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Abstract. Soil moisture memory is a key component of sea-
sonal predictability. However, uncertainty in current mem-
ory estimates is not clear and it is not obvious to what extent
these are dependent on model uncertainties. To address this
question, we perform a global sensitivity analysis of memory
to key hydraulic parameters, using an uncoupled version of
the H-TESSEL land surface model.

Results show significant dependency of estimates of mem-
ory and its uncertainty on these parameters, suggesting that
operational seasonal forecasting models using deterministic
hydraulic parameter values are likely to display a narrower
range of memory than exists in reality. Explicitly incorporat-
ing hydraulic parameter uncertainty into models may then
give improvements in forecast skill and reliability, as has
been shown elsewhere in the literature. Our results also show
significant differences with previous estimates of memory
uncertainty, warning against placing too much confidence in
a single quantification of uncertainty.

1 Introduction

The persistence of soil moisture is an important aspect of
land–atmosphere interactions (Delworth and Manabe, 1989;
Koster and Suarez, 2001; Seneviratne et al., 2006, 2010).
Soil moisture shows strong coupling with precipitation and
temperature (Koster et al., 2004, Fischer et al., 2007, Rah-
man et al., 2015), and is a key aspect of weather and climate

prediction. The soil moisture reservoir has a memory con-
siderably longer than most atmospheric processes, and as a
low-pass filter it lengthens the timescales of climatic anoma-
lies. Persistence in soil moisture memory is linked to persis-
tence in humidity, temperature, and precipitation, through its
link with evapotranspiration persistence (Delworth and Man-
aba, 1993; Koster and Suarez, 1995; Pal and Eltahir, 2001;
Orth et al., 2013, amongst others). It prolongs the effect of
drought (Nicholson, 2000), enhances the severity and per-
sistence of floods (Bonan and Stillwell-Soller, 1998; Hong
and Kalnay, 2000; Liu et al., 2014), impacts the length of
heatwaves (Lorenz et al., 2010), and can determine the pre-
dictability of atmospheric surface climate anomalies (Wang
and Kumar, 1998; Douville, 2004).

Variations in memory and its uncertainty are important
from the perspective of atmosphere–land coupled modelling
since the feedback between the land and the atmosphere
means that anomalies in soil moisture which persist over a
long time can influence atmospheric conditions over an ex-
tended period into the future.

In contrast, soil moisture memory is important for hydro-
logical applications independently of the strength of land–
atmosphere coupling. Soil moisture is one of the main con-
trols on both rainfall runoff generation and evaporation. Un-
certainty and variability in the persistence of soil moisture
can then directly influence the predictability of streamflow,
with implications for effective flood forecasting and water
resource management.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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Previous work has analysed soil moisture memory in
uninitialized atmospheric global circulation models (Wu and
Dickinson, 2004; Seneviratne and Koster, 2012), showing
significant regional differences in memory. Other work has
looked at estimating soil moisture memory from observations
of streamflow (Orth et al., 2013). It has also been demon-
strated that the choice of soil hydrology scheme impacts sim-
ulated soil moisture memory (Hagemann and Stacke, 2014).

We take an alternative approach here, inspired by previous
work on hydrological prediction uncertainty (Wood and Let-
tenmaier, 2008). We run a hindcast in a set-up analogous to a
standard seasonal hindcast set-up, using an uncoupled model
with ensembles of initial states and forcing time series. This
allows us to compare memory estimates of a seasonal fore-
cast system when forecasts are initialized at different points
in the year, as well as look at spatial differences. It also al-
lows us to evaluate the sensitivity of estimates of soil mois-
ture memory to uncertain hydraulic parameters.

This approach may be compared to work at longer decadal
timescales following a similar approach (Corti et al., 2015).
By using different combinations of initial conditions and
forcing years to run global climate models, they analyse the
crossover point when forcing becomes more important than
initial conditions, and so identify the relative importance of
initial conditions and forcing.

In concert with this work, our work here aims to under-
stand the importance of initialization of slowly moving com-
ponents of the climate system for longer-term climate pre-
diction. In addition, this approach allows new insight into the
controls that hydraulic parameters have on the generation of
soil moisture memory and the relative uncertainty compared
to initial conditions.

The model, data, and experimental methods are described
in the following section, after which results are described.
The final section of the paper contains a discussion of results
and conclusions.

2 Methodology

Wood and Lettenmaier define a method known as reverse-
ensemble streamflow prediction (reverse-ESP, Wood and
Lettenmaier, 2008). Rather than standard ESP, where one ini-
tial state is forced by an ensemble of forcings, this method
takes the opposite approach and forces an ensemble of ini-
tial states with a single forcing time series. In their work they
analyse the relative importance of initial conditions and forc-
ing by comparing the spread of ESP and reverse-ESP ensem-
bles.

Inspired by this method, we take a reverse-ESP approach
to evaluate soil moisture memory. By forcing an ensemble
of initial conditions with the same forcing time series, soil
moisture states converge, at which point one can say that the
soil has lost memory of initial conditions. This is demon-
strated with some example data in Fig. 1. At the initial point

the standard deviation of the ensemble is large and over time
decreases at differing rates depending on forcing conditions
such as precipitation, evaporative demand, and model param-
eters. By calculating the lead time at which the spread of the
ensemble is reduced significantly from its initial spread, we
can estimate soil moisture memory. This approach enables us
to perform a sensitivity analysis of this soil moisture memory
estimate to model hydraulic parameters.

2.1 Land surface model, forcing and initial data

The land surface model used is H-TESSEL, the Tiled
ECMWF Scheme for Surface Exchanges over Land (TES-
SEL) with revised land surface hydrology (Balsamo et al.,
2009). This comprises a surface tiling scheme and a verti-
cally discretized soil, with soil layers below ground at 7,
21, 72, and 189 cm. Soil moisture is defined for a layer
as the volume of water contained in the layer expressed
as a fraction of the layer volume. H-TESSEL includes the
van Genuchten formulation for hydraulic conductivity (van
Genuchten, 1980) and a spatially varying soil-type map.

Running the model in uncoupled mode allows a much
larger number of experiments to be run compared to cou-
pling with an interactive atmosphere. This requires forcing
at each time step. To provide this forcing, we use the WFDEI
meteorological forcing data set, data at 0.5◦ spatial resolu-
tion, created by using the WATCH Forcing Data methodol-
ogy applied to the ERA-Interim data (Weedon et al., 2014).
The forcing comprises 3-hourly data for the following vari-
ables: longwave and shortwave radiation, rainfall, snowfall,
surface pressure, wind speed, air temperature, and humidity.
Data from the 25 years 1981–2005 inclusive are used, in each
case using the 4-month period from an initial date to force
the model, mimicking seasonal hindcasts (Weisheimer et al.,
2014).

For initial land surface conditions of soil temperature,
moisture, and ice temperature where frozen soil is present,
we use the ERA-Interim Land reanalysis (Balsamo et al.,
2015), using initial states from 1 May and 1 November for
every year from 1981 to 2005 inclusive. May and November
start dates are chosen in order to focus on the two standard
contrasting seasons: boreal summer and winter. For other
model parameters (e.g. albedo, vegetation cover, soil type)
we use the H-TESSEL default values. A plot showing the
fractional high and low vegetation cover is shown for refer-
ence in Supplement Fig. 1.

2.2 Hydraulic parameter perturbation

We perturb the van Genuchten α parameter and the saturated
hydraulic conductivity. These parameters are related to the
movement of water through the soil and their default values
in the model set-up are based on the FAO soil map of the
world (see Balsamo et al., 2009, for details). In reality there
is a large uncertainty in these parameters; observed standard
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Figure 1. An example of the evolution of top level soil moisture
from an ensemble of 25 initial states, each forced with the same
year’s forcing (in this case, 1981). Data from each plot are taken
from different grid points, chosen to demonstrate a situation of long
and short memory. Note that in the latter case memory of initial
conditions is lost by around day 20, whilst the former case retains
knowledge of the initial state for several months.

deviation in their values across soil samples can be as much
as twice the mean (see MacLeod et al., 2015, and Carsel and
Parrish, 1988, for further details). Previous work has shown
that these parameters are particularly sensitive (Cloke et al.,
2011).

Here we perturb these parameters by picking a value for
each simulation for each parameter from the five-member set
{−80,40,0,+40,+80}% and applying this perturbation to
the default value for each grid point. Perturbing both param-
eters in this way gives a 25-member ensemble. Though these
perturbations are relatively large and there is a weak corre-
lation between these two parameters, the perturbed range is
within the range of observed variability in parameter values.
Furthermore, the parameters which are used have to be con-
sidered as effective parameters, as measurement scale and
model scale differs significantly (Barrios and Francés, 2012).
This leads to significant uncertainty when attempting to de-
fine parameters on the model grid scale.

A simulation is run for every combination of 25 initial
states, 25 forcing states and 25 parameter perturbations, giv-
ing a total of 253

= 15 625 runs. Due to computing limita-

tions we run at a reduced spatial resolution with 18×36 grid
points globally (note that these points are “picked” from the
original resolution of the forcing and initial conditions in-
stead of being interpolated over a whole grid box). The grid
points are chosen indiscriminately, in that we took every 10th
point from the underlying data without considering a pri-
ori local characteristics. To use low-resolution data is sub-
optimal, since regions of high spatial heterogeneity or com-
plex topography may show memory characteristics which are
somewhat dependent on the choice of grid point. One addi-
tional caveat is that initial conditions are taken from reanal-
ysis which is created using H-TESSEL with default parame-
ters. The land surface temperature and moisture climatology
is slightly influenced by these parameters; however, recreat-
ing a new set of reanalysis for each parameter combination
we investigate here is far beyond the scope of the study.

2.3 Experimental set-up

For the ensemble of initial condition data we run an ensem-
ble of simulations using the same year’s forcing for each
ensemble member, using a constant parameter perturbation
throughout each simulation. An example of this is shown in
Fig. 1. We characterize the rate of memory loss by defin-
ing the date of memory loss tfpml , the time from initialization
when the spread of soil moisture in the ensemble (forced by
year f and parameter combination p) has reduced to 1/e of
its initial value, that is,

t
fp

ml = sup {t : σ(t)≤ σ(0)/e} , (1)

where σ(t) is the standard deviation of the ensemble at time
t , σ(0) is the initial spread, and the memory loss time tml is
defined by the supremum norm (i.e. the maximum value of t
bounded by σ(t)≤ σ(0)/e. tml). We calculate tfpml for each
forcing year, and take the average across all 25 forcing years:

〈tml〉
p
=

1
25

25∑
f=1

t
fp

ml , (2)

to give a more robust estimate of the date of memory loss,
for each spatial grid point and parameter combination. We
can then calculate 〈tml〉

p separately for each parameter com-
bination, giving a measure of the regions where variations
in hydraulic parameters give the largest changes in mem-
ory loss. This can be expressed by the standard deviation of
〈tml〉

p across the parameter ensemble:

σtml =

√∑25
p (〈tml〉

p
−〈tml〉)

25
, (3)

where σtml is the standard deviation across the perturbed pa-
rameter ensemble, 〈tml〉

p is the memory loss date for param-
eter combination p, and 〈tml〉 is the average date across all
combinations. Small variations in memory are less meaning-
ful when memory is large and more meaningful when mem-
ory is normally small. To highlight these more meaningful
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Figure 2. Average date of memory loss in the top model soil level,
estimated from H-TESSEL (default parameter set), for May (left)
and November (right) start dates.

variations in hydraulic parameters, we re-express the stan-
dard deviation as the coefficient of variability, i.e. as a frac-
tion of the mean time of memory loss, expressed as a per-
centage:

COV=
σtml

〈tml〉
× 100 %. (4)

3 Results

3.1 Estimation of soil moisture memory

Figure 2 shows the average date of memory loss for the de-
fault model parameters (〈tml〉

p∗ , where p∗ is the default pa-
rameter set) for May and November start dates, for the top
vertical soil level. Results for levels two and three are dis-
cussed below but presented in the Supplement. We do not
discuss the fourth soil level as the free drainage condition
impacts negatively on the realism of the exact values of soil
moisture here.

In general, memory increases with depth, though with sig-
nificant differences spatially and between start dates. The
longest memory is seen in regions in north-eastern Asia and
the extreme northwest of the North American continent. For
May, several points have a longer memory of between 20 and
60 days, and in the furthest north one point still retains the
memory of the initial state at the end of the simulations (120
days). Similarly the longest memory in November is seen for
the same regions – however, the memory is much longer in
these regions for this start date, and the region of long mem-
ory extends much further south, down the Rocky Mountains
in the USA and the Himalayas in Asia. This long memory is
likely due at least in part to snow cover, when soil is insu-
lated from any precipitation forcing, allowing persistence of
an initial soil moisture state (Koster et al., 2010).

Correspondingly, the surface layer in the Southern Hemi-
sphere has a relatively short memory for both start dates,
likely in part due to an absence of snow cover on South-
ern Hemisphere land (excluding Antarctica). The second and
third levels generally have longer memory than the surface,
as the influence of precipitation forcing on soil moisture is

Figure 3. Standard deviation in the top model soil level, estimated
from H-TESSEL, for May (left) and November (right) start dates.

damped. This is partly due to the loss of some moisture by
evapotranspiration before reaching the lowest levels.

3.2 Sensitivity of estimation of soil moisture memory to
hydraulic parameters

3.2.1 Variation in memory loss date

Figure 3 shows the standard deviation in the average date of
memory loss across the parameter ensemble (σtml ) for May
and November start dates for the top level. The absolute vari-
ation in memory length with parameter does not follow ex-
actly the same pattern as the magnitude of memory. For May
the largest variations in memory are seen in snow-covered re-
gions in north-eastern Asia, but also in southern Africa. Sim-
ilarly, November shows large variation in memory over the
grid points around the Himalayas, yet much smaller variation
around the areas of Asia and the USA with long memory. The
largest variation in memory for November in fact occurs in
Europe and western Asia, where memory is short.

In general for both start dates, lowest absolute variation
in memory length is seen at the top level, with an increase
in variation with depth (lower levels shown in the Supple-
ment). The highest absolute variation in memory length is
seen at level three, with a standard deviation in the date of
over a month. In May this is spread over Eurasia and North
America, though with some high variability also seen in the
Southern Hemisphere. The top layer shows a particular sen-
sitivity to parameters in the north-eastern Asia region, where
memory is highest.

November start dates also show the same pattern of more
variability at lower levels where memory tends to be longer;
however, the spatial pattern tends to be more heterogeneous
than May start dates. For instance, variability in May in the
third level is roughly constant over much of Asia, whilst in
November there is a sharp contrast, with a band stretching
from north-east to south-west where variability in the date
is quite low. This heterogeneity extends upwards to higher
levels, with the highest variations in November contained
mostly in the western half of Eurasia. There is also a clear
distinction between western and eastern North America in
the third level for November starts, with much higher sensi-
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Figure 4. Sensitivity of memory to hydraulic parameters (standard
deviation of memory loss across hydraulic parameters as a percent-
age of the memory loss) in the top model soil level, estimated from
H-TESSEL, for May (left) and November (right) start dates.

tivity in the east than the west. This however does not extend
up to levels one and two, where the sensitivity is uniform
across the continent.

3.2.2 Coefficient of variation of memory loss date

Looking at variation of memory with parameters may be in
some cases somewhat dependent on the original magnitude
of memory. To understand where the memory is particularly
sensitive, we show the coefficient of variation of the date of
memory loss (Fig. 4).

This highlights memory estimates in Europe as being par-
ticularly sensitive to the uncertainty in hydraulic parameters
for November-initialized forecasts, with a standard deviation
in the memory loss date of over 50 % of the mean at the sur-
face, whilst points in Asia are less than 20 %. Similarly, east-
ern North America and northern South America have high
sensitivity, whilst the west and south respectively do not.
Sensitive regions in November also include central Africa,
Indonesia, and some points in the Middle East, with a slight
reduction in magnitude and modification of the spatial pat-
tern for lower levels.

For the May start date the spatial pattern is quite differ-
ent from November, with low sensitivity in Europe and east-
ern North America. Sensitive regions are found in southern
Africa, western North America and north-eastern Asia. The
spatial pattern of sensitivity changes quite significantly with
depth in May, with high sensitivity at the third layer for west-
ern North America, for a band running across northern Asia
and South America.

4 Discussion and conclusions

Here we have developed a method to calculate soil moisture
memory and used this to estimate its sensitivity to hydraulic
parameters. These hydraulic parameters influence the speed
of the movement of water through the soil, so it is not sur-
prising that the persistence of initial moisture states is in-
fluenced by them. However, soil moisture memory emerges
from the interplay of precipitation, evaporative demand, and

drainage conditions over time, and the pattern of sensitivity
is not clear a priori. The current study highlights regions for
which memory is particularly sensitive to hydraulic parame-
ters and also indicates differences in memory and sensitivity
between hindcasts initialized in different seasons.

Previous work has attempted to characterize soil moisture
memory, most extensively using the GLACE Atmospheric
General Circulation Models (AGCMs) (Seneviratne et al.,
2006). This work analysed the output of 12 AGCMs over the
period 1 June to 31 August, forced by sea surface tempera-
tures (SSTs) from 1994. Roughly corresponding to the same
period as the May start used here, this work looked at geo-
graphical variations in average memory and in the standard
deviation of memory estimates across the model ensemble.
Their findings are not in full agreement with our work here;
amongst other things, our results also do not lead to their con-
clusion that memory is higher at the mid-latitudes than the
tropics. Furthermore, the highest uncertainty in the GLACE
AGCMs is found in regions of low soil moisture memory.
Our work shows deviation from this result, with large uncer-
tainty in both regions of high and low memory.

These discrepancies are likely to have several explana-
tions. A key reason for differences in uncertainty estimates
is that the focus of the uncertainty quantified is different;
Seneviratne et al. (2006) look at a multi-model ensemble,
which gives some exploration of model and structural un-
certainty, whilst in our study we use a single model and look
at the uncertainty in hydraulic parameters.

Computational expense limited this current work to two
start dates per year; future work might explore the sensitivity
of results to start date.

Note that we do not claim that our own sensitivity anal-
ysis is total, only that we show how memory estimates us-
ing a single model are sensitive to two specific model hy-
draulic parameters. It is likely the case that there remain un-
explored uncertainties in the land surface, for instance, root-
ing depth, the depth of the free drainage lower boundary
condition and moisture thresholds (such as permanent wilt-
ing point, field capacity, and saturation). Furthermore, other
models may show more or less sensitivity to the hydraulic pa-
rameters we test here. However, the main focus of this work
is to demonstrate the uncertainty in estimating soil moisture
memory and the potential importance of hydraulic parame-
ters. This is relevant for operational seasonal prediction, in
which land surface models are run without any variation in
these uncertain parameter values. Given the key role in mem-
ory in high-impact events such as flooding, droughts, and
heatwaves, a forecasting system with deterministic parame-
ters is likely to display a narrower range of possible memory
than exists in reality. This is likely to give negative impacts
on forecast skill and reliability, or, put more optimistically:
by explicitly including parameter uncertainty in operational
probabilistic forecasts (which already incorporate initial con-
dition uncertainties), we may improve forecast skill and re-
liability. Indeed, coupled seasonal forecasts which include

www.hydrol-earth-syst-sci.net/20/2737/2016/ Hydrol. Earth Syst. Sci., 20, 2737–2743, 2016
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an explicit representation of hydraulic parameter uncertainty
have already shown improved prediction of the 2003 Euro-
pean heatwave (MacLeod et al., 2015), and it has been shown
that weather forecasts can be improved by accounting for
land surface model parameter uncertainty (Orth et al., 2016).

Variations in memory and its uncertainty are important
from the perspective of atmosphere–land coupled modelling
since the feedback between the land and the atmosphere
means that anomalies in soil moisture which persist over a
long time can influence atmospheric conditions over an ex-
tended period into the future.

In contrast, soil moisture memory is important for hydro-
logical applications independently of the strength of land–
atmosphere coupling. Soil moisture is one of the main con-
trols on both rainfall runoff generation and evaporation. Un-
certainty and variability in the persistence in soil moisture
can then directly influence the predictability of streamflow,
with implications for effective flood forecasting and water
resource management.

The results presented here also highlight a more general
point that cannot be overstated: the uncertain nature of un-
certainty quantification. It is almost impossible to explore
the full space of our ignorance in models; a multi-model ap-
proach neglects uncertain parameters, whilst a perturbed pa-
rameter approach ignores structural uncertainty (and indeed,
other parameters). Conclusions about relative levels of sensi-
tivity and uncertainty must therefore be drawn with caution,
bearing in mind the limitations of the experimental method.

The Supplement related to this article is available online
at doi:10.5194/hess-20-2737-2016-supplement.
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