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Abstract: Campylobacter jejuni is the major cause of bacterial gastroenteritis in man, while it is 

generally regarded as a commensal of the avian gut. Consumption and handling of contaminated 

poultry meat products are major risk factors for human infection. The body temperature in  

man (37 °C) and chickens (42 °C) differ markedly, and differential gene regulation and protein 

expression at different temperatures may in part explain the behaviour in the two hosts. We 

performed proteomics analyses with C. jejuni cells grown at 37 °C and 42 °C. Time-of-flight mass 

spectrometry (Q-Tof) analysis was carried out after samples were digested with the Filter-Aided 

Sample Preparation (FASP) method and peptides were fractionated by strong anion exchanges. 

Differentially regulated proteins were identified by Mascot and Scaffold analyses. Triple  

quadrupole (QQQ) mass spectrometer analysis confirmed that a total of 33 proteins were 

differentially regulated between 37 °C and 42 °C. Several upregulated proteins were selected for 

their corresponding gene knock-out mutants to be tested for their virulence in the Galleria mellonella 

model. To correlate with other tissue/animal models, the GADH mutant was selected for its reduced 

ability to colonize chickens. At 37 °C, the mutants of outer membrane protein Omp50 and 

Chaperone GroEL significantly increased virulence; while at 42 °C, the mutants of YceI, Omp50, 

and GADH reduced virulence against Galleria mellonella compared with the wild type strains. The 

results of current and previous studies indicate that GADH is a virulent factor in G. mellonella and a 
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colonization factor in chickens. The workflow of this study may prove a new way to identify stress 

related virulent factors. The implications of these findings are discussed for pathogenesis in the 

model and other hosts. 

Keywords: proteomics; Q-Tof; QQQ protein quantitation; Campylobacter virulence; heat induced 

genes; Galleria model 

 

1. Introduction 

Campylobacter jejuni is a small, curved, Gram-negative bacterium that is the major cause of 

bacterial gastroenteritis in much of the world, including the UK [1]. It has generally been regarded as 

a commensal of the chicken gut [2,3,4], although it is known to induce pro-inflammatory  

responses [5] and recent data suggests it may induce strong inflammatory responses and cause 

diarrhoea in some commercial broiler breeds [6]. Consumption and handling of contaminated poultry 

meat products are thought to be major risk factors for human infection [4,7], reportedly responsible 

for up to 80% of human campylobacteriosis cases [8]. Campylobacter jejuni is classified as one of 

the thermophilic campylobacters due to its ability to grow at higher temperatures than  

non-thermophilic species. This characteristic is reflected in its association with avian species where 

body temperatures are elevated (typically 39–42 °C) compared to those in mammals [9]. C. jejuni 

can be regularly isolated from a large range of pet and livestock animals but seems particularly to 

thrive in the caeca of poultry, where it can rapidly reach high numbers (typically 10
7
–10

9
 cfu/g) from 

an infective dose as low as 50 cfu [10]. This is in marked contrast to what is seen in immunologically 

naive humans, where typically exposure is followed fairly rapidly by severe gastroenteritis. In most 

cases the disease is self-limiting with illness lasting 5–14 days, although a number of severe sequelae, 

such as Guillain-Barré Syndrome, are also associated with infection [11].  

Changes in temperature are known to affect expression of bacterial heat shock proteins (HSP). 

Several HSPs have been identified in C. jejuni, including the Lon, GroESL, DnaJ, DnaK and ClpB 

proteins [12–16]. The DnaJ protein has also been identified as a virulence factor in C. jejuni as a 

dnaJ mutant was unable to colonize chickens [16]. The genome of C. jejuni lacks a σ32 homologue 

that regulates expression of HSPs in E. coli [17] but contains two homologues to known heat shock 

response regulators: HcrA and HspR.  

Thus understanding the biology of C. jejuni in human and chicken hosts should potentially aid 

the development of targeted intervention strategies. There are many differences between birds and 

humans, but one obvious difference is the higher body temperature of birds. It is probable that this 

temperature difference will be associated with differential regulation of genes that may encode 

proteins required for survival at the higher temperature or pathogenesis in humans. Therefore, in this 

study, we aimed to identify temperature responsive proteins that could play a role in host adaptation 

and virulence by performing Q-Tof mass spectrometry on C. jejuni grown at 37 and 42 °C. In 

addition, several mutants were selected according to their higher protein expression at 42 °C as 

potential virulence factors in the Galleria (wax worm) model. 



887 

AIMS Microbiology  Volume 3, Issue 4, 885-898. 

2. Materials and Method 

2.1. Bacterial strains and growth methods 

All strains were stored at −80 °C
 
in 1% (w/v) proteose peptone water containing 10% (v/v) 

glycerol until required. Strains were routinely grown from frozen stocks on 10% (v/v) sheep blood 

agar plates containing Skirrow‟s Campylobacter Selective Supplement (Oxoid) [18] at 42 °C in a 

microaerobic atmosphere [5% (v/v) N2, 7.5% (v/v) CO2, 7.5% (v/v) O2]. A loopful of overnight 

culture was placed into a biphasic Mueller-Hinton agar/broth and incubated in a microaerobic 

incubator at either 37 °C or 42 °C as previously described [19]. To ensure cells were recovered at 

similar stages of growth at each temperature bacterial growth was monitored by spectroscopy (OD  

600 nm), with cells recovered by centrifugation when OD 600 was 0.6 (approx 18 hours for growth at 

42 °C and 24 hours for 37 °C). All bacterial strains and mutants used in this study are shown in Table 1.  

Table 1. Campylobacter jejuni strains used for proteomics and virulence tests. 

Strain Relevant characteristics Source/reference 

11168-GS Wild type APHA [20] 

Cj420 11168-GS ∆ YceI Campylobacter Resource Centre of LSHTM 

Cj117C 11168-GS ∆ Omp50 Campylobacter Resource Centre of LSHTM 

Cj414 11168-GS ∆ GADH Campylobacter Resource Centre of LSHTM 

Cj1221 11168-GS ∆ GroEL Campylobacter Resource Centre of LSHTM 

11168-O Wild type APHA [21] 

Cj0289C 11168-O ∆ Peb3 APHA  

2.2. Protein extraction 

Bacterial cells were recovered from the broth phase by centrifugation (5,000 × g for 10 min) 

and washed twice in sterile PBS. Cells were resuspended and disrupted by sonication (3 × 10 s) and 

cell-free extracts were recovered by centrifugation at 14,000 g for 10 min at 4 °C. Protein contents 

were determined by Coomassie Plus™ Protein Assay Reagent (Thermo Scientific) with BSA as the 

standard according to the Manufacturer‟s instructions. 

2.3. Proteolytic digestion with trypsin and peptide fractionation by strong anion exchanges (SAX) 

Digestion of the extracted proteins was carried out as described previously [22] according to the 

instructions of the Fasp Protein Digestion Kit which is based on filtering out undesirable substances 

during the sample preparations (Protein discovery, US). In brief, 0.4 mg of total protein resuspended 

in 30 μl UPX™ Universal Protein Extraction was heated at 99 °C for 10 min. Urea Sample  

Solution (200 μl) was mixed with protein samples in the Spin Filters and the filters were spun at 

14,000 g for 15 min. The flow-through was discarded. A Volume of 10 μl 10× Iodoacetamide 

Solution and 90 μl Urea Sample Solution were added to the filters and mixed by vortexing for 1 min. 
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The filters were kept in the dark for 20 min at room temperature before centrifuged at 14,000 g for 

10 min. The Spin Filters were centrifuged again for 15 min after adding 100 μl Urea Sample Solution 

and this step was repeated twice. The flow through was discarded. Ammonium Bicarbonate  

Solution (100 μl) was added to the filters and the filters were centrifuged at 14,000 g for 10 min; this 

step was also repeated twice. Trypsin (5 μg, Promega, UK) in 100 μl Ammonium Bicabonate 

Solution was added to the filter. The mixture was vortexed and incubated at 37 °C for 18 hours. The 

filter was transferred to a fresh tube before peptides were collected at 14,000 g for 10 min. The 

collection of peptides was repeated after adding 100 μl Ammonium Bicabonate Solution to the filter. 

Finally, 100 μl 0.5 M NaCl was added and peptides were collected again. The peptide concentration 

was measured by NanoDrop 1000 (Thermo Scientific, USA) at 280 nm. Peptides were fractionated 

by strong anion exchange columns and fractionated peptides desalted using C18 columns as 

described previously [22].  

2.4. LC-MS/MS analysis, spectrum identification and spectrum counting  

The desalted peptide samples were analysed using a 1200 Series nano LC connected via a 

chipcube interface to a 6520 Q-ToF mass spectrometer (Agilent Technologies, UK). In brief, peptide 

samples (1 μg in 0.1% formic acid) were injected for LC-MS/MS analysis with a 120-min gradient 

from 3% (vol/vol) acetonitrile-0.1% (vol/vol) formic acid to 40% (vol/vol) acetonitrile-0.1% formic 

acid and from 3% (vol/vol) acetonitrile-0.1% (vol/vol) formic acid to 75% (vol/vol) acetonitrile- 

0.1% formic acid by using a high-capacity (160-nl) 150-mm C18 chip (Agilent Technologies, UK). 

The mass spectrometer was operated with mass ranges of 250 to 2,000 m/z for MS and 50 to  

2,000 m/z for MS/MS at a constant flow rate of 500 nl/min. Acquisition rates were 3 spectra/s for 

MS and 5.01 spectra/s for MS/MS, and the mass reference was 922.009798 m/z. Mass accuracy was 

better than 2-ppm for MS and 5-ppm for MS/MS, and mass resolution was up to 20,000. Proteins 

were identified by Mascot (Version 2.3, Matrix, UK) from the NCBI non-redundant (nr)  

database (Release date: 28-03-2011) as described previously [23]. Identified proteins were quantified 

by spectral counting, using Scaffold (Version 2.6, Proteome Software, USA). The software was used 

to identify differentially expressed proteins using the t test with P value of less than 0.05 after 

normalization. 

2.5. Peptide spectral library and analysis with Skyline 

The Skyline software was used to find transitions for QQQ analysis and to quantify 

peptides/proteins after QQQ analysis. A spectral library was built using the Q-Tof data. For each 

differentially expressed protein, two peptides were selected for quantitation and each peptide was 

represented with three transitions, broken down products of the peptide. The transition list was 

exported to provide Multiple Reaction Monitoring (MRM), also called SRM (Selected Reaction 

Monitoring) information for QQQ mass spectrometry. 

After QQQ runs the data were analysed with Skyline to identify retention times for each peptide. 

Once found, the information such as retention times was added to the transition list for QQQ mass 
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spectrometry to run in dynamic MRM (dMRM) mode. The results of dMRM runs were analysed in 

Skyline to produce a quantity for each transition at a given retention time. 

2.6. QQQ mass spectrometry quantification to validate  

The peptide samples prepared with the FASP method were analysed using a 1200 Series nano 

LC connected to a 6410 QQQ mass spectrometer via a chipcube interface (Agilent Technologies, 

UK). Peptide samples (1 µg in 0.1% formic acid) were injected for LC-MS/MS analysis with a 10 

minute gradient from 3% (v/v) acetonitrile, 0.1% (v/v) formic acid to 100% (v/v) acetonitrile, 0.1% 

formic acid using a Large Capacity Chip (160 nl) 150 mm C-18 (Agilent Technologies, UK).  

2.7. Anova analysis with DanteR v1.01 

DanteR (Pacific Northwest National Laboratory, US) is a R-based software package for omics 

data analysis [24]. The quantity of each transition was imported to DanteR from Skyline. The data 

were first quantile normalized. An Anova filter was applied to find statistically different transitions 

between 37 °C and 42 °C. The P value was set at 0.05. 

2.8. Galleria survival tests 

G. mellonella larvae were purchased from LiveFood UK and maintained on wood chips at 

15 °C. The infection of larvae was carried out as previously described [19,25]. Briefly, 10 µl of 

inoculum containing 1.0 × 10
6
 cfu of the selected strains grown at either 37 °C or 42 °C were 

injected into the top right pro-leg of each larva using a Hamilton® syringe. Larvae were incubated at 

37 °C and survival determined 24 hours post-infection. Untreated and PBS injected controls were also 

included. Ten larvae were used in each experimental group and all experiments were carried out at 

least three times. Insects (including Galleria mellonella) are not covered by the Animals (Scientific 

Procedures) Act 1986 so no ethical approval is needed. 

3. Results 

3.1. Identification of proteins differentially expressed between 37 °C and 42 °C 

Proteins extracted from C. jejuni 11168-GS bacterial cells grown either at 37 °C or 42 °C were 

trypsin digested and fractionated by strong anion exchange columns and subsequently analysed using 

a Q-Tof mass spectrometer. The protein lists were produced by Mascot. A total of 65 proteins were 

identified by Scaffold as differentially expressed when grown at 37 °C and 42 °C (Figure S1 and 

Table S1). Of these, 25 were upregulated and 35 were downregulated at 42 °C compared to 

expression at 37 °C and the maximal increase was 48.2 fold for PEB3 and the maximal decrease was 

25.3 fold for cytochrome c1 subunit. At 42 °C, five chaperons, GroES, GroEL, Dnak, HSP90 and 

HtrA were up-regulated in expression (Table S1). 
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The differentially regulated proteins were validated using a QQQ mass spectrometer. MRM 

detection on a QQQ mass spectrometer provides sensitivity and selectivity for targeted peptides in a 

complex sample and also offers high precision in quantitation [26,27]. Two peptides from each 

protein were selected for the analysis and each peptide was represented by three transitions. Six of 

the 12 proteins initially selected for the validation purpose using QQQ were found to be truly 

differentially expressed. They were 50S ribosomal protein L17, molecular chaperone DnaK, 

Gluconate 2-dehydrogenase subunit 3, major outer membrane protein, major antigenic peptide PEB3 

and major antigenic peptide PEB4; whereas flagellin, heat shock protein 90, methyl-accepting 

chemotaxis protein, DNA-directed RNA polymerase beta‟ chain and F0F1 ATP synthase subunit 

beta were found false positives. This indicated that potentially half of the 65 identified proteins could 

be false positives. To eliminate all false positives, all 65 differentially expressed proteins were 

quantified by the QQQ. A total of 33 proteins were found to be truly differentially regulated (Table 2). 

Seventeen proteins including 4 chaperone proteins: GroEL, GroES, DnaK and HtrA were up-

regulated at 42 °C; while 16 proteins down-regulated including some ribosomal proteins and 

elongation factors. The maximum increase was 2.91 fold for a putative periplasmic protein; whereas 

the maximal decrease was 3.69 fold for putative cytochrome C551 peroxidase (Table 2). 

3.2. Virulence tests for mutants with the Galleria larvae 

To test the hypothesis that thermal stress affects bacterial virulence, previously generated Ycel, 

Omp50, GADH, PEB3 and GroEL knock-out mutants in C. jejuni 11168 or 11168-O parental 

background strain were used to infect larvae of G. mellonella. To correlate results from other 

tissue/animal models, the GADH mutant was chosen as one of strains for its reduced ability to 

colonize chickens [28].  

Larval survival was recorded following challenge with WT1 (C. jejuni 11168-GS) and 

corresponding Ycel, Omp50, GADH and GroEL mutants or WT2 (C. jejuni 11168-O) and PEB3 

mutant. The survival rate of Galleria larvae injected with WT1 of C. jejuni cultured at 37 °C was  

83% after 24 hours, and survival rates of the larvae injected with the Ycel, Omp50, GADH and 

GroEL mutants were 80, 50, 93 and 6.7% respectively (Figure 1). The reduced survival of the larvae 

infected with the Omp50 and GroEL mutants was statistically significant: P = 0.0075 for Omp50 and 

P = 0.0005 for GroEL, suggesting that both mutants were more virulent in this model than the wild 

type parent strain (Figure 1).  

The survival of larvae injected with WT1 cultured at 42 °C was significantly reduced compared 

to those injected with bacteria grown at 37 °C, 83.3% versus 23.3% (P = 0.0022), indicating the 

upregulation of virulence associated factors at 42 °C. The survival rates of larvae injected with Ycel, 

Omp50, GADH and GroEL mutants were 86.7, 83.3, 90 and 10%, respectively at 42 °C (Figure 1). 

Compared to the parental wild type strain, these rates were significantly increased for YceI (P = 

0.0026), Omp50 (P = 0.024) and GADH (P = 0.0032), suggesting that they play a role in virulence 

against G. mellonella as without them the larvae survived better (Figure 1).  
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Table 2. Campylobacter jejuni proteins differentially regulated between 37 °C and 42 °C. 

Protein ID Protein name Fold change at 42 °C P value 

gi|283954725 putative periplasmic protein  2.91 1.8E−02 

gi|121612867 outer membrane protein Omp50 2.45 1.4E−02 

gi|148926221 Chaperone GroEL 2.37 2.0E−02 

gi|153952133 chaperone GroES  2.17 2.2E−02 

gi|121612292 cytochrome c family protein  1.97 2.0E−02 

gi|218561951 major antigenic peptide PEB3 1.96 4.8E−02 

gi|86149030 Gluconate 2-dehydrogenase subunit 3 1.80 2.3E−02 

gi|121613084 Chaperone DnaK 1.76 6.0E−03 

gi|121613042 Chaperone HtrA 1.75 4.7E−02 

gi|157414715 YceI 1.55 8.0E−03 

gi|86150312 methyl-accepting chemotaxis protein  1.51 5.0E−03 

gi|86149130 3-oxoacyl-(acyl-carrier-protein) reductase  1.51 4.0E−03 

gi|86149619 thioredoxin  1.44 3.9E−02 

gi|153952118 nonheme iron-containing ferritin ftn 1.42 4.1E−02 

gi|118475164 uridylate kinase  1.38 4.3E−02 

gi|121612116 pyridine nucleotide-disulphide 

oxidoreductase protein  

1.34 4.2E−02 

gi|118474190 Aconitate hydratase 2  1.28 2.1E−02 

gi|153951800 50S ribosomal protein L17  −1.20 3.7E−02 

gi|57237529 50S ribosomal protein L1 −1.20 4.1E−02 

gi|148925859 DNA-directed RNA polymerase alpha 

chain  

−1.25 4.3E−02 

gi|218562794 30S ribosomal protein S2 −1.27 4.7E−02 

gi|283955736 ribosomal protein L25  −1.33 2.0E−02 

gi|148925693 Tungstate ABC transporter −1.37 3.0E−02 

gi|218563293 50S ribosomal protein L3 −1.38 3.1E−02 

gi|153951395 cytochrome c553  −1.38 2.0E−02 

gi|218562793 elongation factor Ts  −1.44 4.0E−02 

gi|315638136 elongation factor P  −1.45 1.3E−03 

gi|148926260 Ni/Fe-hydrogenase large subunit  −1.48 2.7E−02 

gi|283955870 putative MCP-type signal transduction 

protein  

−1.60 4.9E−02 

gi|205356748 periplasmic nitrate reductase  −1.70 3.0E−02 

gi|15741879 major antigenic peptide PEB4  −1.80 9.0E−03 

gi|218562936 putative methyltransferase  −2.17 1.0E−03 

gi|157414655 putative cytochrome C551 peroxidase  −3.69 8.0E−03 

Note: APHA, Animal and Plant Health Agency; LSHTM, London School of Hygiene & 

Tropical Medicine. 
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Figure 1. G. mellonella survival following challenge with C. jejuni wild type and knock-

out mutants cultured at 37 °C (black) or 42 °C (grey) with C. jejuni doses of 10
6
 CFU/ml. 

Scored 24 hours post-infection. WT1, 11168-GS; WT2, 11168-O. The t test was carried 

out to compare the mutants with their parents. *, P < 0.05; **, P < 0.01. 

4. Conclusion 

In this study we applied quantitative proteomics to identify differentially expressed proteins in 

C. jejuni 11168 grown at 37 °C and 42 °C and to assess their potential role in host adaptation and 

fitness using G. mellonella as a surrogate in vivo model. The temperatures of 42 °C and 37 °C were 

chosen as representative of those in the intestines of chicken and humans respectively. The filter of 

Scaffold programme was set to identify as true positive samples with the P value less than 0.05. It is 

unclear from which steps the errors were generated, as when the two protein lists compiled using Q-

Tof and QQQ were compared (Table 2 and Table S1), no patterns emerged. Some large fold change 

proteins, such as ubiquinol-cytochrome c reductase (~25 fold), were subsequently found to be false 

positives; whereas some small fold change proteins, such as thioredoxin (1.2 fold) true positives by 

QQQ. The same is true for the P values. 50S ribosomal protein L9 with a small P value (P = 

7.7E−04) was subsequently found a false positive; while YceI with a large P value (P = 0.049) a true 

positive. The false positives could come from Scaffold analysis or from Q-Tof or even Mascot as 

each step might produce some errors.  

Similarly, the protein quantities were different in the protein lists produced by Q-Tof/Scaffold 

or QQQ/Skyline analyses. The Q-Tof/Mascot/Scaffold system identified differentially expressed 

between 1.2 and 48.2 fold for some of the proteins such as thioredoxin and Peb3 respectively; 

whereas the QQQ/Skyline system between 1.2 and 3.7 fold for 50S ribosomal protein L17 and 

putative cytochrome C551 peroxidase respectively. It is thought that a 3.7 fold change is more 

realistic than a 48.2 fold change for proteins. From this study we concluded that a validation step is 

crucial to test the reliability of data sets of protein profiling.  

Several chaperone proteins, Dnak, GroES, GroEL and HtrA (Table 2) were found differentially 

upregulated at 42 °C consistent with previous studies [29–32]. The list of differentially regulated 
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proteins identified in this study bears little resemblance to that reported in another proteomics  

study [33]. In this study, we used Q-Tof to get an initial list of differentially regulated proteins and 

then validated all of them with QQQ. Therefore, the methodology may be superior to a 2D gel only 

method as although the aims were similar, the methodologies used in the two studies are very 

different. One of the key issues of proteomic studies is solubilisation of samples. In our previous 

studies we found the Fasp method could identify many membrane proteins [22]. Our findings were in 

agreement with a gene expression study of C. jejuni [29] and other studies, such as the expression of 

heat shock genes in Clostridium acetobutylicum [30] and heat shock responses in E. coli and 

Lactobacillus plantarum [31,32]. Five ribosomal proteins together with elongation factors Ts and P 

were downregulated at 42 °C (Table 2). The reduction of ribosomal proteins was also observed in a 

C. jejuni gene expression study where the author reasoned that a brief growth arrest allowed the cell 

to reshuffle energy devoted to an increased expression of genes involved in protective response and 

adaptation from 37 °C to 42 °C within a short interval [29]. However, in this study, cells were grown 

overnight at 42 °C, an optimal growth temperature [34]. Therefore, other explanations should be 

sought. For example, at 42 °C the cell may be more efficient so that there is no need to produce as 

many ribosomal proteins.  

Infection models for C. jejuni include the ferret diarrhoeal model, colostrum-deprived piglet 

model and chick colonisation model [35,36]. However, issues such as reproducibility, cost, ease of 

use, breeding and specialised training limit the use of these models [37]. We used the Galleria  

larvae (waxworms) as a model to determine potential roles in virulence for selected proteins 

identified in this study. The G. mellonela infection model has been reported previously for the study 

of Campylobacter [38] and also for the study of virulence factors in a number of other bacterial spp, 

including Salmonella enterica, Staphylococcus aureus, Serratia marcescens, Pseudomonas 

aeruginosa and Cryptococcus neoformans [39–43]. Furthermore, the model is also used to look at 

innate immune responses to pathogens since this branch of immunity is evolutionarily conserved 

amongst eukaryotes (unlike adaptive responses) so the innate antimicrobial responses in Galleria 

have similarities to those in higher organisms including man [44,45]. Different degrees of attenuation 

were observed using the Galleria model when several knock-out mutants of C. jejuni 11168H in 

genes encoding potential virulence factors, such as LOS and cytolethal distending toxin [25]. The  

C. jejuni transcriptional regulator Cj1556 was found important for bacterial survival in Caco-2 

human intestinal epithelial cells and J774A. A mouse macrophages and a mutant showed reduced 

virulence in G. mellonella [46]. Recently, Humphrey and co-workers found that a poultry isolate 

13126 (sequence type 21) showed the greatest levels of extra-intestinal spread to the liver and is 

significantly more invasive than other isolates in human intestinal epithelial cells and gave the 

highest mortality in the Galleria infection model [47].  

For the virulence test, it was expected to show more virulence towards Galleria at 37 °C to 

explain that the bacterium is seemingly a commensal at 42 °C in poultry and can cause severe 

gastroenteritis in human at 37 °C. However, the results were such that the wild type bacterium (WT1) 

was more virulent at 42 °C and several heat induced proteins, such as YceI, Omp50 and GADH were 

implicated in the virulence induction as the deletion mutants of those corresponding genes were less 

virulence at 42 °C compared with WT1 (Figure 1). In this study, at 37 °C both Omp50 and GroEL 

mutants killed more Galleria than the wild type parent strain. Although the reason for this is unclear, 
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one possibility is that these proteins act as signals of infection to the Galleria. Initiation of  

insect (innate) immune responses begins with binding of pattern recognition proteins/receptors to 

conserved domains (pathogen-associated molecular patterns-PAMPs) located on the pathogen [48]. 

It is known that some members of the HSP family, including hsp60 (the eukaryotic homolog of 

GroEL), can stimulate the innate immune system directly [49]. Furthermore, bacterial GroELs are 

known to be antigenic in vertebrates [48,49,50], including C. jejuni infection in humans [50]. Thus it 

may be that C. jejuni lacking these proteins are not recognised as readily as wild-type bacteria 

resulting in delayed or decreased innate antimicrobial responses by the Galleria, so more larvae are 

killed. Further studies are needed to elucidate the roles (if any) of these in insect immunity, and 

whether a loss of other bacterial features involved in innate immune activation, e.g. flagella [51], 

would also lead to increased virulence in the model.  

Of the three proteins described as virulence factors in this study (Figure 1), Omp50 is a  

pore-forming protein and sequence alignment shows weak identity with the major outer-membrane 

protein (MOMP) [52]. Its gene expression in C. jejuni is temperature-dependent and omp50::lacZ 

fusions showed that growth temperature control occurred at the transcriptional level [53]. 

Gluconate dehydrogenase (GADH) converts D-gluconate to 2-keto-D-gluconate. However,  

C. jejuni lacks an Entner-Doudoroff pathway so it cannot catabolize gluconate. It uses gluconate as 

an electron donor through GADH [28]. In C. jejuni, GADH is heat-induced and required for full 

colonization of avian but not mammalian hosts [28]. In this study, we also identified GADH as a heat 

responsive protein required for virulence in Galleria larvae.  

The expression of YceI was induced at 42 °C (Table 2) and the mutant grown at that 

temperature displayed reduced virulence against Galleria (Figure 1). These properties are an addition 

to a long list of functions for this relatively unknown protein. YceI is a 22 kDa putative periplasmic 

protein which in E. coli binds to lipid [54] and in Thermus thermophilus to polyisoprenoid [55]. The 

protein crystal structure obtained at 2.9 Å resolution of C. jejuni YceI shows that it forms a dimer 

and binds to sulphate ion [56]. In Helicobacter pylori, YceI is secreted and is involved in adaptation 

to an acidic environment [57]. Other stress related functions include the induction of YceI by high 

pH and osmotic stresses [54,58]. Thus, Ycel may be considered a general stress responsive protein. 

Some researchers suggest that YceI resembles “danger” infochemicals whose increased production 

by a bacterial subpopulation, becoming more resistant to bactericidal antibiotics, communicates a 

higher level of resistance to more sensitive members of the population of the same or different 

species [59].  

In conclusion, a number of heat responsive proteins were identified by a Q-Tof mass 

spectrometer and subsequently confirmed by a QQQ mass spectrometer. Several knock-out mutants 

of heat-induced genes were selected to test in a virulence model. From these, Omp50, GADH and 

YceI were identified as virulence factors at 42 °C in the Galleria infection system. More studies are 

needed to determine if the Galleria infection model for C. jejuni can replace other tissue/animal 

models for identifying colonisation factors and virulence factors of vertebrates. The workflow 

developed in this study may prove a new way to identify stress related virulent factors.  
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