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Abstract 

A study was conducted to assess the human bioaccessibility of dust contaminated 

with hexabromocyclododecane (HBCD) via two migration pathways a) volatilisation 

with subsequent partitioning to dust particles, and b) abrasion of treated textile fibres 

directly to the dust. This was achieved using previously developed experimental cham-

ber designs to generate dust samples contaminated with HBCDs emitted from a HBCD 

treated textile curtain. The generated dust samples were exposed to an in vitro colon 

extended physiologically based extraction test (CE-PBET). The bioaccessibility of the 

HBCDs which were incorporated within dust as a result of volatilisation from the curtain 

material with subsequent partitioning to dust was higher than in dusts contaminated 

with HBCDs via abrasion of the curtain (35% and 15% respectively). We propose this 

occurs due to a stronger binding of HBCDs to treated fabric fibres than that experi-

enced following volatilisation and sorption of HBCDs to dust particles. 
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1. Introduction 
Since the ban of polybrominated diphenyl ethers (PBDEs), hexabromocyclodecanes 

(HBCDs) have been used as a substitute brominated flame retardant (BFR) primarily 

in polystyrene insulation, building materials and textiles as well as in electronics and 

upholstery (Covaci et al., 2006). HBCDs are not chemically bound to the polymer as 

they are incorporated into the product by an additive process (Bakker et al., 2008; 

Boutrup et al., 2011).Therefore they can migrate into the environment contaminating 

indoor dust (Roosens et al., 2009). In the same way as PBDEs, HBCDs can enter the 

environment by emission during their production or when the product is being added 

to a manufactured product, but also by leaching during the entire lifetime of the product 

(Covaci et al., 2006).  

 

Exposure to HBCDs is of concern because humans spend about 90% of their time 

indoors (Jones-Otazo et al., 2005; Allen et al., 2007) and HBCDs are persistent, neu-

rotoxic, endocrine disruptors and can alter immunological and reproductive systems 



(Roze et al., 2009; Saegusa et al., 2009; Palace et al., 2010). Rather than residing in 

air, almost all the semi volatile organic compounds (SVOC) such as HBCDs are re-

adsorbed on the surface of furniture, walls and settled dust (Weschler and Nazaroff, 

2008; Zhang et al., 2011). Dust is an important pathway of exposure to HBCDs, espe-

cially for children whose HBCDs uptake can be 10 times higher via dust ingestion than 

through diet (Abdallah et al., 2008), they are also more susceptible to toxicants as they 

are undergoing development (Roze et al., 2009). 

 

Limited information is available on the migration mechanisms of BFRs from treated 

products to dust (Rauert et al., 2014b). To date, the hypothesized migration pathways 

consist of: (1) volatilisation of BFRs from the treated product followed by partitioning 

to dust; (2) physical abrasion of the treated product and (3) transfer by direct contact 

between the treated product and dust (Webster et al., 2009; Rauert et al., 2014b). Test 

chamber experiments have previously been used to study the migration of phthalates 

simulating volatilization with partitioning to dust and transfer by direct contact between 

the treated product and dust migration pathways (Clausen et al., 2004; Schripp et al., 

2010). More recently, Rauert et al. examined volatilization of HBCDs with subsequent 

partitioning to dust (Rauert et al., 2014a) and abrasion of fibres (Rauert et al., 2014b) 

from a textile treated with the HBCD technical formulation using an in-house devel-

oped test chamber. The same group have also used chamber techniques to investi-

gate the mass transfer of PBDEs from a plastic TV casing to indoor dust via three 

migration pathways (volatilisation, abrasion and direct contact between the source and 

dust respectively) (Rauert and Harrad, 2015). These workers concluded that for high 

molecular weight PBDEs like BDE-209 the principal migration pathway to the dust is 

by source contact followed by abrasion, they did not detect substantial transfer by 

volatilisation. 

 

Oral bioaccessibility measures the fraction of compounds which are desorbed from 

the ingested matrix into the gastrointestinal fluids in vitro (Collins et al., 2015), provid-

ing an estimation of bioavailability (EPA), 2007). Bioaccessibility studies avoid the use 

of animal experiments, which are ethically and economically problematic, difficult to 

conduct and still may not represent human conditions (Hamel et al., 1999; Oomen et 

al., 1999; Ruby et al., 1993; Ruby et al., 1999). A pollutant’s bioaccessibility may vary 



depending on numerous factors such as the characteristics of the dust, physicochem-

ical properties of the compounds, gastrointestinal conditions (fed or unfed state) (Yu 

et al., 2008;Yu et al., 2013; Camenisch et al., 1998; Testa et al., 2000) and also the 

process by which chemicals are incorporated into the dust (Yu et al., 2012).  

 

Abdallah et al. (2012) used the colon extended physiologically based extraction test 

(CE-PBET) to assess the bioaccessibility of different FRs from dust. A similar CE-

PBET model was used by Fang et al. (2014) who added tenax beads as a chemical 

sink. Both groups of researchers observed a decreasing trend in bioaccessibility with 

increasing log KOW of FRs. The CE-PBET model has been chosen for the present work 

as it is deemed a realistic model of the human gastrointestinal tract. 

 

The test chamber developed by Rauert et al.  (2014a) was utilised to generate dusts 

containing elevated HBCD concentrations via: (1) volatilisation from a HBCD formula-

tion treated textile with subsequent partitioning to dust and (2) abraded treated textile 

fibres entering the dust directly. It was hypothesised that dust contaminated via the 

volatilisation with partitioning pathway (1) would have a more homogeneous distribu-

tion of HBCD through the dust sample than dust contaminated via the abrasion path-

way (2) with HBCD contamination in abraded dusts being more heterogeneous owing 

to the HBCDs primarily associated with the presence of the textile fibres. We also 

hypothesised that the HBCD-treated fabric fibres in the dust contaminated via pathway 

(2) would reduce the bioaccessibility as the HBCDs may be more strongly bound to 

the fibre than HBCDs that have partitioned to dust particle surfaces via volatilisation 

(pathway 1).  

 

2. Material and methods 
2.1.  Materials and reagents 

Solvents used during the extraction and analysis were all of analytical grade; n-hex-

ane, acetone, methanol and dichloromethane were purchased from Merck (Darm-

stadt, Germany). Indoor dust SRM 2585 was purchased from NIST (Gaithersburg, MD, 

USA). Empty polypropylene filtration SPE cartridges (3 mL) were obtained from 

Sigma-Aldrich (Gillingham, UK). Silica gel (40 µm pore size) was purchased from 

J.T.Baker (London, UK). Anhydrous sodium sulfate (Na2SO4) and concentrated sulfu-

ric acid (H2SO4, 98%) were purchased from Merck (Darmstadt, Germany). Standards 



of individual HBCDs (α-HBCD, β-HBCD, γ-HBCD), labelled 13C HBCDs (α-, β-, γ-) and 

d18 γ-HBCD were purchased from Wellington Laboratories (Guelph, ON, Canada).  

Glass fibre filters (GFFs, 12.5cm diameter, 1 µm pore size) were purchased from 

Whatman (Maidstone, UK). Florisil (60-100 mesh) and silica gel (60Å, 60-100 mesh) 

were purchased from Sigma-Aldrich (Dorset, UK). Oxygen-free nitrogen gas was pur-

chased from BOC Gases (Manchester, UK).  

For the CE-PBET model, analytical grade inorganic salts were obtained from Fisher 

Scientific (Loughborough, U.K) and organic components were purchased from Sigma-

Aldrich (Dorset, UK). All glassware was cleaned by soaking for at least 12 h in a phos-

phate-free alkali solution, rinsed with water followed by distilled water and dried at 

100°C for at least 12 h.  

 

2.2. Low level dust procurement 

As described previously (Rauert et al., 2014a), a bulk house dust sample obtained 

from a private residence in Belgium containing low concentrations of HBCDs was uti-

lised in these chamber experiments. Bulk dust samples were collected with the resi-

dents’ own vacuum cleaner. The contents of the vacuum cleaner bag were emptied 

and sieved with a 500 μm mesh size hand held sieve. The bulk dust was further sieved 

to <250 μm before use, as larger particles are considered less relevant for assessing 

bioaccessibility from dust ingestion as they are unlikely to adhere to the skin on a hand 

hence be available for ingestion from hand-mouth contact (U.S.EPA, 1999; U.S.EPA, 

2003; U.S.EPA, 2005; Duggan et al., 1985; Duggan and Inskip, 1984; Yamamoto et 

al., 2006). The dust sample was homogenised via vortex and 100-200 mg subsamples 

were extracted and analysed to determine indigenous HBCDs concentrations. Con-

centrations of HBCDs are listed in Table 1. NIST dust standard reference material 

(SRM 2585) was used for accuracy and precision measurement (see section 2.9). 

Indicative HBCD concentrations in SRM-2585 and our determinations for SRM-2585 

and the Belgian dust are shown in Table 1. 

 

 

  



Table 1. Mean HBCD concentrations (ng g-1) in SRM-2585 and 
Belgian (control) dust samples. 

    α-HBCD β-HBCD γ-HBCD 

SRM-2585 

Indicative values a, b, c 13.2 – 19.0 3.6 – 4.3 68.2 ± 120 

1 21 6.2 130 

2 24 7.7 130 

3 18 5.3 110 

average ± SD  21 ± 3 6 ± 1 123 ± 12 

 
Standard error 

CV (%) 

2 

14 

1 

17 

7 

10 

Belgian (control) dust 

1 75 10 36 

2 59 12 23 

3 25 3.0 12 

4 25 6.0 28 

5 40 8.0 32 

6 38 7.0 49 

7 42 8.0 55 

average ± SD 43 ± 18 8 ± 3 34 ± 15 

 
Standard error 

CV  (%) 

7 

42 

1 

37 

6 

44 

 
a(Van den Eede et al. 2012); b(Schreder & La Guardia 2014); c(Keller et al. 2007) 

 

2.3. HBCD treated curtains 

Fabric curtains treated with the HBCD technical formulation were obtained from the 

National Institute for Environmental Studies (NIES), Tsukuba, Japan. Concentrations 

of HBCDs in these curtains were previously reported at 18,000 mg kg-1 for α-HBCD, 

7,500 mg kg-1 for β-HBCD and 17,000 mg kg-1 for γ-HBCD (Kajiwara and Takigami, 

2013). 

 

2.4. Test chamber experimental design 

2.4.1. Test chamber apparatus 



A cylindrical in-house designed and built test chamber was utilised for these investi-

gations. Details of the chamber setup have been described previously (Rauert et al. 

2014a; Rauert et al., 2014b). Briefly, the chamber was constructed from stainless steel 

with dimensions of 10 cm diameter and 20 cm height. A removable, aluminium mesh 

shelf was placed halfway down the chamber or 3 cm above the chamber floor, de-

pending on the experimental design, to allow separation of the HBCD ‘source’ and an 

aliquot of dust. The desired temperature of the chamber was obtained by placing it 

into a hot water bath with chamber internal temperature monitored by a LogTag TRIX-

8 temperature data logger (LoggerShop Technology, Dorset, UK).  

 

2.4.2. Volatilisation with partition to dust particles 

Belgian (control) dust (1.2 g) pre-characterised for HBCDs was weighed onto a glass 

fibre filter (GFF) and placed on the chamber floor. A 4 x 4 cm piece of curtain treated 

with HBCDs (the HBCDs source) was placed on the mesh shelf located in the middle 

of the chamber. The experiment was undertaken for 1 week at 35 °C to simulate the 

worst case scenario of high volatilisation rates from curtains heated in warm countries 

during summer time. The chamber was sealed from the outside environment during 

the experiment to retain all volatilised analytes inside the chamber and encourage their 

partitioning to the dust. The configuration of these experiments is shown in Figure 1A 

(Rauert et al. 2015). After the experiment, the chamber was cooled and maintained at 

room temperature for five hours before opening to reduce the loss of volatiles with 

chamber lid removal. Post-experiment, the dust was homogenised by vortexing and 

1-2 subsamples of 0.05 g each were extracted and analysed for HBCDs. Concentra-

tions of HBCDs in these dusts are listed in Table 2. The remainder of the dust sample 

was subjected to the bioaccessibility test. 

 



  
Figure 1. Schematic of test chamber experiment for generating 
dust samples contaminated with HBCDs via: a) volatilisation 
from a HBCD source with subsequent partitioning to dust and b) 
abrasion of a HBCD source, followed by transfer to dust of 
abraded particles/fibres. Figure modified from Rauert et al. (2015). 

 

 

Table 2. Concentrations (ng g-1) of HBCDs determined in dust 
samples contaminated via volatilisation and subsequent parti-
tioning to dust. 
  α-

HBCD 
β-HBCD γ-HBCD 

Volatilisation 1 Analysis 1 190 74 280 

Volatilisation 2 
 

Analysis 1 

 

4500 

 

1600 

 

5900 

Analysis 2 400 130 500 

 Standard error 1674 600 2205 

 
Volatilisation 3 

CV (%) 

 

Analysis 1 

118 

 

1200 

120 

 

400 

119 

 

1500 

Analysis 2 940 300 1200 

 
Standard error 

CV (%) 

106 

17 

41 

20 

122 

16 

     

Volatilisation 4 Analysis 1 5200 1800 6700 

A B 



Analysis 2 2966 940 3900 

 Standard error 1117 430 1400 

 
Volatilisation 5 

CV (%) 

 

Analysis 1 

39 

 

820 

44 

 

280 

37 

 

1100 

Analysis 2 450 170 1200 

 Standard error 185 55 50 

 CV (%) 41 35 6 

 

 

2.5.3. Abrasion of textile fibres to dust 

Pre-characterised dust (0.5 g) was placed on a GFF on the chamber floor.  The mesh 

shelf was lowered to 3 cm above the chamber floor and a piece of 2 x 2 cm curtain 

treated with HBCDs was placed on the shelf. The chamber was placed on a magnetic 

stirrer plate and the abrasion of the curtains was generated with a magnetic stirrer bar, 

40 mm x 8 mm, (Fisher Scientific, Leicestershire, UK) which was also placed on the 

mesh shelf. The rotating stirrer bar (200 rpm) was in direct contact with the curtain 

encouraging the loosening of fibres and particles to migrate through the mesh into the 

dust. The abrasion experiments were conducted for 24 hours at room temperature to 

minimise losses of HBCDs via volatilisation. The chamber experimental design for 

these experiments is illustrated in Figure 1B. 

 

Post experiment, any fibres observable with the naked eye were removed to reduce 

the presence of large (>250 μm) particle sizes and the dust was homogenised by vor-

texing. One aliquot of this abraded dust (0.05 g) was extracted and analysed for 

HBCDs. Elevated HBCD concentrations were observed (7000-20000 ng g-1) and in 

order to reduce the HBCD concentration to within an order of magnitude of the volati-

lised dusts (to remove concentration differences as a factor influencing bioaccessibil-

ity), the abraded dusts were diluted with the addition of an aliquot of the original Bel-

gian dust, containing minimal levels of HBCDs (Table 1). Five abrasion dusts of 1.2 g 

each were prepared mixing 0.03-0.4 g of the chamber generated dust with the original 

Belgian dust. The dusts were thoroughly mixed by vortexing and three subsamples of 



0.05 g each were extracted and analysed for HBCDs. The remainder of the dust sam-

ple was exposed in the bioaccessibility model. HBCD concentrations of the dusts are 

shown in Table 3. 

 

Table 3. Concentrations (ng g-1) of HBCDs determined in dust 
samples contaminated via abrasion. 
  α-HBCD β-HBCD γ-HBCD 
Abrasion 1 Analysis 1 470 170 840 

 

Analysis 2 290 96 410 

Analysis 3 570 350 4100 

Standard error 

CV 

                      

82 

32 

75 

64 

1165 

133 

 

Abrasion 2 Analysis 1 3600 1100 5000 

Analysis 2 610 220 840 

Analysis 3 320 99 400 

Standard error  

CV 

                          

1048 

120 

315 

116 

1466 

122 

 

Abrasion 3 Analysis 1 6800 2300 10000 

 
 

Analysis 2 430 140 570 

Standard error 

CV 

                         

3185 

125 

1080 

125 

4715 

126 

 

Abrasion 4 Analysis 1 700 200 850 

 
 

Analysis 2 1100 500 2600 

Analysis 3 250 90 310 

Standard error  

CV                          

246 

62 

 

123 

81 

691 

96 

Abrasion 5 Analysis 1 3100 830 3300 

 

 

Analysis 2 230 72 280 

Analysis 3 450 160 610 



Standard error 

CV                           

922 

127 

239 

117 

9 

119 

 

Abraded and volatilised dusts display a large heterogeneity of HBCDs concentrations 

between replicates of the same dust. This difference in concentrations will not affect 

the bioaccessibility analysis because the bioaccessibility is calculated as a ratio of 

phases in the CE-PBET (see equation 1) assuming the contaminated matrix is the 

same in each case. A t-test comparing the HBCDs concentrations in volatilised and 

abraded dusts was not significant (p>0.05) (Table S2, Supporting Information).  

 

2.5. Incubation with CE-PBET 

The prepared dusts (original low HBCD level Belgian dust, 5 simulated abrasion dusts 

and 5 volatilisation with partitioning to dust samples), the SRM-2585 dust reference 

material and uncontaminated sand as a procedural blank were exposed in the CE-

PBET model in triplicate. Bioaccessibility experiments were conducted using the 

model in a fed state to represent the maximum bioaccessibility scenario and a solid to 

liquid (S/L) ratio between the dust matrix and the gastrointestinal solutions of 1/167. 

Lower S/L ratios have shown saturation phenomena of the chemicals in the GI solu-

tions (Van de Wiele et al., 2007) which may result in underestimated bioaccessibility 

values and S/L ratios between 1/150 and 1/250 have been suggested as optimum (Yu 

et al., 2011). 0.3 g of each dust was exposed in 50 mL of stomach solution at pH 2.5 

which also contained food components and the samples were incubated for 1h at 37°C 

in water bath with constant shaking. After this time, the stomach solutions with the 

dusts were converted to small intestine solutions by adding pancreatin (1.78 g/L) and 

bile salts (0.5 g/L) and increasing the pH to 7 by addition of NaCl. Samples were re-

turned to the water bath for a further 4h. After this incubation, the samples were cen-

trifuged (20°, 3000 rpm, 10 min) keeping the liquid phase for extraction of HBCDs (i.e. 

bioaccessible fraction in the small intestine) and introducing the pellet into the colon 

medium. Colon solutions were incubated during 16h at 37°C water bath under con-

stant shaking and then were centrifuged as above. HBCDs from the liquid phase were 

extracted and considered as bioaccessible fraction in the colon. HBCDs from the pellet 

were also extracted; these are considered as the non bioaccessible fraction or residue. 

The bioaccessibility protocol is depicted in Figure 2.  



 

 

Figure 2. Schematic procedure of CE-PBET modified from Collins 
et al. (2015). 
 

Bioaccessibility was determined using Equation 1, where mHBCDs supernatants is 

the sum of the mass (ng) of HBCD determined in the small intestine and colon super-

natant phases of the CE-PBET and mHBCDs pellet is the mass (ng) determined in the 

pellet from the colon solution (residue from the centrifugation of the colon solution 

which is considered as the non bioaccessible fraction) of the CE-PBET.  

 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 𝑥𝑥100        (1) 

 

 

2.6. HBCDs extraction 

Stomach Small intestine Colon 

Small intestine conversion: 
Add bile salts and pancreatin,  
Adjust pH to 7 

Sample centrifuged 
and supernatant taken 
for analysis. 
 
Dust pellet added to 
colon medium. 

Add stomach medium  
and food components  

pH 2.5 
1 hr 

pH 7 
4 hr 

pH 6.5 
16 hr 

Add  0.3  g sample  
matrix maintain  
liquid to solid ratio  
167:1  

Use material  
sieved to <250 µm  

Transfor-
mation 

Sample centrifuged 
and supernatant taken 
for analysis. 
  
Dust pellet extracted 
and analysed as 
residue. 



Dust extraction and purification was performed using previously published methods 

(Rauert et al., 2014a, Rauert et al., 2014b). Dusts were loaded into 66 mL cells con-

taining 1.5 g of Florisil and Hydromatrix and were extracted with pressurised liquid 

extraction (ASE 350, Dionex Europe, UK). Each cell was fortified with 4 ng of 13C-

labelled α, β and γ-HBCD as internal (surrogate) standards prior to extraction with 

hexane:dichloromethane (1:1 v/v) at 90oC and 1500 psi. The cell was heated for 5 min, 

held static for 4 min and purged for 90 s, with a flush volume of 50%, for 3 cycles. The 

collected ASE extracts and chamber inner surface solvent rinses were concentrated 

to 0.5 mL using a ZymarkTurbovap II (Hopkinton, MA, USA) before purification. Clean-

up was conducted by loading onto SPE cartridges filled with 4 g of pre-cleaned acidi-

fied silica (44% concentrated sulfuric acid w/w). The analytes were eluted with 30 mL 

of hexane:dichloromethane (1:1, v/v), with the eluate evaporated to dryness under a 

gentle stream of nitrogen. Samples were reconstituted to 100 μL with 2 ng of d18-γ-

HBCD in HPLC grade methanol, used as recovery standard. 

 

Extracts from the small intestine, colon and the residual pellet were fortified with 4 ng 

of 13C-labelled γ-, α-, and β-HBCD. Samples were extracted via a single liquid-liquid 

extraction with the addition of 30 ml of acetone-hexane (1:1), followed by incubation 

in a water bath for 1 hour at 37°C and sonicated for 30 min. The hexane layer was 

removed and evaporated to 1 mL under a steady stream of nitrogen. Sample clean-

up was performed with 0.5 mL of concentrated sulfuric acid, added to sample vials, 

and vortexed for 1 minute. The hexane (top) layer was removed for acid silica clean-

up. Empty solid phase extraction (SPE) cartridges were prepared for use by addition 

of 1 g of acidified silica (44% w/w), then 0.5 g of anhydrous sodium sulfate. The acid 

silica was prepared following a previously reported method (Ali et al., 2011) where 50 

g of silica gel was washed with 80 mL of n-hexane before sonication in an ultrasonic 

bath for 30 minutes. The silica was heated to 160°C overnight, then after cooling to 

room temperature, 22 mL of concentrated sulphuric acid (98 %) was slowly added 

under continuous stirring. HBCDs were eluted from the prepared SPE columns with 

15 mL of n-hexane and 3 mL of DCM. These extracts were evaporated and reconsti-

tuted to 100 μL with 2 ng of d18-γ-HBCD in HPLC grade methanol added as a recovery 

standard and introduced into LC-MS vials. 

 



2.7. HBCDs analysis 

Target HBCDs were separated with a dual pump Shimadzu LC-20AB Prominence liq-

uid chromatography (Shimadzu, Kyoto, Japan) equipped with a SIL-20A autosampler, 

and a DGU-20A3 vacuum degasser. A Varian Pursuit XRS3 C18 reversed phase an-

alytical column (150 mm x 4.6 mm i.d., 3 μm particle size) was used for separation of 

target HBCDs (α-, β- and γ-). A mobile phase program based upon (mobile phase A) 

1:1 methanol/water and (mobile phase B) methanol at a flow rate of 0.18 mL min-1 was 

applied for elution of the target compounds. 

 

Mass spectrometric analysis was performed using a Sciex API 2000 triple quadrupole 

mass spectrometer (Applied Biosystems, Foster City, CA) equipped with an ESI ion 

source operated in negative ion mode. MS/MS detection, operated in multiple reaction 

monitoring (MRM) mode, was used for quantitative determination of the HBCD dia-

stereomers, 13C-, and d18- labelled analogues. Recoveries of HBCDs were 87-94% 

(Table S1). 

 

2.8. Accuracy and Precision 

As a measure of accuracy and precision of the method, SRM-2585 was analysed on 

a regular basis. Due to the lack of an appropriate reference material for HBCDs, this 

SRM was analysed and concentrations compared to the reported values in the litera-

ture were measured (Table 1). The SRM was analysed with every 20 samples as an 

ongoing method performance check. Three 0.3 g of laboratory-grade sand were run 

through the CE-PBET model in triplicate as a method blank. Concentrations of HBCDs 

were close to or <LOQs (0.5 ng g-1). 

 

2.9. Statistical analysis 

The differences between the averages within groups were analysed using Microsoft 

Excel 2010 with t-tests assuming equal variances. The correlation between two varia-

bles were analysed by simple linear regression. A p-value of less than 0.05 was con-

sidered to indicate statistical significance. 

 

3. Results and discussion 
3.1. Chamber generated dust samples 



Table 2 lists concentrations of HBCDs in two replicate analyses of the dusts generated 

via the volatilisation with subsequent partitioning to dust (pathway 1), from 5 experi-

mental runs.  Table 3 presents the concentrations of two to three analyses of the 5 

dusts generated via abrasion (pathway 2). The large variation in HBCD concentrations 

in the repeat analyses of all dust samples demonstrate the heterogeneity of the 

HBCDs throughout the dusts. Following volatilisation with subsequent partitioning of 

HBCDs to dusts the CV between analyses was relatively low; majority of the dusts 

(17-44%), with one dust above 100%. The CV of the abraded dusts was above or 

close to 100% in all dusts. This result is perhaps expected for the dusts generated via 

abrasion as HBCD concentrations are dependent on the location of the HBCD treated 

textile fibres within the dust. The migration of BFRs to dust via volatilisation has been 

suggested to result in a uniform or homogeneous distribution of BFRs in dust com-

pared with transfer via abrasion of source material(s) (Webster et al., 2009; Suzuki et 

al., 2009).  

 

HBCD concentrations in the SRM-2585 dust had lower variability than the original Bel-

gian dust or the dusts generated by abrasion or volatilization with subsequent parti-

tioning to dust (Table 1). The CVs of the HBCD diastereomers in the SRM were 14, 

17 and 10% for α, β and γ HBCD respectively whereas the CVs of the Belgian dust 

were 39, 77 and 78% respectively. The CV of the three HBCD diastereomers in abra-

sion generated and volatilised with subsequent partitioning to dust samples varied be-

tween dust replicates (30-120%). One explanation of this greater heterogeneity in the 

Belgian dust compared to the SRM is due to the differences in particle size of the 

dusts. The Belgian dust was sieved at <250 µm whereas the dust reference material 

was sieved <90 µm (Poster et al., 2007). This difference in particle size may result in 

a more homogeneous distribution of HBCDs, as larger particles may have originated 

from abrasion of fibres/particles from a treated source (i.e. creating isolated areas of 

high HBCD concentrations). 

 

There was no significant difference (p > 0.05) in the concentrations between volatilisa-

tion dusts and abrasion dusts showing that we achieved our objective of generating 

dusts that contained statistically similar concentrations of HBCDs from two migration 

pathways. This is critical in order to eliminate variation in the bioaccessibility resulting 

from concentration differences between the two dusts. 



 

3.2. Bioaccessibility of HBCDs 

 

3.2.1. SRM-2585 

Three aliquots (0.3 g) of the SRM-2585 dust were subjected to the CE-PBET method 

as another QC check. The amount of HBCDs (ng) of each compartment were con-

verted to ng g-1 dust (for the CE-PBET 0.3 g dust were used) and the recovered con-

centrations obtained in the stomach, colon and residue compartments were consistent 

with the indicative values of SRM-2585 for γ-HBCD (Table 4). The concentration of α- 

and β-HBCDs in the stomach and colon samples were <LOQ in the three replicates 

and γ-HBCD was only 2.0-8.6% bioaccessible. This low bioaccessibility can be at-

tributed to the strong bonds between HBCDs and the dust as a consequence of the 

long residence time (long period of time in contact with the dust). The different parent 

material as source of HBCDs between the SRM-2585 (which is a pooled sample of 

indoor dusts) and the piece of curtain could also affect to decrease the bioaccessibility. 

 

Table 4. Indicative mass (ng) of HBCDs in SRM-2585, in small in-
testine, colon and residue compartments and bioaccessibility of 
HBCDs from three replicate analyses of the SRM (LOD = limit of 

detection). 
    α-HBCD β-HBCD γ-HBCD 

SRM-Indicative values 

(whole dust)   19 ± 3.7 4.3 ± 1.1 120 ± 22 

SRM-1 Small intestine <2.2 <1.9 2.2 

 Colon <2.2 <1.9 4.2 

 Residue 17 5.5 68 

  Bioaccessibility (%) < LOD < LOD 8.6 

SRM-2 Small intestine <2.2 <1.9 <2.2 

 Colon <2.2 <1.9 7.1 

 Residue <2.2 <1.9 170 

  Bioaccessibility (%) < LOD < LOD 4.0 

SRM-3 Small intestine <2.2 <1.9 23 

 Colon <2.2 <1.9 4.3 



 Residue <2.2 <1.9 140 

  Bioaccessibility (%) < LOD < LOD 2.0 

 

 

3.2.2. Dusts generated by volatilisation with partitioning to particles and abrasion 

The mean bioaccessibility of HBCD from both migration pathways compared to the 

Belgian dust (control) are shown in Figure 3 and in Table 5. In general, the samples 

contained higher concentrations in the residue compartment with concentrations rang-

ing between 10-31%, 3-10% and 63-86% in the stomach, colon and residue respec-

tively. These results suggest therefore that a substantial proportion of ingested HBCDs 

stay bound to dust and pass through the digestive system without being absorbed into 

the gastrointestinal tract. 

 

 
Figure 3. Average bioaccessibility of HBCDs from the control, 
and dusts contaminated via volatilisation with subsequent parti-
tioning and abrasion. The y-error bars represent the standard error. 

(*) denotes a statistically significant difference (p<0.05) in bioaccessi-

bilities (%) between volatilisation and abrasion generated dusts.  
 

Table 5. HBCD distribution (%) in small intestine, colon and resi-
due compartments and the bioaccessible fraction (%) of dusts 
when contaminated via volatilisation or abrasion, and Belgian 
dust (control). Five dusts contaminated by abrasion and five 
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dusts contaminated by volatilisation were exposed to the CE-
PBET in triplicate (5x3 dusts per migration pathway). 

   α-HBCD β-HBCD γ-HBCD 

Volatilisation 

Small Intestine 22 30 12 
Colon 3.4 2.3 11 
Residue 74 48 78 
Bioaccessibility (%) 32 34 37 

 Standard error 7 8 8 

Abrasion 

Small Intestine 13 12 11 
Colon 4.6 8.5 3.3 
Residue 83 80 86 
Bioaccessibility (%) 16 14 14 

 Standard error 3 3 4 

Belgian dust 

Small Intestine 3.8 1.7 10 
Colon 3.2 0.4 3.1 
Residue 42 72 59 
Bioaccessibility (%) 12 16 19 

 Standard error 2 3 2 
 

 

The bioaccessibility of all 3 HBCD diastereomers was significantly higher in dusts con-

taminated via the migration by volatilization pathway (1) compared to the abrasion 

pathway (2) (p=0.02, 0.01 and 0.007 for α, β and γ respectively). Dusts contaminated 

via volatilisation with subsequent partitioning had a significantly higher bioaccessibility 

than in the Belgian dust (control) in the case of α and β HBCDs (p=0.02 and 0.01 

respectively), whereas the bioaccessibility in abrasion generated samples compared 

to the control dust was not significantly different for any of the diastereomers (p>0.05). 

A stronger bond between HBCDs and dust particles/fibres is expected when these 

hydrophobic compounds migrate to the dust in the guise of abraded source fibres/par-

ticles than via volatilisation and subsequent partitioning to dust. This stronger bond 

can be explained by the residence time of the compounds in the matrix. In abraded 

material this residence time is longer because HBCDs are already sorbed to the fibres. 

By comparison, when they migrate by volatilisation they are newly incorporated into 

the dust and are desorbed less strongly. This may contribute to the lower bioaccessi-

bility in the control dust and in the SRM-2585 than in the volatilisation with partitioning 

dust samples. The strong binding between HBCDs and curtain fibres may make 



HBCDs less bioaccessible to the biological fluids in a parallel manner to the influence 

of organic matter on the bioaccessibility of PBDEs (Yu et al., 2013). 

 

The mean bioaccessibility of HBCD diastereomers in the present study from chamber 

generated dust was 14 to 37%, lower than that previously reported (72-90%) by Abdal-

lah et al. (2012). Abdallah et al. simulated the digestion in an unfed state therefore we 

would have expected the bioaccessibility of lipophilic compounds such as HBCDs to 

be lower in unfed state than in the present study. In addition, Abdallah et al. (2012) 

used the same dust sample in 10 replicates which was homogeneous in HBCD con-

centration. In the present study for instance, we used 12 different samples and the 

volatilised and abraded dusts had a greater heterogeneity in concentrations of HBCDs. 

It is thus likely that the highly variable bioaccessibility values obtained for the chamber 

generated dusts stem from a non-homogeneous distribution of HBCD concentrations 

throughout these samples. The bioaccessibility of the SRM-2585 and the control Bel-

gian dust were consistent for the triplicate assays. (Fang and Stapleton, 2014) re-

ported up to 80% bioaccessibility of OPFRs and suggested that the increased bioac-

cessibility (when compared to PBDEs) was due to a difference in log KOW. Following 

this, as HBCDs have a similar log KOW to PBDEs, they should present a similar level 

of bioaccessibility. Our results are in line with the previously reported PBDE bioacces-

sibilities (20-58% for tri-hepta-BDEs) (Abdallah et al., 2012; Yu et al., 2013). 

 

4. Conclusion 
This study is the first to test the hypothesis that the migration pathway via which 

HBCDs enter dust influences the bioaccessibility of HBCDs from dust ingestion. 

HBCDs were more bioaccessible from dust samples contaminated via volatilisation 

with subsequent partitioning to dust (mean 35%) than in dust contaminated via 

abraded source fibres (mean 15%). We believe this difference in bioaccessibility re-

sults from fibres released from the curtains during the abrasion process. These fibres 

which are not bioaccessible contain high amount of HBCDs.  
Volatilisation is considered as the main migration pathway for SVOCs compounds 

from treated products to indoor environment. These results have shown that com-

pounds released to indoor air and deposited into the dust become more bioaccessible 

than when migrated by abrasion. Previous research suggested that BDE-209 in dusts 

is originated from polymers via abrasion whereas the lower brominated PBDEs (with 



higher vapour pressures) enter the dust through volatilising to the air. This difference 

in migration may be one of the reasons of why BDE-209 has been shown to be less 

bioaccessible than other PBDEs. Future research should consider including in the risk 

assessment of SVOCs the migration pathways in order to determine the worse expo-

sure case scenario.  

 

Although the mean bioaccessibilities of HBCDs from dusts contaminated with abraded 

source fibres were significantly lower (p < 0.05) than those in dusts contaminated as 

a result of volatilisation followed by deposition, more data are required to confirm this 

result. The results from this study were obtained under only one specific BFR usage 

scenario, HBCDs present in a treated textile. Future research should investigate the 

behaviour of different BFRs and the influence of different source materials. In conclu-

sion, these results suggest that exposure estimates of HBCDs to humans from in-

gested dust that do not take into account bioaccessibility and factors such as the mode 

of HBCD incorporation into the dust are potentially incorrectly calculating exposure 

and should be updated. 
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