5.8B). A similar pattern of increase and then 

decrease in allele frequency of SDHC_T79I (to approximately 15 % at RS-9) was observed in 

IPOFluxa20 (Fig. 5.8C). 

SDHC_H152R was detected from RS-5 in IPOFluxa19 (approximately 9 % frequency) and its 

frequency increased to around 95 % in RS-9 and RS-10 (Fig. 5.8B).  A similar pattern was observed 

in IPOFluxa20 for the SDHC_H152R amino acid substitution. SDHC_H152R was detected at RS-6 

(approximately 5 % frequency) with an increase in allele frequency at RS-9 (to approximately 70 

%), but the frequency fell to approximately 37 % at RS-10 (Fig. 5.8C). 

The amino acid substitution SDHC_S83G was detected only in IPOFluxa19 at RS-10 with an 

approximate allele frequency of 14 % (Fig. 5.8B).  

The SNP pyrosequencing assay did not detect alleles encoding target amino acid substitutions in 

the Qp in IPOFluxa9, confirming the result of section 5.3.5. 
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Figure 5.8 Allele frequencies of key amino acid substitutions in IPO323-derived fluxapyroxad-
resistant mutant populations during ten rounds of selection in vitro on YPD amended with 0.08 
µg/mL as starting concentration of fluxapyroxad. Fungicide concentration was increased two-
fold every round of selection. Populations IPOFluxa19 and IPOFluxa20 were also exposed to 300 
J/m2 of UV light. Relative allele frequency of positive control of sdhB: H267Y=1, N225T=0.83; 
sdhC: T79I=1, S83G=1, H152R=1; sdhD: I50L=1. Frequency values are the mean of two technical 
replicates between replicate pyrosequencing reactions. 
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5.3.7 Gene expression of the target- or non-target-site detoxification mechanisms in 

fluxapyroxad-resistant mutants 

Although no target-site (Qp) alterations were detected in IPOFluxa9, this population is less 

sensitive to fluxapyroxad than a Z. tritici field population (Fig. 5.9; chapter 3 section 3.3.3). 

However, it is more sensitive to fluxapyroxad than IPOFluxa13 or IPOFluxa18 (Fig. 5.9), in which 

most or all isolates carry an amino acid substitution at codon 267 in the SDH sub-unit B  

conferring resistance to fluxapyroxad (Fig. 5.7D and G) and carboxin (Fig. 5.7F and I). Resistance or 

lower sensitivity to single-site fungicides can be conferred by overexpression of the target protein 

encoding gene (Cools et al., 2012) or genes encoding non-target-site resistance mechanisms 

(Kretschmer et al., 2009). It is possible, that lower sensitivity to SDHIs in IPOFluxa9 might be due 

either to overexpression of the target protein (Qp) or to expression of non-target-site resistance 

mechanisms. To explore these possibilities, the reference isolate IPO323 and a fluxapyroxad-

resistant mutant IPOFluxa9-7 – with the highest fluxapyroxad EC50 value – were exposed to their 

approximate fluxapyroxad EC50 (0.04 or 0.40 µg/mL) or EC80 (0.19 or 1.6 µg/mL) concentrations in 

vitro, and the expression of selected genes was determined in RNA samples after 24 h incubation 

in fluxapyroxad-amended SDB medium at 21 °C. The 24 h exposure allowed to have enough fungal 

biomass to RNA extraction. Moreover, Cools et al. (2012) were able to detect changes in gene 

expression in Z. tritici after 24 h exposure to the single-site fungicide epoxiconazole. Similarly, 

Becher et al. (2011) detected expression of genes encoding ABC transporters in F. graminearum 

after 24 h exposure to tebuconazole. 
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 Figure 5.9 Cumulative frequency distribution of fluxapyroxad EC50 values of isolates taken from 
a Z. tritici field population (45 isolates: UnTreated; data taken from chapter 3 section 3.3.3), and 
IPO323-derived mutant populations (20 isolates) after ten rounds of  selection in vitro on YPD 
amended with 0.04 (IPOFluxa9), 0.06 (IPOFluxa13) or 0.08 (IPOFluxa18) µg/mL as starting point 
of fluxapyroxad. Fungicide concentration was increased two fold every round of selection. 
Mutants tested from populations IPOFluxa13 and IPOFluxa18 carry an amino acid substitution at 
codon 267 in the sdh sub-unit B; IPOFluxa9 has no changes in sdh loci. Sensitivity of the reference 
IPO323 isolate is indicated by the arrow.  
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Quantitative RT-PCR detected a low but significant (p<0.05) up-regulation of genes encoding the 

sdh sub-unit B, C or D in the reference isolate IPO323. In the mutant IPOFluxa9-7 only genes 

encoding the sdh sub-unit B or D were significantly (p<0.001) slightly up-regulated (Fig 5.10). The 

reference isolate IPO323 and the variant IPOFluxa9-7 exhibited similar aox gene expression 

pattern. However, overexpression of aox encoding gene was significant only in IPO323 at its 

approximate fluxapyroxad EC50 or EC80 concentration (Fig 5.10).  

The abct-2 encoding gene, a putative ATP-binding cassette transporter (Goodwin et al., 2011), 

was constitutively overexpressed (p<0.05) in IPOFluxa9-7 (Fig. 5.11B).  Genes abct-5 and abct-6 

were up-regulated (p<0.05) only in IPO323 at its fluxapyroxad EC50 or EC80 concentration, 

respectively (Fig. 5.11A).  

Similarly, a glutathione S-tranferase (gst-4) encoding gene was slightly but significantly (p<0.05) 

up-regulated in IPOFluxa9-7 exposed to its approximate fluxapyroxad EC50 or EC80 (Fig. 5.12B).  

gst-4 was also significantly (p<0.05) up-regulated, along with gst-1, in the reference isolate 

IPO323 in presence of fluxapyroxad (Fig. 4.12A).  

Gene expression of seven major facilitator superfamily (MFS) efflux drug transporters was 

determined in the reference isolate IPO323 and the mutant IPOFluxa9-7 in presence of 

fluxapyroxad. msf-2 and msf-6 were significantly (p<0.05) up-regulated in the reference isolate 

IPO323 (Fig. 5.13A). In the fluxapyroxad-resistant mutant IPOFluxa9-7 no msf encoding genes was 

significantly (p<0.05) up- or down-regulated (Fig. 5.13B). 
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Figure 5.10 Quantitative RT-PCR of genes encoding succinate dehydrogenase (sdh) sub-unit B, C 
and D, and alternative oxidase (AOX) in the reference Z. tritici isolate IPO323 (A) and the 
laboratory mutant IPOFluxa9-7(B) after 24 h exposure to their respective fluxapyroxad EC50 or 
EC80 concentration. Mean of three biological replicates. Statistical significance for each gene is 
marked by asterisks (*=p<0.05 or **=p<0.01). See Appendix 5.1 and 5.2 for the means of log2 fold-
change expression data for the three treatments with standard error of the difference for the 
comparisons made.   
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Figure 5.11 Quantitative RT-PCR of genes encoding putative ATP-binding cassette (ABC) 
transporters in the reference Z. tritici isolate IPO323(A) and the laboratory mutant IPOFluxa9-7 
(B) after 24 h exposure to their respective fluxapyroxad EC50 or EC80 concentration. Mean of 
three biological replicates. Statistical significance for each gene is marked by asterisks (*=p<0.05 
or **=p<0.01). See Appendix 5.1 and 5.2 for the means of log2 fold-change data for the three 
treatments with standard error of the difference for the comparisons made. 
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Figure 5.12 Quantitative RT-PCR of genes encoding putative glutathione S-transferase in the 
reference Z. tritici isolate IPO323 (A) and the laboratory mutant IPOFluxa9-7 (B) after 24 h 
exposure to their respective fluxapyroxad EC50 or EC80 concentration. Mean of three biological 
replicates. Statistical significance for each gene is marked by asterisks (*=p<0.05 or **=p<0.01). 
See Appendix 5.1 and 5.2 for the means of log2 fold-change data for the three treatments with 
standard error of the difference for the comparisons made. 
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Figure 5.13 Quantitative RT-PCR of genes encoding major facilitator superfamily (MFS) drug 
efflux transport in the reference Z. tritici isolate (A) IPO323 and the laboratory mutant (B) 
IPOFluxa9-7 after 24 h exposure to their respective fluxapyroxad EC50 or EC80 concentration. 
Mean of three biological replicates. Statistical significance for each gene is marked by asterisks 
(*=p<0.05 or **=p<0.01). See Appendix 5.1 and 5.2 for the means of log2 fold-change data for the 
three treatments with standard error of the difference for the comparisons made. 
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5.3.8 In vitro fitness study on fluxapyroxad-resistant mutants 

There were no significant (post-hoc t-test, linear mixed model, p>0.10) differences in growth rate 

between the parental isolateIPO323 and the variants formed by fluxapyroxad-resistant mutants 

carrying similar amino acid substitutions in the sdh complex or with no mutation (Fig. 5.14B and 

5.15).  The parental isolate IPO323 and the variant carrying two amino acid substitutions 

(B_N225T, D_I50L) have only one biological replicate. There were significant differences between 

variants C_S83G (Fig. 5.14B) and B_H267L (p<0.01 t-test), B_H152R (p<0.01 t-test) or mutants 

with no mutation (p<0.05 t-test). The variant C_S83G has the highest growth rate, approximately 

0.0047 OD/hours. 

There were no significantly (post-hoc t-test, linear mixed model, p>0.05) differences in the 

estimated intercept at time zero between the parent isolate IPO323 and the variants formed by 

fluxapyroxad-resistant mutants carrying similar amino acid substitution in the sdh complex or with 

no mutation (Fig. 5.14A and 5.15).  However, mutants with non-target-site mutation had 

significantly greater intercepts than B_H267L (p<0.01 t-test), B_H267Y (p<0.01 t-test), C_H152R 

(p<0.01 t-test) or C_S83G (p<0.01 t-test) variants (Fig. 5.14A) with an approximate average 

absorbance of 0.15 OD.  
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Figure 5.14 Estimated intercept at time zero (A) and growth rate (B) of seven IPO323-derived 
mutant genotypes and the parental isolate IPO323. There were eight technical replicates for 
each biological replicate of a variant, where a variant is formed from a number (n) of mutants 
carrying similar amino acid substitution in the sdh complex. No mutation, n = 6; B_H267L, n = 11; 
B_H267Y, n = 12; C_H152R, n = 15; C_S83G, n = 6; C_T79I, n = 3; B_N225T, D_I50L n = 1; IPO323, n 
= 1. 
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Figure 5.15 In vitro growth of 54 Z. tritici IPO323-derived mutants and the parental isolate 
IPO323. (A) Mutants with no mutation in the sdh complex encoding gene, and mutants carrying 
associate amino acid substitutions in the (B) sdhB or (C) sdhC encoding gene. *Mutant carrying 
also an amino acid substitution in the sdhD. There were eight technical replicates for each 
biological replicate of a variant, where a variant is formed from a number (n) of mutants carrying 
similar amino acid substitution in the sdh complex. Standard error is denoted by bars based on 
the number of mutants carrying similar amino acid substitution in the sdh complex.  
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5.4 Discussion 

All nine populations of Zymoseptoria tritici evolved reduced sensitivity to fluxapyroxad when 

grown in a series of ten successive transfer onto agar amended with increasing concentrations of 

fluxapyroxad. Seven of nine populations were also less sensitive to fluopyram or carboxin; two 

were more sensitive to fluopyram.  

 

5.4.1 Resistance mechanisms in IPO323-derived fluxapyroxad-resistant mutants 

Distinct molecular mechanisms conferred resistance to fluxapyroxad, fluopyram or carboxin. 

Mutation encoding amino acid substitutions in the target protein (Qp) was the most common. 

Changes in the sdh sub-unit B gene were either at codon 225 (N225T) or 267 (H267Y/L). The 

variant sdhB_H267L conferred resistant to fluxapyroxad, carboxin and fluopyram; whereas 

sdhB_H267Y variant increased sensitivity to fluopyram. This negative cross-resistance of 

sdhB_H267Y variant was reported before for Z. tritici by Fraaije et al. (2012) and Scalliet et al. 

(2012) but has also been reported for other plant pathogens (see Sierotzki and Scalliet, 2013). The 

sdhB_N225T variant was found in combination with another amino acid substitution in the sdh 

gene encoding the sub-unit D at codon 50 (I50L). This double amino acid substitution 

(sdhB_N225T and sdhD_I50L) conferred resistance to fluxapyroxad and lower sensitivity to 

carboxin and fluopyram. Scalliet et al. (2012) reported changes at codon 225 in sdh sub-unit B 

gene from asparagine to histidine or isoleucine (N225H/I), which confer lower sensitivity to 

carboxin, isopyrazam, fluopyram and boscalid. Moreover, the amino acid substitution at codon 

225 (SDHIB_N225T) in Z. tritici is equivalent to codon 230 (N230I) in the SDH sub-unit B in Botrytis 

cinerea (Leroux et al., 2010). They reported that the variant sdhB_N230I conferred resistance to 

diverse SDHIs in B. cinerea. However, the sdhD mutation resulting in I50L has not been reported 

before (see Sierotzki and Scalliet, 2013). Amino acid substitutions in the SDH sub-unit D conferring 

resistance to SDHIs have occurred at codon 129 in Z. tritici laboratory mutants (Fraaije et al., 

2012; Scalliet et al., 2012). Thus, it is possible that levels of resistance in the double mutant 

reported here (sdhB_N225T and sdhD_I50L) might be due mainly to sdhB_N225T. Further studies 

with Z. tritici homologous recombinants carrying single amino acid substitution (Scalliet et al., 

2012) or protein models (Fraaije et al., 2012; Scalliet et al., 2012) would test this hypothesis. 

Amino acid substitutions in the sdh sub-unit C gene from threonine to isoleucine at codon 79, 

serine to glycine at codon 83 or histidine to arginine at codon 152 conferred resistance to 

fluxapyroxad, fluopyram and carboxin. Scalliet et al. (2012) reported that sdhB_T79I, sdhB_H152R 
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or sdhB_S83G variants can confer resistance to a range of SDHIs (i.e. carboxin, izopyrazam, 

fluopyram and boscalid). Interestingly, they reported that variant sdhB_S83G has the highest 

levels of resistance to fluopyram than variant sdhB_T79I or sdhB_H152R. Similar results were 

found in my study.  

In vitro selection under the highest starting concentration of fluxapyroxad (0.08 µg/mL) triggered 

more diverse amino acid substitution in the target protein than the lowest starting concentration 

(0.04 µg/mL) in UV light exposed IPO323-derived mutant populations. Indeed, the number of 

mutations found in the target protein conferring resistance has been related to selection strength 

before (Oz et al., 2014). However, mutations conferring amino acid substitutions in the Qp 

conferred resistance to other SDH fungicides regardless of the strength of selection pressure. 

Similar cross-resistant patterns among SDHIs have been reported before in Z. tritici laboratory 

mutants obtained under carboxin, boscalid, isopyram or fluopyram exposure (Fraaije et al., 2012; 

Scalliet et al., 2012; Skinner et al., 1998). 

Fluxapyroxad-resistant mutants with no target-site (Qp) alterations were also less sensitive to 

fluopyram or carboxin. Further studies indicated that overexpression of an ATP-binding cassette 

transporter and/or glutathione S-transferase may contribute to the phenotype. The abct-2 gene, a 

putative Z. tritici ABC transporter (Goodwin et al., 2011), was constitutively overexpressed up to 

9.5-fold in the fluxapyroxad-resistant mutant IPOFluxa9-7 at increasing concentrations of 

fluxapyroxad. Similarly, Cowen et al. (2002) reported overexpression of an ABC transporter in a 

mutant population of Candida albicans with no mutation in the target protein grown for 330 

generations in presence of fluconazole. Overexpression of ABC transporters in Saccharomyces 

cerevisiae was also detected after 400 generations at increasing concentrations of fluconazole 

(Anderson et al., 2003). The overexpression of the abct-2 gene indicates the ability of Z. tritici to 

develop resistance mechanisms to single-site fungicides through non-target-site mutations. 

Further molecular studies looking at characterising the Z. tritici abct-2 gene would contribute to 

determine the exact role in resistance and what is causing the observed overexpression.  

The up-regulation of gst-4 – a glutathione S-transferase – in both the reference isolate IPO323 

and the mutant IPOFluxa9-7 indicates a possible protection mechanism against fluxapyroxad 

exposure. Glutathione S-transferase (GST) enzymes are able to detoxify many xenobiotic 

compounds (see Sheehan et al., 2001; Shin et al., 2003) and to protect cells from oxidative stress 

(Burns et al., 2005; Hayes and McLellan, 1999). The GST enzymes catalyse conjugated glutathione 

(GSH-xenobiotic) into more soluble and less reactive compounds, which can be removed from the 

cell by transmembrane transporters (Morrow et al., 1998a). Morrow et al. (1998b) reported that 
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resistance to chlorambucil in breast carcinoma cells is mediated by both GST catalytic activity and 

a multidrug resistance protein 1 (MRP1) transmembrane transporter. Similarly, da Silva et al. 

(2006) observed overexpression of a gst and an abc transporter encoding genes in Aspergillus 

fumigatus in presence of voriconazole. Although there is no report of carboxamide fungicides 

react with cellular GSH, the up-regulation of the gst-4 gene indicates that fluxapyroxad may bind 

to cellular GSH.  

 

5.4.2 Emergence and evolution of resistance to fluxapyroxad 

Emergence of amino acid substitutions in the Qp occurred in parallel in both UV light exposed 

mutant populations IPOFluxa19 and IPOFluxa20 at similar rate. Early in the experiment the amino 

acid substitution sdhC_T79I emerged in both populations at selection round three (RS-3). 

However, T79I was overtaken by another amino acid substitution (sdhC_H152R) that emerged at 

RS-5 and RS-6 in populations IPOFluxa19 and IPOFluxa20 respectively. The variants sdhC_T79I and 

sdhC_H152R have similar growth rate, suggesting a similar fitness. Subsequently, the sdhC_S83G 

variant and the double mutant (sdhB_N225T, sdhD_I50L) started to emerge at the end of the 

experiment.  

Although variants sdhC_S83G and sdhC_T79I have similar growth rates, the sdhC_S83G grows 

faster than the sdhC_H152R variant. This indicates that sdhC_S83G is fitter than sdhC_H152. 

Scalliet et al. (2012) detected differences in pathogenicity in in planta studies using Z. tritici 

homologous recombinant strains carrying distinct amino acid substitutions in the Qp site including 

the sdhC_S83G or sdhC_H152R. The recombinant strains carrying the amino acid substitution 

sdhC_S83G induced more necrosis in wheat plants than those carrying the sdhC_H152R. This 

indicates that variant sdhC_S83G may be fitter than sdhC_H152R. Apparently, the sdhC_S83G 

variant has a lower growth rate than the double mutant (sdhB_N225T, sdhD_I50L), but 

unfortunately there was only one biological replicate of the double mutant. Additionally, the 

SDHB_N225T variant was detected early in the experiment, but at lower frequency (< 5 %).  Allele 

frequencies < 5 % are not reliable because of limitations in pyrosequencing technology (Lavebratt 

et al., 2004; Wasson et al., 2002). Nevertheless, the sequence of mutants carrying distinct amino 

acid substitutions in the sdh sub-unit C gene – T79I > H152R > S83G – indicates a ‘clonal 

replacement’ in the evolution of resistance to fluxapyroxad. Clonal replacement takes place in 

asexual populations where mutations conferring beneficial advantages have to arise 

independently and to compete with others for fixation leading to a succession of genotypes each 
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one fitter than its immediate predecessor till the best adapted remains under specific conditions 

or threats (Muller, 1932). Atwood et al. (1951)reported a periodic replacement of strains or clonal 

replacement in E. coli-derived populations evolving in vitro for 1,000 generations under histidine-

limited conditions. They observed a repeated cycle of clonal strains substitutions between 

histidine-required (h-) and histidine-independent (h+) strains in mixed E. coli populations 

consisting of various ratios of h+/h-. Additionally, Atwood et al. inferred that clonal replacement 

took place approximately 4.5 times during the experiment. Recently, Albrecht et al. (2011) 

reported clonal replacement of methicillin-resistant Staphylococcus aureus (MRSA) strains in 

human patients during a period of 11 years in German hospitals. They detected four distinct 

MRSA strains which their frequency fluctuated during the studied. For example, a strain named 

CC22-MRSA-IV was detected in 2001 and increased in frequency up to approximately 58 % in 

2010; other strains such CC45-MRSA-IV decreased approximately 58 % frequency between 2002 

and 2010.  

In contrast, populations exposed to greater concentrations of fluxapyroxad (0.06 or 0.08 µg/mL) 

without UV light only the amino acid substitution SDHB_H267Y was detected. The SDHB_H267Y 

variant was fixed by RS-4 at approximately 100% frequency in population IPOFluxa18. This could 

be because IPOFluxa18 and the other IPO323-derived populations were exposed to two seven-

day periods of the fluxapyroxad concentration used at RS-4. This may have allowed the increase in 

frequency of mutants carrying amino acid substitutions advantageous in the presence of 

fluxapyroxad. Although mutant populations IPOFluxa18 and IPOFluxa9 were exposed to similar 

fluxapyroxad concentrations (0.64 µg/mL) at RS-4 or RS-5, respectively, no mutant carrying any 

sdh variant was detected in population IPOFluxa9. Instead, resistance to fluxapyroxad in a mutant 

from population IPOFluxa9 was associated with overexpression of an abc transporter.  

Adaptation to fungicides by target-site or non-target-site alterations has occurred in field 

populations of Z. tritici (Clark, 2006; see Cools and Fraaije, 2013; Fraaije et al., 2005; Leroux and 

Walker, 2011; Torriani et al., 2009). Recently, amino acid substitutions conferring low levels of 

insensitivity to SDHIs were detected in separate Z. tritici field isolates (FRAC, 2013). The 

substitutions were in the sdh sub-unit C gene:  from threonine to asparagine at codon 79 (T79N), 

or from tryptophan to serine at codon 80 (W80S). In this evolutionary study, resistance to 

fluxapyroxad emerged first by an amino acid substitution at codon 79 (sdhC_T79I), which is the 

codon where the sdhC_T79N amino acid substitution was found in field isolates (FRAC, 2012). 

They reported that sdhC_T79N amino acid substitution induced a “low” resistant factor (RF). In 

vitro sensitivity assays indicated that the sdhC_T79I mutant had a RF of 44. Findings from this 
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study suggest that other amino acid substitutions (e.g. sdhD_H152R) may be found in Z. tritici 

field isolates in the future. Therefore, it is important to monitor populations of Z. tritici for a 

variety of changes at the sdh locus and elsewhere in case SDHI resistance arises. The 

pyrosequencing assay developed here would enable a rapid detection of Z. tritici isolates carrying 

amino acid substitutions sdhB_H267Y or _N225T, sdhC_H152R or _S83G, and sdhD_I50L and their 

further spread in populations can be measured.  
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5.5 Conclusions 

Resistance to fluxapyroxad arose by distinct diverged adaptive trajectories from a sensitive Z. 

tritici isolate IPO323 after ten rounds of selection at increasing concentrations of fungicide in 

vitro. Alterations in the target protein were the most common mechanism which conferred 

resistance to fluxapyroxad and cross-resistance to fluopyram or carboxin. Additionally, 

overexpression of ABC transporter or GST genes was associated with resistance to fluxapyroxad 

and lower sensitivity to fluopyram or carboxin in a mutant strain with no target-site mutation. The 

presence of key amino acid substitutions in replicated populations indicated that resistance arose 

through a small number of possible pathways. There was successive substitution of fitter 

fluxapyroxad-resistant mutants carrying distinct amino acid substitutions as selection continued. 

However, in populations not exposed to UV light a single mutation arose and reached high 

frequency without further evolution during the experiment.  
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Chapter 6: General Discussion 

6.1 Main findings 

The aim of this PhD project was to improve our understanding of how Z. tritici adapts to multi- 

and single-site fungicides currently used for the control of Septoria leaf blotch (SLB).  The multi-

site inhibitors chlorothalonil and folpet were included in the study because they are key 

components used to reduce or delay the development of fungicide resistance to single-site 

fungicides. The single-site fungicide fluxapyroxad – representing a new-generation of 

carboxamides, which are succinate dehydrogenase inhibitors (SDHIs) – was chosen because SDHI 

fungicides are applied in mixture with sterol 14α-DeMethylation Inhibitor (DMI) fungicides and 

play a big part of the chemical control of SLB. Furthermore, fluxapyroxad is relatively new in the 

cereal market for crop protection and like other SDHIs, it has a high risk of resistance 

development. In this chapter the main findings of this PhD project are discussed in relation to 

future research directions. 

 

6.1.1 Zymoseptoria tritici can respond to selection for reduced sensitivity to chlorothalonil or 

folpet exposure in the field. 

Shifts in sensitivity in plant pathogen populations can be produced by recurrent use of fungicides 

(see van den Bosch and Gilligan, 2008). Typically, less sensitive strains – fitter in the presence of 

the fungicide – invade the population and cause failures in disease control (Van den Bosch et al., 

2011). These shifts in sensitivity evolve at different rates, depending mainly on the fungicide 

mode of action and genomic changes in the pathogen conferring decreased susceptibility to the 

fungicide (Hollomon, 1981; Sanglard et al., 1998). Frequently, a single alteration in the target-

protein encoding gene can confer a large change in phenotype with little fitness penalty in the 

absence of fungicide, leading to a fast shift in sensitivity to single-site fungicides. For example, the 

mutation G143A in the cytochrome b or E198A in the β-tubulin gene confers high levels of 

resistance to QoIs or MBCs in Z. tritici, respectively (Fraaije et al., 2005). In contrast, multiple 

alterations in either single or multiple genes often lead to a gradual shift in sensitivity, because 

their individual effect on phenotype is small. Accumulation of different point mutations leading to 

multiple amino acid alterations and overexpression of the target sterol 14α-demethylase 

encoding gene due to 120 bp insertion in the promoter region have contributed to a gradual shift 

in sensitivity to DMIs in Z. tritici (see Cools and Fraaije, 2013). Moreover, steady accumulation of 
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alterations in regulatory regions of efflux pumps encoding genes (e.g. ABC or MFS transporters) 

can confer shifts in sensitivity to a range of single-site fungicides in B. cinerea (Kretschmer et al., 

2009).  

Changes in the distribution of EC50 were observed in Z. tritici field populations under solo 

applications of chlorothalonil or folpet. These shifts in sensitivity have not been detected before. 

This might be due to the fact that chlorothalonil and folpet are usually sprayed in mixture with 

single-site fungicides (e.g. DMIs and SDHIs) to delay fungicide resistance development (HGCA, 

2014) and/or assays being used were not able to detect small changes in fungicide sensitivity. 

Single-site fungicide applications may reduce the frequency of less sensitive strains carrying 

favourable combinations of genes conferring shifts in sensitivity to chlorothalonil and/or folpet. In 

addition, shifts in sensitivity to multi-site inhibitors might require many genomic changes in the 

target microorganism as these fungicides may affect diverse metabolic pathways (Chapter 4; 

FRAC, 2014). Nevertheless, shifts in sensitivity to multi-site inhibitors suggest that genetic 

variation in Z. tritici might allow adaption to chlorothalonil or folpet. Barak and Edgington (1984) 

reported shifts in sensitivity to a range of multi-site inhibitors including chlorothalonil and folpet 

in B. cinerea field isolates. Similarly, Fourie and Holz (2001) also reported shifts in folpet sensitivity 

in the same pathogen after intensive field applications of dicarboxamides or folpet. 

Although shifts in sensitivity to multi-site inhibitors have been reported before, little is known 

about genomic changes that may confer decreased sensitivity to these fungicides. Genes encoding 

diverse detoxification mechanisms (i.e. GST, ABC or MFS efflux pumps) in response to 

chlorothalonil or folpet exposure were identified using genome-wide transcriptional response 

studies in a sensitive Z. tritici strain (Chapter 4). Interestingly, two genes encoding putative ABC 

transporters or nine GST in Z. tritici were overexpressed in response to both fungicides (Chapter 4, 

section 4.3.2.4). Changes in expression of ABC transporters or GST encoding genes might explain 

the correlation between chlorothalonil and folpet sensitivity values detected in Z. tritici field 

isolates (Chapter 3). Further genome-wide transcriptional studies in response to chlorothalonil or 

folpet using less sensitive Z. tritici field strains are needed to corroborate the role of detoxification 

mechanisms conferring lower sensitivity to multi-site inhibitors as this study and Sisler (1988) 

suggested.  
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6.1.2 Chlorothalonil or folpet modulates expression of particular functional groups of genes in Z. 

tritici according to the growth phase at which it is exposed.  

Studies on changes in gene expression levels after toxicant exposure have contributed to the 

identification of metabolic pathways that are relevant to a toxicological response (Dias et al., 

2010; Hamadeh et al., 2002b; see North and Vulpe, 2010). Typically, yeast gene expression is 

reprogrammed after toxicant exposure as a response to the new stress, which triggers a 

distinctive gene expression profile or ‘signature’ to the toxicant (Jia et al., 2000; Kuo et al., 2010; 

Nishida et al., 2013; Simmons and Portier, 2002). These gene expression signatures are tend to be 

similar among toxicants with similar mode of action and can be used to infer toxicological 

mechanisms of new or uncharacterised compounds (see Iorio et al., 2013; see Qu and Rajpal, 

2012).     

Chlorothalonil or folpet triggered distinct functional gene expression signatures in Z. tritici. 

Chlorothalonil exposure induced overexpression of genes related to the histidine kinase complex 

when the fungicide was added in the lag phase but no particular set of genes was detected when 

the chlorothalonil was added in the log phase. By contrast, folpet exposure induced distinct gene 

expression signature in the lag or log phase of growth. Expression of genes related to serine-type 

carboxypeptidases with activity in the extracellular region increased when folpet was added in the 

lag phase; whereas expression of genes related to protein synthesis or cellular amino acid 

metabolism was increased when folpet was added in the log phase. Therefore, functional gene 

expression signatures were depended on the fungal growth phase at which chlorothalonil or 

folpet was added. Differences in functional gene expression between lag and log phase of growth 

may be related with level of absorption and accumulation of the fungicide by the fungal spore or 

mycelium. The lag phase of growth of Z. tritici may be characterised by an adjustment period from 

growth via secondary conidial production on solid media to growth into liquid culture conditions; 

whereas in the log phase or active growth the fungus has already adjusted to grow into liquid 

culture conditions. Although chlorothalonil or folpet absorption and accumulation was not 

determined, it is possible that accumulation of these fungicides was higher in the lag than in the 

log phase of growth. Fungal spores (e.g. Neurospora sitophila, Monilinia fruticola, Aspergillus 

niger, Alternaria oleracea, Glomerella cingulata, Venturia pyrina or Rhizopus nigricans) including 

S. cerevisiae can absorb and accumulate approximately 1 % of their own weight of toxicants such 

as 2-heptadecyl-2-imidazoline, 2,3-dichloro-1,4-napthoquinone, silver, mercury, cerium, 

cadmium, zinc or copper  (McCallan and Miller, 1958; see Miller, 1959). Miller (1957) reported 

that fungal spores are able to absorb fungicide faster than mycelia. Moreover, in vitro sensitivity 
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studies of some fungicides using spores have found lower sensitivity values than when mycelium 

is used. Nevertheless, sensitivity values obtained through use of spores or mycelium are often 

correlated (Barak and Edgington, 1984).  

The transcriptional response and the functional gene expression signatures determined in the lag 

phase in response to chlorothalonil or folpet can provide a better picture of the putative 

metabolic pathways affected by these fungicides than during the log phase of growth. The 

fungicide concentrations – able to reduce approximately 50 % growth – used to determine the 

genome-wide transcriptional response (i.e. 0.1 µg/mL of chlorothalonil or 0.5 µg/mL of folpet) 

were estimated by adding the fungicide in the lag phase of growth of Z. tritici (see Chapter 2; 

Chapter 3). In addition, diverse studies have detected shifts in sensitivities by exposing 

microorganisms to the fungicides in the lag phase of growth. Pijls and Shaw (1994) developed a 

method to estimate flutriafol sensitivity values in Z. tritici through measuring fungal growth in 

microtitre plates based on light absorbance. They were able to estimate precise fungicide 

sensitivity values by adding the fungicide in the lag phase of growth of Z. tritici. Currently, FRAC 

(2012) recommends the  use of the microtitre plate test to determine sensitivity baselines or 

shifts in sensitivity in diverse fungi – including Z. tritici – such as B. cinerea against 

anilinopyrimidines (APs), amines or sterol biosynthesis inhibitors (SBIs), SDHIs or QoIs; F. 

graminearum against SBIs; Phytophthora infestans against carboxylic acid amides (CAAs) or QoIs; 

Pyrenophora teres against SDHIs; Rhynchosporium secalis against APs, SBIs or QoIs. 

The genome-wide transcriptional response and functional gene expression signature reported 

here may also depend on the concentration of fungicide used. Cools et al. (2007) reported no 

changes in gene expression in the reference Z. tritici isolate IPO323 after exposure to its 

approximate EC50 concentration during the log phase of growth. Instead, a lethal concentration of 

epoxiconazole was used to determine changes in gene expression in IPO323. In my study, changes 

in transcriptional response of target genes – determined through quantitative RT-PCR – were 

observed at increasing concentrations of fluxapyroxad (i.e. approximated EC50 or EC80 

concentrations) in the lag phase of growth of Z. tritici. Genes involved in detoxification 

mechanisms (e.g. abct-2 or gst-4) or genes encoding the target protein (Qp) showed a trend to 

increased expression as the concentration of the fungicide increased (see chapter 5). Other genes 

showed a different trend. For example, a gene encoding AOX was down-regulated at the lower 

concentration (EC50) of fluxapyroxad but was up-regulated at the higher concentration (EC80). 

Although genome-wide transcriptional response in presence of fungicides does not provide a 

decisive description of their mode of action, it does give insights into the putative metabolic 
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pathways affected by the fungicide and possible detoxification mechanisms. Quantitative 

proteomics – analytical chemistry approach to quantify and identify proteins in a sample – studies 

can identify protein alteration due to toxicant exposure (Santos et al., 2009). The combination of 

transcriptomic and quantitative proteomic studies could provide a more complete picture of the 

metabolic pathways affected by the fungicides and help to elucidate their mode of action using Z. 

tritici as a model. 

Integrated genome-wide transcriptomic and proteomic expression studies after chemical 

exposure are scarce. Foss et al. (2007) compared the genome-wide transcriptional profile that 

underlies proteome abundance in progeny of S. cerevisiae crosses. They found a small but 

significant correlation between transcript levels and protein abundance, and also detected 

specific loci that affect protein abundance or transcript levels. Similar results reported Ghazalpour 

et al. (2011) by investigating genetic regulation of the transcriptome and proteome in mice. The 

correlation between transcript levels and protein abundance depended on the cellular 

component and biological function of the corresponding gene. Moreover, diverse studies in 

Escherichia coli, Streptomyces coelicolor, Schizosaccharomyces pombe or S. cerevisiae reported 

Pearson’s correlation coefficients between transcript levels and protein abundance ranging from 

0.3 to 0.8 (see de Sousa Abreu et al., 2009). Although protein abundance is mainly related with 

gene expression level, it is also affected by post-transcriptional, translation and degradation 

regulation (Lu et al., 2007). Nevertheless, integrated proteomic and transcriptomic expression 

studies in plant pathogens such Z. tritici may help to identify direct and/or indirect effects of 

fungicide exposure and provide data and/or clues on mode of action, novel target sites for 

fungicides, identification of fungicide stress responsive genes and  biomarkers in impaired 

metabolic pathways, and resistance mechanisms (see Dos Santos et al., 2012).  

 

6.1.3 Resistance to SDHIs can be conferred by non-target-site mutations in Z. tritici laboratory 

mutants.  

Resistance to fluxapyroxad emerged in parallel in replicate populations of Z. tritici through 

mutations in the target protein Qp (chapter 5). Once resistance emerged in vitro, the evolution of 

resistance was driven by clonal replacement, where fitter mutants carrying beneficial amino acid 

substitutions in the target protein substituted less fit mutants under increasing concentrations of 

fluxapyroxad. It is possible that the mutations SDHC_T79N or SDHC_W80S – detected in field 

isolates in 2013 (FRAC, 2013), but not apparently increasing subsequently – emerged and 
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increased in frequency to a detectable level during the asexual field stage of Z. tritici but not in 

the following season possible due to impaired fitness during overwinter. It is likely that other 

amino acid substitutions in the target protein Qp might emerge in field populations of Z. tritici in 

the near future. Besides target-site mutations, resistance to fluxapyroxad was associated with 

overexpression of an ABC transporter encoding gene in a lab strain mutant with non-target-site 

alterations (chapter 3). The transmembrane protein efflux pumps ABC and MFS can play a major 

role in protecting the fungal cell against natural or synthetic toxicant compounds (see de Waard 

et al., 2006). Approximately 56 putative ABC transporters have been identified in Zymoseptoria 

tritici (see Bean, 2008). Laboratory studies have demonstrated that some ABC transporters 

(MgAtr1, 2, 4 or 5) can help protect Z. tritici against some fungicides and plant, bacteria or fungal 

metabolites (see Roohparvar, 2007). In heterologous expression in S. cerevisiae, the ABC 

transporter MgAtr1 conferred lower sensitivity to azole fungicides or the antibiotic cycloheximide 

(Zwiers et al., 2002). Similarly, Zwiers et al. (2003) reported that the ABC transporters MgAtr2 and 

MgAtr4 conferred protection against azole fungicides in yeast complementation studies. They also 

found that MgAtr1, MgAtr2 or MgAtr4 reduced sensitivity to azoles, whereas the ABC transporter 

MgAtr5 or MgAtr1 also provided protection against plant alkaloids. The ABC transporter encoding 

gene abct-2 – a distinct efflux pump to those reported previously – was constitutively 

overexpressed in the fluxapyroxad-resistant mutant IPOFluxa9-7. This mutant also showed lower 

sensitivity to other SDHIs (i.e. fluopyram and carboxin).  Additional in vitro sensitivity assays 

testing the IPOFluxa9-7 mutant against other SDHIs (e.g. bixafen, isopyram, boscalid), DMIs (e.g. 

tebuconazole, epoxiconazole, prothioconazole-desthio, prochloraz), tolnaphtate, and antibiotics 

(e.g. cycloheximide, antimicinA or berberine) indicated shifts in sensitivity only to SDHI fungicides 

but not to DMIs, tolnaphatate or antibiotics (data not shown, Bart Fraaije 2014, personal 

communication). This indicates that overexpression of abct-2 gene may only confer protection 

against SDHI fungicides.  

Overexpression of ABC transporter encoding genes in some multidrug resistant (MDR) Candida 

albicans phenotypes is due to mutations in transcription factors (Morschhauser et al., 2007). 

Kretschmer et al. (2009) reported mutations in the transcription factor of the ABC transporter 

encoding gene AtrB in field populations of B. cinerea, conferring resistance to diverse unrelated 

fungicides. It is possible that overexpression of the ABC transporter encoding gene abct-2 in the 

mutant IPOFluxa9-7 is due to mutations in the transcription factor of the gene. Further molecular 

studies characterising the transcription factors of abct-2 would test this hypothesis. 
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It is known that glutathione S-transferase enzyme detoxifies xenobiotic compounds in the cell 

(see Sheehan et al., 2001). The combined up-regulation of the gene encoding glutathione S-

transferase (gst-4) and the overexpression of the ABC transporter gene abct-2 as protective 

mechanism in Z. tritici indicates that resistance or adaptation could develop through active efflux, 

alone or in combination with enhanced fungicide metabolism.  
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6.2 Future work to study the development of fungicide resistance and perspectives for disease 

management of Septoria leaf blotch 

Data from this study indicated that Z. tritici has the biological potential to adapt to the multi-site 

inhibitors chlorothalonil or folpet, and to develop resistance to SDHIs fungicides. However, 

adaptation to multi-site inhibitors is likely to evolve slowly as these fungicides affect diverse 

metabolic pathways (chapter 4). Therefore, although Z. tritici may be able to adapt to multi-site 

inhibitors, these fungicides will remain important for SLB disease management in wheat in the 

immediate future. As previously discussed, further monitoring of Z. tritici populations in the UK 

and Northern Europe will be needed to determine if subtle shifts toward sensitivity are common 

elsewhere and whether the rate of evolution is accelerating.   

The emergence and development of resistance to the single-site SDHIs in Z. tritici field population 

is likely to occur in the near future. Two strains carrying amino acid substitutions in the target 

protein (SDHC_T79N or SDHC_W80S) conferring lower sensitivity to SDHIs have been detected in 

Z. tritici field populations (FRAC, 2013). Additionally, the evolutionary study presented here 

indicated that resistance to the SDHI fluxapyroxad can easily emerge (chapter 5). The study also 

suggests that once resistance emerges through point mutations, further development of 

resistance may be driven by clonal replacement until the fittest mutant carrying a beneficial 

mutation reaches high frequency in the population. Therefore, chemical options for SLB disease 

management in wheat will be even more limited as most, if not all SDHIs will be affected to a 

certain extent (Chapter 5). This is particularly worrying, as  resistance to azole fungicides is likely 

to continue evolving in Z. tritici field populations (see Cools and Fraaije, 2013). 

Interestingly, the evolution of fungicide resistance in Botrytis cinerea – causal agent of grey mould 

in grapevine – has been similar to Z. tritici. Control of grey mould is mainly achieved through 

fungicide applications in European vineyards (Leroch et al., 2011; Leroux et al., 2002). The 

chemical control programme of B. cinerea typically involves alternation of fungicides with distinct 

mode of action applied at the end of flowering, bunch closure and the beginning of berry ripening 

(Broome et al., 1995; Petit et al., 2010). However, as in the case of Z. tritici, B. cinerea has 

developed resistance to diverse single-site fungicides with distinct mode of action. Studies have 

reported resistance to benzimidazoles (Leroux and Clerjeau, 1985), dicarboximides (Leroux et al., 

1982; Ma et al., 2007), anilinopyrimidines (Foster and Staub, 1996), QoIs (De Miccolis Angelini et 

al., 2014), and boscalid (SDHI; Walker et al., 2011) in field isolates of B. cinerea. Although 

resistance to single-site fungicides has mainly been linked with target-site alterations (Fillinger et 

al., 2008; Leroux and Clerjeau, 1985; Ma et al., 2007), non-target-site alterations can also confer 
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resistance to a range of unrelated fungicides in B. cinerea (Kretschmer et al., 2009). They reported 

increased drug efflux activity and overexpression of genes encoding efflux transporters in multi-

drug resistant (i.e. MDR1, MDR2 and MDR3) phenotypes of B. cinerea. Mutations in the 

transcription factor Mrr1 lead overexpression of the ABC transporter ArtB which confers 

resistance to fludioxonil, cyprodinil and tolnaftate in MDR1 strains. In MDR2 phenotypes, a 

promoter rearrangement leads to overexpression of the MFS transporter MfsM2 gene that 

confers resistance to fenhexamid, tonlaftate, cycloheximide and cyprodinil. Sexual recombination 

of MDR1 and MDR2 originated MDR3 strains with higher and broader spectrum of fungicide 

resistance than the progenitors. Before the detection of MDR phenotypes in field population of B. 

cinerea, mixtures of cyprodinil with fludioxonil (Foster and Staub, 1996) or iprodione with captan 

(Northover and Matteoni, 1986) were able to control grey mould and decreased selection for 

fungicide resistance. However, mixtures of QoIs (i.e. pyraclostrobin, picoxystrobin or 

azoxystrobin) with epoxiconazole or chlorothalonil did not reduce frequency of QoI-resistant field 

strains of Z. tritici (McCartney et al., 2007). Studies suggest that mixtures of fungicides with 

distinct mode of action may reduce selection for fungicide resistance only if the pathogen is 

sensitive to one of the mixture (van den Bosch et al., 2014). It is possible that current mixtures of 

DMI with SDHI fungicides (HGCA, 2014) might not be able to reduce selection for fungicide 

resistance in the long term due to variation in sensitivity in field populations of Z. tritici against 

these two groups of fungicide. Preventive application of mixtures of DMIs or SDHIs with 

chlorothalonil might confer good SLB control and reduce selection for fungicide resistance. 

Additionally, further monitoring of Z. tritici field populations is needed to detect changes in 

frequency of strains with lower sensitivity to SDHIs.  

The SNP pyrosequencing assay developed in this study to quantify fungicide resistance alleles in 

IPO323-derived mutant populations can be used to detect SDHC_T79N or SDHC_W80S variants in 

field populations. However, this pyrosequencing assay can only detect known SNPs. Other SNPs 

encoding amino acid substitutions conferring resistance to SDHIs that might arise in field 

populations will not be detected. To overcome this situation, Carter (2013) suggested a resistance 

diagnostic based on long read sequencing rather than targeting specific SNPs. Cloning population 

samples and sequencing, separately, different regions of PbCYP51 it was possible to confirm the 

frequency of amino acid substitutions previously detected with a pyrosequencing assay. However, 

cloning and sequencing is laborious and expensive, and phenotyping of strains is still needed to 

detect non-target site resistance mechanisms (Bell et al., 2014). High-throughput strategy using 

next-generation sequencing (NGS) of whole genomes may help to detect alterations in target and 

non-target encoding DNA sequences. Wacker et al. (2012) using RNA sequencing were able to 
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determine SNPs in target genes or drug efflux transporters conferring resistance to drugs in less 

sensitive laboratory mutant human cell lines. Harris et al. (2010) using high-throughput DNA 

sequencing in combination with unique-index tagged sequences were able to genotype, and to 

investigate the evolution and spread of methicillin-resistant Staphylococcus aureus (MRSA) strains 

at world-wide scale. Based on approximately 4,000 high-quality SNPs, they found evidence for 

intercontinental spread and hospital transmission of S. aureus isolates. Additionally, many SNPs 

were mapped on genes related with drug resistance. Thus, screening pool-samples of Z. tritici 

spores or wheat leaves with SLB symptoms using NGS technology may allow identify SNPs and 

insertions and/or deletions in target DNA sequences (e.g. sdh gene encoding sub-unit B, C or D; 

CYP51 encoding gene). This approach could be developed and validated using the IPO323-derived 

mutant populations obtained in this study. 

The functional gene expression signature of chlorothalonil or folpet suggests hypotheses about 

the metabolic pathways that these fungicides may affect in Z. tritici. Additionally, functional 

annotation of the differentially expressed genes allowed me to identified genes encoding 

detoxification mechanisms associated with chlorothalonil or folpet exposure. However, an 

integrated approach using transcriptomic, proteomic and metabolomic analysis simultaneously 

could provide a better understanding of the metabolic pathways affected by a toxicant and its 

mode of action. “Toxicogenomics” involves mRNA, protein and metabolite analysis to study and 

elucidate the effect of toxicants on diverse organisms (see Hamadeh et al., 2002a). However, to 

date, studies of cell response to a specific toxicant using a full toxicogenomic approach are scarce. 

Kresnowati et al. (2006) reported a correlation between metabolome and transcriptome 

responses in energy requirement and nucleotide metabolism after a glucose pulse in yeast grown 

in chemical static cultures. Independent studies looking at response of yeast to mancozeb 

exposure through proteomics (Santos et al., 2009) or “disruptome” (Dias et al., 2010) – a 

collection of yeast strains with individually deleted genes – found similar results. Both studies 

indicated alterations in oxidative stress, protein synthesis and degradation of proteins by 

proteasomes and carbohydrate metabolism after mancozeb exposure. Therefore, toxicogenomic 

studies using Z. tritici as a plant pathogen model may improve the understanding of the direct 

and/or side effects in metabolic pathways induced by fungicides exposure. 
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6.3 Conclusions 

Outcomes from this study indicate that Z. tritici has the biological potential to adapt to 

chlorothalonil or folpet. The genome-wide transcriptional response study also provided insights 

into alternative adaptation and resistance mechanisms (i.e. ABC, MFS efflux pumps or GST) that 

may confer lower sensitivity to chlorothalonil or folpet in Z. tritici. Moreover, the evolutionary 

study indicated that generation of de novo mutations in the SDH target protein was the most 

common resistance mechanism conferring resistance to the single-site fluxapyroxad and other 

SDHIs. Additionally, overexpression of an ABC transporter, alone or in combination with up-

regulation of a GST gene may also confer resistance to fluxapyroxad and lower sensitivity to other 

SDHIs. Once resistance emerged through de novo mutations in the target site, the evolution of 

resistance was driven by clonal replacement under increasing concentrations of fluxapyroxad. 

Lastly, the genome-wide transcriptional response and enrichment analysis determined 

compound-specific functional gene expression signatures in response to chlorothalonil or folpet. 

The functional gene expression signatures indicated a range of metabolic pathways possibly 

affected in Z. tritici that can be further explored to elucidate the mode of action of these 

fungicides. 
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Appendix 

 

Appendix 4.1 Supplementary information: the following additional excel files data are available 
with this thesis.  

Supplementary Table 4.1s. All significantly differentially expressed Z. tritici genes after 
chlorothalonil exposure in the lag phase. The spread sheet contains gene codes retrieve from the 
JGI genome website (http://genome.jgi-psf.org/Mycgr3/Mycgr3.home.html), expression values 
and available functional annotation. 

Supplementary Table 4.2s. List of 271 significantly differentially expressed Z. tritici genes after 
chlorothalonil exposure only in the lag phase. The spread sheet contains gene codes retrieve from 
the JGI genome website (http://genome.jgi-psf.org/Mycgr3/Mycgr3.home.html), expression 
values and available functional annotation. 

Supplementary Table 4.3s. Enriched gene ontology terms in the 271 differentially expressed 
genes in Z. tritici after chlorothalonil exposure in the lag phase of growth compared to the 
reference annotated genome using Fisher’s exact test with multiple testing correction of FDR. 

Supplementary Table 4.4s. All significantly differentially expressed Z. tritici genes after 
chlorothalonil exposure in the log phase. The spread sheet contains gene codes retrieve from the 
JGI genome website (http://genome.jgi-psf.org/Mycgr3/Mycgr3.home.html), expression values 
and available functional annotation. 

Supplementary Table 4.5s. Enriched gene ontology terms in all significantly differentially 
expressed genes in Z. tritici after chlorothalonil exposure in the log phase of growth compared to 
the reference annotated genome using Fisher’s exact test with multiple testing correction of FDR. 

Supplementary Table 4.6s. List of 293 significantly differentially expressed Z. tritici genes after 
chlorothalonil exposure only in the log phase. The spread sheet contains gene codes retrieve from 
the JGI genome website (http://genome.jgi-psf.org/Mycgr3/Mycgr3.home.html), expression 
values and available functional annotation. 

Supplementary Table 4.7s. List of significantly differentially expressed Z. tritici genes in response 
to chlorothalonil exposure in the lag and log phase. The spread sheet contains gene codes retrieve 
from the JGI genome website (http://genome.jgi-psf.org/Mycgr3/Mycgr3.home.html), expression 
values and available functional annotation. 

Supplementary Table 4.8s. All significantly differentially expressed Z. tritici genes after folpet 
exposure in the lag phase. The spread sheet contains gene codes retrieve from the JGI genome 
website (http://genome.jgi-psf.org/Mycgr3/Mycgr3.home.html), expression values and available 
functional annotation. 

Supplementary Table 4.9s. Enriched gene ontology terms in the significantly most differentially 
expressed genes in Z. tritici after folpet exposure in the lag phase of growth compared to the 
reference annotated genome using Fisher’s exact test with multiple testing correction of FDR. 
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Supplementary Table 4.10s. List of significantly most differentially expressed Z. tritici genes in 
response to folpet exposure in the lag phase. The spread sheet contains gene codes retrieve from 
the JGI genome website (http://genome.jgi-psf.org/Mycgr3/Mycgr3.home.html), expression 
values and available functional annotation. 

Supplementary Table 4.11s. List of 166 significantly differentially expressed Z. tritici genes in 
response to folpet exposure only in the lag phase. The spread sheet contains gene codes retrieve 
from the JGI genome website (http://genome.jgi-psf.org/Mycgr3/Mycgr3.home.html), expression 
values and available functional annotation. 

Supplementary Table 4.12s. All significantly differentially expressed Z. tritici genes after folpet 
exposure in the log phase. The spread sheet contains gene codes retrieve from the JGI genome 
website (http://genome.jgi-psf.org/Mycgr3/Mycgr3.home.html), expression values and available 
functional annotation. 

Supplementary Table 4.13s. Enriched gene ontology terms in all significantly differentially 
expressed genes in Z. tritici after folpet exposure in the log phase of growth compared to the 
reference annotated genome using Fisher’s exact test with multiple testing correction of FDR. 

Supplementary Table 4.14s. List of 2,003 significantly differentially expressed Z. tritici genes in 
response to folpet exposure only in the log phase. The spread sheet contains gene codes retrieve 
from the JGI genome website (http://genome.jgi-psf.org/Mycgr3/Mycgr3.home.html), expression 
values and available functional annotation. 

Supplementary Table 4.15s. Enriched gene ontology terms in the 2,003 significantly differentially 
expressed genes in Z. tritici after folpet exposure only in the log phase of growth compared to the 
reference annotated genome using Fisher’s exact test with multiple testing correction of FDR. 

Supplementary Table 4.16s. List significantly differentially expressed Z. tritici genes in response to 
folpet exposure in the lag and log phase. The spread sheet contains gene codes retrieve from the 
JGI genome website (http://genome.jgi-psf.org/Mycgr3/Mycgr3.home.html), expression values 
and available functional annotation. 

Supplementary Table 4.17s. List significantly differentially expressed Z. tritici genes in the lag 
phase in response to chlorothalonil or folpet exposure. 

Supplementary Table 4.18s. Enriched gene ontology terms in the significantly differentially 
expressed genes in Z. tritici  in the lag phase in response to chlorothalonil or folpet exposure 
compared to the reference annotated genome using Fisher’s exact test with multiple testing 
correction of FDR. 

Supplementary Table 4.19s. List significantly differentially expressed Z. tritici genes in the log 
phase in response to chlorothalonil or folpet exposure. 

Supplementary Table 4.20s. Enriched gene ontology terms in the significantly differentially 
expressed genes in Z. tritici  in the log phase in response to chlorothalonil or folpet exposure 
compared to the reference annotated genome using Fisher’s exact test with multiple testing 
correction of FDR. 
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Appendix 5.1. ANOVA of log2 fold-change for various target genes in Z. tritici isolate IPO323, 
showing standard errors of difference (SED) between means of 5 degrees of freedom. 
Target gene ID Control EC50 EC80 SED 
SDHB 0.0 +1.42 +1.84 0.458 
SDHC 0.0 +1.11 +1.87 0.441 
SDHD 0.0 +1.41 +1.83 0.488 
AOX 0.0 -1.73 +0.84 0.537 
     
ABCt-1 0.0 -0.76 -0.33 0.461 
ABCt-2 0.0 +0.80 +0.54 0.595 
ABCt-3 0.0 +0.61 +0.28 0.503 
ABCt-4 0.0 +0.39 +0.54 0.517 
ABCt-5 0.0 +1.17 +1.28 0.477 
ABCt-6 0.0 +1.02 +2.32 0.448 
ABCt-7 0.0 +1.08 +1.21 0.564 
     
GST-1 0.0 -0.66 +1.30 0.436 
GST-2 0.0 -0.24 +0.30 0.477 
GST-3 0.0 +0.11 +0.39 0.638 
GST-4 0.0 +1.92 +2.89 0.616 
GST-5 0.0 +0.82 +1.61 0.643 
GST-6 0.0 -0.44 +0.51 0.426 
GST-7 0.0 +0.13 -1.21 1.456 
     
MFS-1 0.0 +0.03 +0.10 0.631 
MFS-2 0.0 +2.24 +3.68 0.777 
MFS-3 0.0 +0.35 +0.34 0.671 
MFS-4 0.0 -0.95 -0.84 0.500 
MFS-5 0.0 +0.12 -0.27 0.598 
MFS-6 0.0 +1.46 +3.07 0.610 
MFS-7 0.0 -0.46 +0.21 0.495 
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Appendix 5.2 ANOVA of log2 fold-change for various target genes in Z. tritici laboratory mutant 
IPOFluxa9-7, showing standard errors of difference (SED) between means of 5 degrees of 
freedom. 
Target gene ID Control EC50 EC80 SED 
SDHB 0.0 +0.23 +0.84 0.175 
SDHC 0.0 +0.45 +0.31 0.502 
SDHD 0.0 +0.37 +1.05 0.195 
AOX 0.0 -0.18 +0.58 1.647 
     
ABCt-1 0.0 -0.61 -1.59 0.745 
ABCt-2 0.0 +2.17 +3.17 0.622 
ABCt-3 0.0 +0.27 +0.12 0.424 
ABCt-4 0.0 -0.43 -0.60 0.469 
ABCt-5 0.0 -0.04 +0.53 0.683 
ABCt-6 0.0 -0.13 +0.53 0.361 
ABCt-7 0.0 -0.23 -0.05 0.361 
     
GST-1 0.0 -0.37 -0.96 0.514 
GST-2 0.0 -0.35 -1.20 0.403 
GST-3 0.0 -0.05 -1.00 0.574 
GST-4 0.0 +0.460 +1.32 0.158 
GST-5 0.0 -0.04 -0.22 0.433 
GST-6 0.0 -0.10 -0.36 0.381 
GST-7 0.0 -0.35 -0.06 0.331 
     
MFS-1 0.0 +0.29 -0.08 0.489 
MFS-2 0.0 +0.12 +0.43 0.989 
MFS-3 0.0 -0.14 -0.47 0.847 
MFS-4 0.0 -0.11 +0.69 0.567 
MFS-5 0.0 -0.11 -0.09 0.642 
MFS-6 0.0 -0.63 +0.54 1.272 
MFS-7 0.0 +0.01 -0.41 1.277 
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