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h i g h l i g h t s

• Embedding formulae of use as they reduce effort required for full characterisation of diffraction properties of scatterer.
• Formulae here for first time derived for simple curved scatterer.
• Derivation using direct approach from boundary-value problem, and also via formulation as integral equation.
• Numerical calculations demonstrate implementation and use of embedding formulae.

a r t i c l e i n f o

Article history:
Received 22 December 2015
Received in revised form 20 June 2016
Accepted 5 July 2016
Available online 15 July 2016

Keywords:
Waves
Diffraction
Embedding
Circular arc

a b s t r a c t

For certain wave diffraction problems, embedding formulae can be derived, which repre-
sent the solution (or far-field behaviour of the solution) for all plane wave incident angles
in terms of solutions of a (typically small) set of other auxiliary problems. Thus a complete
characterisation of the scattering properties of an obstacle can be determined by only de-
termining the solutions of the auxiliary problems, and then implementing the embedding
formula. The class of scatterers for which embedding formulae can be derived has pre-
viously been limited to obstacles with piecewise linear boundaries; here this class is ex-
tended to include a simple curved obstacle, consisting of a thin circular arc. Approximate
numerical calculations demonstrate the accuracy of the new embedding formulae.

© 2016 Published by Elsevier B.V.

1. Introduction

To fully characterise the wave scattering properties of an obstacle, solutions may be required for a range of plane wave
incident angles. Embedding formulae are a means of reducing the effort required to achieve this full characterisation. These
formulae express the solution or the far-field behaviour of the solution for an arbitrary incident wave angle in terms of
analogous properties of a typically small set of other solutions. Thus once the problem is solved for this set of solutions the
full characterisation follows immediately from the embedding formula without need to solve any further problems.

Embedding formulae were first derived in [1,2]. These papers showed that the solution for a plane wave incident at any
angle upon a two-dimensional, thin, straight barrier containing a single gap, can be fully determined from the single solution
corresponding to grazing plane wave incidence. Following [2], subsequent extensions [3–6] required the boundary-value
problem to be formulated as an integral equation; the derivation of the embedding formulae then exploited the structure of
the integral equation, and expressed the solution for arbitrary planewave incident angle in terms of solutions corresponding
to other plane wave incident angles. This approach was generalised in [7] in which a generalised integral equation problem,
divorced from a particular wave diffraction interpretation, was addressed.
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Fig. 1. Geometry of scatterer B.

The papers [8,9] instead derived embedding formulae directly from the boundary-value problem, without recourse to an
integral equation formulation, and expressed the far-field of the solution for arbitrary plane wave incident angle in terms
of the far-field of solutions corresponding to particular multipole forcing at the corners of the scatterers. The method was
generalised to certain three-dimensional scattering problems in [10]. In many ways this approach is more versatile as the
problem does not need to first be formulated as an integral equation, but the calculation of the particular solutions required
for the embedding formulawhich are forced by source terms at the scatterer cornersmay not be straightforward. To address
this, [11,12] modified the boundary-value problem approach to allow the far-field of the solution for arbitrary plane wave
incident angle to be expressed in terms of the far-field of solutions corresponding to other plane wave incident angles.

The class of scatterers for which embedding formulae have been derived thus far is rather limited: the scatterer
boundaries must be piecewise linear, with each linear portion of the boundary oriented at a rational angle (i.e. mπ/n, for
integers m, n) to the x-axis (say). In the current paper we extend this class of scatterers to a canonical scatterer in polar
coordinates consisting of a circular arc.

Similar diffraction problems have been considered previously, though not within the context of embedding formulae.
In [13] amodel of a coastal harbour as a circular basin semi-embedded in an infinite coastlinewas developed, formulating the
problem as an integral equation posed on the harbour opening and using a variational principle to provide an approximate
solution. The case of porous harbour walls was considered in [14]. The problem of an electromagnetic plane wave incident
upon an infinitely long, conducting, slotted cylinder ismathematically similar, andwas solvednumerically in [15]. In [16], the
diffraction of a planewave by precisely the scatterer geometry of the present paperwas considered, though the investigation
was limited to cases for which the entrance to the inner circular region was narrow, and focused on resonance excitation.
More recently, [17] considered the scattering of a plane wave by a semi-circular inclusion in an otherwise infinite straight
barrier.

The paper proceeds as follows. In Section 2 the boundary-value problem is introduced. In Section 3 a selection of
embedding formulae is derived, firstly by adapting the approach of [11] to address the boundary-value problem directly,
and then by reformulating the boundary-value problem as an integral equation, and using the results of [7] to exploit its
structure. In each case the initial step is to decompose the incident planewaveφα

i (r, θ) = eikr cos(θ−α) into an infinite sumand
then consider the problem forced by an arbitrary term in this sum (referred to below as the ‘modal problem’). Approximate
numerical calculations are carried out in Section 4, and a comparison is made between results determined from a direct
approximation and via the embedding formulae. Finally, some conclusions and possible extensions are offered in Section 5.

2. The boundary-value problem

The scatterer takes the shape of a portion of a circular arc (see Fig. 1). Thus, in terms of standard polar coordinates (r, θ),
the scatterer occupies the region

B = {(r, θ) : r = a, θ ∈ [−π, π) \ (−θ1, θ1)}, (2.1)
in which a > 0 and θ1 ∈ (0, π) are specified constants. The gap in the barrier is without loss of generality symmetrically
oriented about the line θ = 0. Throughout this paper we will refer to the domain for which r < a as being ‘within the arc’,
and r > a as ‘outside the arc’.

We suppose that there is a potential φα(r, θ) satisfying the Helmholtz equation

∂2φα

∂r2
+ r−1 ∂φα

∂r
+ r−2 ∂2φα

∂θ2
+ k2φα

= 0 in R2
\ B. (2.2)
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Here k is the (specified) wavenumber, and the superscript α refers to the fact that φα includes a plane wave

φα
i = eikr cos(θ−α) (2.3)

of unit amplitude and whose propagation direction makes an angle α ∈ [−π, π) with the positive x-axis, which is incident
upon B. The incident plane wave has the expansion

φα
i (r, θ) =

∞
n=−∞

inJn(kr)ein(θ−α) (2.4)

(see equation (2.77) in [18]), where Jn denotes the Bessel function of the first kind and order n.
The barrier B is ‘hard’, in the sense that the potential φα satisfies a homogeneous Neumann condition on the scatterer:

∂φα

∂r
= 0 on B. (2.5)

For convenience, we decompose the potential φα outside the arc into the sum of the incident wave φα
i and a diffracted

component φα
d :

φα(r, θ) = φα
i (r, θ) + φα

d (r, θ) in r > a. (2.6)

The diffracted potential φα
d satisfies the Sommerfeld radiation condition

lim
r→∞

r1/2


∂φα
d

∂r
− ikφα

d


= 0, (2.7)

uniformly in θ . Lastly, we require that the so-calledMeixner or edge condition (e.g. [19]) holds, that is, if ρ measures distance
from either corner of B, i.e. (a, θ1) or (a, −θ1), then here

∂φα

∂ρ
= O(ρ−1/2). (2.8)

This condition ensures that energy is not added to the system at these points.
The boundary-value problem described above models, for example, surface gravity waves on fluid of uniform depth

containing a surface-piercing structure of cross-section B, or three-dimensional acoustic waves in a medium containing an
infinitely long structure of cross-section B.

The far-field behaviour of the solution as kr → ∞ is of particular interest. We write

φα
d (r, θ) =


2

πkr
ei(kr−π/4)F(θ, α) + O((kr)−3/2), (2.9)

where F(θ, α) is referred to as the far-field diffraction coefficient, and θ as the observation angle. The far-field diffraction
coefficient satisfies the well-known reciprocity principle (see e.g. [18])

F(θ + π, α) = F(α + π, θ), (2.10)

and because of the symmetry of the scatterer B about the line θ = 0 it is also clear that φα
d (r, θ) = φ−α

d (r, −θ) and so

F(θ, α) = F(−θ, −α). (2.11)

3. Embedding formulae

Typically derivation of embedding formulae initially follows one of two distinct but related routes: either a particular
differential operator is used, which commutes with the Helmholtz operator, boundary conditions, and radiation condition,
and annihilates the incident wave; or else the boundary-value problem is reformulated as an integral equation, and its
structure is exploited. In Section 3.1 we first use the differential operator approach, and then in Section 3.2 derive an
equivalent integral equation formulation and make use of its structure to derive complementary results.

3.1. From the boundary-value problem

For the scattering geometry B the simple operator

D =
∂

∂θ
+ const. × I
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certainly commutes with the Helmholtz operator ∂2/∂r2 + r−1∂/∂r + r−2∂2/∂2
θ + k2I , the boundary conditions (since the

differentiation in D is in a direction parallel to the scatterer B), and also the radiation condition, but Dφα
i ≠ 0. However, the

incident plane wave φα
i has the expansion (2.4), which can be written as

φα
i (r, θ) =

∞
n=−∞

ine−inαφn
i (r, θ), (3.1)

where

φn
i (r, θ) = Jn(kr)einθ (n ∈ Z), (3.2)

and now the operator

Dn =
∂

∂θ
− inI, (n ∈ Z) (3.3)

is such that Dnφ
n
i = 0 for all n ∈ Z. This property suggests we decompose the solution φα as

φα(r, θ) =

∞
n=−∞

ine−inαφn(r, θ) (3.4)

where the solution corresponding to the forcing φn
i is denoted by φn, and then seek embedding formulae for solutions of this

‘modal problem’. Once such formulae are derived, quantities related to the full solution φα can be reconstructed via (3.4).
Note that the operatorDn in (3.3) is very similar in form to the basic operatorH used in [8], the only substantial difference

being that there ∂/∂θ is replaced by ∂/∂x and/or ∂/∂y, because that work involved scatterers with straight edges.
We isolate the forcing φn

i from φn via the decomposition

φn(r, θ) = φn
i (r, θ) + φn

d(r, θ) in R2
\ B; (3.5)

comparison of (2.6) and (3.5), and use of (3.1) and (3.4), then shows that

φα
d (r, θ) =

∞
n=−∞

ine−inαφn
d(r, θ) for r > a. (3.6)

We write

φn
d(r, θ) =


2

πkr
ei(kr−π/4)Fn(θ) + O((kr)−3/2) (3.7)

as kr → ∞, with

Fn(θ) =

∞
m=−∞

fn,meimθ , fn,m =
1
2π

 π

−π

Fn(θ)e−imθdθ (n,m ∈ Z). (3.8)

Note that a consequence of (2.9) and (3.6)–(3.8) is that

F(θ, α) =

∞
n=−∞

ine−inαFn(θ) =

∞
n=−∞

ine−inα
∞

m=−∞

fn,meimθ . (3.9)

3.1.1. Embedding formulae for the modal problem
The operator Dn in (3.3) commutes with the Helmholtz operator, the boundary conditions, and the radiation condition,

and Dnφ
n
i = 0 for n ∈ Z. It also introduces so-called ‘overly-singular’ behaviour at the arc corners (a, ±θ1). To see this, first

note that separation of variables applied local to a corner shows that a solution consistent with the Meixner condition (2.8)
has the behaviour

φn
= An

0 + An
1ρ

1/2 cos[(σ − π)/2] + O(ρ3/2),

where ρ is the distance from the corner, and σ is the local azimuthal coordinate aligned so that σ = 0 points parallel to and
away from the barrier (so σ = ±π locally coincides with the barrier). Here An

0 and An
1 are constants which depend on n.

Written in terms of the coordinates local to the corner at (a, θ1), the differential operator Dn is

Dn = −a cos σ
∂

∂ρ
+ (1 + aρ−1 sin σ)

∂

∂σ
− inI,

so

Dnφ
n

= −
1
2
aAn

1ρ
−1/2 cos[(σ + π)/2] + O(1)
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as kρ → 0, and thus there is one overly singular term at this corner produced by the action of Dn. Application of Dn to the
solution local to the corner at (a, −θ1) yields a further overly-singular term. Thus we introduce the combination

Φ = Dnφ
n
− (B1Dpφ

p
+ B2Dqφ

q),

where n, p, q ∈ Z are distinct, and the constants B1 and B2 are chosen so that the combinationΦ is O(1) at each corner. Then
Φ satisfies the Helmholtz equation, a homogeneous boundary condition on B, the radiation condition, contains no forcing
term, and is O(1) at the arc corners, i.e. Φ satisfies a fully homogeneous boundary-value problem. The uniqueness of the
scattering problem then implies that Φ ≡ 0, so that

Dnφ
n

= B1Dpφ
p
+ B2Dqφ

q. (3.10)

Solving (3.10) would provide an expression for φn in terms of φp and φq, but establishing the values of the ‘constants’ of
integration is not straightforward, so we defer the derivation of this sort of embedding formula until Section 3.2, calculated
via the integral equation formulation.

Instead, we focus on deriving an embedding formula for the far-field coefficients. Let kr → ∞ in (3.10). Using the
notation of (3.7), the balance between leading order terms is

F ′

n − inFn = B1(F ′

p − ipFp) + B2(F ′

q − iqFq),

where F ′
n denotes the θ-derivative of Fn(θ) and so on. Using the notation of (3.8), this becomes
∞

m=−∞

(m − n)fn,meimθ
= B1

∞
m=−∞

(m − p)fp,meimθ
+ B2

∞
m=−∞

(m − q)fq,meimθ ,

and so

(m − n)fn,m = B1(m − p)fp,m + B2(m − q)fq,m (m ∈ Z). (3.11)

This equality holds irrespective of the choice ofm, so in particular settingm = −p and m = −q in turn shows that

(p + n)fn,−p = 2pB1fp,−p + B2(p + q)fq,−p, (q + n)fn,−q = B1(p + q)fp,−q + 2qB2fq,−q,

from which

B1 =
f̂q,−q f̂n,−p − f̂q,−p f̂n,−q

f̂p,−p f̂q,−q − f̂p,−q f̂q,−p
, B2 =

f̂p,−p f̂n,−q − f̂p,−q f̂n,−p

f̂p,−p f̂q,−q − f̂p,−q f̂q,−p
,

where for convenience we have written

f̂p,q = (p − q)fp,q (p, q ∈ Z). (3.12)

These representations for B1, B2 then allow (3.11) to be rewritten as

f̂n,m =
(f̂q,−q f̂n,−p − f̂q,−p f̂n,−q)f̂p,m + (f̂p,−p f̂n,−q − f̂p,−q f̂n,−p)f̂q,m

f̂p,−p f̂q,−q − f̂p,−q f̂q,−p
(3.13)

for m ∈ Z.
Eq. (3.13) is an expression for the modal far-field coefficient (n − m)fn,m, but to serve as an embedding formula the

right-hand side should depend only on quantities involving φp and φq. Reference to (3.8) and (3.9) shows that coefficients in
(3.13) with first subscript p or q are acceptable in this sense, but coefficients with first subscript n are not. However, a form
of reciprocity principle can be used to replace such terms by quantities which depend only on φp and φq. The full reciprocity
principle is given in (2.10), which, given (3.8) and (3.9), can be expressed as

∞
n=−∞

ine−inα
∞

m=−∞

fn,meim(θ+π)
=

∞
p=−∞

ipe−ipθ
∞

q=−∞

fp,qeiq(α+π).

Multiply this equation by ei(jθ−lα), for integers j, l, and integrate over α, θ ∈ [−π, π): the orthogonality of the exponential
functions on this interval shows that

fj,l = ij+lf−l,−j (j, l ∈ Z), (3.14)

in terms of which f̂j,l = ij+l f̂−l,−j.
Using (3.14), Eq. (3.13) can then be written as

i−n f̂n,m =
(i−p f̂q,−q f̂p,−n − i−q f̂q,−p f̂q,−n)f̂p,m + (i−q f̂p,−p f̂q,−n − i−p f̂p,−q f̂p,−n)f̂q,m

f̂p,−p f̂q,−q − f̂p,−q f̂q,−p
(3.15)
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the right-hand side of which now only requires knowledge of the far-field behaviour of the two solutions φp, φq for its
calculation. Here p, q are arbitrary distinct but non-zero integers. An obvious choice is q = −p, for then f̂q,−p = f̂p,−q = 0,
from (3.12), and (3.15) reduces to

i−n f̂n,m =
i−p f̂−p,p f̂p,−n f̂p,m + ip f̂p,−p f̂−p,−n f̂−p,m

f̂p,−p f̂−p,p
. (3.16)

One further simplification is possible due to the symmetry of B around θ = 0, and the resulting modal symmetry property

fj,l = (−1)jf−j,−l (j, l ∈ Z), (3.17)

which follows from the full symmetry property (2.11) in a similar fashion to how (3.14) stems from (2.10). Then f̂j,l =

(−1)j+1 f̂−j,−l, and use of this reduces (3.16) to

f̂p,−p f̂n,m = in−p(f̂p,−n f̂p,m − f̂p,n f̂p,−m). (3.18)

Here the coefficient fn,m (for n ≠ m) associated with the solution φn is now expressed solely in terms of coefficients which
depend only on the single solution φp, for p ≠ 0. Both sides of (3.18) are zero ifm = n, and in this case we can use L’Hôpital’s
rule to define

fn,n = lim
m→n

∂

∂m


−in−p(f̂p,−n f̂p,m − f̂p,n f̂p,−m)

f̂p,−p


. (3.19)

Here derivatives with respect to m can be evaluated via (3.8); evaluation of the right-hand side of (3.19) still only requires
knowledge of the single solution φp.

Eq. (3.18) is thus an embedding formula, in that it expresses the modal far-field coefficient fn,m for all n,m ∈ Z in terms
of coefficients which require knowledge of just φp for their calculation, for one value of p ∈ Z. Furthermore, using Eq. (3.9),
which expresses the far-field diffraction coefficient F(θ, α) for the full problem in terms of the modal far-field coefficient
fn,m, this means that F(θ, α) can be calculated for all θ, α ∈ [−π, π) once the single solution φp is determined, for any
non-zero p ∈ Z, and its far-field behaviour calculated.

3.2. From an integral equation formulation

In this section we formulate the boundary-value problem as an integral equation, and use the structure of this equation
to re-derive and extend the embedding formulae determined in Section 3.1.

An appropriate expression for the potential inside the arc is given by

φα(r, θ) =

∞
n=−∞

anJn(kr)einθ (r < a, −π ≤ θ < π), (3.20)

where Jn denotes the Bessel function of the first kind of order n, and the an are coefficients to be determined. These
coefficients depend on α but in the interests of notational clarity this dependence is not made explicit.

The radial derivative of this expression, evaluated on B0, is

∂φα

∂r
(a−, θ) =

∞
n=−∞

kanJ ′ne
inθ (−π ≤ θ < π),

wherewe adopt the convention that if the argument of a Bessel (or later Hankel) function is omitted then it is to be evaluated
at ka, so J ′n = J ′n(ka) etc. The orthogonality of the complex exponentials shows that

an =
1

2πkJ ′n

 θ1

−θ1

∂φα

∂r
(a−, θ0)e−inθ0 dθ0 (n ∈ Z) (3.21)

where the boundary condition (2.5) has been used to reduce the range of integration in (3.21) to the gap (−θ1, θ1). For
convenience, we introduce the notation

vα(θ) =
∂φα

∂r
(a±, θ) (−θ1 < θ < θ1), (3.22)

where it is implicit in this definition that ∂φα/∂r is continuous across the gap. Then inserting (3.21) into (3.20) shows that
the potential within the arc can be expressed as

φα(r, θ) =

∞
n=−∞

Jn(kr)
2πkJ ′n

 θ1

−θ1

vα(θ0)ein(θ−θ0) dθ0 (r < a, −π ≤ θ < π). (3.23)
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To derive a corresponding expression for the diffracted potential outside the arc we first decompose φα
d as

φα
d (r, θ) = φα

c (r, θ) + φα
g (r, θ) in r > a, (3.24)

where φα
c encompasses the scattering effect of the solid cylinder B0 = {(r, θ) : r = a, θ ∈ [−π, π)}, and φα

g is the potential
instigated by the presence of the gap in the cylinder. The potential φα

c is such that the combination φα
i + φα

c satisfies the
Neumann boundary condition (2.5) on B0. An explicit expression for φα

c is easily calculated as

φα
c (r, θ) =

∞
n=−∞

ZnHn(kr)ein(θ−α) (3.25)

where Hn denotes the Hankel function of the first kind (this is the only kind of Hankel function appearing so the superscript
in the usual notation H(1)

n is omitted for convenience), and Zn = −inJ ′n/H
′
n. The corresponding far-field diffraction behaviour

is given by

φα
c ∼


2

πkr
Fc(θ, α)ei(kr−π/4), Fc(θ, α) =

∞
n=−∞

Znein(θ−α−π/2) (3.26)

as kr → ∞.
A suitable expansion for φα

g is

φα
g (r, θ) =

∞
n=−∞

cnHn(kr)einθ (r > a, −π ≤ θ < π), (3.27)

where the cn are to be determined. Then, bearing in mind the decompositions (3.5) and (3.24), and also the fact that by
construction the radial derivative of the combination φα

i + φα
c vanishes on r = a, we see that

vα(θ) =
∂φα

∂r
(a+, θ) ≡

∂φα
g

∂r
(a+, θ) =

∞
n=−∞

cnkH ′

ne
inθ

for −π ≤ θ < π , from which, using the orthogonality of the complex exponentials, together with the boundary condition
(2.5), we have

cn =
1

2πkH ′
n

 θ1

−θ1

vα(θ0)e−inθ0 dθ0 (n ∈ Z) (3.28)

and so (3.27) can be written as

φα
g (r, θ) =

∞
n=−∞

Hn(kr)
2πkH ′

n

 θ1

−θ1

vα(θ0)ein(θ−θ0) dθ0. (3.29)

The corresponding far-field behaviour is

φα
g ∼


2

πkr
Fg(θ, α)ei(kr−π/4)

as kr → ∞, where

Fg(θ, α) =

∞
n=−∞

ein(θ−π/2)

2πkH ′
n

 θ1

−θ1

vα(θ0)e−inθ0 dθ0. (3.30)

In Eq. (3.23) we have an expression for the solution φα within the arc, and a combination of Eqs. (2.4), (2.6), (3.24), (3.25)
and (3.29) provide a corresponding expression for the solution outside the arc. Now these two expressions are equated
where their domains of dependence meet, on the line r = a, −θ1 < θ < θ1, across which φα is continuous. The result can
be arranged as

∞
n=−∞

Ln

 θ1

−θ1

vα(θ0)ein(θ−θ0) dθ0 =

∞
n=−∞

Mnein(θ−α) (−θ1 < θ < θ1), (3.31)

where

Ln =
1

2πk


Jn
J ′n

−
Hn

H ′
n


=

i
π2k2aJ ′nH ′

n
(n ∈ Z) (3.32)
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and

Mn = inJn + ZnHn = 2πkinJ ′nLn =
2in+1

πkaH ′
n

(n ∈ Z) (3.33)

in which the final representation in each of (3.32) and (3.33) follows after use of a standard Wronskian result for Bessel
functions (equation (9.1.16) in [20]). Interchanging the order of summation and integration on the left-hand side of (3.31)
allows it to be rewritten as the integral equation θ1

−θ1

K(|θ − θ0|)v
α(θ0) dθ0 = gα(θ) (−θ1 < θ < θ1), (3.34)

where

K(|θ − θ0|) =

∞
n=−∞

Lnein(θ−θ0), gα(θ) =

∞
n=−∞

Mnein(θ−α) (−θ1 < θ, θ0 < θ1). (3.35)

Using the standard large order asymptotic form of Jn and Hn (see e.g. equation (9.3.1) in [20]), we find that Ln ∼ a/nπ for
large |n|, so that the kernel K is logarithmically singular as θ − θ0 → 0.

Eq. (3.34) can be decomposed into a series of ‘modal’ problems, precisely as we did to derive embedding formulae for the
boundary-value problem in Section 3.1.1. Thus if gn(θ) = einθ then the solution of (3.34) can be written as

vα(θ) =

∞
n=−∞

Mne−inαvn(θ) (3.36)

where θ1

−θ1

K(|θ − θ0|)v
n(θ0) dθ0 = gn(θ) (−θ1 < θ < θ1) (3.37)

for n ∈ Z. Comparison of (3.30) and (3.36) shows that the far-field diffraction coefficient for φg can be written in terms of
the vn as

Fg(θ, α) =

∞
m=−∞

eim(θ−π/2)

2πkH ′
m

∞
n=−∞

Mne−inα
 θ1

−θ1

vn(θ0)g−m(θ0) dθ0. (3.38)

3.2.1. Embedding formulae for the integral equation
The kernel K(|θ − θ0|) defined in (3.35) is of ‘difference’ (or sometimes ‘displacement’) type, since it depends only

on the combination θ − θ0. It is well-known that equations containing such kernels admit embedding formulae (see, for
example, [7]). The integral equation in (3.37) is actually of a very similar form to that investigated in [7], namely

µφα(x) −

 1

0
k̃(x − x0)φα(x0) dx0 = e−iαx (0 < x < 1), (3.39)

inwhichα ∈ R is a parameter,µ ∈ C a given constant, and the kernel k̃ (denoted k in [7]) is atmostweakly singular. Because
the results in [7] we wish to adapt for our problem only make use of the fact that the implied integral operator in (3.39) is
injective, rather than invertible, and the uniqueness of the solution to our underlying boundary-value problem certainly
guarantees the injectivity of the integral operator in (3.34), we readily deduce, after appropriate changes to notation and
integration interval, two results.

The first result can be written as

Gp,−pGn,m = Gp,mGp,−n − Gp,−mGp,n (m ∈ Z), (3.40)

for n, p,m ∈ Z, with n and ±p distinct. Here

Gn,m = (n − m)

 θ1

−θ1

vn(θ)g−m(θ) dθ (n,m ∈ Z) (3.41)

is a far-field diffraction coefficient-like quantity, and to derive (3.40) use has been made of both reciprocity and symmetry
relations, respectively

Gn,m = G−m,−n (n,m ∈ Z) (3.42)

and

Gn,m = −G−n,−m (n,m ∈ Z), (3.43)
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the latter following from

vn(θ) = v−n(−θ) (n ∈ Z, θ ∈ (−θ1, θ1)). (3.44)

Eq. (3.40) expresses the far-field diffraction coefficient for vn, Gn,m, in terms of quantities which require only knowledge
of the particular solution vp for their calculation, and thus is equivalent to the earlier formula (3.18). Verification of this
relationship is straightforward: from (3.24), (3.25) and (3.29) we have

φα
d (r, θ) =

∞
n=−∞

Hn(kr)einθ
∞

p=−∞

e−ipα

Zpδpn +

Mp

2πkH ′
n

 θ1

−θ1

vp(θ0)e−inθ0 dθ0


, (3.45)

and comparison of this with (3.9) shows that, in the notation of (3.12) and (3.41),

f̂n,m =
e−i(n+m)π/2MnGn,m

2πkH ′
m

(n,m ∈ Z), (3.46)

from which the equivalence of (3.18) and (3.40) is readily confirmed.
Integrals of the form

 θ1
−θ1

vn(θ0)g−m(θ0) dθ0 are required to evaluate the far-field coefficient Fg(θ, α) in (3.38), and from
(3.40) and (3.41) they have the representation θ1

−θ1

vn(θ0)g−m(θ0) dθ0 =
Gp,mGp,−n − Gp,−mGp,n

(n − m)Gp,−p
(3.47)

for distinct n,m. In the case n = m we must use L’Hôpital’s rule (as in Section 3.1.1) to give θ1

−θ1

vm(θ0)g−m(θ0) dθ0 =
−Gp,mĜp,−m − Gp,−mĜp,m

Gp,−p
(3.48)

where

Ĝp,m =
∂

∂n


Gp,n


n=m

= −

 θ1

−θ1

vp(θ0)e−imθ0 dθ0 − i(p − m)

 θ1

−θ1

θ0v
p(θ0)e−imθ0 dθ0. (3.49)

Thus inserting (3.47) and (3.48) into (3.38) results in

Fg(θ, α) =

∞
m=−∞

eim(θ−π/2)

2πkH ′
m

∞
n=−∞,≠m

Mne−inα

Gp,mGp,−n − Gp,−mGp,n

(n − m)Gp,−p



−

∞
m=−∞

eim(θ−π/2)

2πkH ′
m

Mme−imα


Gp,mĜp,−m + Gp,−mĜp,m

Gp,−p


(3.50)

which expresses the far-field diffraction coefficient Fg(θ, α) in terms of quantitieswhichdependon the singlemodal solution
vp.

The second result which can be inferred from [7] was not derived in Section 3.1. It relates the solutions of (3.37)
themselves rather than their far-field diffraction coefficients:

Gp,−pv
n(θ) = Gp,n[v

p(−θ) − i(p + n)(V−nv
p)(−θ)] + Gp,−n[v

p(θ) + i(p − n)(V ∗

n vp)(θ)], (3.51)

where we have introduced the Volterra integral operators

(Vnv)(θ) =

 θ

−θ1

v(θ0)ein(θ−θ0) dθ0, (V ∗

n v)(θ) =

 θ1

θ

v(θ0)ein(θ−θ0) dθ0 (3.52)

for n ∈ Z. Thus once the single solution vp, of (3.37), is determined, (3.51) can be used to determine all others. Eq. (3.36)
can then in turn be used to construct vα for any incident plane wave angle α, again in terms of the single solution vp of the
modal problem, as

Gp,−pv
α(θ) =

∞
n=−∞

Mne−inαGp,n[v
p(−θ) − i(p + n)(V−nv

p)(−θ)]

+

∞
n=−∞

Mne−inαGp,−n[v
p(θ) + i(p − n)(V ∗

n vp)(θ)]. (3.53)
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4. Numerical implementation

In this section we determine a numerical approximation to a solution vp of the modal integral equation (3.37), from
which approximations to the far-field diffraction coefficient-like quantities Gp,q can be calculated; these are inserted into
(3.50) to give an approximation to Fg(θ, α). This approximation is compared to the result of a direct approximation of the
full integral equation (3.34).

4.1. Numerical approximation

To derive an approximate solution of the modal problem (3.37) (with n replaced by p for convenience) we use Galerkin’s
method in conjunction with the Rayleigh–Ritz approximation

vp(θ) ≈

P
q=0

λp
qχq(θ) (4.1)

where P ∈ N0, the λ
p
q are constants to be determined, and the χq are trial-functions specified below. The λ

p
q are found by

substituting (4.1) into (3.37), multiplying both sides by χl(θ), and integrating in θ across (−θ1, θ1), which results in θ1

−θ1

 θ1

−θ1

K(|θ − θ0|)

P
q=0

λp
qχq(θ0)χl(θ) dθ0 dθ =

 θ1

−θ1

gp(θ)χl(θ) dθ (4.2)

for l = 0, . . . , P . For each p this is a system of P + 1 equations from which to calculate the P + 1 unknowns λ
p
0, . . . , λ

p
P . We

write this system as Alp = rp, where A has (l, q)th entry

Alq =

 θ1

−θ1

 θ1

−θ1

K(|θ − θ0|)χq(θ0)χl(θ) dθ0 dθ (l, q = 0, . . . , P), (4.3)

lp is a column vector with qth entry λ
p
q (q = 0, . . . , P), and rp is a column vector with lth entry

rpl =

 θ1

−θ1

gp(θ)χl(θ) dθ (l = 0, . . . , P). (4.4)

The choice of trial-function is motivated by the corner condition (2.8), fromwhich v(θ) = O((θ1 ∓θ)−1/2) near θ = ±θ1.
Consequently we choose

χl(θ) =
Tl(θ/θ1)
θ2
1 − θ2

(l = 0, . . . , P) (4.5)

where Tl is the Chebyshev polynomial of the first kind. Use of trial functions of this form to approximate a function which is
square-root singular at each end of an interval was used previously in [21]. From (4.4),

rpl =

 π

0
cos(lσ)eipθ1 cos σ dσ = π ilJl(pθ1) (p ∈ Z, l = 0, . . . , P), (4.6)

upon using a standard Bessel function identity (equation (9.1.21) in [20]).
From (3.35), and using (4.4) and (4.6),

Alq =

∞
n=−∞

Lnrnl r
−n
q

= π2il−q
∞

n=−∞

LnJl(nθ1)Jq(nθ1)

= π2il−qL0Jl(0)Jq(0) + π2il−q
[(−1)l+q

+ 1]
∞
n=1

LnJl(nθ1)Jq(nθ1). (4.7)

The terms in the sum in (4.7) are O(n−2) as n → ∞, so the sum is slowly convergent. However, calculations can be speeded
up, as follows. First we use the expansions (equations (2.17), (2.18) in [17])

Jn(z)
J ′n(z)

=
z
n

+
z3

2n3
−

z3

2n4
+ O(n−5),

Hn(z)
H ′

n(z)
= −

z
n

−
z3

2n3
−

z3

2n4
+ O(n−5),
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for n → ∞ and z fixed, to show that Ln defined in (3.32) has the behaviour

Ln =
a
nπ

+
k2a3

2n3π
+ O(n−5) (4.8)

for large n. Then combining (4.8) and the standard large argument expansion of the Bessel function of the first kind shows
that LnJl(nθ1)Jq(nθ1) = γn(l, q) + O(n−4), where

γn(l, q) =
a

n2π2θ1
{cos[2nθ1 − (l + q + 1)π/2] + cos[(l − q)π/2]}

−
a

4n3π2θ2
1


(2q2 + 2l2 − 1) sin[2nθ1 − (l + q + 1)π/2] + 2(q2 − l2) sin[(l − q)π/2]


. (4.9)

We thus write the infinite sum in (4.7) as

∞
n=1

LnJl(nθ1)Jq(nθ1) =

∞
n=1

[LnJl(nθ1)Jq(nθ1) − γn(l, q)] + γ (l, q), (4.10)

in which the sum can be evaluated accurately by truncating the sum at a finite value of n since the terms are O(n−4) as
n → ∞. We truncate at n = 1500 for all calculations presented here, which is sufficient to ensure 5 decimal places of
accuracy in approximations to Alq. Also

γ (l, q) =

∞
n=1

γn(l, q) =
a

2π2θ1


λ2 + λ̄2 +

π2

3
cos[(l − q)π/2]


−

a
8iπ2θ2

1


(2q2 + 2l2 − 1)(λ3 − λ̄3) + 4i(q2 − l2)ζ (3) sin[(l − q)π/2]


(4.11)

in which ζ denotes the zeta function, and λj = e−i(l+q+1)π/2Lij(e2iθ1) (j = 2, 3) where

Lij(z) =

∞
n=1

zn

nj
=

(−1)j−1

(j − 2)!

 1

0
t−1 lnj−2 t ln(1 − zt) dt

is the polylogarithm function (Section 25.12, [22]), which can be evaluated accurately using standard quadrature techniques
applied to its integral form.

Once the λ
p
q are determined, the far-field diffraction coefficient-like quantity for the modal problem, Gp,m in (3.41), is

approximated by

Gp,m ≈ (p − m)

P
q=0

λp
q rmq . (4.12)

To apply the embedding formula (3.40) when n = m we also require an approximation to the modified coefficient Ĝp,m in
(3.49), and for this we need θ1

−θ1

θ0v
p(θ0)e−imθ0 dθ0 ≈

 θ1

−θ1

θ0

P
q=0

λp
qχq(θ0)e−imθ0 dθ0

where θ1

−θ1

θ0χq(θ0)e−imθ0 dθ0 = θ1

 π

0
cos σ cos(qσ)e−imθ1 cos σ dσ =

1
2
θ1(rmq+1 + rmq−1), (4.13)

so that

Ĝp,m ≈ −

P
q=0

λp
q


rmq +

1
2
i(p − m)θ1(rmq+1 + rmq−1)


. (4.14)

The approximation of the solution to the full problem (3.34) proceeds in a similar fashion, the only difference is in the
right-hand side: gα replaces gp. We write

vα(θ) ≈

P
q=0

λα
qχq(θ) (4.15)
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Table 1
Values of |G3,1| for different ka and increasing P . The gap in the barrier occupies
|θ | < θ1 = π/5.

ka P
2 4 6 8 10 12

π 2.33437 2.35708 2.35711 2.35711 2.35711 2.35711
2π 8.41238 8.42985 8.42994 8.42993 8.42993 8.42993
3π 11.66046 8.77025 8.62414 8.62052 8.62046 8.62046

Table 2
Values of |Gn,m| for different n,m and increasing P . Here ka = 2π and θ1 = π/5.

|Gn,m| P
2 4 6 8 10 12

|G1,2| 5.65247 5.69458 5.69455 5.69454 5.69454 5.69454
|G1,9| 7.67423 5.47806 5.27293 5.26695 5.26691 5.26691
|G8,9| 0.66926 2.47901 3.52477 3.59077 3.59186 3.59187

where lα , the vector with qth entry λα
q , is found from Alα = rα , in which rα has qth entry

rα
q =

 θ1

−θ1

gα(θ)χq(θ) dθ =

 θ1

−θ1

∞
n=−∞

Mnein(θ−α)χq(θ) dθ =

∞
n=−∞

Mne−inαrnq , (4.16)

from (3.35) and (4.4). The sum in (4.16) converges very rapidly. To see this first note that from (3.33), M−n = Mn for n ∈ Z.
Also, from (4.8), Ln = O(n−1) as n → ∞, and as a consequence of equation (9.3.1) in [20],

J ′n(z) ∼
1
z


n
2π

 ez
2n

n
as n → ∞ for fixed z. Putting these results together we deduce thatMn is O(|n|−|n|−1/2) as n → ±∞.

Clearly λα
q =


∞

n=−∞
Mne−inαλn

q , which is the discrete version of the linearity relationship (3.36). From (3.30), the
corresponding approximation to the far-field diffraction coefficient Fg(θ, α) is then

Fg(θ, α) ≈

∞
m=−∞

eim(θ−π/2)

2πkH ′
m

P
q=0

λα
q rmq

=

∞
m=−∞

eim(θ−π/2)

2πkH ′
m

P
q=0

∞
n=−∞

Mne−inαλn
qrmq . (4.17)

In practice both infinite sums in (4.17) are truncated at the finite values ±N .

4.2. Results

Tables 1 and 2 demonstrate the convergence of the numerical scheme for the modal problem. Table 1 displays values
of |G3,1| calculated via (4.12) for θ1 = π/5, ka = π, 2π, 3π , and increasing P . For larger ka or θ1 & π/2, higher values
of P must be taken to achieve the same accuracy. In the latter case, the matching of solutions ‘inside’ and ‘outside’ the arc,
as in Section 3.2, makes less sense as a formulation; a preferable numerical approach is likely the hypersingular integral
equation route of [23,18], though this is not pursued here. Table 2 lists values of |Gn,m| for different n,m and increasing P ,
with ka = 2π and θ1 = π/5. As n,m increase higher values of P are required to achieve the same accuracy.

The convergence of the numerical scheme for the full problem is demonstrated in Table 3. Displayed are values of the
particular diffraction coefficient |Fg(π/3, π/7)|, calculated via (4.17) for ka = 2π and θ1 = π/5. Both infinite sums in
(4.17) are truncated at ±N , and values are shown in the table for increasing N and P . The convergence with P is comparable
to that of the modal problem, and the factors of 1/H ′

m (= O(|m|
−|m|+1/2) as m → ±∞) and Mn in (4.17) guarantee rapid

convergence of the sums inm and n respectively as the truncation parameter N is increased.
Now we implement the embedding formula via the representation (3.50). We solve the modal problem for vp,

approximate the required Gp,m and Ĝp,m using (4.12) and (4.14), and then evaluate the right-hand side of (3.50), truncating
the infinite sums at±N . The results of Table 2 indicate that the approximation to vp converges most quickly for small values
of p; for comparisonwedisplay in Table 4 results for p = 1 and also p = 9, for increasingN and P . As expected the embedding
formula results converge more slowly for the larger value of p, reflecting the slower convergence of the approximation to
vp in this case.

To demonstrate the utility of the embedding formula, Fig. 2(a) shows a contour plot of |Fg(θ, α)| for −π ≤ θ, α ≤ π , for
parameter values ka = 2π and θ1 = π/5. The reciprocity principle (2.10) and symmetry property (2.11) are responsible for
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Table 3
Values of |Fg(π/3, π/7)| calculated via (4.17) for ka = 2π , θ1 =

π/5 and increasing P and truncation parameter N .

N P
2 4 6 8 10

5 0.09577 0.10130 0.10193 0.10193 0.10193
10 0.08158 0.23453 0.25443 0.25509 0.25510
15 0.08245 0.23517 0.25433 0.25488 0.25488
20 0.08245 0.23517 0.25433 0.25488 0.25488

Table 4
Values of |Fg(π/3, π/7)| calculated via the embedding formula (3.50)
with increasing truncation parameter N , in terms of vp for p = 1, 9
calculated using different values of P . Here ka = 2π and θ1 = π/5.
The converged value is 0.25488 (5d.p.)

N, p P
2 4 6 8 10

10,1 0.34132 0.25576 0.25527 0.25510 0.25510
15,1 0.34094 0.25552 0.25505 0.25489 0.25488
20,1 0.34094 0.25552 0.25505 0.25489 0.25488
10,9 0.20317 0.06232 0.24417 0.25522 0.25510
15,9 0.20258 0.06431 0.24426 0.25503 0.25488
20,9 0.20258 0.06431 0.24426 0.25503 0.25489

Fig. 2. Absolute value of far-field diffraction coefficients, for ka = 2π and θ1 = π/5, as functions of incident angle α and observation angle θ . Panels (a)
and (b) display |Fg(θ, α)| and |Fg(θ, α) + Fc(θ, α)| respectively.

the various symmetries. The results for the plot were generated by calculating only a single approximate solution v1, and
then using the embedding formula (3.50) to calculate all values of |Fg(θ, α)|. Fig. 2(b) shows values of |Fg(θ, α) + Fc(θ, α)|,
which is the far-field diffraction coefficient stemming from the combined effect of the gap and the cylinder, the latter given
in (3.26).

Finally we implement the embedding formula (3.53) which expresses vα in terms of vp. Fig. 3(a) displays values of vα(θ)

(multiplied by


θ2
1 − θ2, to avoid singular behaviour at the end-points) across the gap −θ1 < θ < θ1, for parameter

values ka = 2π , θ1 = π/5 and incident wave angle α = 2π/3. Results from a direct calculation are shown as lines; the
corresponding results from the embedding formula (3.53), with p = 1, are denoted by symbols, and as expected show
excellent agreement with the direct results. Also shown, in Fig. 3(b), is a plot of Re(φα(x, y)) for the same parameter values,
calculated from an approximation to vα using Eqs. (2.4), (3.20), (3.25) and (3.27).
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Fig. 3. Panel (a) displays values of real part (solid line) and imaginary part (dashed line) of vα(θ)


θ2
1 − θ2 , for ka = 2π , θ1 = π/5 and incident wave

angle α = 2π/3. Symbols denote corresponding results from embedding formula (3.53), for p = 1. Panel (b) shows Re{φα(x, y)}, for the same parameter
values.

Fig. 4. Examples of alternative scatterers B for which embedding formulae can be derived.

5. Conclusions and future directions

Based on a decomposition of the incident plane wave into an infinite sum of modes of the form Jn(kr)einθ , for the first
time embedding formulae for a simple polar geometry, consisting of a portion of the circular arc r = a, have been derived.
Embedding formulae for the far-field diffraction coefficients have been derived directly from the boundary-value problem
and from an integral equation formulation; the latter formulation also allowed the derivation of embedding formulae for
the near-field solution. Numerical results confirm the accuracy and utility of the embedding formulae.

Dirichlet boundary conditions in place of Neumann conditions require little change. Embedding formulae for related but
more complicated scatterers can also be derived. Few modifications to the process are required if the circular arc contains
more than one gap, or if multiple concentric punctured circular arcs are present (see Fig. 4(a),(b)). In each of these cases the
route which stems from the boundary-value problem will be the more straightforward to follow, as the integral equation
formulations will be relatively complicated. The number of solutions required for the embedding formula will equal the
total number of barrier tips in B; if B is symmetric around θ = 0 then half as many solutions will be needed.

Perhaps more interesting is the case displayed in Fig. 4(c), for which the new feature is the inclusion in the scatterer’s
boundaries of lines of the form θ = constant. Why should this class of scattering geometry be amenable to the methods
described in this paper? To answer this, we recall the portion of [9] which considered embedding formulae for scattering
by a right-angled wedge, with faces B1 = {(x, y) : x < 0, y = 0} and B2 = {(x, y) : x = 0, y < 0}. This was effected
by noticing that the second-order differential operator Hα = ∂2/∂x2 + k2 cos2 αI evidently commutes with the Helmholtz
operator, annihilates the incidentwave, preserves the radiation condition and boundary conditions on B1, and, when applied
to solutions of the Helmholtz equation ∂2φ/∂x2 + ∂2φ/∂y2 + k2φ = 0, it also preserves boundary conditions on B2, since

Hαφ =
∂2φ

∂x2
+ k2 cos2 α φ = −

∂2φ

∂y2
− k2 sin2 α φ

in which the only differentiation is now directed along the face B2. Embedding formulae for the right-angled wedge were
then derived using this differential operator Hα .
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These ideas can be carried over to our situation using the operator Dn = ∂2/∂θ2
+ n2I in place of Hα , which clearly

commutes with the Helmholtz equation, annihilates the incident mode φn
i in (3.2), and preserves the radiation condition

and the boundary condition on any boundary r = constant. The only question mark remaining concerns its maintenance of
boundary conditions on boundaries of the form θ = const. But

Dnφ
n

=
∂2φn

∂θ2
+ n2φn

= n2φn
−


r2

∂2φn

∂r2
+ r

∂φn

∂r
+ k2r2φn


,

in which the only differentiation is now directed along the boundary, so that Dn does indeed preserve homogeneous
Neumann or Dirichlet boundary conditions on such boundaries. With the required properties of Dn having been established,
the derivation of embedding formulae for the class of scatterers displayed in Fig. 4(c) should be straightforward.

We note that the scatterers displayed in Fig. 4(b),(c) take the form of split-ring resonators (see, e.g. [24,25]). These
structures are of interest since they can be used to construct so-called ‘left-handed’ media, i.e. media with a negative
refractive index.

Lastly, it seems plausible that embedding formulae for multiple structures of the types displayed in Figs. 1 and 4, which
are centred at different points, could be derived. Whilst the methods presented in this paper certainly seemed to require
the boundaries of the scatterer to each coincide with a portion of the line r = constant, the common use of Graf’s addition
formula (equation (9.1.79) in [20]) in problems involving scattering by multiple circular scatterers (see, e.g. [18,26]) may be
transferable. Further work is underway to investigate this possibility.
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