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Abstract 

The threat to UK food security due to cereal diseases is serious. Diseases can affect 

crops and have a serious impact on the economic output of a farm and on food. 

Among cereal diseases, Fusarium Head Blight (FHB) and Fusarium Crown Rot 

(FCR) disease are two of the most widespread and damaging diseases of cereal 

crops. This thesis reports the effect of Piriformospora indica on Fusarium diseases 

of wheat, both head blight and crown rot, with the purpose of developing a solution 

to control crop diseases by using natural microorganisms.  

Piriformospora indica is a root endophyte belonging to the Sebacinaceae 

(Sebacinales, Basidiomycota). It was originally found in the Thar desert of 

Rajasthan, in India. P. indica forms mutualistic symbioses with a broad range of 

host plants, increasing their biomass production and resistance to fungal pathogens. 

Glasshouse experiments and controlled environmental chambers with conditions 

adjusted to UK autumn conditions were used to determine the effect of P. indica on 

FCR disease of wheat, both Fusarium culmorum and F. graminearum. P. indica 

reduced damage to wheat seedlings by restricting growth of pathogen in the root. 

The effect of P. indica on FHB disease of winter (cv. Battalion, NABIM group 2) 

and spring (cv. Paragon, Mulika, Zircon (NABIM group 1), Granary, KWS Willow 

(NABIM group 2) and KWS Kilburn (NABIM group 4)) hard wheat and 

subsequent contamination by the mycotoxin deoxynivalenol (DON) were examined 

in the pots under UK weather conditions. P. indica application reduced FHB disease 

severity and incidence and mycotoxin DON concentration of inoculated winter and 

spring wheat samples. P. indica also increased above-ground biomass, thousand 

grain weight and total grain weight. The effects were similar at different fertiliser 

levels. The effect of P. indica was compatible with the arbuscular mycorrhizal 

fungus Funneliformis mosseae and foliar fungicide Aviator Xpro (Bayer 

CropScience, UK; with active ingredients of prothioconazole and bixafen) 

application. P. indica reduced severity and incidence of naturally arising infection 

by Septoria leaf blotch (caused by Zymoseptoria tritici), yellow rust (caused by 

Puccinia striiformis f. sp. tritici) and powdery mildew (caused by Blumeria 
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graminis f.sp. tritici). The nutrient analysis of soil and plant tissue samples showed 

that P. indica did not have any effects on phosphorus, nitrogen and potassium status 

and uptake were not significantly affected by P. indica inoculation. 

P. indica mRNA for the elongation factor (TEF gene) was used as an indicator of 

P. indica viability in soil. P. indica was still alive after four and eight months in 

pots of soil from the Reading area, which had been left open to winter-summer 

weather conditions without host plants, but not after 15 months. PCR-denaturing 

gradient gel electrophoresis of DNA extracted from root zone or from bulk soil, in 

which P. indica-infected wheat had been grown, showed P. indica increased the 

root and soil fungal and bacterial species diversity. Test on arable weeds, black-

grass, wild-oat and cleavers, showed that on average over species P. indica 

increased root biomass by 35 %; but above-ground biomass was not significantly 

affected by P. indica. The average above-ground competitiveness of the weeds with 

wheat was slightly decreased. 

My results suggest that P. indica could be used to control wheat diseases in field 

settings in the UK. However, extensive data would be needed to determine 

ecological and agronomical safety and persistence, before release on a field scale 

was commercialised.  
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CHAPTER 1- Literature Review 

1.1. Wheat 

Wheat is a major food resource globally and is the most important agricultural 

commodity in international trade. World wheat production is approximately 715 

million tons, which is second to maize (1 billion tons) and higher than rice (480 

million tons) and is currently grown on more land area (220 million hectares) than 

maize and rice (185 and 165 million hectares, respectively) (FAOSTAT, 2015). 

Wheat is one of the most common staple food crops for more than one-third of the 

world’s population. It provides on average one-fifth of the total calorific input of 

the world’s population (FAO, 2015). Wheat has a higher protein, fat and fiber 

content, compared with other grains. It is also rich in vitamins and minerals such as 

manganese, phosphorus, potassium, zinc, vitamin B6, folate, thiamin, riboflavin 

and niacin (Sramkovaa et al., 2009). Wheat flour is used to make a wide variety of 

foods such as bread, biscuit, cakes, breakfast cereal, pasta, noodles, and couscous 

(McMullen et al., 1997, Pena, 2002). Wheat can be grown within a wide range of 

locations having diverse environmental conditions. Therefore, for thousands of 

years, wheat has been one of the most prominent food sources for humans and 

livestock (Shewry, 2009). World wheat production is almost entirely based on just 

two wheat species: common wheat or bread wheat (Triticum aestivum L.) for about 

95 % of the world production and durum wheat (T. turgidum L. ssp. durum (Desf.) 

Husn) for the remaining 5 % (Shewry, 2009). 

Grain hardness is a key cultivar trait for milling that refers to the texture of the 

kernel, that is, whether the endosperm is physically hard or soft (Giroux & Morris, 
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1998). Hard and soft wheats have different processing requirements and end-uses. 

Generally, hard wheat is used for bread making whereas soft wheat is used for 

cookies, cakes, and pastries (Morris & Rose, 1996). 

NABIM categorises UK wheat cultivars into one of four groups in order to give 

farmers an indication of the likely use of the grain and how much it is likely to be 

worth (NABIM, 2015): Group one: these are the cultivars that produce consistent 

milling and baking performance; Group 2: this group comprises cultivars that 

exhibit bread-making potential, but are not suited to all grists; Group 3: this Group 

contains soft cultivars for biscuit, cake and other flours where the main requirement 

is for soft milling characteristics, low protein, good extraction rates, and an 

extensible but not elastic gluten; Group 4: these cultivars are grown mainly as feed 

wheats for animals (NABIM, 2015). 

Wheat is believed to have originated in south-western Asia over 10,000 years ago 

and is related to wild species that still can be found in Lebanon, Syria, northern 

Israel, Iraq, and eastern Turkey (Sleper & Poehlman, 2006). The spread of wheat 

from its site of origin across the world is summarized by Shewry (2009). The main 

route into Europe was via Anatolia to Greece (8000 BP) and then across to Italy, 

France and Iberia (7000 BP), finally reaching the British Isles and Scandinavia by 

about 5000 BP. Similarly, wheat spread via Iran into central Asia reaching China 

by about 3000 BP and to Africa, initially via Egypt. It was then introduced to 

Mexico in 1529 and to Australia in 1788. 

The UK is one of the largest producers of cereal crops in the EU. Cereals have long 

been produced in the UK, to a current annual value of over £2.5 billion (Rossides, 

http://en.wikipedia.org/wiki/Pound_sign
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2015). Within UK agriculture, cereal crops account for about 15 % of total UK 

agricultural land, but over 65 % of total cropping (DEFRA, 2015). The planted area 

of cereals is currently 3 million hectares, of which around 2 million hectares are 

under wheat cultivation. UK wheat production, in 2013, was around 12 million tons, 

39 % less than 2014 production which was around 16 million tonnes (FAOSTAT, 

2015). The reduced production in 2013 was probably due to prolonged wet weather 

leading to difficult planting conditions and a lack of sunshine during the key grain 

filling period leading to poor harvest including high levels of disease (Twining & 

Wynn, 2013).  

This illustrates how wheat production can be severely limited by both biotic and 

abiotic constraints. Approximately 200 diseases have been reported in wheat, 50 of 

which cause economic losses, varying according to region and climate (Wiese et 

al., 2000). Among all pathogens, fungi are the main and most common agents of 

disease (Wiese, 1987, Bockus et al., 2010).  

Among fungal diseases Fusarium Head Blight (FHB) and Fusarium Crown Rot 

(FCR) disease are two of the most widespread and damaging diseases of cereal 

crops, including both hexaploid/bread wheat and durum wheat. They are present in 

most parts of the world (Parry et al., 1995, Bailey et al., 2000, Fernandez et al., 

2009). 

1.2. Fusarium spp. 

Fusarium spp. belong to anamorphic Hypocreaceous Ascomycetes (Ascomycota: 

Hypocreales: Nectriaceae) in the sexual genera Gibberella and Nectria (Liddell, 

2003, Moretti, 2009). Members of the genus Fusarium are considered to be some 
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of the most economically important fungi causing disease in most species of plants, 

produces mycotoxins, with modes of genetic change with broad evolutionary 

implications and can be consumed in a processed food  (Ma et al., 2010, Geiser et 

al., 2013). Fusarium spp. can cause a wide range of diseases such as ear rot in corn, 

bakane in rice, Fusarium head blight and crown rot in wheat and Fusarium patches 

on many species of cultivated plants other than small grains. Some species of 

Fusarium appear to be ubiquitous, while others are limited to specialized habitats 

as saprophytes or parasites (Leslie & Summerell, 2006).  

The genus Fusarium was first described by Link, a German mycologist, in 1809, as 

a large, common group of fungi that could grow on many substrates such as soil, 

water and either living or dead organic substrates (Stack, 2003). More than 1000 

Fusarium species had been described by the end of the 19th century and it was 

difficult to differentiate species within the genus. Wollenweber and Reinking 

(1935) work reduced the 1000 species to about a 100 taxonomic entities with 65 

species and 55 varieties. Since then, the number of defined taxa has ranged from 

the nine species described by Snyder and Hansen (1945), to 44 species and seven 

varieties described by Booth (1971); and more than 70 species and 55 varieties 

described by Gerlach and Nirenberg (1982). Leslie and Summerell (2006) 

recognised 70 species based on morphological, biological and phylogenetic criteria. 

This instability in nomenclature and classification of Fusarium species has made it 

difficult to identify species. Currently, Fusarium comprises 300 phylogenetically 

distinct species that have been discovered via molecular phylogenetics; however, 

most of these species have not yet been described formally (Aoki et al., 2014).  
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1.2.1. Fusarium Crown Rot and Head Blight 

1.2.1.1. History and biology of Fusarium Crown Rot 

Crown rot is known by a variety of names including dryland foot rot, dryland root 

rot, foot rot, Fusarium crown rot, Fusarium root rot and common root rot (Paulitz 

et al., 2002). The disease is caused by several pathogens. Different pathogens are 

dominant in different areas or even by different pathogens during successive 

growing seasons in individual fields (Paulitz et al., 2002, Cook, 2010, Backhouse, 

2014). The disease is primarily caused by F. culmorum and F. graminearum 

(Fernandez & Chen, 2005). Although crown rot has received less attention than 

FHB worldwide, it occurs in most cereal producing regions of the world including 

Europe, Australia, North America, South America, West Asia, South Africa, and 

North Africa. Fusarium species limit yield by rotting seed, seedlings, roots, crowns, 

basal stems, or heads (Smiley et al., 1996, Paulitz et al., 2002, Smiley et al., 2003). 

Infection of seedlings and basal stems leads to yield loss from damaged seedlings, 

pre-harvest lodging, and impaired grain filling (Schilling et al., 1996).  

The symptoms of FCR disease are well characterized (Fig. 1.1). Typical symptoms 

of crown rot include a honey-brown discoloration (with an occasional pink tinge) 

of the subcrown internode (one, two and sometimes three internodes) extending up 

into the crown, and the basal leaf sheaths and stem show a brown necrosis (Scherm 

et al., 2013). Infection of the crown region leads to destruction of the vascular 

system and disruption of water movement and prevents recovery of infected plants 

from water stress, resulting in premature death of the tiller and the subsequent 

formation of 'white heads' containing little to no seed (Matny, 2015). There are two 
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types of infection on the roots: the most common is directly associated with the sub-

crown internode; rarely, other lesions occur as discrete entities on seminal and 

secondary roots (Fig. 1.1) (Burgess et al., 2001, Nicol et al., 2007). 

 
Fig. 1.1. The symptoms of Fusarium Crown Rot disease of wheat. The symptoms 

first appear as a honey-brown discoloration on the subcrown internode extending 

up into the crown, then brown necrosis on the basal leaf sheaths and stem (Source: 

http://www.agricentre.basf.co.uk/BASF-Disease-Encyclopedia).  

 

1.2.1.2. History and biology of Fusarium Head Blight 

Fusarium head blight (FHB), also called scab, is a common fungal disease of wheat, 

barley, oats and maize. The disease is an economically important disease that results 

in reduced grain quality and yield and straw production (Parry et al., 1995). FHB 

was first described by W.G. Smith in England in 1884 as wheat scab and 

Fusisporium culmorum later described as the causal agent (McInnes & Fogelman, 

1923). Chester (1890) gave the first detailed description of FHB. Later in the same 

century, Arthur (1891) and Detmers (1892) both reported that scab was an 

important disease of wheat. Atanasoff (1920) argued that scab was not a suitable 

common name and used the term Fusarium blight. Dounin (1926) again changed 
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the common name to 'fusariosis'. The disease is currently known as scab or FHB 

(Stack, 2003). 

Since the late 1930s, severe FHB epidemics have been documented in Australia 

(1978 and 1983), Canada (1939-1943, 1980, 1993 and 1994) (Sutton, 1982, 

Fernando et al., 1997, Stack, 2003), China, Brazil, Argentina, Central Europe, 

Kenya, USA, UK and several other countries (Windels, 1999, Muthomi & Mutitu, 

2003, Goswami & Kistler, 2004, Muthomi et al., 2008, Xu et al., 2008b, Madden 

& Paul, 2009, HGCA, 2015b).  

Several species of Fusarium have been identified in association with FHB (Liddell, 

2003). The number of species causing disease is at least 17, of which F. culmorum, 

F. graminearum, F. avenaceum, F. langsethiae, F. poae, Microdochium nivale and 

M. majus are the most regularly important species (Parry et al., 1995, Ruckenbauer 

et al., 2001, Xu et al., 2005).  

In the UK, F. culmorum and F. graminearum are more important because they are 

the major causes of deoxynivalenol (DON) mycotoxin contamination of wheat 

grain. The distribution of F. graminearum and F. culmorum is most likely linked to 

climate as several studies suggest that F. culmorum is the dominant pathogen in 

cooler/wetter climates (Backhouse & Burgess, 2002, Strausbaugh et al., 2004, 

Smiley et al., 2005, Xu et al., 2005). However, in the UK, there appears to be no 

trend associated with mean temperature for years when F. graminearum has 

predominated over F. culmorum and vice versa (West et al., 2012). Since 1998, 

when monitoring of pathogen incidence began, significant changes in the level of 

occurrence and distribution of both F. culmorum and F. graminearum have 
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occurred. Overall, there has been a downward trend in the prevalence of F. 

culmorum. Conversely, F. graminearum has increased in prevalence. Between 

1998 and 2002, isolations of F. graminearum were primarily from crops in the 

south-west and south-east of England. Since 2002 the distribution in occurrence 

of F. graminearum has spread northwards. F. graminearum is generally regarded 

as producing larger losses in yield and more mycotoxin than F. 

culmorum  (Jennings & Humphries, 2009, CropMonitor, 2015). Microdochium 

species, both M. nivale and M. majus, can be part of the Fusarium species complex 

and are associated with regions of relatively cool/moderate temperatures and 

frequent rainfalls of short duration. It is believed that both Microdochium species 

do not produce mycotoxins (Xu et al., 2008a). 

The first symptoms of FHB infection are characterised by the appearance of water-

soaked brown-coloured lesions of 2-3 mm in length (Fig. 1.2) (Xu, 2003). The 

symptoms appear within 2-4 days after infection under favourable conditions, 

mostly at the base of the middle spikelets in the middle of the head (Stack, 2003). 

Infections can occur as early as spike emergence, but the flowering stage or shortly 

after is considered the most vulnerable stage for Fusarium infection. Soon after the 

water soaking appears, symptoms spread to the rachis. Through the rachis the 

fungus can rapidly spread up, down and horizontally in the spike (Goswami & 

Kistler, 2004, Madgwick et al., 2011). Frequently, salmon to pink coloured fungal 

growth and orange coloured sporodochia can be seen at the base of the spikelets or 

along the edge of glumes (Nicholson et al., 2007). In most cases, in susceptible 

cultivars of wheat, fungal growth in the rachis causes vascular occlusion cutting off 
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the nutrient and water supply to spikelets above the point of infection, causing the 

entire head to be bleached (Fig. 1.2). Bleached spikelets are sterile or contain 

kernels that are shrivelled and/or appear chalky white or pink; those are often 

referred to as Fusarium damaged kernels, scabby kernels, or tomb-stones. 

Apparently, healthy kernels may also be infected, especially if infection occurred 

late in kernel development (Shaner, 2003, Steffenson, 2003). 

 

 

Fig. 1.2. The symptoms of Fusarium Head Blight disease of wheat. The symptoms 

first appear at the base of the middle spikelets in the middle of the head as water-

soaked brown-coloured lesions with salmon to pink coloured fungal growth. The 

fungal growth causes vascular occlusion cutting off the nutrient and water supply 

to spikelets, causing the entire head to be bleached. 
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1.2.1.3. Life cycles of Fusarium Crown Rot and Head Blight 

Different sources of inoculum for the development of FCR and FHB are known. 

These sources are crop residues of various plants from previous seasons, such as 

wheat, maize, barley, soybean and rice (Parry et al., 1995, Champeil et al., 2004, 

Osborne & Stein, 2007). Fusarium species overwinter in soil and crop residues and 

can survive for several seasons as saprophytes on dead host tissues, especially if 

susceptible crops are planted in successive years (Fig. 1.3) (Shaner, 2003, Leplat et 

al., 2013). The common survival structures of FCR in the soil, in dead organic 

matter and in crop residues are chlamydospores, macroconidia, and mycelium 

(Cook, 1981, Paulitz et al., 2002). F. culmorum survives most commonly as thick-

walled chlamydospores in the soil embedded in organic matter or formed within 

macroconidia, while F. graminearum survives most commonly as mycelium inside 

non-decayed plant residues. Chlamydospores have the potential for long-term 

survival in soil and plant debris. They can form from macroconidia (endoconidial 

chlamydospores) or hyphae (mycelial chlamydospores) (Pisi & Innocenti, 2001). 

The most important sources of inoculum for FHB are ascospores from the sexual 

stage and macroconidia from the anamorph stage (Bai & Shaner, 1994, Leplat et 

al., 2013). The dispersal of inoculum from residue, especially maize, from previous 

seasons to the wheat heads is a critical event in the disease cycle (Fig. 1.3) 

(Blandino et al., 2010).  
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Fig. 1.3. Life cycles of Fusarium Crown Rot and Head Blight diseases of wheat 

(source: www.HGCA.com). 

 

Environmental factors such as temperature, moisture and wind have an impact on 

FHB inoculum production and release and dispersal of spores (Shaner, 2003, 

Goswami & Kistler, 2005, Madgwick et al., 2011). During warm, moist and windy 

environmental conditions the ascospores or macroconidia are dispersed by water-

splash or air currents onto wheat heads and initiate germination on wheat spikes 

within three hours of inoculation at an optimal 20-30 °C and by the end of six hours 

most of these spores will be completely germinated (Shaner, 2003, McMullen et 

al., 2008, Trail, 2009).  

1.2.1.4. Management of Fusarium Crown Rot and Head Blight 

In the UK, FCR and FHB problems are largely avoided by certified seed, seed 

treatment with fungicides, rotation and fungicide application- which has to be 

almost precise (HGCA, 2015), but Fusarium spp. remain a serious concern in grain 
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because they produce a range of mycotoxins that can lead to possible human and 

animal health problems if they enter the food chain (Goswami & Kistler, 2004; Xu 

et al., 2008). Different Fusarium species produce different mycotoxins under 

different environmental conditions (Kokkonen et al., 2010). The long-term survival 

of the pathogen in plant debris or grass weeds, along with the lack of commercial 

cultivars with resistance to Fusarium, makes controlling the diseases difficult 

(Wildermuth et al., 1997). The effects of agronomic practices on these diseases are 

often unpredictable (Bailey et al., 2000) and depend on the causal species as well 

as the environmental conditions (Parry et al., 1995, Champeil et al., 2004). Control 

strategies of FCR and FHB have relied on breaking the disease cycle through 

management strategies such as crop rotation, stubble management, tillage practice, 

planting date, biological control, protective fungicides and cultivar resistance 

(Tinline & Spurr, 1991, Bailey et al., 2000, McMullen et al., 2008, Gilbert & 

Tekauz, 2011). It appears that Fusarium disease cannot be controlled by any single 

one of the management strategies mentioned, but may be achieved by combining 

multiple changes in the agronomic system (McMullen et al., 1997, Yuen & 

Schoneweis, 2007, McMullen et al., 2012). 

Crop rotation with non-host crops, stubble management and tillage practices are 

environmentally friendly approaches which can be used to reduce the risk of 

diseases epidemics, because they reduce the amount of inoculum in the crop residue 

(Parry et al., 1995, Dill-Macky & Jones, 2000, Burgess et al., 2001). Crop rotation 

leads to a reduction in seedling and in root rot symptoms (Stein, 2010). Crown rot 

infection of wheat in Australia was reduced by using crop rotation management 
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with chickpea, canola, and mustard (Kirkegaard et al., 2004). However, about half 

of the inoculum of F. culmorum present after harvest is functional a year later, and 

about 10 % can survive for nearly two years (Wiese, 1991). The longevity of 

chlamydospore inoculum of F. culmorum makes use of rotation more challenging, 

as evidenced by experiments that showed a two-year break did not provide effective 

control of this species (Strausbaugh et al., 2005, Cook, 2010). FHB pathogens have 

wind-borne ascospores which may be transported for kilometers from a source of 

inoculum. Therefore, rotation alone is not sufficient to prevent the disease 

(McMullen, 2002). 

The severity of crown rot was less when stubble was burned (Dodman & 

Wildermuth, 1989, Simpfendorfer et al., 2005), but burning decreases soil organic 

carbon, soil water storage, and the activity of soil biota, while at the same time 

increasing the risk of soil erosion by wind and rain. Also burning stubble does not 

guarantee freedom from FCR. Burning removes only above ground inoculum; the 

FCR fungus still survives in crown tissue below ground (Simpfendorfer et al., 

2005).  

The Fusarium fungus is stubble-borne, so in a no-till system inoculum becomes 

concentrated in the previous winter’s cereal rows. Use of no-till and conservation 

tillage system practices in a wheat-fallow production system has been associated 

with higher levels of Fusarium infections (Smiley et al., 1996, Bailey et al., 2000). 

Mouldboard or chisel ploughing inverts the soil layer, burying crop residues at the 

soil surface, caused a significant but small decrease in FHB disease incidence, 

severity and DON accumulation compared to no-till plots (Dill-Macky & Jones, 
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2000, Krebs et al., 2000, Pereyra & Dill-Macky, 2008). Tillage does not bury all 

residues, and seeding operations can bring buried residues to the surface; when in 

contact with the moist soil surface, such Fusarium-infested residues will produce 

inoculum (Inch & Gilbert, 2003). But none of these treatments has been 

demonstrated to provide sufficient control to be effective against FHB (McMullen 

et al., 2012). 

Crop planting dates or sowing several cultivars with different heading dates or 

maturity may help reducing the risk of FHB severity and incidence (McMullen, 

2002), but as the weather during flowering cannot be predicted, early or late 

planting is not an assured option to protect crops (Fernandez et al., 2005). 

Biological control also appears to be an environmentally friendly and a possible 

method to control the Fusarium disease (Schisler et al., 2002). There have been only 

a few studies of biological control of crown rot disease of wheat so far. Biological 

control of F. pseudograminearum by Trichoderma species (Trichoderma koningii 

and T. harzianum) was tested successfully in laboratory conditions (Wong et al., 

2002). F. graminearum was controlled by the bacterium Burkholderia cepacia 

under laboratory and glasshouse conditions (Huang & Wong, 1998). Several 

microorganisms including bacteria (Bacillus spp., Kluyvera cryocrescens, 

Lysobactor spp., Paenibacillus fluorescens, Pantoea agglomerans, and 

Pseudomonas fluorescens), yeasts (Cryptococcus spp., Rhodotorula spp., and 

Sporobolomyces roseus) and filamentous fungi (Trichoderma harzianum and T. 

virens) have shown potential for the control of F. graminearum (Corio da Luz et 

al., 2003, Jochum et al., 2006, Bacon & Hinton, 2007). Musyimi et al. (2012) 
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indicated that Fusarium disease severity increased over time when antagonistic 

fungi Alternaria spp., Epicoccum spp were applied against F. graminearum and F. 

poae and associated T-2 toxin. They concluded that antagonists cannot solely be 

relied on in managing FHB and toxin accumulation. Problems encountered in using 

biocontrol agents include maintaining their viability, developing delivery 

mechanisms, incompatibility with fungicides, and inconsistent results (Yuen et al., 

2007, Yuen, 2008). 

Fungicide application during relevant wheat growing stages can reduce the risk of 

FHB and mycotoxin contamination (Paul et al., 2008, Edwards & Godley, 2010). 

However, inconsistent control of FHB disease with fungicide has been found in 

several experiments (McMullen, 1994, Horsley et al., 2006, Gaurilcikiene et al., 

2011). This inconsistency has been attributed in part to fungicide timing and 

efficacy, cultivar resistance, and application technology, which limits the use of 

fungicides for FHB management (McMullen et al., 1997, Mesterhazy et al., 2003, 

Wegulo et al., 2010). Yoshida et al. (2012) indicated that the timing of fungicide 

application differentially affected FHB disease and mycotoxin concentration, 

considering anthesis as the crucial stage for fungicide application. 

It appears therefore that the development and use of resistant hosts would be the 

most effective, economical and environmentally safe strategy for Fusarium disease 

management (Ruckenbauer et al., 2001). There are three types of resistance to FHB 

in wheat: resistance to initial infection (Type 1), resistance to spread within the head 

(Type 2) and resistance to mycotoxin degradation (Type 3) (Nicholson et al., 2008, 

Niwa et al., 2014). Type 2 resistance is perhaps of greatest importance against 
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DON‐producing isolates of F. culmorum and F. graminearum (Yan et al., 2011). 

Most current wheat cultivars in the UK possess little Type 2 resistance. 

Considerable effort has been expended by wheat breeders and researchers to 

identify and characterise sources of Type 1 resistance in wheat, as this form of 

resistance should be relevant to protecting against all species of Fusarium, whatever 

trichothecene compounds they produce, along with the non‐toxin producing 

Microdochium species (Nicholson et al., 2008). Several studies have focused on 

transgenic wheat made resistant by incorporating plant defense antifungal proteins 

such as thaumatine-like proteins (Chen et al., 1999, Mackintosh et al., 2007). 

Though the results of some of these studies have been promising in a glasshouse 

experiment, they have failed in field environments (Anand et al., 2003). Wheat 

cultivars with partial resistance are available for commercial cultivation, but 

immune cultivars are lacking. Breeding for commercial wheat cultivars with high 

levels of Fusarium resistance with all the other desired agronomic traits is a huge 

challenge (Bai & Shaner, 2004). Because of the polygenic nature of Fusarium 

resistance, the variability associated with phenotyping, the effect of environment 

on resistance phenotype, the complex disease evaluation procedures and an 

incomplete understanding of the nature of the resistance genetics make the breeding 

process complicated (Bai & Shaner, 2004, Herde et al., 2008).  

1.2.2. Mycotoxins 

Mycotoxins are natural toxic substances produced by fungi. The most common 

Fusarium mycotoxins of concern in UK cereals are trichothecenes: nivalenol (NIV), 

deoxynivalenol (DON) and its derivatives 3- and 15-acetyldeoxynivalenol (3-
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ADON, 15-ADON), T-2 toxin (T2), HT-2 toxin (HT2), and non-trichothecenes: 

zearalenone (ZON) (Edwards, 2009). These are produced on cereal crops whilst in 

the field. During the infection of wheat by FCR, DON is produced in the wheat 

stem base. DON is an inhibitor of protein synthesis, thus may suppress the 

production of host defense enzymes (Mudge et al., 2006). They exist in our diet as 

a result of the presence of specific fungi on food crops, either in the field or in store. 

Mycotoxins can be hazardous to the health of humans and animals even at low 

concentrations. Mycotoxins cause reduced feed intake, reduced grain weight and 

vomiting in farm animals, while high levels of mycotoxins have been shown to 

adversely affect growth and immune systems in animal studies. Nausea, vomiting, 

diarrhea, abdominal pain, headache, dizziness and fever have been reported when 

high concentrations of mycotoxin were consumed by humans (Antonissen et al., 

2014). The major sources of dietary intake of Fusarium mycotoxin are products 

made from cereals, in particular wheat and maize. European Union legislation has 

set a legal limit for DON of 1250 µg kg-1 and ZON of 100 µg kg-1 for cereals 

intended for human consumption (Anon, 2006), but even a low level contamination 

of grain can reduce market prices or cause the grain to be rejected entirely (Parry et 

al., 1995, Fernandez & Chen, 2005). Mycotoxin levels vary from year to year, so 

the risk is greater in some years than others, depending on weather conditions and 

intensity of host crops present within a region (Bai & Shaner, 1994, Häggblom & 

Nordkvist, 2015). 

Weather is an important risk factor in increasing mycotoxin concentration. Cereals 

are particularly susceptible to infection if there is rain when they are in flower. Once 
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infection has occurred further rainfall during the summer, particularly once the crop 

has ripened, allows secondary infections to occur on exterior of seeds, glumes and 

rachis (West et al., 2012, Xu et al., 2013). Although the risk factors of weather and 

regional factors cannot be controlled, there are a number of other agronomic factors 

which can be modified to reduce the risk of exceeding legal limits for the occurrence 

of Fusarium mycotoxins. Good agricultural practice in the UK, based on current 

knowledge, includes specific practices in rotation design, crop residue 

management, cultivar choice, weed control, insect control, fertiliser use, fungicide 

use, harvest and drying of grain. The benefits of each component are cumulative so 

that by combining as many of the components as possible the risk of exceeding 

legal limits may be minimised. The risk cannot be completely removed. For 

example, even moderately resistant cultivars sown into moderate to high levels of 

crown rot inoculum are at risk of yield losses; and moisture stress during grain 

filling produces significant yield loss regardless of resistance level (Food Standards 

Agency, 2007). HGCA (2015c) published a risk assessment for Fusarium 

mycotoxins in wheat to ensure the wheat grain is safe for human consumption. 

HGCA risk assessment score is required on the grain passport.  

1.3. Root symbiosis 

The term symbiosis (from the Greek: sym, "with"; and biosis, "living") commonly 

describes close and often long-term interactions between different biological 

species. The term was first used in 1879 by the German mycologist, Heinrich Anton 

de Bary, who defined it as: "the living together of unlike organisms". The definition 

of symbiosis is in flux and the term has been applied to a wide range of biological 
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interactions (Parniske, 2004). Symbiotic relationships include those associations in 

which one organism lives on another (ectosymbiosis), or where one partner lives 

inside the other (endosymbiosis). Among all endosymbioses in natural ecosystems, 

the most widespread symbiotic interactions are formed between plants and fungi 

(Garcia-Garrido & Ocampo, 2002, Harrison, 2005, Brachmann & Parniske, 2006). 

Among the best studied symbioses between plant roots and fungi are mycorrhizas, 

but non-mycorrhizal association are increasingly of interest (Weiss et al., 2011). 

1.3.1. Endophytic fungi 

Non-mycorrhizal fungi associated with plants are highly diverse; some of them are 

endophytes (Dutta et al., 2014). Endophytes are defined as microorganisms that 

accomplish parts of their life cycle within living host tissues without causing 

apparent damage to the plant (Schulz & Boyle, 2005, Sun et al., 2014). In all 

ecosystems, many plant parts are colonized by fungal endophytes (Brundrett, 2002, 

Sieber, 2002, Mandyam & Jumpponen, 2005). Depending on the invader and the 

interaction, endophytes may be located in roots, leaves or needles, roots and shoots, 

or adapted to growth within the bark  (Sokolski et al., 2007, Verma et al., 2007, 

Grunig et al., 2008, Rodriguez et al., 2009). Fungal endophytes may grow inter– 

and intra–cellulary as well as endo– and epi–phytically (Schulz & Boyle, 2005, 

Zhang et al., 2006). The behaviour of fungal endophytes can range from mutualistic 

(Usuki & Narisawa, 2007, White & Torres, 2010) to pathogenic (Tellenbach et al., 

2011) and endophytes can switch their behaviour depending on environmental 

factors. This variation in relationship is described as the endophytic continuum 

(Schulz & Boyle, 2005). 

http://en.wikipedia.org/wiki/Ectosymbiosis
http://en.wikipedia.org/wiki/Endosymbiont
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Plant growth promotional effects of endophytes have received increasing attention 

in the hope that they will provide a consistent and effective increase in the 

productivity of crops. Endophytic fungi may increase plant resistance to biotic 

stresses, including microbial infections (Lewis, 2004, Rodriguez et al., 2004, 

Waller et al., 2005, Waqas et al., 2012, Dutta et al., 2014), insect pests (Breen, 1994, 

Vázquez et al., 2004, Kumar et al., 2008, Lopez & Sword, 2015) and herbivore 

attack (Schardl & Phillips, 1997, Mandyam & Jumpponen, 2005, Gange et al., 

2012, Hammer & Van Bael, 2015). They may also increase plant tolerance to 

abiotic stresses such as drought (Cheplick et al., 2000, Hubbard et al., 2014, Khan 

et al., 2015), heavy metals (Monneta et al., 2001, Khan & Lee, 2013, Dourado et 

al., 2015), culture medium pH lower than optimal (Lewis, 2004), and high salinity 

(Waller et al., 2005, Halo et al., 2015). They also improve the absorption of nitrogen 

(Lyons et al., 1990, White et al., 2012, Dourado et al., 2015) and phosphorus 

(Gasoni & deGurfinkel, 1997, Malinowski et al., 1999, Dourado et al., 2015) and 

as a consequence produce improved yield (Schulz & Boyle, 2005, Colla et al., 2015, 

Murphy et al., 2015a).  

1.3.2. Arbuscular mycorrhizal fungi 

Mycorrhizal refers to Greek “mycos” meaning fungus and “rhiza” meaning root. 

Arbuscular mycorrhizas (AM) are named from the treelike structures formed inside 

root cortical cells, called arbuscules (Mosse, 1957, Gerdemann, 1965, Mosse & 

Hayman, 1971, Parniske, 2008, Jung et al., 2012). A symbiosis with AM is formed 

by 70-90 % of land plant species, and is thought to be the most widespread 

terrestrial symbiosis (Fitter, 2005, Smith & Read, 2008, Griffis et al., 2014, Walder 
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et al., 2015). Such symbioses are generally regarded as mutualistic, with a 

bidirectional transfer of nutrients (Smith & Read, 2008, Smith et al., 2011, 

Martínez-García et al., 2015). The fungi obtain fixed carbon compounds from host 

plants, while plants benefit from increased nutrient supply (e.g. phosphorus), or 

water supply, or enhanced stress tolerance and resistance (Solaiman & Saito, 1997, 

Bago et al., 2003, Finlay, 2008, Martínez-García et al., 2015). Bago et al. (2000) 

estimated that up to 20 % of the photosynthetic products of terrestrial plants are 

consumed by AM fungi. Therefore, AM symbiosis is thought to significantly 

contribute to global phosphate and carbon cycling and to affect productivity in land 

ecosystems (Fitter, 2005, van der Heijden et al., 2015). As AM fungi are obligate 

symbionts, they are not yet successfully cultured in the absence of plant root 

(Johnson et al., 1997, Buscot, 2015). Axenic fungal biomass can be obtained only 

from cultures on transformed plant roots, but only a small number of species are 

available in culture (Redecker & Raab, 2006). 

1.3.2.1. Taxonomy 

Fossil records suggest that the AM symbiosis dates back to the Ordovician age, 460 

million years ago (Redecker et al., 2000). Based on small subunit (SSU) rDNA 

sequences and their symbiotic lifestyle, the AM fungi were placed in the phylum 

Glomeromycota (Schüβler et al., 2001). The Glomeromycota is divided into five 

orders, 14 families and 29 genera and approximately 230 species (Oehl et al., 2011a, 

Oehl et al., 2011b, Palenzuela et al., 2011, Redecker et al., 2013). 
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1.3.2.2. Colonization strategy of arbuscular mycorrhizal fungi 

Spores of AM fungi are usually formed on the extraradical hyphae, but some species 

also may form spores inside the roots. During the formation of the symbiosis, AM 

hyphae approach the roots and form swollen appressoria. Then the hyphae grow 

between the root cortical cells, penetrate the cell walls, and form highly branched 

(arbuscules) or coil shaped hyphal structures. This creates a very large surface area 

between the two symbionts, across which metabolic exchange can take place 

(Rodrigues & Rodrigues, 2015). Once the plant root is colonised, the AM fungus 

produces runner hyphae, forming the extraradical mycelium, which is used by the 

fungus to explore the soil for resource several centimetres from the colonised roots 

(Jakobsen et al., 1992, Cano & Bago, 2005, Mensah et al., 2015). Colonisation of 

roots by AM fungi can arise from spores, infected root fragments and/or hyphae. 

The absorbing hyphae develop from the runner hyphae and form a network of thin 

hyphae extending into the soil. These hyphae appear to be the component of the 

fungus that absorbs nutrients from the soil for transport to the host (Gadkar et al., 

2001, Varela-Cervero et al., 2015). 

1.3.2.3. Beneficial effect of arbuscular mycorrhizal fungi symbiosis on host 

plants 

In a mutualistic symbiosis, both partners (fungus and plant) gain from the 

symbiosis. Carbon from the photosynthesis is used by the fungus and the plant 

makes use of the extended soil volume (Finlay, 2008). In return for the carbon, the 

mycorrhizal plant obtains nutrients. Phosphorus, which occurs in inorganic or 

organic forms in soil, is in many ecosystems the most important nutrient whose 
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uptake is mediated by AM fungi. Inorganic phosphate, as well as other inorganic 

nutrients such as zinc, is relatively immobile in the soil, which leads to the 

formation of zones depleted in inorganic phosphorus around the roots (Hart & 

Forsythe, 2012). These depletion zones effectively limit phosphorus uptake in non-

mycorrhizal plants. The symbiotic association with AM fungi allows the plant to 

access phosphorus beyond the depletion zone through the extraradical fungal 

hyphae, in addition to the root uptake. AM fungi hyphae can also absorb nitrogen 

in the forms of ammonium and nitrate, and contribute to the uptake of 

micronutrients, such as zinc (Jansa et al., 2013, Meng et al., 2015). Another 

fundamental factor for plant growth is water availability and AM symbiosis 

increases plant tolerance to drought (Auge, 2004, Auge et al., 2008, Ortiz et al., 

2015). AM fungi also increase plant resistance to pathogens and heavy metals 

(Davies et al., 2001, Tonin et al., 2001, Rivera-Becerril et al., 2002, 

Krishnamoorthy et al., 2015, Nair et al., 2015). 

1.3.3. Sebacinales 

The members of order Sebacinales are involved in mycorrhizal associations. They 

occur worldwide and encompasses a great multitude of ericoid, orchid, 

cavendishoid (ectendomycorrhizas colonising the Andean clade of Ericaceae) and 

jungermannioid mycorrhizae (the symbiotic fungal associations in leafy liverworts) 

and ectomycorrhizae, which are associated with the roots of a wide variety of plant 

species (Weiss et al., 2004, Setaro et al., 2006, Selosse et al., 2007). The order was 

first described by Weiss et al. (2004). Sebacinales are a taxonomically, ecologically, 

and physiologically diverse group of fungi in the Basidiomycota. This order 
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includes fungi with longitudinally septate basidia and imperforate parenthesomes 

(or septal pore caps; these are parenthesis-shaped structures on either side of 

pores  in the dolipore septum which separates cells within a hypha). They also lack 

cystedia (a relatively large cell found on the hymenium of a basidiomycete, used 

for identification) and clamp connexions (a structure formed by 

growing hyphal cells to ensure each cell, or segment of hypha separated by septa, 

receives a set of differing nuclei, to create genetic variation within the hypha) 

(Weiss et al., 2004).  

This order is monotypic, containing a single family, the Sebacinaceae, which was 

described by Wells and Oberwinkler (1982). Based on the ultrastructural and 

microscopic characters, Bandoni (1984) placed the Sebacinaceae family in the order 

Auriculariales, a group of wood-decaying fungi. However, molecular phylogenetic 

studies by Weiss and Oberwinkler (2001) have proved that the family Sebacinaceae 

does not belong to the Auriculariales and it belongs to the new described order 

Sebacinales (Weiss et al., 2004). This is interesting, since species of the 

Sebacinaceae are morphologically very similar to members of the Auriculariales, 

sharing characters like the longitudinally septate basidia. There are eight genera and 

29 species in the family collected from Germany, Switzerland, France, Italy, 

Austria, Slovenia, Great Britain, the United States, Ecuador, Ethiopia, Namibia, 

North Africa, South Africa, and Iceland with no geographical or host patterns. DNA 

sequences derived from plant roots showed that members of this family are 

involved in a wide spectrum of mycorrhizal types (Weiss et al., 2011). It is possible 

that a mycorrhizal life strategy, which was transformed into a saprotrophic strategy 

https://en.wikipedia.org/wiki/Bracket#Parentheses_.28_.29
https://en.wikipedia.org/w/index.php?title=Dolipore_septum&action=edit&redlink=1
https://en.wikipedia.org/wiki/Hypha
https://en.wikipedia.org/wiki/Hymenium
https://en.wikipedia.org/wiki/Basidiomycete
https://en.wikipedia.org/wiki/Hypha
https://en.wikipedia.org/wiki/Cell_(biology)
https://en.wikipedia.org/wiki/Septum
https://en.wikipedia.org/wiki/Cell_nucleus
https://en.wikipedia.org/wiki/Genetic_variation
http://en.wikipedia.org/wiki/Genera
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several times, is a character for the Sebacinales, as more basal taxa of 

basidiomycetes consist of predominantly mycoparasitic and phytoparasitic fungi 

(Weiss et al., 2004). 

Phylogenetic analyses based on nuclear sequences of the large ribosomal subunit 

distinguish two subgroups A and B within the order Sebacinales. These groups 

differ in their ecology (Weiss et al., 2004). Orchid mycorrhizas and 

ectomycorrhizas belong to subgroup A. The second subgroup is more diverse and 

contains ericoid, cavendishoid and jungermannioid mycorrhiza, Sebacina 

vermifera, the endophytic Piriformospora indica and some multinucleate 

Rhizoctonia (Weiss et al., 2004).  

1.3.3.1. Piriformospora indica 

1.3.3.1.1. P. indica classification 

The root-colonizing endophytic fungus Piriformospora indica was first isolated as 

a contaminant of cultures of the AM fungus Funneliformis (=Glomus) mosseae 

from the rhizosphere of the woody shrubs Prosopsis juliflora and Zizyphus 

nummularia in the sandy desert soils of the Thar region of northwest India in 1997 

by Ajit Varma and his collaborators (Verma et al., 1998). Based on ultrastructural 

analyses of hyphae, 18S-rRNA gene sequences and rRNA sequence at the 5´-

terminal domain of the ribosomal large subunit (nucLSU), P. indica was grouped 

in class B of the order Sebacinales.  

P. indica, within the Sebacinales, has a close genetic similarity to Sebacina 

vermifera sensu Warcup & Talbot and Rhizoctonia zeae and R. solani (Fig. 1.4) 

(Warcup, 1988, Milligan & Williams, 1998, Weiss et al., 2004). 
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Fig. 1.4. Phylogenetic placement of Piriformospora indica, Sebacina vermifera and 

Rhizoctonia within Sebacinales group B, estimated by maximum likelihood from 

an alignment of nuclear rDNA coding for the 5’ terminal domain of the ribosomal 

large subunit (Source: Deshmukh et al. (2006)). 
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1.3.3.1.2. Colonization method by P. indica 

Morphologically, the hyphal cells of P. indica are thin walled, hyaline and not 

pigmented. Hyphae are irregularly septate and 0.7 to 3.5 μm in diameter. Septate 

hyphae often show anastomosis (Fig. 1.5 a). Each hyphal segment is multinucleate 

with variable numbers of nuclei. Hyphal tips differentiate into chlamydospores of 

16-25 μm in length and 10-17 μm in width, which emerge individually or in 

clusters. Each spore contains 8-25 nuclei (Fig. 1.5 b). So far, neither clamp 

connexions nor sexual structures have been observed. Most of the mycelium of P. 

indica grows under the surface of agar media. Using solid culture media, only a few 

aerial hyphae are formed. The mycelium grows concentrically and covers agar 

media homogenously. Sometimes the mycelium forms rhythmic rings in the Petri 

dishes. Young mycelium cultures are white but with age the colour turns to cream 

yellow (Varma et al., 2001, Kost & Rexer, 2013). 

The colonization procedure of P. indica starts with the germination of 

chlamydospores on the root surface. The growing hyphae form an extracellular net, 

then enter the root cortex and form inter- and intra-cellular hyphae. Within the 

cortical cells and rhizodermal cells, the fungus often forms dense hyphal coils or 

branched structures intra-cellularly (Fig. 1.5 c). This phase seems to be associated 

with host cell death. P. indica also forms spore- or vesicle-like structures within or 

between the cortical cells. Nevertheless, the fungus is never observed to traverse 

the endodermis and vascular tissue. It predominantly colonizes the root maturation 

zone. Likewise, it does not invade the plant meristematic zone or the aerial portion 
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of the plant. Fungal colonization results in extracellular and intracellular formation 

of chlamydospores (Fig. 1.5 d) (Deshmukh et al., 2006, Schäfer et al., 2009).  

 

 

Fig. 1.5. Piriformospora indica hyphae and chlamydospores in agar plates (a,b; 

scale bar: 10 µm) and in wheat roots (c,d; scale bar: 20 µm). The fungus often forms 

dense hyphal coils or branched structures intracellularly and was not detected in 

endodermic and central parts of the root. Arrows indicate P. indica clamydospors 

and hyphae. 
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1.3.3.1.3. Beneficial effects of P. indica symbiosis on host plants 

P. indica, like AM fungi, has plant growth promoting effects. In contrast to AM 

fungi, it can be cultured axenically on various media (Varma et al., 1999). P. indica 

has been shown to form mutualistic symbioses with a broad range of host plants 

including major crop plants, model organisms like Arabidopsis, tobacco and barley, 

and a range of economically important monocot and dicot hosts (Table 1.1) (Weiss 

et al., 2004, Waller et al., 2005, Deshmukh et al., 2006). The ability of P. indica to 

improve the growth rate of various host plants is well documented (Varma et al., 

1999, Pham et al., 2004, Waller et al., 2005). For barley, an increase in plant 

biomass and final grain yield was demonstrated under greenhouse as well as out-

door conditions (Waller et al., 2005, Achatz et al., 2010 a). Tomato plants that were 

grown in hydroponic culture and inoculated with P. indica showed an increase in 

fruit biomass and dry weight per plant (Fakhro et al., 2010). In Chinese cabbage, P. 

indica promoted shoot and root growth and lateral root development and increased 

plant tolerance against drought stress (Sun et al., 2010). Also, P. indica increased 

wheat tolerance under drought stress (Yaghoubian et al., 2014). The growth 

parameters (root and shoot lengths, fresh and dry weights) of rice seedlings were 

enhanced in P. indica-inoculated rice seedlings under high salt stress (Jogawat et 

al., 2013). Similarly P. indica could induce tolerance to salt stress in barley (Waller 

et al., 2005). P. indica also confers increased resistance to various plant pathogens 

in several hosts. Recent studies have shown that P. indica is able to increase 

resistance in barley against the necrotrophic root pathogens F. culmorum and 

Cochliobolus sativus (Waller et al., 2005, Deshmukh & Kogel, 2007) and to induce 
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systemic resistance in leaves of barley and Arabidopsis thaliana against the 

powdery mildew fungi Blumeria graminis f.sp. hordei and Golovinomyces orontii, 

respectively (Waller et al., 2005, Stein et al., 2008). Data collected from both 

greenhouse and out-door experiments showed reductions in symptom severity 

caused by stem rot (Pseudocercosporella herpotrichoides), root rot (Fusarium 

culmorum) and soil-borne take-all disease (Gaeumannomyces graminis var. tritici) 

in wheat (Serfling et al., 2007, Ghahfarokhy et al., 2011). This evidence makes P. 

indica a promising candidate for biological control of plant diseases (Table 1.1). 
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Table 1.1. Effects of Piriformospora indica on a range of economically important 

crops. 

P. indica Effects Crop Reference 

Increased growth and yield 

Barley 

Waller et al. (2005, 2008)     

Deshmukh & Kogel, (2007)       

Achatz et al. (2010)                  

Harrach et al. (2013)          

Increased resistance against pathogens:  

-root diseases caused by: F. culmorum, F. graminearum, 

Cochliobolus sativus; 

-leaf diseases caused by: Blumeria graminis f.sp. hordei. 

Increased tolerance against abiotic stress: salt stress 

Improved nitrogen and phosphorus uptake 

Increased growth and yield 

Wheat 

Serfling et al. (2007)        

Ghahfarokhy et al. (2011) 

Yaghoubian et al. (2014)           

Increased resistance against pathogens:  

-stem disease caused by Pseudocercosporella 

herpotrichoides);  

-root disease caused by F. culmorum and Gaeumannomyces 

graminis var. tritici; 

-leaf diseases caused by:  Blumeria graminis f.sp. tritici. 

Increased tolerance against abiotic stress: salt and drought 

stresses 

Increased yield 

Maize Kumar et al. (2009)  Increased resistance against pathogens: 

-root disease caused by: F. verticillioides 

Increased yield 

Increased phosphorus uptake Rice 
Jogawat et al. (2013)  

Das et al. (2014) 
Increased tolerance against abiotic stress: salt stress 

Increased fruit growth and fruit biomass 

Tomato 

Fakhro et al. (2010)                         

Cruz et al. (2010)                          

Sarma et al. (2011) 

Wang et al. (2015) 

Increased resistance against fungal pathogens:  

-Verticillium dahliae and F. oxysporum 

Increased resistance against viral pathogens:  

-virus: Pepino mosaic virus & Tomato yellow leaf curl 

virus 

Increased tolerance against abiotic stress: salt stress 

Increased yield  Potato Upadhyaya et al. (2013)  

Increased growth and yield 

Lentil Dolatabadi et al. (2012) 
Increased resistance against pathogens: F. oxysporum  
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1.3.3.1.4. Mechanism of interaction of P. indica with plants 

The mechanism by which P. indica confers physiological benefits to its host plants 

is unclear (Ansari et al., 2014). Some research has been done to find out the 

mechanisms behind the effects of P. indica on different hosts:  

Growth promotion and production of higher yields as well as stress tolerance may 

be attributed to the production of phytohormones (like auxins and cytokinins) by 

the fungus itself, as well as to modulation of the host phytohormones. The growth 

and reproduction stimulation of Arabidopsis by P. indica was due to a diffusible 

factor that could be the auxin Indole-3 Acetic Acid (IAA), as P. indica produces 

IAA in culture filtrate. It has been suggested that auxin production affecting root 

growth was responsible, for or at least contributed to, the beneficial effect of P. 

indica on its host plants (Sirrenberg et al., 2007, Vadassery et al., 2008, Dong et al., 

2013, Hilbert et al., 2013).  

Molitor et al. (2011) demonstrated that colonization of barley roots with P. indica 

induces systemic resistance against the biotrophic leaf pathogen Blumeria graminis 

f.sp. hordei. P. indica affects the jasmonic acid (JA),  ethylene, abscisic acid (ABA) 

and salicylic acid (SA) plant signalling hormones which regulate the plant's defence 

system against stresses (Stein et al., 2008, Molitor & Kogel, 2009, Camehl et al., 

2010, Molitor et al., 2011, Khatabi et al., 2012, Camehl et al., 2013, Peskan-

Berghofer et al., 2015, Vahabi et al., 2015). P. indica may also target a not yet 

identified signalling pathway to induce systemic resistance.  

Also in Arabidopsis, it was observed that cell wall extract from P. indica promoted 

growth of seedlings and elevated intracellular calcium (Ca) in roots. The extract 
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and the fungus activated a set of genes in Arabidopsis roots including some with 

Ca2+ signalling related functions. Ca2+ is a ubiquitous intracellular second 

messenger molecules (Vadassery & Oelmueller, 2009). 

Vadassery et al. (2009) demonstrated that ascorbate, monodehydroascorbate 

reductase and dehydroascorbate reductase mRNA levels were upregulated in 

Arabidopsis roots colonized by P. indica. Also, P. indica elevates the concentration 

of antioxidant enzymes in barley and maize, which may contribute to plant defence 

against pathogen stresses such as Fusarium culmoum and F. verticillioides (Kumar 

et al., 2009, Harrach et al., 2013). P. indica increased barley tolerance to salt stress, 

and conferred resistance against root and leaf pathogens, including the necrotrophic 

root fungus F. culmorum and the biotrophic fungus Blumeria gramini. This 

tolerance to salinity and resistance to pathogens was as a result of higher antioxidant 

enzyme levels including ascorbate, dehydroascorbate reductase, glutathione 

(Waller et al., 2005, Baltruschat et al., 2008). The elevation of antioxidant enzyme 

concentrations by P. indica is also reported in other host plants (Prasad et al., 2013). 

Additionally, Chinese cabbage showed a higher tolerance to drought stress when P. 

indica was present. The enhanced drought tolerance was due to the activation of 

antioxidant enzymes (peroxidases, catalases and superoxide dismutases) and 

drought related genes (DREB2A, CBL1, ANAC072 and RD29A) and Ca2+-sensing 

regulator protein by P. indica (Sun et al., 2010).  

Vahabi et al. (2015) indicated that P. indica induced stomata closure, stimulated 

reactive oxygen species (ROS) production, stress related phytohormone 

accumulation (JA and its active form JA isoleucine (JA-Ile), 12-oxo-phytodienoic 
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acid (OPDA), ABA and SA) and activated defense and stress genes (ALCOHOL 

DEHYDROGENASE1, which is up-regulated in roots by osmotic stress), the 

ethylene-responsive transcription factor gene ERF105 (which responds to chitin 

treatment), INDOLE GLUCOSINOLATE O-METHYLTRANSFERASE1 (which is 

involved in hydroxylation reactions of the glucosinolate indole ring), the NAC 

domain transcription factor gene JUNGBRUNNEN1 (which is induced by hydrogen 

peroxide (H2O2)), GDSL LIPASE1 (which plays an important role in plant 

immunity), ERD11 and the GLUTHATIONE S-TRANSFERASE TAU10 (which are 

induced by oxidative stress and bacterial infections), and ACIREDUCTONE 

DIOXYGENASE3 (which is involved in systemic acquired resistance) in the 

Arabidopsis roots and shoots before the two partners were in physical contact. Once 

a physical contact was established, the stomata re-opened, ROS and phytohormone 

levels declined, and the number and expression level of defense/stress-related genes 

decreased. NRT2.5 (belongs to the nitrate transporter family which plays an 

essential role in plant growth promotion) was expressed in Arabidopsis roots and 

leaves at two and six days after inoculation (dai), respectively.  

Zuccaro et al. (2011) showed that about 10 % of P. indica genes induced during the 

biotrophic colonization encoded putative small secreted proteins, including several 

lectin-like proteins and members of a P. indica-specific gene family with a 

conserved novel seven-amino acid motif at the C-terminus. They found 579 genes 

in the prepenetration phase (36–48 hours after inoculation), 397 genes in the early 

colonization phase (3 dai), and 641 genes at 5 dai that were differentially regulated 

compared to autoclaved roots.  
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Pedrotti et al. (2013) demonstrated that initial P. indica colonization triggered a 

local, transient response of several defense-related transcripts, of which some were 

also induced in shoots and in distal, non-colonized roots of the same plant. SA-

responsive CBP60 (calmodulinbinding protein 60-like G), SA-regulated PR1 

(pathogenesis-related protein 1), JA-regulated VSP2, gibberellin-regulated ExpPT1 

(phosphatidylinositol N-acetylglucosaminyltransferase subunit P-related), ethylene 

responsive ERF1 transcripts, OXI1 (oxidative signal inducible1), MYB51 

(indicative for glucosinolate production), mitogen-activated protein kinase 3 

(MPK3) were all elevated in the root and/or shoots within one to seven days after 

inoculation with P. indica. Faster and stronger induction of defense-related 

transcripts during secondary inoculation revealed that a P. indica pretreatment 

triggered root-wide priming of defense responses, which could cause the observed 

reduction of secondary colonization levels. Secondary P. indica colonization also 

induced defense responses in distant, already colonized parts of the root.  

Nitrogen, phosphorus and potassium uptake by plants were found to be increased 

in Cicer arietinum-inoculated with P. indica as compared with un-inoculated 

control plants (Nautiyal et al., 2010). In barley, P. indica increased final grain yield 

independently of fertilisation level. Grain yields were higher when phosphorus and 

nitrogen supply were high, indicating that P. indica induced yield increase was 

independent of low phosphorus and nitrogen supply (Achatz et al., 2010).  

Malla et al. (2004) and Yadav et al. (2010) reported that P. indica contains 

substantial amounts of an acid phosphatase which has the potential to solubilise 

phosphate in the soil and deliver it to the plant. It was also demonstrated that growth 
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promotion of Arabidopsis seedlings by P. indica, in Petri dishes containing MMN 

culture medium, was associated with a massive uptake of phosphate from the 

growth medium to the aerial parts of the seedlings (Shahollari et al., 2005). P. indica 

also significantly enhanced activity of acid phosphatase and alkaline phosphatase 

in the rhizosphere soil of rice plants, contributing to higher phosphorus uptake (Das 

et al., 2014). 

P. indica activates nitrate reductase in tobacco and Arabidopsis roots in vitro and 

in vivo, which plays a major role in nitrate acquisition and mediate nitrate uptake 

from the soil (Sherameti et al., 2005).  

However, Sharma et al. (2008) indicated that P. indica may not be the origin of 

beneficial interaction as different bacterial species have been identified as closely 

associated with several fungi of the Sebacinales order. For example, the Rhizobium 

radiobacter strain PABac-DSM (which lacks the virulence genes causing the crown 

gall disease) was shown to be intimately associated with P. indica spores and 

hyphae. PABac-DSM induced growth promotion and systemic resistance against 

powdery mildew in barley seedlings comparable with the P. indica-induced 

phenotype. 

1.3.3.1.5. P. indica mass production for commercialization 

Laboratory, glasshouse and field trial data have shown that P. indica can be applied 

on farm-scales to increase plant growth and yield (Varma et al., 2013a). To 

commercialise and produce P. indica in large scale, so that the fungus could be used 

by farmers, it was formulated with talcum powder as a humectant and carrier. In 

India the formulated inoculum is sold as 'Rootonic'. For this, P. indica is grown in 
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liquid culture. Inoculum is then prepared by separating the P. indica biomass from 

the culture medium by filtration. On a commercial scale, a suspension of 250 g fresh 

weight of P. indica per L of 0.1 g L-1 carboxymethyl cellulose (CMC) is absorbed 

into talcum powder at 3 kg talc L-1 of suspension. CMC is used as an adhesive so 

that the inoculum sticks to the powder. Seed treatment is done by mixing Rootonic 

with seeds before sowing. The quantity of this P. indica formulation for wheat seeds 

has been estimated as 2.5 kg ha-1 (Chadha et al., 2014), and tested in different fields 

on different crops in India (Varma et al., 2013a, Varma et al., 2014). 
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1.4. Objectives 

The evidence so far suggests that P. indica has tremendous potential as a 

biofertilizer and biocontrol agent in numerous crops. So far, little research on the 

symbiosis of P. indica and wheat has been done. The overall aim of the present 

work is to study the effect of P. indica on wheat productivity, especially on 

tolerance to Fusarium diseases, both crown rot and head blight. The targets were 

chosen because wheat is an important crop, and Fusarium is a difficult disease to 

manage. Specific objectives are described below: 

 

1- Like other mutualistic endophytes, P. indica colonises roots in an asymptomatic 

manner. Information on colonization patterns of these endophytes is very limited. 

It is not yet clear how the fungus penetrates plant roots and how roots are eventually 

colonized. Therefore, in Chapter 2 the fungal development in a mutualistic 

symbiosis of the root endophytic P. indica and wheat will be analysed. 

 

2- The hypothesis that P. indica can protect wheat from damage caused by 

Fusarium spp. under UK climate conditions will be studied in Chapters 2 and 3. 

This will include study of P. indica effects on visible disease, mycotoxin 

concentration, grain quality and total biomass. 

  

3- Fungicides are widely used to control foliar and ear diseases of wheat, including 

Fusarium disease. Therefore, the compatibility of P. indica with fungicide and their 

joint effect on Fusarium diseases will be tested in Chapter 3.  
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4- It has long been recognised that AM fungi have an influence on plant nutrition 

and growth. P. indica is similar to AM fungi in terms of plant growth promoting 

effects. Therefore, the effect of both fungi on Fusarium diseases of wheat and, the 

interaction between them, will be compared in Chapter 3. 

 

5- It has been shown that P. indica association improves plant mineral nutrient 

acquisition from the soil. This may or may not be the way P. indica improves 

growth. The effect of P. indica on soil and plant tissue nutrients will be reported in 

Chapter 3.  

 

6- The hypothesis that P. indica can protect wheat from damage caused by foliar 

diseases will be studied in Chapter 4.  

 

7- If P. indica is going to be applied to crops, a clear picture of its ecological effects 

and persistence would be needed. How P. indica affects other soil microorganisms 

in different soil types, how P. indica affects and interacts with weeds, and how long 

P. indica can persist in soil under UK weather conditions will be considered in 

Chapter 5.  
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Chapter 2- The endophytic fungus Piriformospora indica protects 

wheat from Fusarium crown rot disease in simulated UK autumn 

conditions 

M. Rabiey, I. Ullah and M. W. Shaw 

M. Rabiey: did all the experiments;  

I.Ullah: helped develop the molecular methods; 

M. W. Shaw: advised on design, analysis and interpretation. 

2.1. Summary 

This study evaluated the effect of P. indica on Fusarium crown rot disease of wheat, 

under in vitro and glasshouse conditions. Interaction of P. indica and Fusarium 

isolates under axenic culture conditions indicated no direct antagonistic activity of 

P. indica against Fusarium isolates. Seedlings of wheat were inoculated with P. 

indica and pathogenic Fusarium culmorum or F. graminearum and grown in 

sterilized soil-free medium or in a non-sterilized mix of soil and sand. Fusarium 

alone reduced emergence and led to visible browning and reduced root growth. 

Roots of seedlings in pots inoculated with both Fusarium isolates and P. indica were 

free of visible symptoms; seed emergence and root biomass were equivalent to the 

uninoculated control. DNA was quantified by real-time polymerase chain reaction 

(qPCR). The ratio of Fusarium DNA to wheat DNA rose rapidly in the plants 

inoculated with Fusarium alone; isolates and species were not significantly 

different. Piriformospora indica inoculation reduced the ratio of Fusarium to host 
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DNA in the root systems. The reduction increased with time. The ratio of P. indica 

to wheat DNA initially rose but then declined in root systems without Fusarium. 

With Fusarium, the ratio rose throughout the experiment. The absolute amount of 

Fusarium DNA in root systems increased in the absence of P. indica but was static 

in plants co-inoculated with P. indica. 

2.2. Introduction 

Crown rot disease of wheat, primarily caused by Fusarium culmorum and F. 

graminearum  (Fernandez & Chen, 2005), damages wheat in most parts of the 

world. The disease reduces wheat grain yield and quality and wheat straw 

production. Infection of seedlings and basal stems leads to yield loss from damaged 

seedlings, pre-harvest lodging, and impaired grain filling (Schilling et al., 1996). In 

the UK these problems are largely avoided by certified seed, seed treatment with 

fungicides and rotation, but Fusarium spp. remain a serious concern in grain 

because they produce a range of mycotoxins that can lead to possible human and 

animal health problems if they enter the food chain (Goswami & Kistler, 2004, Xu 

et al., 2008b). These Fusarium pathogens are soil-borne and stubble-borne and can  

survive in the soil and crop residues for several seasons (Leplat et al., 2013). This 

long term survival in plant debris or grass weeds, along with the lack of commercial 

cultivars with resistance to FCR, makes controlling the disease difficult 

(Wildermuth et al., 1997). The effects of agronomic practices on this disease  are 

often unpredictable (Bailey et al., 2000) and depend on the causal species as well 

as the environmental conditions. 
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Piriformospora indica (sebacinales: basidiomycota) is a root endophytic fungus 

with a wide host range that was first isolated from the rhizosphere of woody shrubs 

in the Thar region of northwest India (Verma et al., 1998). All members of the 

Sebacinales are involved in mycorrhizal associations (Weiss et al., 2004). P. indica, 

like arbuscular mycorrhizal fungi, has plant growth promoting effects, but, in 

contrast to mycorrhizal fungi, can be cultured on various synthetic media (Verma 

et al., 1998). P.indica can mobilise and transport phosphorus, nitrogen and 

micronutrients from soil to the infected host plant via plant-fungal interfaces (Malla 

et al., 2004, Sherameti et al., 2005, Yadav et al., 2010, Varma et al., 2013b). It has 

also been reported that P. indica can improve growth in a range of economically 

important monocot and dicot hosts   (Varma et al., 1999, Varma et al., 2000, Bagde 

et al., 2010).  

P. indica has been shown to increase resistant to biotic stresses including a wheat 

leaf disease (caused by Blumeria graminis f.sp. tritici), a wheat stem base disease 

(caused by Oculimacula Spp.), wheat and barley root rot diseases (caused by 

Fusarium culmorum, Gaeumannomyces graminis var. tritici) (Deshmukh & Kogel, 

2007, Serfling et al., 2007, Harrach et al., 2013), a maize root disease (caused by F. 

verticillioides) (Kumar et al., 2009) and a lentil vascular wilt disease (caused by 

Fusarium oxysporum f. sp. lentis) (Dolatabadi et al., 2012). In tomato infected with 

Verticillium dahliae, P. indica increased leaf and fruit biomass and decreased 

disease severity. Also in tomato, P. indica reduced the concentration of  Pepino 

mosaic virus in shoots (Fakhro et al., 2010). P. indica also increased plant tolerance 
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to abiotic stresses including salt stress in barley (Baltruschat et al., 2008, Alikhani 

et al., 2013) , wheat (Zarea et al., 2012) and tomato (Cruz et al., 2010). The fungus 

conferred drought tolerance in Chinese cabbage and enhanced seed production and 

grain yield (Sun et al., 2010, Michal Johnson et al., 2013).    Previous investigations, 

have been concentrated in tropical and sub-tropical conditions.  It remains to be 

shown whether P. indica is suited to temperate climatic conditions. 

Hypothesis tested in this chapter: Previous investigations have been concentrated 

in tropical and sub-tropical conditions. It remains to be shown whether P. indica is 

suited to temperate climatic conditions. 

In this investigation, the hypothesis that P. indica would reduce damage to wheat 

seedlings by restricting growth of F. culmorum and F. graminearum on roots under 

controlled environmental chambers adjusted to UK autumn conditions was tested. 

Pathogen progression in the presence and absence of P. indica colonising 

simultaneously with or after Fusarium was measured. 

2.3. Materials and Methods 

2.3.1. Cultivation of fungi 

2.3.1.1. Fusarium culture 

Isolates of F. culmorum (98/11 and UK.99) and F. graminearum (576 and 602.1), 

of UK origin, were obtained from the School of Biological Science at the University 

of Reading and Rothamsted Research Centre, UK and cultured on potato dextrose 

agar (PDA, Oxoid LTD, England). Inoculum was prepared by the methods 

described by Ghahfarokhy et al. (2011).  
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Discs (5 mm) of 4-day-old PDA cultures of Fusarium isolates were added to 500 

mL Erlenmeyer flasks of wheat grains that had been boiled for 20 min, strained to 

remove excess water and sterilized twice at 121 ºC for 20 min on two consecutive 

days. For this purpose, the flasks were incubated at room temperature (21±1 °C) 

until all grains were fully colonised with mycelium.  

2.3.1.2. Piriformospora indica culture 

P. indica was obtained from Dr. Patrick Schafer, Warwick University, UK and was 

grown on agar containing complex modified Aspergillus medium (CM medium) 

(Pham et al., 2004). To produce inoculum of P. indica, five plugs of 5 mm discs of 

4-day-old P. indica culture were added to 500 mL flasks of CM medium and 

incubated on an orbital shaker (Stuart SLL1, Bibby Scientific Ltd, UK) at 140 rpm 

at room temperature (21±1 °C) for 14 days. The liquid culture was then used for 

inoculation mixed with soil at sowing. 

2.3.2. Laboratory experiments 

2.3.2.1. Microscopical examination 

To see the interaction between P. indica and Fusarium isolates microscopically, a 

clean glass microscope slide was placed in the middle of Petri dishes and a thin 

layer of PDA poured onto it. Single 5 mm discs of 4-day-old cultures of P. indica 

and Fusarium isolates were placed at opposite ends of the slide simultaneously or 

3-4 days after and incubated at room temperature (21 ± 1 ºC). After 3-4 days, when 

leading hyphae of each culture met, the slides were observed microscopically using 

a LeitzDialux 20 microscope attached to a Canon camera (EOS, 300D). 
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2.3.2.2. Dual culture tests 

Interactions between P. indica and Fusarium isolates were examined by the method 

described by Ghahfarokhi and Goltapeh (2010).  A 5 mm mycelial disc of P. indica 

was placed on one side of a PDA plate and incubated at room temperature (21 ± 1 

ºC). Single 5 mm discs of Fusarium mycelium taken from the margins of 4-day-old 

cultures were placed on the other side of the plates, simultaneously or 3-4 days after.  

2.3.2.3. Volatile metabolites 

The production of volatile metabolites by P. indica and Fusarium isolates was 

examined following the method described by Dennis and Webster (1971) and Goyal 

et al. (1994) with slight modifications. A 5 mm mycelia disc of Fusarium isolates 

was placed at the centre of a PDA plate and incubated at room temperature (21 ± 1 

ºC). After 4 days, when some mycelium growth had occurred, the lid was removed 

and the plate inverted over on another PDA plate containing a 5 mm mycelia disc 

of P. indica. The two were sealed together by adhesive tape. The control was the 

same except that P. indica was omitted. All of the plates were incubated at room 

temperature (21 ± 1 ºC) for 7 days. Inhibition was recorded daily by comparing 

growth of Fusarium isolates in the presence and absence of P. indica. 

In another experiment, a single 5 mm disc of 4-day-old cultures of P. indica and 

Fusarium isolates were placed at opposite ends of a PDA plate simultaneously; a 1 

cm strip across the centre of PDA was removed. In the control, P. indica and 

Fusarium isolates were cultured separately.  



 

46 

 

2.3.3. Glasshouse and growth chamber experiments 

2.3.3.1. Interaction between P. indica and F. culmorum during seedling growth 

of wheat 

Seeds of winter wheat cv. Battalion were surface disinfected by rinsing for 2 min 

in 20 mL L -1 (2 % v/v) sodium hypochlorite (Fisher Scientific UK Ltd, UK), 

followed by three rinses in sterile distilled water, and germinated on damp filter 

paper in a Petri dish at room temperature under natural indoor light for 48 hours. 

No micro-organisms grew from a sample of seeds so treated and placed on PDA 

plates for one week. 

To determine whether P. indica interacted with wheat to reduce FCR, pre-

germinated wheat seeds were planted into 10 cm diameter pots (5 seeds per pot), 

filled with a 1:1 mixture of vermiculite (Medium, Sinclair, UK) and sand, steam 

sterilised at 121 °C for 1h on two consecutive days. The pots were incubated in the 

glasshouse where humidity, light and temperature were not controlled; temperature 

ranged between 15 °C and 25 °C. Inoculations were performed at the time of sowing 

or 7 days later in a 3 × 3 factorial combination by mixing 4 g of P. indica and 6 g 

of F. culmorum into the surface layer of the soil, without disturbing the seedling 

roots. Harvest was performed at 7, 14, 21, and 30 days after inoculation (dai) and 

DNA concentrations of the fungi in the root system determined. Each time point 

was independently replicated per pot. The treatments were: no amendment, P0, F0, 

P0+F0, P7, F7, P7+F7, P0+F7 and F0+P7 (P0 or F0: P. indica or F. culmorum 
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incoualtion at sowing, and P7 or F7: P. indica or F. culmorum incoualtion at seven 

days after sowing). 

P. indica and F. culmorum interaction during the first week after inoculation was 

tested in the glasshouse in conditions similar to the above experiment. Inoculations 

were done at the time of sowing and roots were harvested daily for one week. DNA 

concentrations of the fungi and wheat in the root system were determined and a 

sample stained for microscopy. The experiment had four treatments, ±P indica and 

±F. culmorum, with two replications. The treatments were: no amendment, P. 

indica, F. culmorum, and P. indica+F. culmorum. 

In a confirmatory experiment inoculations were done at the time of sowing in a 2×2 

factorial combinations with 4 g of P. indica and 6 g of F. culmorum. Harvest was 

performed at 1, 2, 4, 8, 16 and 32 dai and DNA concentrations of both fungi and 

wheat in the root system determined. The treatments were: no amendment, P. 

indica, F. culmorum, and P. indica+F. culmorum. 

A further experiment was done to determine whether the interactions occurred 

under cooler conditions, more similar to UK field environments. Germinated seeds 

were planted in a 1:1 mixture of non-sterilised soil (John Innes Composts, BHGS 

Ltd, UK) and sand and pots were incubated in a controlled environment chamber. 

The experiment lasted 42 days. For the first 14 days, the day-length was 12 hours 

and temperature and humidity were 15 °C, 65 %, respectively, during day and 10 

°C, 65 % during night; for the second 14 days conditions were adjusted to 12 °C, 

70 % during day and 9 °C, 70 % during night; and for the last 14 days the day length 
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was reduced to 10 hours with conditions set at 10 °C, 75 % during day and 7 °C, 75 

% during night (www.met.reading.ac.uk/weatherdata). Pots were arranged in two 

randomised blocks. The experiment had 10 treatments with two replicates and five 

harvest times. The treatments were based on 2 × 5 factorial combinations of: no 

amendment, P. indica, F. culmorum 98/11, F. culmorum UK.99, F. graminearum 

576, F. graminearum 602.1, P. indica+F. culmorum 98/11, P. indica+F. culmorum 

UK.99, P. indica+F. graminearum 576, or P. indica+F. graminearum 602.1. One 

pot of each treatment in each replicate was harvested at 7, 17, 28, 35 and 42 dai. 

Each time point was independently replicated per pot. 

Each pot received 60 mL of fresh nutrient solution once a week. Nutrient solution 

was prepared each week using tap water with the final concentrations given: NO-
3 

10 mM, PO4
2- 1 mM, K+ 6 mM, Ca2+ 1.5 mM, Mg2+ 1 mM, SO4

2- 1.5 mM, Fe 10 

µM, Mn2+ 1 µM, Zn2+ 0.01 µM, Cu2+ 0.1 µM, MoO4
2- 0.07 µM and B4O7

2- 0.07 µM 

(Chandramohan & Shaw, 2013). Sodium metasilicate (100 mg L-1) was included to 

control powdery mildew (Rodgers-Gray & Shaw, 2004).  

2.3.3.2. Staining and microscopy 

Wheat root samples inoculated with P. indica, Fusarium isolates, and both fungi 

together were stained using black ink (Pelikan Fountain Pen Ink, Niche Pens Ltd, 

UK) (Vierheilig et al., 1998). Roots were cleared by soaking them in 10 % (w/v) 

KOH for one hour at 80 °C, then rinsed five times with tap water. Cleared roots 

were covered with 2 % HCl (v/v) for at least 30 min. Thereafter, HCl was poured 

off and roots were covered with 50 g L-1 black ink for 30 min at 80 °C. Roots were 
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de-stained by rinsing in cold tap water for 3 min and viewed under a microscope 

with 10x and 40x objectives. 

2.3.4. Molecular experiments 

2.3.4.1. DNA isolation 

Total genomic DNA was isolated from 100 mg of harvested roots using a DNeasy 

Plant Mini kit (QIAGEN, UK) following the manufacturer’s instructions. Samples 

were eluted into 100 µL elution buffer and stored at -20 °C until required. Single 

species genomic DNA standards were obtained from roots of uninoculated plants 

and from mycelia of P. indica and Fusarium isolates scraped off the agar. Bulk 

DNA concentration was measured using a NanoDrop-lite spectrophotometer 

(Thermo Scientific, Life Technologies Ltd, UK). The extent of shearing of DNA 

was determined by electrophoresis of an aliquot of DNA in a 1 % agarose gel. 

2.3.4.2. Primer development and optimization of PCR conditions 

Primers were designed using the PRIMER BLAST tool from NCBI 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast) to amplify fragments of the P. 

indica TEF gene for elongation factor 1α, (EF-1α; accession number: AJ249911.2, 

Pi-forward: 5-TCCGTCGCGCACCATT-3 and Pi-reverse:5-

AAATCGCCCTCTTTCCACAA-3, 84 bp), Fusarium EF-1α (accession number 

JX534485, for F. culmorum, F1-forward: 5-GCCCTCTTCCCACAAACCATT 

CC-3 and F1-reverse: 5-CTCGGCGGCTTCCTATTGACAG-3, 85 bp and for F. 

graminearum, F2-forward: 5-AAGCCGAGCGTGAGCGTGGTA-3 and F2-

reverse: 5-CGGGAGCGTCTGATAGTCGTGTTA-3, 142 bp) and wheat 

http://www.ncbi.nlm.nih.gov/tools/primer-blast
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translation elongation factor 1α-subunit (accession number: M90077, Wt-forward: 

5-GTGCACCAAATCTTCCTGCC-3, Wt-reverse: 5-

GGTTATGGAATGTAGATGCTCGG-3, 71 bp). The accession numbers were 

obtained from http://www.ncbi.nlm.nih.gov. All primers were supplied by 

Invitrogen (Thermo Scientific, Life Technologies Ltd, UK).  

Translation elongation factor 1 alpha (TEF) gene was used because it encodes an 

abundant and highly conserved protein which plays an important role in the 

elongation cycle of protein synthesis in eukaryotic cells (Merrick, 1992). TEF is the 

second most profuse protein after actin, combining 1–2 % of the total protein in 

normal growing cells (Condeelis, 1995). It binds charged tRNA molecules and 

transports them to the acceptor site on the ribosome adjacent to a growing 

polypeptide chain. TEF can also regulate other processes by interaction with 

cytoskeleton and mitotic apparatus (Ichi-Ishi & Inoue, 1995). TEF gene can be 

present in multiple copies in some Ascomycota and Zygomycota, whereas in many 

of the analyzed Basidiomycota genomes it proved to be in single copy (Basiewicz 

et al., 2012).  

To assess specificity of the primers in this experiments and investigate any cross 

reactivity, genomic DNA isolated from pure cultures of P. indica and Fusarium 

isolates and root tissue of wheat seedlings were subjected to PCR using all primer 

sets. 

Polymerase chain reaction (PCR) was performed in 0.2 mL PCR tubes (Fisher 

Scientific, Life Thechnologies Ltd, UK) with 20 µL final reaction volume 

http://www.ncbi.nlm.nih.gov/
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containing 2x Biomix PCR master mix (Life Thechnologies Ltd, UK), 0.25 µM 

forward and reverse primers, and varying quantities of template genomic DNA. 

Amplification was performed in a thermal cycler (Applied Biosystems® 

GeneAmp® PCR System 9700, ThermoFisher Scientific, Life Thechnologies Ltd, 

UK) programmed as: 94 °C for 5 min followed by 35 cycles of 94 °C for 30 s, 56 

°C for 30 s and 72 °C for 30 s, followed by incubation at 72 °C for 5 min. 

Amplification was confirmed by electrophoresis of an aliquot of the PCR products 

in 2 % agarose gel in 1x TAE buffer.  

2.3.4.3. Real-time PCR 

The amount of Fusarium and P. indica in wheat root samples was quantified by 

real-time PCR (qPCR). qPCR was performed in a 20 µL final reaction volume using 

1×SYBR Green Jump Start TaqReady Mix (Sigma Aldrich Company Ltd, UK), 

0.25 µM forward and reverse primers, 1.5 µL sample DNA and 7.5 µL molecular 

grade water, in a 72 tube rotor of a Rotor-Gene 6000 System (Corbett Life Sciences, 

UK). Thermal cycling was set up at one cycle of 95 °C for 2 min; then 40 cycles of 

95 °C for 15 s and 60 °C for 1 min, followed by melt curve analysis from 65 to 95 

°C at the rate of 0.5 °C s-1. PCR controls in every assay included no template 

controls (NTC) and genomic DNA standards in duplicate for Fusarium isolates, P. 

indica and wheat. Serial dilutions of pure genomic wheat, Fusarium and P. indica 

DNA standards were initially tested in triplicate to determine a calibration curve 

and PCR efficiencies. Data were obtained and analysed using Rotor-Gene 6000 

series software v. 1.7. After quantification, estimates of F. culmorum, F. 
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graminearum and P. indica colonization of wheat tissues were obtained by dividing 

the concentration of fungal DNA by the concentration of wheat DNA. Absolute 

biomass of each fungus in a root system was estimated by multiplying the 

concentration of fungal DNA by the ratio of root weight to the sample weight that 

was taken for DNA extraction.  

2.3.5. Statistical analysis of experiments 

ANOVA was used to analyse all data using GenStat 16th ed, (VSN, UK) with 

appropriate blocking. Where applicable, data were log and arcsine transformed to 

stabilize the residual variance and aid interpretation.  

 

2.4. Results 

2.4.1. Interaction of P. indica and Fusarium 

Neither Fusarium isolates nor P. indica growth was visibly affected by the presence 

of the other fungus under axenic culture conditions on PDA, and there was no zone 

of inhibition at the contact point of two fungal colonies. There was occasional loose 

coiling of P. indica around Fusarium hyphae but no clear evidence of 

mycoparasitism (Fig. 2.1 a,b). 

Fusarium-inoculated root samples of both species showed extensive growth of 

Fusarium, with the mycelium completely covering the roots by the final 

observation date, when brown symptoms were clearly visible. In P. indica-

Fusarium inoculated plants, Fusarium colonisation was visually reduced, but 

colonisation by P. indica was extensive. P. indica colonisation started on root 
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surfaces in the differentiation zone behind the root meristem with inter- and intra-

cellular penetration of epidermal cells, during the first 2-3 dai, with hyphae filling 

up the cells. By 4 dai coiled hyphae could occasionally be seen inside the cells. 

Later, a little colonisation could be observed in epidermal cells of the meristematic 

and elongation zones of roots. P. indica chlamydospores were not observed until 6 

dai (Fig. 2.1 c,d).  
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Fig. 2.1. Interaction of Piriformospora indica and Fusarium in agar plates and in 

the wheat roots; (a). Agar plate co-cultivated with F. culmorum and P. indica; (b). 

Interaction of coiled hypha of P. indica around F. culmorum in agar plates at the 

encounter point; (c). P. indica clamydospores inside wheat root cells, the fungus 

was not detected in endodermic and central part of the root; (d). P. indica hyphae 

and clamydospores inside wheat root cells. Arrows indicate P. indica 

clamydospores and hyphae (scale bar for a: 3 cm, b: 40 µm, c and d: 20 µm).  
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2.4.2. Effect of P. indica on emergence rate, root weight and pathogen DNA 

concentration 

The emergence rates of seeds inoculated with F. culmorum and F. graminearum 

and P. indica were evaluated 7 days after sowing (Fig. 2.2). Seeds inoculated with 

F. culmorum and F. graminearum isolates emerged less often than the uninoculated 

(P<0.001). Seeds inoculated with P. indica alone had the same emergence rate as 

the uninoculated. The emergence rate of seeds inoculated with both pathogen and 

P. indica was significantly higher than Fusarium-inoculated plants but slightly 

lower than the uninoculated (P=0.02; Fig. 2.2). 
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Fig. 2.2. Emergence rates of seeds inoculated with Fusarium (F) and 

Piriformospora indica (Pi) evaluated 7 days after sowing; data were arcsine 

transformed. (a). Roots inoculated with F. culmorum and P. indica simultaneously 

at sowing time (s.e.d. = 0.09, d.f. = 57); (b). Roots inoculated with F. culmorum 

(98/11 and UK.99), F. graminearum (576 and 602.1) and P. indica simultaneously 

at sowing time (s.e.d. = 0.07, d.f. = 89). Each bar represents mean ± 2 SEM. 
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Root weights were evaluated at the final harvest (Fig. 2.3). Roots of plants 

inoculated with P. indica alone at sowing or 7 days later had weights equivalent to 

the control (Fig. 2.3 a). Roots inoculated with F. culmorum or F. graminearum had 

40 % lower root weight (P<0.001; Fig. 2.3 b). Roots of plants inoculated with P. 

indica prior to Fusarium or simultaneously weighed roughly the same as 

uninoculated plants and much more than the root inoculated with Fusarium alone 

(P<0.001, Fig. 2.3 a,b,c). P. indica inoculated 7 days after F. culmorum was less 

effective (Fig. 2.3 a).  
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Fig. 2.3. Root weights of samples (mg) inoculated with Fusarium (F) and 

Piriformospora indica (Pi) evaluated at last harvest; data were Log10 transformed. 

(a). Roots inoculated with F. culmorum or P. indica simultaneously or 7 days after 

sowing, harvested at 30 dai (s.e.d. = 0.07, d.f. = 8); (b). Roots inoculated with F. 

culmorum (98/11 and UK.99), F. graminearum (576 and 602.1) and P. indica 

simultaneously at sowing time, harvested at 42 dai (s.e.d. = 0.07, d.f. = 9); (c). 

Roots inoculated with F. culmorum or P. indica simultaneously at sowing, 

harvested at 32 dai (s.e.d. = 0.02, d.f. = 3). Each bar represents mean ± 2 SEM, (P: 

P. indica, F: Fusarium, Pi-0: P. indica added to soil at sowing, Pi-7: P. indica added 

to soil at 7 days after sowing, F0: F. culmorum added to soil at sowing and F7: F. 

culmorum added to soil at 7 days after sowing). 
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The absolute quantity of Fusarium DNA in the root systems without P. indica grew 

at about 10 % per day throughout the experiment (Fig. 2.4 a-c,f). The rate of growth 

of Fusarium inoculated at 7 dai was similar to that inoculated at sowing time (Fig. 

2.4 a,b). The relative rate of increase was constant for F. graminearum but declined 

in F. culmorum particularly in the first experiment (Fig. 2.4 a-c). In co-inoculated 

samples, the absolute amount of pathogen was static or slightly declining from 7-

42 days (Fig. 2.4 a,b,d,f) after an initial period of increase (Fig. 2.4 e,f). 
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Fig. 2.4. The growth of Fusarium in inoculated wheat roots. The amount obtained 

by adding log10 fungal DNA to log10 (root weight/sample weight in mg). (a). F. 

culmorum added to soil at sowing (F0); Piriformospora indica added 

simultaneously (P0) or 7 days after sowing (P7) (incubated in the glasshouse); (b). 

F. culmorum added to soil 7 days after sowing (F7); P. indica added at sowing (P0) 

or simultaneously 7 days after sowing (P7) (incubated in the glasshouse); (c). F. 

culmorum 98/11, F. culmorum UK.99, F. graminearum 576 or F. graminearum 

602.1 added at sowing time (incubated in the controlled environment chamber); (d). 

F. culmorum 98/11, F. culmorum UK.99, F. graminearum 576 or F. graminearum 

602.1 and P. indica added simultaneously at sowing time (incubated in the 

controlled environment chamber); (e). F. culmorum added to soil at sowing (F0) 

and P. indica added simultaneously (P0), during the first week of inoculation 

(incubated in the glasshouse); (f). F. culmorum added to soil at sowing (F0) and P. 

indica added simultaneously (P0), during the first month of inoculation (incubated 

in the glasshouse).  Each point represents mean ± 2 SEM. (for a and b; s.e.d. = 0.2 

and d.f. = 23), (for F. c. 98/11 and PF.c. 98/11:  s.e.d. = 0.14 and d.f. = 9; for F. c. 

UK.99 and PF.c. UK.99: s.e.d. = 0.12 and d.f. = 9; for F.g. 576 and PF.g. 576: s.e.d. 

= 0.2 and d.f. = 9; for F.g. 602.1 and PF.g. 602.1: s.e.d. = 0.2 and d.f. = 9), (for e, 

s.e.d. = 0.13, d.f. = 11) and (for f, s.e.d. = 0.2, d.f. =11).  
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The ratio of F. culmorum or F. graminearum DNA to plant DNA, in the absence of 

P. indica, grew approximately exponentially at about 18 % per day (Fig. 2.5 a,c,f), 

after the first 7 days;  growth of F. culmorum in the first week was faster (Fig 5 e,f). 

Despite the difference in temperatures, both glasshouse (Fig. 2.5 a,b,d,f) and 

environmental chamber (Fig. 2.5 c,d) experiments had similar rates of fungal 

growth. Increase in F. graminearum DNA was faster than increase in F. culmorum 

DNA (Fig. 2.5 c). The rate of growth of Fusarium inoculated at 7 dai was similar 

to that inoculated at sowing time (Fig. 2.5 a,b). In the presence of P. indica, 

Fusarium growth was immediately reduced to the rate of growth of the root system 

(Fig. 2.5 e,f) and then declined (Fig. 2.5 b,d). P. indica inoculation 7 days after the 

pathogen reduced the rate of Fusarium growth relative to the root similarly to the 

reduction when inoculated simultaneously (Fig. 2.5 b). Because of the initial period 

of growth alone, the F. culmorum to root ratio remained consistently higher when 

P. indica inoculation was delayed until 7 days after F. culmorum inoculation. 
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Fig. 2.5. The ratio of Fusarium DNA to wheat DNA in inoculated wheat roots. The 

ratio obtained by subtracting log10 fungal DNA from log10 wheat DNA. (a). F. 

culmorum added to soil at sowing (F0); Piriformospora indica added 

simultaneously (P0) or 7 days after sowing (P7) (incubated in the glasshouse); (b). 

F. culmorum added to soil 7 days after sowing (F7); P. indica added at sowing (P0) 

or simultaneously 7 days after sowing (P7) (incubated in the glasshouse); (c). F. 

culmorum 98/11, F. culmorum UK.99, F. graminearum 576 or F. graminearum 

602.1 added at sowing time (incubated in the controlled environment chamber); (d). 

F. culmorum 98/11, F. culmorum UK.99, F. graminearum 576 or F. graminearum 

602.1 and P. indica added simultaneously at sowing time (incubated in the 

controlled environment chamber); (e).  F. culmorum added to soil at sowing (F0) 

and P. indica added simultaneously (P0), during the first week after inoculation 

(incubated in the glasshouse); (f). F. culmorum added to soil at sowing (F0) and P. 

indica added simultaneously (P0) (incubated in the glasshouse), during the first 

month of inoculation. Each point represents mean±2 SEM (for a and b; s.e.d. = 0.2 

and d.f. = 23), (for F.c. 98/11 and PF.c. 98/11: s.e.d. = 0.15 and d.f. = 9; for F.c. 

UK.99 and PF.c. UK.99: s.e.d. = 0.08 and d.f. = 9; for F.g. 576 and PF.g. 576: s.e.d. 

= 0.2 and d.f. = 9; for F.g. 602.1 and PF.g. 602.1: s.e.d. = 0.2 and d.f. = 9), (for e; 

s.e.d. = 0.1, d.f. = 11) and (for f, s.e.d. = 0.2, d.f. = 11). 
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The absolute quantity of P. indica DNA in the root systems of soil free medium, in 

the absence of Fusarium, increased in the first 7 dai (Fig. 2.6 a), then decreased 

from a peak of 104 copies/root system to 103 over the 30 days of the experiment 

(Fig. 2.6 b,c,e); but slightly increased, under simulated autumn conditions, by 42 

days into the experiment (Fig. 2.6 d). In the presence of Fusarium, P. indica DNA 

grew gradually throughout the experiment (Fig. 2.6 a-e). The rate of growth of P. 

indica was lower under the simulated autumn conditions than under temperatures 

ranging between 15 °C and 25 °C (Fig. 2.6 b-d).  
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Fig. 2.6. The growth of Piriformospora indica in inoculated wheat roots. The 

absolute amount obtained by adding log10 fungal DNA to log10 (root weight/sample 

weight in mg). (a). P. indica added to soil at sowing (P0) and Fusarium culmorum 

added simultaneously (F0), during the first week of inoculation (incubated in the 

glasshouse); (b). P. indica added to soil at sowing (P0); F. culmorum added 

simultaneously (F0) or 7 days after sowing (F7) (incubated in the glasshouse); (c). 

P. indica added to soil 7 days after sowing (P7); F. culmorum added at sowing (F0) 

or simultaneously 7 days after sowing (F7) (incubated in the glasshouse); (d). P. 

indica, F. culmorum 98/11, F. culmorum UK.99, F. graminearum 576 or F. 

graminearum 602.1 added at sowing time (incubated in the controlled environment 

chamber); (e). P. indica added to soil at sowing (P0) and F. culmorum added 

simultaneously (F0), during the first month of inoculation (incubated in the 

glasshouse). Each point represents mean ±2 SEM (for a; s.e.d. = 0.1 and d.f. =11), 

(for b and c; s.e.d. = 0.2 and d.f. = 23), (for d; s.e.d. = 0.3 and d.f. = 24) and (for e, 

s.e.d. = 0.1, d.f. = 11). 

 

 

The ratio of P. indica DNA to plant DNA, in the absence of F. culmorum, grew 

exponentially at about 25 % per day in the first 7 dai (Fig. 2.7 a), then the rate 

declined, then stayed constant rate for the remainder of experiment from 14 to 30 

dai (Fig. 2.7 b,c). However, this early increase was not consistent (Fig. 2.7 e). The 

rate of growth of P. indica inoculated at 7 dai was similar to that inoculated at 

sowing time (Fig. 2.7 b,c). In the presence of F. culmorum, the rate of growth of P. 

indica was static throughout the experiment (Fig. 2.7 a,b,c,e). In the experiment 

under simulated autumn condition the ratio of P. indica DNA to wheat DNA, in the 

absence or presence of Fusarium isolates, grew slowly at about 2 % per day 

throughout the experiment (Fig. 2.7 d).  
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Fig. 2.7. The ratio of Piriformospora indica DNA to wheat DNA in inoculated 

wheat roots. The ratio obtained by subtracting log10 fungal DNA from log10 wheat 

DNA. (a). P. indica added to soil at sowing (P0) and Fusarium culmorum added 

simultaneously (F0), during the first week after inoculation (incubated in the 

glasshouse); (b). P. indica added to soil at sowing (P0); F. culmorum added 

simultaneously (F0) or 7 days after sowing (F7) (incubated in the glasshouse); (c). 

P. indica added to soil 7 days after sowing (P7); F. culmorum added at sowing (F0) 

or simultaneously 7 days after sowing (F7) (incubated in the glasshouse); (d). P. 

indica, F. culmorum 98/11, F. culmorum UK.99, F. graminearum 576 or F. 

graminearum 602.1 added at sowing time (incubated in the controlled environment 

chamber); (e). P. indica added to soil at sowing (P0) and F. culmorum added 

simultaneously (F0), during the first month of inoculation (incubated in the 

glasshouse). Each point represents mean ± 2 SEM (for a; s.e.d. = 0.1 and d.f. =11), 

(for b and c; s.e.d. = 0.3 and d.f. = 23), (for d; s.e.d. = 0.3 and d.f. = 24) and (for e, 

s.e.d. = 0.2, d.f. = 11). 
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2.5. Discussion 

In these experiments P. indica very effectively controlled F. culmorum and F. 

graminearum under simulated conditions similar to UK autumn, even though P. 

indica was found in the Thar region, India, which experiences extreme temperature 

conditions.  

 As in other P. indica studies, the mechanism appeared to be indirect. Dual culture 

and volatile metabolite tests of P. indica and F. culmorum or F. graminearum and 

microscopy showed no capability of either fungus to inhibit the other, with no 

inhibition zone at the interaction point and no other direct antagonistic activities. 

This is consistent with Kumar et al. (2009) and Deshmukh and Kogel (2007) who 

reported that P. indica did not have any direct antagonistic effect on F. 

graminearum and F. verticillioides respectively, in vitro. However, Ghahfarokhi 

and Goltapeh (2010) found a clear inhibition zone at the interaction point of 

Gaeumannomyces graminis var. tritici and P. indica. This could be a species 

difference or due to environmental effects, in particular the incubation temperature 

in Ghahfarokhi and Goltapeh (2010) was 28 °C, the optimum temperature for P. 

indica growth (Justice, 2014).  

In inoculated roots, P. indica penetration started at the differentiation zone of the 

roots, with inter- and intra-cellular hyphae penetration during the first two to three 

dai. P. indica hyphae filled up the cortical and epidermal cells. Chlamydospores 

were visible from 6 dai. Occasionally, coiled hyphae could be observed within root 

cells. Jacobs et al. (2011) proposed a colonisation model for P. indica in 
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Arabidopsis roots, which started with inter- and intra-cellular penetration of 

rhizodermal and cortical tissues and then root hair cells by 3 dai. Fungal hyphae 

branched and sometimes formed whorls. Finally, sporulation started at 7 dai; this is 

completely consistent with observations (Fig. 2.1). 

The pathogen DNA was slightly higher than in plants inoculated with pathogen 

alone during the first week after inoculation, in all experiments (Fig. 2.4 and 2.5). 

This effect was possibly due to the additional exogenous nutrients from the 

substrate of the P. indica inoculum. It also could be due to the fact that P. indica 

induced susceptibility in the root system as reported by Pedrotti et al. (2013), 

showing that P. indica triggered a local, transient response of several defense-

related transcripts in Arabidopsis root and shoot. Brown symptoms on root and 

crown were obvious in the Fusarium-inoculated samples, which reflected the 

extensive invasive growth of Fusarium hyphae in the samples, which was 

confirmed microscopically. In the presence of P. indica, the ratio of pathogen DNA 

to wheat DNA increased much more slowly and then decreased by the end of the 

experiment (Fig. 2.6 and 2.7). The results are consistent with previous work in other 

host-pathogen systems. Kumar et al. (2009) reported PCR analysis of maize 

samples inoculated with P. indica and F. verticillioides. They showed that P. indica 

suppressed further colonization by F. verticillioides. Harrach et al. (2013) reported 

preinoculation of barley roots with P. indica prior to F. culmorum resulted in 

reduced colonization of roots by F. culmorum, which is consistent with less root 

rot–symptom expression and a reduced loss of biomass. Deshmukh and Kogel 
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(2007) reported a decrease in the relative amount of F. graminearum DNA in barley 

roots in the presence of P. indica, followed by a sharp decrease at 19 dai of P. 

indica.  

Inoculation of plants with P. indica before the pathogen inoculation had a greater 

effect on both the ratio between pathogen and host DNA and the actual amount of 

pathogen than simultaneous or delayed inoculation (Fig. 2.4 and 2.5). In the absence 

of Fusarium, the absolute quantity of P. indica DNA and the ratio of P. indica DNA 

to plant DNA decreased to a steady level after the first 7 days in the warm 

environment (under glasshouse conditions), but increased slightly under cool 

conditions (in the controlled environmental chamber adjusted to UK autumn 

conditions). These results are consistent with a number of possible modes of action. 

For example, P. indica might interfere with host signalling pathways leading to an 

oxidative burst, which is essential to successful Fusarium establishment (Waller et 

al., 2005, Varma et al., 2012). Although qPCR is a precise and reliable method to 

quantify DNA, caution needs to be taken in interpreting the data. qPCR results must 

be verified by other methods and understood in the context of the sampling 

protocol. Fusarium causes massive plant cell death, which might result in over-

estimation by qPCR of the abundance of Fusarium DNA in root tissues that contain 

less intact plant DNA (Harrach et al., 2013). Hogg et al. (2007) found that FCR 

disease severity and symptoms in wheat were often, but not always, correlated with 

actual Fusarium colonization. Strausbaugh et al. (2005) did experiments in both 

field and glasshouse and found no correlation between root-rot severity index and 
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Fusarium DNA quantities in root samples. However, in their glasshouse study 

percent infected root area was correlated with Fusarium DNA quantities in both 

wheat and barley. This contrast in their results might have various causes. It is 

possible that there were sampling problems in the field study. For example, rotting 

might be so fast in soil that they only ever sampled nearly healthy plant tissues.  

This study shows that P. indica can protect wheat from damage by Fusarium disease 

at the seedling stage, in simulated UK conditions. However, the ecological-side-

effects of P. indica are still unclear: how will P. indica interact with other beneficial 

soil microorganisms, like arbuscular mycorrhizal fungi? How will P. indica interact 

with other soil-borne pathogens? How will it affect soil functioning, such as 

turnover of soil organic matter, incorporation of residues, etc? What effects will P. 

indica have on other soil-borne diseases? These must be considered in further 

studies.  
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CHAPTER 3- Piriformospora indica reduces Fusarium head blight 

disease severity and mycotoxin DON contamination in wheat under 

UK weather conditions 

M. Rabiey, and M. W. Shaw 

M. Rabiey: did all the experiments;  

M. W. Shaw: advised on design, analysis and interpretation. 

3.1. Summary 

The effect of P. indica on Fusarium head blight (FHB) disease of winter (cv. 

Battalion) and spring (cv. Paragon, Mulika, Zircon, Granary, KWS Willow and 

KWS Kilburn) hard wheat and consequent contamination by the mycotoxin 

deoxynivalenol (DON) was evaluated under UK weather conditions. Interactions 

of P. indica with an arbuscular mycorrhizal fungus (Funneliformis mosseae), 

fungicide application (Aviator Xpro, Bayer CropScience, UK; with active 

ingredients of prothioconazole and bixafen) and low and high fertiliser levels 

(Osmocote® Pro, the Scott Company, UK) were also considered. P. indica 

application reduced FHB disease severity and incidence by 70 %. It decreased 

mycotoxin DON concentrations in winter and spring wheat samples by 70 % and 

80 % respectively. P. indica also increased above ground biomass, thousand grain 

weight and total grain weight. P. indica reduced FHB disease severity and increased 

yield in both high and low fertiliser levels. The effect of P. indica was compatible 

with Fun. mosseae and foliar fungicide application. P. indica did not have any 
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effects on soil and plant tissue nutrients. These results suggest that P. indica might 

be useful in biological control of Fusarium diseases of wheat.  

3.2. Introduction 

Fusarium crown rot (FCR) and head blight (FHB) are two of the most important 

diseases of wheat globally. The two most prevalent causal organisms are Fusarium 

culmorum and F. graminearum (Fernandez & Chen, 2005). Fusarium spp. produce 

a range of mycotoxins that can accumulate in the grain and, if they enter the food 

chain, can cause a risk to human and animal health (Xu et al., 2008b). The 

mycotoxin deoxynivalenol (DON), which is produced during head infection, has 

been identified as the most frequent contaminant associated with FHB in wheat (Bai 

& Shaner, 2004). European Union legislation has set a legal limit for DON of 1250 

µg kg-1 for cereals intended for human consumption (Anon, 2006), but even low 

level contamination of grain can reduce market prices or cause the grain to be 

rejected entirely (Bai & Shaner, 2004). Fusarium species overwinter in soil and 

crop residues for several seasons. They survive as saprophytes on dead host tissues, 

especially if susceptible crops are planted in successive years. The most important 

sources of inoculum are ascospores from the sexual stage and macroconidia from 

the anamorph stage but chlamydospores and hyphal fragments can also act as 

sources of inoculum (Leplat et al., 2013). During warm, moist and windy 

environmental conditions the ascospores or macroconidia are dispersed by water-

splash or air currents onto wheat heads and initiate infection of wheat spikes. 

Infections can occur as early as spike emergence, but the flowering stage or shortly 
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after is considered the most vulnerable stage for Fusarium infection (Madgwick et 

al., 2011). No highly resistant commercial cultivars are yet available. Agronomic 

practices intended to reduce these diseases are only partially effective, because the 

necessary actions depend on the causal species and the environmental conditions, 

and the results are often unpredictable (Paulitz et al., 2002). Currently, control of 

Fusarium diseases relies on high inputs of fungicide in FHB-endemic regions 

(Mesterházy, 2003). Two factors are currently increasing the Fusarium problem in 

the UK. First, the UK is predicted to experience more often weather (UKCIP; 

www.ukcip.org.uk/) which will increase the risks of infection, colonisation, 

reproduction and dispersal of Fusarium diseases (West et al., 2012) leading to 

increased severity and incidence. Second, maize cultivation is increasing, leading 

to increased populations of F. graminearum; as maize debris is a potent source of 

inoculum of Fusarium (West et al., 2012).  

Plant roots are associated with beneficial fungi in the majority of soils. For example, 

arbuscular mycorrhizal fungi (AMF), such as Funneliformis mosseae (=Glomus 

mosseae), are important soil microorganisms forming beneficial symbiotic 

associations with most land plants. AMF are obligate biotrophs which provide 

mineral nutrients, specifically phosphate and nitrogen, to their host plant in 

exchange for carbohydrates and therefore stimulate plant growth (Bucher, 2007, 

Schalamuk et al., 2011).  

Piriformospora indica is a root endophyte with a wide host range belonging to the 

Sebacinaceae (Sebacinales, Basidiomycota). It was originally found in the Thar 
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desert of Rajasthan, an arid region in India (Verma et al., 1998), which experiences 

extreme day-time heat and diurnal temperature fluctuations as well as extended 

drought. P. indica promotes plant growth, increases root and above ground biomass 

and final yield of a broad range of host plants, including many plants of economic 

importance (Shrivastava & Varma, 2014)  and helps plants to grow under 

temperature, water and physical stresses (Alikhani et al., 2013, Ghabooli et al., 

2013). Evidence suggests that P. indica protects plants against pathogens of roots 

(caused by Fusarium culmorum, F. graminearum, Gaeumannomyces graminis var. 

tritici), stems (caused by Oculimacula Spp.) and leaves (caused by Blumeria 

graminis f.sp. tritici and B. graminis f.sp. hordei)  under glasshouse and field 

conditions (Waller et al., 2005, Deshmukh & Kogel, 2007, Ghahfarokhy et al., 

2011, Harrach et al., 2013). Our previous work shows that P. indica association 

protected wheat seedlings from FCR damage in simulated UK autumn conditions 

(Rabiey et al., 2015).  

The effect of some root associated fungi is to improve plant nutrient uptake 

(Miransari, 2010, Wu et al., 2011). For instance, AMF obtain fixed carbon 

compounds from host plants, while plants benefit from increased nutrient supply 

(Finlay, 2008). Research so far suggests that P. indica association improves plant 

mineral nutrient acquisition from the soil. It can mobilise and transport phosphate, 

nitrogen and micronutrients from soil to the infected host plant via plant-fungal 

interfaces (Sherameti et al., 2005, Yadav et al., 2010). However, it is not yet clear 

if P. indica can increase nutrient uptake in all of its hosts.  
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Hypotheses tested in this chapter: the present study investigated the effect of P. 

indica on Fusarium infection of parts of the host not directly colonised by P. indica. 

The following hypotheses were tested: P. indica would reduce damage to wheat 

grains caused by FHB and mycotoxin contamination; any effect of P. indica on 

FHB would be greater at low soil fertility levels like AMF, such as Fun. mosseae 

(Nouri et al., 2015); P. indica application would be as effective as fungicide 

application and P. indica would improve plant nutrient uptake, shown by altered 

foliar nutrient status and the effects of P. indica on disease were caused by changes 

in nutrient status alone. FHB disease severity and incidence, mycotoxin DON, and 

yield parameters were determined in pots with factorial combinations of inoculation 

with F. culmorum, F. graminearum, P. indica, or Fun. mosseae, foliar fungicide 

and low and high fertiliser application rates. Plants were grown outdoors. 

3.3. Materials and Methods 

3.3.1. Fungal inoculation 

3.3.1.1. Piriformospora indica 

P. indica was grown on agar containing CM medium. Inoculum of P. indica was 

prepared by the methods described in chapter 2.  

3.3.1.2. Fusarium isolates 

Inoculum of F. culmorum was prepared by the methods described in chapter 2. 

Conidia of F. graminearum 576 and F. graminearum 602.1were harvested from the 

surface of sporulating PDA cultures in sterile distilled water so that the resulting 
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suspension contained 1x106 spores mL-1. The spore concentration was determined 

using a haemocytometer (Weber Scientific International Ltd, England). 

3.3.1.3. Funneliformis mosseae culture 

Funneliformis mosseae was obtained from Prof. Alan Gange, Royal 

Holloway/University of London. The fungus (mixture of spores, mycelia and sands) 

was propagated on maize plants grown in a 3:1 mixture of steam sterilised compost 

(John Innes Composts, BHGS Ltd, UK) and sand. After 3 months, the contents of 

each pot (including compost and roots) were chopped on a sterilised surface and 

transferred into a zip-lock bag and stored at 4 °C until required. 

3.3.2. Plant materials and pot experiments 

3.3.2.1. Fusarium Crown Rot and Fusarium Head Blight of winter wheat  

Winter wheat seeds, cv. Battalion (NABIM group 2), were surface disinfected as 

described in chapter 2 and pre-germinated at room temperature under natural indoor 

light for 48 hours. Eight seeds per pot were planted in 12 L pots (top diameter: 28 

cm, bottom diameter: 23 cm, depth: 25 cm) at a depth of two cm in two parts non-

sterilised compost (No 2, John Innes Compost, BHGS Ltd, UK) and one part sand, 

mixed with 1 g L-1 or 4 g L-1 of slow release fertiliser (8-9 months, Osmocote® Pro, 

the Scott Company, UK, contains 16 % nitrogen, 11 % phosphorus, 10 % 

potassium, 2 % magnesium oxide, 0.01 % boron, 0.042 % copper, 0.3 % iron, 0.04 

% manganese, 0.015 % molybdenum and 0.01 % zinc) to provide wheat macro- and 

micro-nutrients during the experiment. Non-sterilised compost and sand were used 

to simulated field soil conditions. Seeds were planted in two rows at a distance of 
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11 cm apart and two cm between each seed to simulate field spacing. In all 

experiments, pots were watered as necessary to maintain the compost moist, and 

the experimental area was surrounded by pots filled with sand to reduce edge effects 

on microclimate.  

The experiment was carried out in 2013-14 growing season at the University of 

Reading (grid ref: SU733719), under outdoor condition. The experiment had 32 

treatments (giving 32 df for error), with two replicates, distributed in two 

randomised blocks, with the following factorial combinations of treatments= ±P. 

indica, ±Fun. mosseae, ±F. culmorum (FCR), ±F. graminearum (FHB) and 

±fertiliser (1 g L-1 or 4 g L-1). The treatments were:  

1 g L-1 fertiliser, 4 g L-1 fertiliser, and the following treatments were either mixed 

with 1 g L-1 or 4 g L-1 fertiliser: P. indica, Fun. mosseae, F. culmorum, F. 

graminearum, P. indica+Fun. mosseae, P. indica+F. culmorum, P. indica+F. 

graminearum, Fun. mosseae+F. culmorum, Fun. mosseae+F. graminearum, F. 

culmorum+F. graminearum, Fun. mosseae+F. culmorum+F. graminearum, P. 

indica+Fun. mosseae+F. culmorum, P. indica+Fun. mosseae+F. graminearum, P. 

indica+F. culmorum+F. graminearum, and P. indica+Fun. mosseae+F. 

culmorum+F. graminearum. 

Inoculations with P. indica (6 g liquid culture mixed with soil) and Fun. mosseae 

(50 g, 20 spores per g mixed with soil) and F. culmorum (6 g prepared inocula 

mixed with soil) were performed at sowing and F. graminearum was applied at 



 

81 

 

flowering. All disease symptoms, whether from inoculations or natural infections 

were recorded, including Septoria leaf blotch and yellow rust.  

In this experiment, extra nitrogen and sulphur fertiliser were applied in two split 

applications, with the first dose applied in late March and the second in late April, 

including 1.4 g N pot-1 (over 2 splits) and 28 mg S pot-1 (in one application). The 

first dose was made up of ammonium nitrate (34.5 % N) and ammonium sulphate 

(27 % N, 30 % SO4). The second dose was ammonium nitrate (34.5 % N).  

3.3.2.2. Fusarium Head Blight of spring wheat cv. Paragon 

Spring wheat seeds, cv. Paragon (NABIM group 1), were surface disinfected and 

pre-germinated. Eight seeds per pot were planted in 12 L pots at a depth of two cm 

in two parts non-sterilised compost and one part sand, mixed with 4 g L-1 of slow 

release fertiliser as for winter wheat. 

The experiment was carried out in 2014 growing season at the University of 

Reading, under outdoor conditions. The experiment had 16 treatments with three 

replicates, distributed in three randomised blocks, with the following combination: 

±P. indica, ±Fun. mosseae, ±F. graminearum (FHB) and ±fungicide. The 

treatments were: no amendment, P. indica, Fun. mosseae, F. graminearum, 

fungicide, P. indica+Fun. mosseae, P. indica+F. graminearum, P. 

indica+fungicide, Fun. mosseae+fungicide, F. graminearum+fungicide, Fun. 

mosseae+F. graminearum, P. indica+Fun. mosseae+F. graminearum, P. indica+F. 

graminearum+fungicide, P. indica+Fun. mosseae+fungicide, Fun. mosseae+F. 

graminearum+fungicide, P. indica+Fun. mosseae+F. graminearum+fungicide. 
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Inoculations with P. indica (6g liquid culture mixed with soil) and Fun. mosseae 

(50 g, 20 spores per g mixed with soil) were performed at sowing. The fungicide 

Aviator Xpro (Bayer CropScience, UK) with active ingredients of prothioconazole 

(15.84 %) and bixafen (7.43 %) was applied at the concentration of 2 ml L-1, diluted 

with water, when the flag leaf was fully emerged (Zadoks Growth Stage (GS) 39; 

Zadoks et al. (1974)) and also 72 hours after plants were artificially sprayed with 

spore suspension of F. graminearum (GS 65) for the selected treatments only. The 

fungicide Aviator Xpro exhibits both translaminar (within and across the leaf) and 

systemic movement (around the plant). Prothioconazole-based sprays have been 

proven to reduce FHB disease severity significantly (HGCA, 2015a). 

3.3.2.3. Fusarium Head Blight of different cultivars of spring wheat 

It is possible that some wheat cultivars benefit more than others from association 

with P. indica. In another experiment, the effect of P. indica on Fusarium head 

blight of spring hard wheat was assessed on six different spring wheat cultivars: 

Paragon, Mulika, Zircon (NABIM group 1), Granary, KWS Willow (NABIM group 

2) and KWS Kilburn (NABIM group 4), chosen from HGCA recommended list for 

spring sowing and were supplied by KWS UK Ltd, UK. Eight germinated seeds per 

pot were planted in 12 L pots at a depth of two cm in a mixture of two parts non-

sterilised compost and one part sand, mixed with 4 g L-1 of slow release fertiliser 

(3-4 months, Osmocote® Pro). 

The experiment was carried out in 2015 growing season at the University of 

Reading, under outdoor conditions. The experiment had 24 treatments with three 
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replicates, distributed in three randomised blocks, with the following factorial 

combinations of treatments: ±P indica, ±F. graminearum (FHB), and six cultivars 

of spring wheat. Inoculations with P. indica (6 g liquid culture mixed with soil) 

were performed at sowing and F. graminearum was applied at flowering. All 

disease symptoms, whether from inoculations or natural infections, were recorded 

when appropriate.  

The pots were sprayed with a mix of Cortez (Makhteshim-Agan (UK) Ltd), with 

active ingredient of epoxiconazole (12.1 % w/w), for the yellow rust (BASF, 2015) 

and Flexity (BASF, UK), with active ingredient of metrafenone (25.2 % w/w), for 

the powdery mildew at GS 70 (milk development) at the concentration of 2 ml L-1, 

diluted with water (Opalski et al., 2006). 

3.3.2.4. Fusarium ear inoculation 

When most tillers of each pot were at mid-anthesis stage (GS 65), all tillers of a pot 

were inoculated with 1 mL of a 50:50 mixed conidia suspension of F. graminearum 

576 and F. graminearum 602.1. In all expeiments inoculation was done in a cloudy 

evening with rain afterward. 

3.3.2.5. Fusarium Head Blight visual disease assessment and yield determination 

Visual disease assessment, based on the percentage of infected spikelets per ear, 

was made two weeks after artificial inoculation on each of the treated ears from 

each pot. F. graminearum disease symptoms were recognized as pink fungal 

growth, brown-colored lesions and premature bleaching of spikelets (Stack & 

McMullen, 2011).  
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Plants were hand harvested. The total above ground dry weight, total grain weight 

at 15 % moisture content, thousand grain weight (TGW), harvest index (total grain 

weight/total above grain weight), number of ears, plant height and root dry weight 

were measured.  

3.3.2.6. Mycotoxin analysis 

Determination of mycotoxin DON in all samples from the winter and spring 

experiments was performed using ELISA testing by Romer Labs (Romer Labs Ltd, 

UK).  

3.3.2.7. The effect of P. indica and Fun. mosseae on soil and plant tissue 

nutrients 

An experiment was carried out during 2014-15 growing season to test the effect of 

P. indica on soil and leaf tissue nutrients. Winter wheat seeds, cv. Battalion, were 

surface disinfected and pre-germinated. Eight seeds per pot were planted in 12 L 

pots at a depth of two cm in two parts non-sterilised compost and one part sand, 

mixed with 1 g L-1 or 4 g L-1 of slow release fertiliser (8-9 months, Osmocote® 

Pro). The experiment had 8 treatments with three replicates, distributed in three 

randomised blocks, with the following factorial combinations of treatments: ±P 

indica, ±Fun. mosseae, and ±fertiliser (1 g L-1 or 4 g L-1).  Inoculations with P. 

indica (6 g) and Fun. mosseae (50 g, 20 spores per g) were done at the time of 

sowing. Around 500g of soils and 200g leaf materials of each treatment at GS 27-

29 were sent for analysis in the first week of April/2015. The soil analysis included 

pH, phosphorus (P), potassium (K), magnesium (Mg), nitrate (NO3), ammonium 
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(NH4), and available nitrogen (N). The plant tissue analysis included total N and 

sulphur (S) with N:S ratio, total P, K, Mg, calcium (Ca), copper (Cu), zinc (Zn), 

Iron (Fe) and Boron (B).    

3.3.3. Statistical analysis of experiments 

ANOVA was used to analyse all data using Genstat 17th ed, (VSN, UK) with 

appropriate blocking. Where applicable, data were log10 or square root transformed 

to stabilize the residual variance and aid interpretation.  

3.4. Results 

3.4.1. Effect of P. indica on emergence rate 

The emergence rate of cv. Battalion (winter 2013), cv. Paragon (spring 2014) and 

the average of six cultivars of spring wheat seedlings (spring 2015) from control 

treatments 14 days after sowing was 90 %, 98 % and 95 % respectively. F. 

culmorum application at sowing time reduced the emergence rate by 10 % (P=0.04). 

There were no other significant differences between treatments. 

3.4.2. Effect of P. indica on Fusarium Head Blight disease severity and 

incidence  

FHB disease severity of winter wheat cv. Battalion was assessed two weeks after 

artificial inoculation at GS65. The main effects of fungicide and inoculation were 

large and significant, but interactions between them and with P. indica were also 

important. Third- and fourth-order interactions were not significant (Appendix 

Table 1, Chapter 8). Inoculation of ears with Fusarium increased the disease 

severity and incidence significantly (P<0.001) compared to non-inoculated 
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samples, but there was also some natural background infection of Fusarium spp. 

present (Fig. 3.1 a,b). F. culmorum application at the time of sowing did not have a 

significant effect on FHB disease severity or incidence. FHB severity and incidence 

in pots inoculated with P. indica (at sowing) and F. graminearum (at flowering) 

were reduced by 70 % (severity interaction P=0.004; incidence interaction 

P=0.005), compared to F. graminearum inoculated pots (Fig. 3.1 a,b). Disease 

severity and incidence were higher in the low fertilisation level than the high level 

(main effect P<0.001). Fun. mosseae reduced severity and incidence of FHB, but 

this effect was not additive to that of P. indica, so Fun. mosseae in co-inoculation 

with P. indica gave no extra advantage (Fig. 3.1 a,b). 
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Fig. 3.1. The effect of Piriformospora indica (Pi) and Funneliformis mosseae under 

low (1 g L-1) and high (4 g L-1) fertiliser levels on Fusarium head blight (FHB) 

disease severity and incidence of winter wheat (cv. Battalion), recorded at two 

weeks after artificial inoculation with Fusarium graminearum. (a) FHB disease 

severity, s.e.d. = 0.02; d.f. = 31 (data were square root transformed); (b) FHB 

disease incidence s.e.d. = 0.05; d.f. = 31; Each point represents mean ± 2 SEM; 

(fertiliser: Osmocote® Pro slow release fertiliser). 
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In spring wheat cv. Paragon, inoculation of ears with Fusarium spores significantly 

increased the disease severity and incidence of FHB (main effect of inoculation 

P<0.001), but there was also some natural background infection of Fusarium spp. 

(Fig. 3.2 a,b). The application of fungicide following F. graminearum inoculation 

reduced FHB severity by 80 % (fungicide.FHB interaction P=0.04).  P. indica soil 

inoculation resulted in a reduction in FHB severity, but the effect was only 

marginally significant (P. indica main effect P=0.07; Fig. 3.2 a,b; Appendix Table 

2, Chapter 8). 
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Fig. 3.2. The effect of Piriformospora indica, Funneliformis mosseae and fungicide 

Aviator Xpro on Fusarium head blight (FHB) disease severity and incidence of 

spring wheat (cv. Paragon), recorded at two weeks after artificial inoculation with 

Fusarium graminearum (a) FHB disease severity, s.e.d. = 0.05, d.f. = 30 (data were 

square root transformed); (b) FHB disease incidence, s.e.d. = 0.18, d.f. = 30, (data 

were square root transformed); Each point represents mean ± 2 SEM; (Pi = P. indica 

and fungicide: Aviator Xpro). 
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Ear inoculation of six cultivars of spring wheat with F. graminearum spores 

significantly increased the disease severity and incidence of FHB (main effect of 

inoculation P<0.001), but there was also some natural background infection of 

Fusarium spp. (Fig. 3.3 a,b). FHB severity and incidence in pots inoculated with P. 

indica (at sowing) and F. graminearum (at flowering) was reduced by around 80 % 

(severity P. indica. FHB interaction P<0.001; incidence interaction P=0.02), 

compared to F. graminearum inoculated pots (Fig. 3.3 a,b; Appendix Table 3, 

Chapter 8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

91 

 

 

Fig. 3.3. The effect of Piriformospora indica (Pi) on Fusarium head blight (FHB) 

disease severity and incidence of six cultivars of spring wheat (cv. Paragon, Mulika, 

Zircon, Granary, KWS Willow and KWS Kilburn), recorded at two weeks after 

artificial inoculation with Fusarium graminearum. (a) FHB disease severity, s.e.d. 

= 0.04; d.f. = 46; (b) FHB disease incidence s.e.d. = 0.1; d.f. = 46; (data were square 

root transformed). Each point represents mean ± 2 SEM. 
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3.4.3. Mycotoxin DON analysis 

For both winter and spring wheat samples with no Fusarium head inoculation, DON 

concentrations were below the limit of detection (<250 µg kg-1). Consequently, 

analysis was restricted to those samples from plants which were artificially 

inoculated with F. graminearum and considered those lower than the limit of 

detection as 250 µg kg-1. The following results concern F. graminearum-inoculated 

samples only, in the cv. Battalion in 2014: DON concentrations were 70 % higher 

at low fertilisation (fertiliser main effect P=0.005) than high fertilisation. P. indica 

application reduced DON concentrations by 70 % at low fertilisation and 50 % at 

high fertilisation (Fig. 3.4 a; P. indica. fertiliser interaction P<0.001), to levels close 

to the limit of detection, compared to non-inoculated P. indica samples. DON 

concentrations were higher in the samples inoculated at sowing with F. culmorum 

(P<0.001); however, P. indica reduced DON concentrations in these samples to 

below the limit of detection (P<0.001). Fun. mosseae had no main effect (P=0.5) 

and no significant interactions (Fig. 3.4 a; Appendix Table 4, Chapter 8). 

In the cv. Paragon spring wheat samples in 2014, inoculation with F. graminearum 

significantly increased DON concentrations (main effect P<0.001, Fig. 3.4 b, 

Appendix Table 5, Chapter 8). The following results concern F. graminearum-

inoculated samples only: P. indica application (main effect P=0.01) reduced DON 

concentrations by 80 % (Fig. 3.4 b). Fungicide application (main effect P=0.001) 

also reduced the mycotoxin concentrations by 70 %, but the effect was not 

additional to that of P. indica (interaction P=0.03). Fun. mosseae had no effect on 
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average (main effect, P=0.5) but had a significant interaction with P. indica 

(P=0.009): without P. indica, Fun. mosseae reduced DON by roughly 50 %, but in 

the presence of P. indica, Fun. mosseae increased DON by about 50 % (Fig. 3.4 b). 

In 2015, inoculation of six cultivars of spring wheat samples with F. graminearum 

significantly increased DON concentrations (main effect P<0.001, Fig. 3.4 c; 

Appendix Table 6, Chapter 8); No positive samples were found in the uninoculated 

pots. The following results concern F. graminearum-inoculated samples only: The 

cultivars differed in mycotoxin DON concentration (P<0.001). P. indica application 

reduced DON concentration by around 90 % (main effect P<0.001). P. indica 

reduced DON concentration in all cultivars, with an interaction arising because cv. 

KWS Willow and cv. Granary had low concentrations of DON even in non-P. 

indica treated pots (interaction P=0.002, Fig. 3.4 c).  
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Fig. 3.4. The effect of Piriformospora indica (Pi), Funneliformis mosseae, 

fungicide Aviator Xpro, under low (1 g L-1) and high (4 g L-1) fertiliser levels on 

Fusarium mycotoxin deoxynivalenol (DON) on winter and spring wheat grain 

samples.  (a) DON in winter wheat samples (cv. Battalion), s.e.d. = 0.15, d.f. = 15; 

(b) DON in spring wheat samples (cv. Paragon), s.e.d. = 0.1, d.f. = 30; (c) DON of 

six cultivars in spring wheat samples (cv. Paragon, Mulika, Zircon, Granary, KWS 

Willow and KWS Kilburn), s.e.d. = 0.08, d.f. = 22 (data were Log10 transformed); 

Each point represents mean ± 2 SEM; (fungicide: Aviator Xpro and fertiliser: 

Osmocote® Pro slow release fertiliser, red line: DON limit of detection). 

 

FHB severity was well correlated to DON (r = 0.7, data not shown). Both FHB 

severity and DON were weakly related to yield, but not to root-shoot ratio, above 

ground biomass or root biomass. 

3.4.4. Harvest results  

3.4.4.1. Winter wheat cv. Battalion, 2013-14 

Above ground biomass: Fun. mosseae increased the above ground biomass in the 

presence of F. culmorum by 17 % at high fertilisation and by 10 % at low 

fertilisation, compared to F. culmorum-inoculated samples (Fun. mosseae. F. 

culmorum interaction P<0.001, Table 3.1; Appendix Table 1, Chapter 8). P. indica 

inoculation increased biomass on average (main effect P=0.06). Its combination 

with Fun. mosseae increased the above ground biomass in the presence of F. 

graminearum by 25 % at low fertilisation (P. indica. Fun. mosseae. F. 

graminearum interaction P =0.008), compared to samples inoculated with F. 

graminearum alone. The co-inoculation increased biomass also in plants inoculated 

with F. culmorum, by 15 % at low fertilisation and 34 % at high fertilisation (P. 

indica. Fun. mosseae. F. culmorum interaction P=0.07). At low fertilisation, in the 
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presence of F. graminearum, Fun. mosseae increased the above ground biomass by 

30 % (Fun. mosseae. fertiliser. F. graminearum interaction P=0.001), compared to 

F. graminearum-inoculated samples at low fertilisation. F. culmorum application 

at sowing time reduced the above ground weight by 7 %, but the effect could have 

been chance (P=0.09, Table 3.1). 

Root biomass: Roots were heavier at high fertilisation than low fertilisation (main 

effect P<0.001, Table 3.1; Appendix Table 1, Chapter 8). P. indica application 

increased the root weight by 55 % at both low and high fertilisation (main effect 

P<0.001), compared to non-P. indica inoculated samples. The co-inoculation of 

Fun. mosseae with P. indica also increased the root weight by 52 % at low 

fertilisation and 37 % at high fertilisation (P. indica. Fun. mosseae P<0.001). F. 

culmorum reduced the root weight by 40 % at both low and high fertilisation 

(interaction P<0.001). This reduction was smaller when P. indica (P=0.01) or Fun. 

mosseae (P=0.01) were also applied (Table 3.1). 

Yield: Fun. mosseae at low fertilisation increased the total grain weight by 5 %, but 

at high fertilisation it decreased the weight by 20 % (Fun. mosseae. fertiliser 

interaction P=0.03, Table 3.1; Appendix Table 1, Chapter 8), compared to non-Fun. 

mosseae-inoculated samples. The combination of P. indica and Fun. mosseae 

increased the total grain weight by 60 % in the presence of F. graminearum (P. 

indica. Fun. mosseae. F. graminearum interaction P=0.09) at low fertilisation level, 

compared to F. graminearum-inoculated samples. The combination of P. indica 

and Fun. mosseae increased the total grain weight in the presence of F. culmorum 
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at both low and high fertilisation (P. indica. Fun. mosseae. F. culmorum interaction 

P=0.05, Table 3.1; Appendix Table 1, Chapter 8). 

TGW: P. indica application increased thousand grain weight (TGW) by 8 % at low 

fertility (main effect P=0.02, Table 3.1; Appendix Table 1, Chapter 8). The 

application of F. graminearum reduced TGW by 10 % (P=0.06) at both low and 

high fertilisation. However, P. indica maintained TGW in the presence of F. 

graminearum at low fertilisation (P. indica. F. graminearum interaction P=0.04). 

The combination of P. indica and Fun. mosseae increased TGW at high 

fertilisation, but not at low fertilisation (P. indica. Fun. mosseae. fertiliser 

interaction P=0.008, Table 3.1).  

Harvest index: There were no significant differences among treatments for harvest 

index (Appendix Table 1, Chapter 8). 

Ears: Fertilisation increased the number of ears per pot (main effect P<0.001). The 

combination of P. indica and Fun. mosseae increased the number of ears at both 

low and high fertilisation (P. indica. Fun. mosseae. fertiliser interaction P=0.02), 

compared to non-P. indica-inoculated samples (Table 3.1; Appendix Table 1, 

Chapter 8). 
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Table 3.1. Harvest results of winter wheat samples (cv. Battalion), inoculated with Piriformospora indica, Funneliformis mosseae, 

Fusarium culmorum (at sowing time) and F. graminearum (F. g; at flowering time) under low (1 g L-1) and high (4 g L-1) fertiliser 

levels (F.c: F. culmorum and fertiliser: Osmocote® Pro slow release fertiliser). Harvest index: total grain weight (g)/total above grain 

weight (g).

Fertiliser 
P. 

indica 
F.g 

Fun. 

mosseae 
F.c 

Total above 

ground weight 

(g) 

Root weight 

(g) 

Total grain 

weight per pot 

(g) 

1000 grain 

weight (g) 

Harvest 

index 

no of ears per pot 

(Log10) 

1 g L-1 

- 

- 

- 
- 243 23 78 68 0.3 1.4 

+ 227 16 77 66 0.3 1.4 

+ 
- 264 21 82 71 0.3 1.4 

+ 251 27 84 70 0.3 1.4 

+ 

- 
- 204 21 57 60 0.3 1.4 

+ 195 17 62 63 0.3 1.4 

+ 
- 266 27 83 69 0.3 1.4 

+ 274 33 79 67 0.3 1.4 

+ 

  mean 241 23 75 67 0.3 1.4 

- 

- 
- 272 34 85 73 0.3 1.4 

+ 217 38 63 68 0.3 1.3 

+ 
- 257 35 83 67 0.3 1.4 

+ 261 34 90 68 0.3 1.4 

+ 

- 
- 247 28 77 66 0.3 1.3 

+ 221 35 65 73 0.3 1.3 

+ 
- 257 32 92 68 0.4 1.4 

+ 276 32 88 69 0.3 1.4 

 -   mean 251 34 80 69 0.3 1.3 
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Fertiliser 
P. 

indica 
F.g 

Fun. 

mosseae 
F.c 

Total above 

ground weight 

(g) 

Root weight 

(g) 

Total grain 

weight per pot 

(g) 

1000 grain 

weight (g) 

Harvest 

index 

no of ears per pot 

(Log10) 

4 g L-1 

 

- 

- 
- 336 27 120 69 0.4 1.7 

+ 276 19 95 67 0.3 1.6 

+ 
- 303 38 96 71 0.3 1.7 

+ 326 34 94 68 0.3 1.7 

+ 

- 
- 307 31 89 64 0.3 1.6 

+ 277 18 93 69 0.3 1.6 

+ 
- 305 38 110 65 0.4 1.7 

+ 298 32 92 67 0.3 1.7 

+ 

  mean 304 30 99 68 0.3 1.8 

- 

- 
- 317 42 125 68 0.4 1.7 

+ 281 37 94 69 0.3 1.6 

+ 
- 301 37 102 71 0.3 1.6 

+ 372 37 129 71 0.3 1.7 

+ 

- 
- 380 41 122 65 0.3 1.6 

+ 316 38 97 69 0.3 1.6 

+ 
- 266 37 81 70 0.3 1.6 

+ 297 39 92 68 0.3 1.6 

    mean 316 39 105 69 0.3 1.7 

    s.e.d. 24 3.09 17.3 3.07 0.05 0.05 
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3.4.4.2. Spring wheat cv. Paragon, 2014  

The application of P. indica increased total above ground weight by 16 % (main 

effect P=0.05), root weight by 20 % (main effect P=0.02), total grain weight by 23 

% (main effect P=0.02), TGW by 23 % (main effect P=0.08), harvest index by 8 % 

(main effect P=0.07), and number of ears by 12 % (main effect P=0.003), compared 

to samples without P. indica (Table 3.2; Appendix Table 2, Chapter 8). The 

interaction of P. indica with F. graminearum increased total grain weight of F. 

graminearum-inoculated samples by 54 % (P=0.08) and harvest index by 13 % 

(P=0.07), compared to samples inoculated with F. graminearum alone. Also, the 

combination of P. indica, Fun. mosseae and fungicide increased total above ground 

weight (P=0.03), total grain weight (P=0.003), TGW (P=0.01), harvest index 

(P=0.009) and number of ears (P=0.003) (Table 3.2), compared to the control (no-

amendment) samples. 
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Table 3.2. Harvest results of spring wheat samples (cv. Paragon), inoculated with 

Piriformospora indica, Funneliformis mosseae (at sowing time), Fusarium 

graminearum (F. g; at flowering time) and fungicide Aviator Xpro (at growth stage 

39 and 72 hours after artificial inoculation at flowering time). Harvest index: total 

grain weight (g)/total above grain weight (g).

P. indica F.g 
Fun. 

mosseae 
Fungicide 

Total 

above 

ground 

weight 

(g) 

Root 

weight 

(g) 

Total 

grain 

weight 

per pot 

(g) 

1000 

grain 

weight 

(g) 

Harvest 

index 

no of 

ears per 

pot 

(Log10) 

- 

- 

- 
- 193 23 73 43 0.4 39 

+ 229 28 103 52 0.5 41 

+ 
- 212 24 98 50 0.5 39 

+ 201 24 79 46 0.4 35 

+ 

- 
- 183 21 62 38 0.3 36 

+ 199 22 83 45 0.4 38 

+ 
- 213 29 86 50 0.4 38 

+ 214 30 90 45 0.4 35 

    mean 206 25 84 46 0.4 38 

+ 

- 

- 
- 225 28 89 53 0.4 44 

+ 205 28 91 47 0.5 40 

+ 
- 205 29 82 46 0.4 39 

+ 232 28 102 47 0.4 41 

+ 

- 
- 217 28 96 51 0.4 40 

+ 204 28 91 47 0.4 37 

+ 
- 236 28 95 51 0.4 40 

+ 226 25 108 48 0.5 39 

   mean 219 28 94 49 0.4 40 

   s.e.d. 18.5 2.8 10.9 4.1 0.04 2.01 
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3.4.4.3. Six cultivars of spring wheat, 2015 

Averaged over other treatments, the cultivars of spring wheat differed in above 

ground biomass (P=0.02), root weight (P=0.09), total grain weight (P=0.001), and 

the number of ears per pot (P<0.001, Table 3.3; Appendix Table 3, Chapter 8). 

Averaged over cultivars, P. indica inoculation increased the above ground biomass 

(P<0.002), root weight (P= 0.002), total grain weight (P<0.001), TGW (P<0.001), 

harvest index (P<0.001) and the number of ears per pot (P=0.002), compared to the 

control (no-amendment) samples. F. graminearum application at flowering reduced 

the above ground biomass (P=0.06), total grain weight (P<0.001), and harvest index 

(P=0.03) of all cultivars (Table 3.3; Appendix Table 3, Chapter 8). In the presence 

of F. gramineraum, P. indica inoculation increased the above ground biomass and 

TGW (P. indica.F. graminearum interaction P=0.04 and P=0.03, respectively), 

compared to F. graminearum-inoculated samples. There was no interaction 

between P. indica or F. graminearum with cultivars (Table 3.3).  
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Table 3.3. Harvest results of six cultivars of spring wheat samples (cv. Paragon, 

Mulika, Zircon, Granary, KWS Willow and KWS Kilburn), inoculated with 

Piriformospora indica (at sowing time) and F. graminearum (F. g; at flowering 

time). Harvest index: total grain weight (g)/total above grain weight (g).

P. 

indica 
F. g 

Spring 

wheat 

cultivars 

Total above 

ground 

weight (g) 

Root 

weight 

(g) 

Total grain 

weight per 

pot (g) 

1000 

grain 

weight 

(g) 

Harvest 

index 

No of  

ears 

- 

- 

Paragon 267 18.6 82 45 0.3 51 

Mulika 267 15.3 94 47 0.4 52 

Zircon 289 17.9 103 48 0.4 66 

Granary 250 16.2 87 46 0.4 60 

KWS 

Willow 
283 14.8 105 45 0.4 59 

KWS 

Kilburn 
257 16.1 93 44 0.4 62 

  mean 269 16.5 94 46 0.4 58 

+ 

Paragon 201 17.2 61 39 0.3 54 

Mulika 228 16.8 72 43 0.3 53 

Zircon 245 17.4 88 45 0.4 61 

Granary 219 15.7 74 44 0.3 60 

KWS 

Willow 
257 17.4 71 41 0.3 65 

KWS 

Kilburn 
251 17.1 74 41 0.3 58 

   mean 234 16.9 73 42 0.3 59 

+ 

- 

Paragon 223 27.4 102 65 0.5 56 

Mulika 284 20.1 127 65 0.4 57 

Zircon 338 22.8 154 62 0.5 74 

Granary 257 20.8 111 61 0.4 68 

KWS 

Willow 
302 22.4 97 61 0.3 70 

KWS 

Kilburn 
269 21.3 97 55 0.4 61 

  mean 279 22.5 115 62 0.4 64 

+ 

Paragon 280 21.7 89 60 0.3 61 

Mulika 273 23.01 108 65 0.4 58 

Zircon 269 24.6 115 60 0.4 69 

Granary 269 22.7 105 59 0.4 65 

KWS 

Willow 
325 22.9 102 64 0.3 62 

KWS 

Kilburn 
268 21.1 103 66 0.4 61 

    mean 281 22.7 104 62 0.4 63 

   s.e.d. 30.9 2.1 13.4 3.6 0.05 5.3 
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3.4.5. Soil and leaf tissue nutrients analysis, 2014-15  

Soils were more acidic at high fertilisation (P<0.001, (Table 3.4.; Appnedix Table 

7, Chapter 8). The concentrations of soil P, NO3, NH4 and available N and 

percentage wet weight were higher at high fertilisation, compared to low 

fertilisation (all main effects P<0.001). The concentration of soil Mg was 34 % 

higher at the low fertilisation level (main effect P<0.001). P. indica and Fun. 

mosseae did not have any effect on any of the soil nutrients. The combination of P. 

indica and Fun. mosseae at high fertilisation increased the amount of soil NO3, NH4 

and available N, compared to low fertilisation (P. indica, Fun. mosseae and 

fertiliser interaction P=0.02), but on their own, each decreased these levels (Table 

3.4.).  

The amount of leaf total N, P, K, Ca, Mg, S, Mn, Cu, Zn and B were all higher at 

high fertilisation (main effect P<0.001, Table 3.5; Appnedix Table 8, Chapter 8). 

However, the concentration of Fe was higher at low fertilisation (main effect 

P=0.002). At high fertility, the concentration of B in the leaves was lower in the 

presence of P. indica (main effect P=0.01), relative to non-P. indica inoculated 

samples. The combination of P. indica and Fun. mosseae, at high fertilisation, 

increased the total amount of N in the leaves (P. indica, Fun. mosseae and fertiliser 

interaction P=0.04), but on their own, each decreased leaf N concentration (Table 

3.5). 
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Table 3.4. Soil nutrient analysis results of winter wheat samples inoculated or not with Piriformospora indica and Funneliformis 

mosseae at sowing time. The experiment carried out in the 2014-15 growing season (fertiliser: Osmocote® Pro slow release fertiliser, 

P: phosphorus, K: potassium, Mg: magnesium, N: Nitrogen, Nitrate: NO3, Ammonium: NH4; d.f. = 14). 
 

Fertiliser P. indica 
Fun. 

mosseae 

Soil 

pH 

P 

mg L-1 

K 

mg L-1 

Mg 

mg L-1 

NO3 

mg kg-1 

NH4 

mg kg-1 

Available 

N 

kg N ha-1  

Dry 

Matter  

%w/w  

1 g/L 

- 
- 6.4 34 95 122 5 6 40 81 

+ 6.4 26 95 117 3 4 25 82 

  Mean 6.4 30 95 120 4 5 33 82 

+ 
- 6.2 31 103 120 4 5 32 80 

+ 6.5 25 83 113 1 1 9 81 

   Mean 6.4 28 93 117 3 3 21 81 

4 g/L 

- 
- 5.2 53 92 82 12 20 121 88 

+ 5.4 46 87 90 7 10 66 87 

  Mean 5.3 49 90 86 10 15 94 88 

+ 
- 5.3 47 94 90 9 11 77 85 

+ 5.2 51 114 91 18 23 153 84 

    Mean 5.3 49 104 91 14 17 115 85 

    s.e.d. 0.2 5 12 8 3 4 26 0.9 
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Table 3.5. Leaf tissue nutrient analysis results of winter wheat samples inoculated or not with Piriformospora indica and Funneliformis 

mosseae at sowing time. The experiment carried out in the 2014-15 growing season (fertiliser: Osmocote® Pro slow release fertiliser, 

N: Nitrogen, P: phosphorus, K: potassium, Ca: calcium, Mg: magnesium, S: sulphur, Mn: manganese, Cu: copper, Zn: zinc, Fe: Iron, 

B: boron; d.f. = 14). 
 

Fertiliser P. indica 

Fun. 

mosseae 

Total N 

%w/w 

Total P 

g kg-1 

Total K  

g kg-1 

Total Ca  

g kg-1 

Total Mg  

g kg-1 

Total S 

g kg-1 

Total Mn  

g kg-1 

Total  

Cu g kg-1 

Total Zn  

g kg-1 

Total Fe  

g kg-1 

Total B  

g kg-1 

1 g/L 

- 
- 3 4.5 35.8 2.8 0.9 2.6 0.12 4 29 517 3 

+ 3 5.2 40.5 2.8 0.9 3.6 0.14 4 32 192 3 

  Mean 3 4.8 38.2 2.8 0.9 3.1 0.13 4 31 355 3 

+ 
- 3 4.9 39.8 2.8 1.02 3.4 0.15 5 31 214 3 

+ 3 4.9 38 2.7 1 3.1 0.14 4 31 173 3 

   Mean 3 4.9 38.9 2.7 1.01 3.3 0.15 5 31 194 3 

4 g/L 

- 
- 5 7.8 52.6 4.1 1.5 7.4 0.22 8 60 157 4 

+ 4 7.5 51 3.6 1.4 6.5 0.21 6 53 121 4 

  Mean 5 7.6 51.8 3.9 1.5 6.9 0.21 7 57 139 4 

+ 
- 4 7.9 52.8 3.7 1.4 6.8 0.2 7 56 135 3 

+ 5 7.1 52.6 4.1 1.5 6.01 0.2 6 54 121 3 

    Mean 5 7.5 52.7 3.9 1.5 6.4 0.2 7 55 128 3 

    s.e.d. 0.3 0.63 3.5 0.45 0.13 0.7 0.02 0.6 5 76 0.3 
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3.5. Discussion 

P. indica effectively reduced FHB disease severity and incidence, and also grain 

DON contamination. It was as effective as fungicide applied 72 hours after F. 

graminearum inoculation, and the effect was consistent across years and cultivars. 

P. indica also increased yield in both high and low fertilisation, suggesting P. indica 

application is compatible with low-input systems. However, unlike mycorrhizal 

fungi, its effect was greater at the high fertilisation level. P. indica application was 

compatible with Fun. mosseae and fungicide, but effects of these were not additive. 

Collectively, these results suggest that P. indica application could be useful in the 

long-term. P. indica reduced FCR at sowing, FHB at flowering and grain DON 

contamination, suggesting there would be fewer spores, hyphae and macroconidia 

overwintering in soil and crop residues; as a result, there would be less inoculum 

available for the disease to occur in the next season. The results of soil and leaf 

tissue analysis suggest that P. indica does not have any effect on soil and plant 

tissue nutrients in the winter wheat cv. Battalion at the overall fertility levels tested. 

Fungicide application during wheat growing stages can reduce the risk of FHB and 

mycotoxin contamination (Paul et al., 2008, Edwards & Godley, 2010). However, 

inconsistent control of FHB disease with fungicide has been found in several reports 

(McMullen, 1994, Horsley et al., 2006). Yoshida et al. (2012) indicated that the 

timing of fungicide application differentially affected FHB disease and mycotoxin 

concentration, considering anthesis as the crucial stage for fungicide application. 

The application of fungicide, in the experiment, at GS 39 (when flag leaf was fully 
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emerged), and then at anthesis GS 65 (72 hours after Fusarium inoculation), 

reduced both FHB and DON concentration. In the spring wheat experiments, P. 

indica application at sowing also reduced FHB severity and incidence as effectively 

as fungicide (Fig. 3.2; Appendix Table 2, Chapter 8). The application of P. indica 

might not only reduce the use of fungicide and any environmental damage from 

fungicide use, but also increase plant resistance against other pathogens (Bagde et 

al., 2010, Franken, 2012).  

The fungicide Aviator Xpro is systemic and it might have inhibitory effect on the 

colonasation of roots by both P. indica and Fun. mosseae. Both P. indica and Fun. 

mosseae were applied at sowing and the colonisation of the roots were confirmed 

microscopically. The fungicide was applied at flowering. Diedhiou et al. (2004) 

showed that foliar applications of fungicide did not have negative effects on 

established mycorrhizal colonization of maize plants. Hernández-Dorrego and 

Parés (2010) also demonstrated that there was no direct relationship between the 

application of systemic foliar fungicides and a detrimental effect on mycorrhizal 

symbiosis, and there was no evidence either that the foliar application of fungicides 

were inoquous for the mycorrhizal fungi. 

The DON concentration in samples inoculated at sowing with F. culmorum and 

then at heading with F. graminearum was much higher than in samples inoculated 

only with F. graminearum (Fig. 3.4 a; Appendix Table 4, Chapter 8). This suggests 

that when Fusarium is already present in the plant, there is an increased risk of 

mycotoxin production in the grains by FHB. F. culmorum might have produced 
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DON that moved from lower parts of the plants to the heads, consistent with the  

results of Moretti et al. (2014) and Covarelli et al. (2012) who demonstrated that 

although F. graminearum and F. culmorum could not be detected beyond the third 

internode, a low concentration of DON was found in the kernels beyond those 

tissues colonized by the fungus; suggesting that DON can be moved from lower 

parts of the plants to the heads. This is probably due to its water solubility, which 

can cause a reduction in concentration at late harvest, but in this case led to transfer 

upwards. Alternatively, Mudge et al. (2006) isolated F. graminearum and DON 

from wheat heads and flag leaf nodes following inoculation of the stem base. Xu et 

al. (2007) indicated that the mycotoxin productivity of F. graminearum in the co-

inoculation with F. culmorum and F. poae was higher than that in the single-isolate 

inoculations. However, in the present case DON concentrations in the ear were not 

detectably increased by root infection with F. culmorum in the absence of F. 

graminearum inoculation.  

In the winter wheat experiment, P. indica increased the above ground weight, total 

grain weight and thousand grain weight by similar amounts under both low and 

high fertilisation, suggesting that the P. indica effect on grain yield was independent 

of fertiliser levels (Tables 3.1; Appendix Table 1, Chapter 8). Similarly Achatz et 

al. (2010) found that increased grain yield in P. indica inoculated barley was 

independent of the fertilisation level. Murphy et al. (2014b) found that P. indica-

inoculated barley had greater grain weight in higher nutrient input. These indicates 

that P. indica-induced yield increase does not result from relief of low phosphorus 
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or nitrogen supply. By contrast, both my results and those of Achatz et al. suggest 

that the increase in the above ground weight caused by Fun. mosseae only occurred 

under low fertility. The difference in response to high fertility shows that the 

beneficial effects of P. indica are based on different mechanisms from mycorrhizal 

fungi. The effect of P. indica under low and high fertilisation levels on final yield 

of winter wheat was confirmed on a small scale experiment (see chapter 4, page 

132). 

Consistent with these results, Shahabivand et al. (2012) and Yaghoubian et al. 

(2014) reported that P. indica increased wheat growth more than Fun. mosseae and 

that their co-inoculation improved the defence mechanisms, drought resistance, and 

growth of wheat plants, suggesting P. indica application was compatible with Fun. 

mosseae application.  

During these experiments, the severity of any air-borne diseases which occurred 

naturally was scored (data shown in chapter 4). P. indica reduced disease severity 

and incidence of Septoria leaf blotch at GS 22 (tillering stage) and yellow rust at 

GS 35-37 (stem elongation, 5th node detectable to flag leaf just visible) for the 

winter wheat cv. Battalion, and yellow rust and powdery mildew at GS 70 (milk 

development) for six different cultivars of spring wheat. In a small-scale experiment 

the effect of P. indica on Septoria leaf blotch was confirmed at seedling stage; this 

is consistent with P. indica producing a generalised increase in resistance to a wide 

class of fungi.  
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These results show that P. indica colonised and increased shoot and final yield of 

the winter wheat (cv. Battalion) and six cultivars of spring wheat. P. indica reduced 

disease severity and incidence of FHB, and other foliar diseases and DON 

concentration of all cultivars. It is consistent with Deshmukh et al. (2006) and 

Deshmukh and Kogel (2007)’s study. They inoculated different barley cultivars 

seedlings with P. indica and different isolates of Sebacina vermifera (member of 

Sebacinaceae, genetically close to P. indica). Despite considerable variation of the 

fungal activity of the different isolates, they found increase in shoot and root 

biomass with consistent resistance-inducing activity of all strains of the S. vermifera 

against powdery mildew (caused by Blumeria graminis f.sp. hordei) as with P. 

indica. In contrast, Gravouil (2012) showed that different barley cultivars had 

different rates of colonisation by P. indica. Some barley cultivars had the highest 

rate of P. indica colonisation and the best increase in shoot biomass and protection 

against pathogens such as Rhynchosporium commune.  

The results of the nutrient experiment showed that the soil was wetter at high 

fertilisation, presumably because roots were growing better. P. indica did not have 

any effect on either soil or more importantly leaf nutrients, suggesting that at least 

in the case of this experiment, P. indica effects on growth and yield were not due 

to better nutrient uptake. These results are inconsistent with others that suggest P. 

indica increased the uptake of micro- and macro-nutrients and so leads to growth 

promotion (Varma et al., 2013b, Bajaj et al., 2014, Shrivastava & Varma, 2014). 

Gosal et al. (2010) reported that P. indica increased the amount of Cu, Zn and Mn 
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in Chlorophytum sp. and promoted plant growth and biomass. P. indica increased 

the amount of Zn in Turmeric (Curcuma longa L.) and enhanced the growth, yield 

and active ingredients (Bajaj et al., 2014). The inconsistency with their results might 

have various causes. It might be due to the host differences, the methods of plant 

cultivations and inoculations, environmental effects or differences in the fertilisers 

and their concentrations. However, Fun. mosseae also did not have any effects on 

soil and leaf nutrients, suggesting no effect of P. indica and/or Fun. mosseae might 

be because of the experimental conditions. However, as P. indica protected wheat 

seedlings from FCR and reduced FHB severity and the mycotoxin DON 

concentration in the previous experiments, it is possible to reject the hypothesis that 

P. indica mode of action is due to nutrient uptake and the effects are not simply 

nutritional. Therefore, more work is needed to understand the issue; this is beyond 

the scope of this thesis. 

These results suggest that P. indica could be useful in control of FCR and FHB, 

mycotoxin contamination and other air-borne diseases. However, P. indica is 

probably an alien species in many parts of the world including the UK, so its 

releases into the open environments in these regions, to confirm its beneficial 

effects, requires consideration also of physiological trade-offs and ecological and 

agronomical side-effects. The wider effects of P. indica and similar organisms also 

need to be better understood before agricultural deployment. A search for native 

organisms with similar characteristics might be a safer direction to go in.  
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CHAPTER 4- Piriformospora indica effect on foliar diseases  

M. Rabiey, and M. W. Shaw 

M. Rabiey: did all the experiments;  

M. W. Shaw: advised on design, analysis and interpretation. 

4.1. Summary 

The effect of P. indica on air-borne diseases of winter and spring wheat, including 

Septoria leaf blotch, yellow rust and powdery mildew, was assessed under outdoor 

conditions. P. indica reduced Septoria leaf blotch severity and incidence of winter 

wheat (cv. Battalion), naturally and/or artificaly infected with Zymoseptoria tritici, 

at early growth stage. P. indica also reduced yellow rust, naturally infected with 

Puccinia striiformis f.sp. tritici, and powdery mildew, naturally infected with 

Blumeria graminis f.sp. tritici, disease severity and incidence of winter (cv. 

Battalion) and six cultivars of spring wheat (cv. Paragon, Mulika, Zircon, Granary, 

KWS Willow and KWS Kilburn). These results suggest that P. indica might be a 

useful in biocontrol of air-borne diseases of wheat. 

4.2. Introduction 

Wheat is subject to many foliar diseases during its growing season, such as Septoria 

leaf blotch, yellow (stripe) rust and powdery mildew (Wiese et al., 2000, Bockus et 

al., 2010). 

Septoria leaf blotch is caused by the fungus Zymoseptoria tritici (Quaedvlieg et al., 

2011) (also known as Mycosphaerella graminicola and Septoria tritici) and is the 

most significant and major threat to wheat yields in the UK, much of the rest of 
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Europe, and many other wheat growing regions. In developed agriculture, problems 

are increasing as currently available fungicides become less effective against 

resistant strains of the disease (Cools & Fraaije, 2008, Anon, 2009, Torriani et al., 

2009, DEFRA, 2013). The disease can cause serious yield losses ranging up to 50 % 

(Goodwin et al., 2011). A key feature of Septoria leaf blotch is the long 

symptomless growth of the fungus, which can nonetheless affect the host plant's 

cells, before it switches to the visible disease phase that eventually destroys the 

plant's leaves (Duncan & Howard, 2000). The disease is characterized by necrotic 

lesions on leaves and stems that develop after infected cells collapse, and is more 

prevalent during cool and wet weather. The disease is common on wheat in the 

tillering stages but causes little damage because leaf production outpaces leaf death 

due to the pathogen. After ear emergence the disease becomes quite severe on the 

upper leaves. Infection of the flag, second and third leaf can cause significant losses 

(Shaw & Royle, 1993, Jørgensen et al., 2014). 

Yellow (stripe) rust is caused by the fungus Puccinia striiformis f.sp. tritici, and is 

a serious disease of wheat occurring in the UK and most wheat areas with cool and 

moist weather conditions during the growing season (Wellings, 2011, Chen et al., 

2014). Severe epidemics are usually associated with very susceptible cultivars, mild 

winters and cool moist summers. Yield losses of 40-50 % have often been recorded 

in susceptible cultivars (Wellings, 2011). The disease is characterized by mass of 

yellow to orange urediniospores erupting from pustules arranged in long, narrow 

stripes on leaves (usually between veins), leaf sheaths, glumes and awns on 
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susceptible plants (Hovmøller et al., 2010, Hovmøller et al., 2011). The disease is 

common at seedling stage but also after ear emergence on the upper leaves. The 

disease has a very short latent period and can be found before leaves have fully 

expanded (Dedryver et al., 2009, de Vallavieille-Pope et al., 2011). 

Powdery mildew is caused by the fungus Blumeria graminis f.sp. tritici and is 

widely distributed throughout the world, particularly in warm, breezy conditions 

with short periods of high humidity (Oberhaensli et al., 2011, Asad et al., 2014). 

Powdery mildew is characterized by white, cottony patches of mycelium and 

conidia on the surface of the plant. They can occur on all aerial parts of the plant 

including stems and heads, but are most conspicuous on the upper surfaces of lower 

leaves. As the growing season progresses, sexual fruiting structures (cleistothecia) 

appear as distinct brown-black dots within aging colonies on maturing plants (Li et 

al., 2011, Li et al., 2012, Piarulli et al., 2012).  

To control all foliar diseases, growers are recommended to monitor the crop and, 

depending on cultivar susceptibility, disease presence and/or rain or irrigation status, 

apply fungicides (Hershman, 2012, Stewart et al., 2014). There are currently no 

fully resistant cultivars available for these diseases and use of fungicide has led to 

fungicide resistance and environmental pollution (Arraiano et al., 2009, Hershman, 

2012). Any measure which reduces rate of development, will make resistance, 

fungicide and sowing date changes more effective. Casual observations from 

previous expeiments motivated me to do more expeiments on the effect of P. indica 



 

116 

 

on foliar diseases. The experiments were performed on a small scale as the main 

aim of this research was to examine the effect of P. indica on Fusarium diseases. 

Hypothesis tested in this chapter: In this chapter the hypothesis that P. indica 

would reduce severity and incidence of any naturally infected foliar diseases is 

tested.  

 

4.3. Materials and Methods 

4.3.1. Plant materials and pot experiments 

4.3.1.1. The effect of P. indica on naturally infecting foliar diseases 

An experiment was set up to examine the effect of P. indica on foliar diseases 

arising from natural infections, such as powdery mildew, rust, Septoria leaf blotch 

and aphids. Winter wheat seeds, cv. Battalion, were surface disinfected and pre-

germinated. Eight seeds per pot were planted in 12 L pots at a depth of two cm in 

two parts non-sterilised compost and one part sand, mixed with 4 g L-1 of slow 

release fertiliser (8-9 months, Osmocote® Pro).  

The experiment was carried out in the 2014-15 growing season at the University of 

Reading, under natural conditions. The experiment had four treatments with five 

replicates, distributed in five randomised blocks, with the following factorial 

combinations of treatments: ±P. indica, and ±fertiliser (1 g L-1 or 4 g L-1).  

Inoculation with P. indica (6 g liquid culture mixed with soil) was done at sowing.  
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4.3.1.2. The effect of P. indica on artificially infected Z. tritici at seedling growth 

stage 

To confirm the effect of P. indica on Z. tritici an experiment was conducted at 

seedling growth stages under low and high fertiliser levels. The experiment was 

carried out in the spring-summer 2014 at the University of Reading, under natural 

conditions. The experiment had eight treatments with four replicates, distributed in 

four randomised blocks, with the following factorial combinations of treatments: 

±P. indica, ±Z. tritici, and ± fertiliser (1 g L-1 or 4 g L-1). Four winter wheat seeds, 

cv. Battalion, were sown in 1 L pots (top diameter: 13 cm, bottom diameter: 10 cm, 

depth: 11 cm) in two parts non-sterilised compost and one part sand, mixed with 1 

g L-1 or 4 g L-1 of slow release fertiliser (3-4 months, Osmocote® Pro). Inoculation 

with P. indica (4 g) was done at the time of sowing. The spore suspension of Z. 

tritici contained 1x106 spore mL-1. The first and second leaf of each pot, when fully 

emerged at GS 12, were tagged and sprayed with 1 mL of Z. tritici spore suspension. 

Later at GS 22 the disease severity and incidence was scored visually on a 

percentage scale (Bazot et al., 2011).  

4.3.2. Statistical analysis of experiments 

ANOVA was used to analyse all data using Genstat 17th ed, (VSN, UK) with 

appropriate blocking. Where applicable, data were log10 or square root transformed 

to stabilize the residual variance and aid interpretation.  
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4.4. Results 

4.4.1. Effect of P. indica on Z. tritici  

Septoria leaf blotch, naturally infected with Z. tritici was recorded at GS 24-26 

(tillering stage, main shoot with 4-6 tillers). P. indica reduced Septoria disease 

severity (P<0.001) and incidence (P=0.005) by 65 % and 46 %, respectively (Fig. 

4.1 a,b; Appendix Table 9, Chapter 8). Disease severity (P<0.001) and incidence 

(P<0.001) were 83 % and 60 % higher at low fertilisation, respectively (Fig. 4.1 

a,b), compared to high fertilisation. P. indica reduced Septoria disease severity at 

high fertility (P. indica. fertiliser P=0.002).  
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Fig. 4.1. The effect of Piriformospora indica under low (1 g L-1) and high (4 g L-1) 

fertiliser levels on Septoria leaf blotch disease severity and incidence of winter 

wheat (cv. Battalion), naturally infected with Zymoseptoria tritici at growth stage 

24-26. (a). Z. tritici severity s.e.d. = 0.05, d.f. = 12; (b). Z. tritici incidence s.e.d. = 

0.08, d.f. = 12) (data were square root transformed). Each point represents mean ± 

2 SEM; (fertiliser: Osmocote® Pro slow release fertiliser). 
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Septoria disease severity and incidence was also recorded at GS 24-26 in the 

experiment grown for soil and plant tissues nutrient analysis, carried out in the 

2014-15 growing season (chapter 3, page 84). P. indica reduced disease severity 

(P=0.05) and incidence (P=0.003) by 50 % and 65 % respectively. Disease severity 

(P<0.001) and incidence (P=0.001) were much higher at the low fertilisation level. 

Fun. mosseae increased the disease severity (P=0.01) and incidence (P=0.08; Fig. 

4.2 a,b; Appendix Table 10, Chapter 8). The interaction between P. indica and 

fertiliser was not significant.  
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Fig. 4.2. The effect of Piriformospora indica and Funneliformis mosseae under low 

(1 g L-1) and high (4 g L-1) fertiliser levels on Septoria leaf blotch disease severity 

and incidence of winter wheat (cv. Battalion), naturally infected with Zymoseptoria 

tritici at growth stage 24-26. (a). Z. tritici severity s.e.d. = 0.08, d.f. = 14; (b). Z. 

tritici incidence s.e.d. = 0.1, d.f. = 14; (data were square root transformed). Each 

point represents mean ± 2 SEM; (Pi: P. indica and fertiliser: Osmocote® Pro slow 

release fertiliser). 
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Septoria leaf blotch, caused by natural background infection was recorded at GS 

22-24 (tillering stage, main shoot with 2-4 tillers) in the winter wheat experiment 

grown for Fusarium experiment carried out in the 2013-14 growing season (chapter 

3, page 79). At high fertility, P. indica reduced the disease severity by 85 % (P. 

indica. Fertiliser interaction P=0.002). P. indica (P<0.001) and Fun. mosseae 

(P<0.001) inoculation alone or in combination (P. indica. Fun. mosseae interaction 

P<0.001) reduced Septoria disease severity by 70 %, 16 % and 67 % respectively, 

compared to low fertility. Disease was much lower at high fertility (Main effect of 

fertiliser P<0.001; Fig. 4.3 a,b; Appendix Table 11, Chapter 8). Very little disease 

was apparent on the leaves at GS 39 and subsequently. 
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Fig. 4.3. The effect of Piriformospora indica and Funneliformis mosseae under low 

(1 g L-1) and high (4 g L-1) fertiliser levels on Septoria leaf blotch disease severity 

and incidence of winter wheat (cv. Battalion), naturally infected with Zymoseptoria 

tritici, recorded at growth stage 22-24 (tillering stage, main shoot with 2-4 tillers). 

(a). Z. tritici severity, s.e.d. = 0.03; d.f. = 47; (b). Z. tritici incidence, s.e.d. = 0.06, 

d.f. = 47; (data were sqrt transformed); Each point represents mean ± 2 SEM; 

(fertiliser: Osmocote® Pro slow release fertiliser). 
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Septoria leaf blotch, artificially infected with Z. tritici was recorded at GS 22 

(tillering main shoot and two tillers). P. indica reduced Z. tritici severity and 

incidence by 90 % (P<0.001) at both high and low fertility. P. indica reduced the 

disease severity more at high fertilisation (P=0.03). The disease severity was lower 

at low fertiliser level, compared to high fertiliser level (P=0.05; Fig. 4.4 a,b). 
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Fig. 4.4. The effect of Piriformospora indica under low (1 g L-1) and high (4 g L-1) 

fertiliser levels on Septoria leaf blotch disease severity and incidence of winter 

wheat (cv. Battalion), recorded at 3 weeks after artificial inoculation with 

Zymoseptoria tritici (a). Z. tritici severity s.e.d. = 0.06, d.f. = 9; (b). Z. tritici 

incidence s.e.d. = 0.1, d.f. = 9. Each point represents mean ± 2 SEM; (Pi: P. indica 

and fertiliser: Osmocote® Pro slow release fertiliser). 
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4.4.2. Effect of P. indica on aphids 

Number of Grain aphid (Sitobion avenae) was also recorded at GS 65 (flowering 

stage) on leaf 4 and 5 for the winter wheat experiment grown for assessing P. indica 

effect on air-borne diseases, carried out in the 2014-15 growing season (page 106). 

P. indica did not reduced the number of aphids (P=0.7). Fertiliser did not have any 

effect on aphids either (Fig. 4.5). 

 

Fig. 4.5. The effect of Piriformospora indica under low (1 g L-1) and high (4 g L-1) 

fertiliser levels on Grain aphid (Sitobion avenae), of winter wheat (cv. Battalion), 

recorded at growth stage 65 (flowering). s.e.d. = 0.1; d.f. = 12; Each point represents 

mean ± 2 SEM; (fertiliser: Osmocote® Pro slow release fertiliser). 
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4.4.3. Effect of P. indica on yellow rust disease  

Yellow rust, caused by natural background infection with P. 

striiformis f.sp. tritici, was recorded at growth stage 35-37 (stem elongation, 5th 

node detectable to flag leaf just visible) for the winter wheat experiment grown for 

Fusarium experiment carried out in the 2013-14 growing season (chapter 3, page 

79). P. indica application at sowing reduced the yellow rust disease severity by 29 

% (main effect P=0.005) and incidence (main effect P<0.001). Disease severity and 

incidence were much lower at the low fertiliser level (main effect P<0.001) (Fig. 

4.6 a,b; Appendix Table 12, Chapter 8).  
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Fig. 4.6. The effect of Piriformospora indica and Funneliformis mosseae under low 

(1 g L-1) and high (4 g L-1) fertiliser levels on yellow rust disease severity and 

incidence of winter wheat (cv. Battalion), naturally infected with Puccinia 

striiformis f.sp. tritici, recorded at growth stage 35-37. (a). yellow rust severity, 

s.e.d. = 0.02; d.f. = 47; (b). yellow rust incidence, s.e.d. = 0.04; d.f. =47, (data were 

sqrt transformed). Each point represents mean ± 2 SEM; (fertiliser: Osmocote® Pro 

slow release fertiliser). 
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Yellow rust, caused by natural background infection, was recorded at GS 70 (milk 

development) on the flag and sub-flag leaf of the six different cultivars of spring 

wheat grown for the Fusarium experiment carried out in the 2015 growing season 

(chapter 3, page 82). Yellow rust severity (main effect P<0.001) and incidence 

(main effect P<0.001) differed between varities. Granary was the most and Zircon 

the least susceptible cultivar. P. indica application at sowing reduced the yellow 

rust disease severity by 55 % (main effect P<0.001) and incidence by 25 % on 

average over all cultivars (main effect P<0.001). Although it was apparently most 

effective on Granary and Paragon, the interaction between P. indica and cultivars 

was not significant (Fig. 4.7 a,b; Appendix Table 13, Chapter 8).  
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Fig. 4.7. The effect of Piriformospora indica (Pi) on yellow rust disease severity 

and incidence of six cultivars of spring wheat (cv. Paragon, Mulika, Zircon, 

Granary, KWS Willow and KWS Kilburn), naturally infected with Puccinia 

striiformis f.sp. tritici, recorded at growth stage 70. (a). yellow rust severity, s.e.d. 

= 0.04; d.f. = 58; (b). yellow rust incidence, s.e.d. = 0.05; d.f. =58, (data were sqrt 

transformed). Each point represents mean ± 2 SEM. 
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4.4.4. Effect of P. indica on powdery mildew disease 

Powdery mildew, caused by natural background infection with Blumeria graminis 

f.sp. tritici, was recorded at growth stage 70, on the flag and sub-flag leaf of the six 

different cultivars of spring wheat grown for the Fusarium experiment carried out 

in the 2015 growing season (chapter 3, page 82). The six cultivars of spring wheat 

were differently susceptible to powdery mildew severity (main effect P<0.001) or 

incidence (main effect P<0.001). Granary was the most and KSW Willow the least 

susceptible cultivar. P. indica application at sowing reduced the powdery mildew 

disease severity and incidence by 63 % (main effect P=0.01). P. indica reduced 

powdery mildew severity and incidence in all cultivars, and was most effective on 

Granary. However, the interaction between P. indica and cultivars was not 

significant (Fig. 4.8 a,b; Appendix Table 14, Chapter 8).  
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Fig. 4.8. The effect of Piriformospora indica (Pi) on powdery mildew disease 

severity and incidence of six cultivars of spring wheat (cv. Paragon, Mulika, Zircon, 

Granary, KWS Willow and KWS Kilburn), naturally infected with Blumeria 

graminis f.sp. tritici, recorded at growth stage 70. (a). powdery mildew severity, 

s.e.d. = 0.03; d.f. = 58; (b). powdery mildew incidence, s.e.d. = 0.08; d.f. =58, (data 

were sqrt transformed). Each point represents mean ± 2 SEM. 
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4.5. Harvest results 

Final harvest results of the winter wheat expeiments grown for assessing P. indica 

effect on air-borne diseases (chapter 5, page 106) showed that high fertilisation 

increased above ground biomass by 48 % (P<0.001), root weight by 112 % 

(P=0.002), total grain weight by 27 % (P=0.002) and the number of ears per pot by 

56 % (P<0.001, Table 4.1; Appendix Table 9, Chapter 8). P. indica inoculation 

increased the above ground biomass by 26 % at low fertilisation and by 8 % at high 

fertilisation (main effect P=0.007), root weight by 117 % at low fertilisation and by 

17 % at high fertilisation (main effect P=0.001), total grain weight by around 35 % 

at both low and high fertilisation level (main effect P<0.001), TGW by 25 % at low 

fertilisation and by 12 % at high fertilisation level (P=0.003) and the number of ears 

per pot by 10 % at both low and high fertilisation level (main effect P=0.05). There 

were no significant differences among treatments for harvest index (table 4.1).  

Table 4.1. Harvest results of winter wheat samples (cv. Battalion), inoculated with 

Piriformospora indica, (at sowing time) under low (1 g L-1) and high (4 g L-1) 

fertiliser levels (Osmocote® Pro slow release fertiliser). Harvest index: total grain 

weight (g)/total above grain weight (g). 
 

Fertiliser 
P. 

indica 

Total 

above 

ground 

weight (g) 

Root 

weight 

(g) 

Total grain 

weight per 

pot (g) 

1000 

grain 

weight 

(g) 

Harvest 

index 

No of 

ears 

1 g L-1 
- 184 8.9 69 48 0.4 30 

+ 232 19.4 92 60 0.4 33 

4 g L-1 
- 273 18.9 88 54 0.3 47 

+ 296 22.1 122 61 0.4 52 

 s.e.d. 15.2 2.3 8.7 3.5 0.05 2.3 
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4.5. Discussion 

Septoria leaf blotch, yellow rust and powdery mildew are among the most 

significant threats to wheat yields in the UK and Europe, and most other wheat 

growing regions, as currently available fungicides become less effective against 

resistant strains of the disease and new pathogens appear (Orton et al., 2011, Dean 

et al., 2012, Lee et al., 2014). Here, these results show that P. indica reduced 

Septoria, yellow rust and powdery mildew disease severity and incidence. This is 

consistent with previous results which showed that P. indica reduced powdery 

mildew disease severity in wheat and barley (Waller et al., 2005, Deshmukh et al., 

2006, Serfling et al., 2007, Molitor et al., 2011). P. indica reduced yellow rust and 

powdery mildew on six cultivars of spring wheat, despite Gravouil (2012) findings 

suggesting that some barley cultivars might benefit more than others from 

interaction with P. indica.  

P. indica might have regulated the wheat defence response and induced systemic 

resistance against the pathogens causing foliar diseases (Waller et al., 2005, 

Deshmukh et al., 2006, Felle et al., 2009, Molitor & Kogel, 2009). Waller et al. 

(2005) reported that P. indica induced systemic resistance in barley plants against 

the necrotrophic fungus F. culmorum (root rot) and the biotrophic fungus B. 

graminis (powdery mildew), by elevating antioxidative capacity. Stein et al. (2008) 

indicated that P. indica induced systemic resistance in Arabidopsis plants against 

powdery mildew (caused by Golovinomyces orontii) by regulating jasmonic acid 

signalling pathway. Vahabi et al. (2015) demonstrated that P. indica up-regulated 
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the defense-related phytohormones such as jasmonic acid, ABA and SA in 

Arabidopsis. These hormones are involved in plant responces to pathogen attacks. 

P. indica induced a local, transient response of several defense-related transcripts, 

of which some were also induced in shoots of colonized plant (Zuccaro et al., 2011, 

Pedrotti et al., 2013). 
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5.1. Summary 

P. indica mRNA detection was used as an indicator of P. indica viability. Survival 

of P. indica in the soil, under winter and summer conditions in the UK was tested 

by isolating DNA and RNA of P. indica from pots of soil which had been left open 

to winter-summer weather conditions without host plants, followed by PCR and 

reverse transcription-PCR (RT-PCR) with P. indica-specific primers. P. indica 

effects on other soil and root microorganisms were tested by PCR-denaturing 

gradient gel electrophoresis analysis of DNA extracted from soil and roots from 

pots in which P. indica-infected wheat had been grown. The effect of P. indica on 

growth of black-grass (Alopecuris myosuroides), wild-oat (Avena fatua) and 

cleavers (Galium aparine) was tested alone and in competition with wheat.  
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P. indica-mRNA could still be detected by RT-PCR after four and eight months in 

different soil types, but was not detectable after 15 months. Samples of DNA 

extracted from the root zone or from bulk soil in pots in which wheat had been 

grown indicated that pots inoculated with P. indica had fungal and bacterial species 

communities which were distinct from and more diverse than non-inoculated 

controls.  

Tests on arable weeds showed that P. indica-infected roots of Alopecurus 

myosuroides and Avena fatua but not Galium aparine. Averaged over the weed 

species, P. indica increased root biomass by 35 % (P=0.045). On average, above-

ground biomass of weed species was not significantly affected by P. indica (P=0.5). 

The average above-ground competitiveness of the weeds with wheat, assessed by 

the log of the ratio of dry weights in co-cultured pots, was slightly decreased 

(P=0.02). 

In the case of field application, P. indica would probably remain active in the soil 

within season. P. indica increased root and soil fungal and bacterial diversity. 

Although usually desirable, this indicates substantial effects on soil composition or 

functioning. The organism would be likely to alter competitive relations among 

both host and non-host species. The wider effects of P. indica and similar organisms 

need to be better understood before agricultural deployment. 

5.2. Introduction 

How P. indica interacts with other soil microorganisms is still unclear. Endophytic 

fungal symbionts can have profound effects on plant ecology, fitness, and evolution 
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(Brundrett, 2006), shaping plant communities (Clay & Holah, 1999), increasing 

plant tolerance to abiotic stresses (Murphy et al., 2015c), increasing plant resistance 

to pathogens (Rodriguez et al., 2009, Murphy et al., 2014a) and manifesting strong 

effects on the community structure and diversity of associated organisms (e.g. 

bacteria, nematodes and insects; Omacini et al. (2001)). Studies on the effects of 

arbuscular mycorrhizal fungi (AMF) on rhizosphere bacteria have shown variable 

results, with both negative (decreasing the population of bacteria) (Christensen & 

Jakobsen, 1993, Amora-Lazcano et al., 1998) and positive (increasing the 

population of bacteria) (Andrade et al., 1997, Abdel-Fattah & Mohamedin, 2000) 

effects. The variable results could be due to the fact that some bacteria are being 

stimulated and others being repressed by AMF (Wamberg et al., 2003). Söderberg 

et al. (2002) suggested that the effect of AMF differed between plant species; the 

strength of the effect on the bacterial community in the rizosphere depended more 

on the plant species than on AMF colonisation. If P. indica is going to be applied 

to crops, a clear picture of how it affects other soil microorganisms would be 

needed, as the soil microflora plays a major role in the availability of nutrients to 

plants and has a strong influence on plant health and productivity. 

P. indica viability in UK arable soils was assessed using DNA and RNA from soil. 

PCR based on DNA does not distinguish between living and dead organisms 

(Josephson et al., 1993, Wolffs et al., 2005). So, RNA extraction and reverse 

transcription-PCR (RT-PCR) were also carried out, using mRNA as a viability 
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marker. mRNA is less stable than DNA, is turned over rapidly in living cells, and 

will be degraded quickly in dead cells (Mendum et al., 1998, Vettraino et al., 2010).  

Although culture-dependent methods are a traditional method for assessment of 

microbial diversity, they reflect the total diversity of microbial community very 

poorly (Dunbar et al., 2000, Fakruddin & Mannan, 2013). The effects of P. indica 

on other soil microorganisms by the culture-independent genetic fingerprinting 

method PCR-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) was tested. 

This compared the composition and structure of microbial communities associated 

with rhizosphere and roots of wheat with and without P. indica inoculation. PCR-

DGGE is used to study bacterial and fungal community structures in rhizosphere 

and soil samples. The method is reliable, reproducible, rapid and affordable 

(Kowalchuk & Smith, 2004). It is suitable for an overview of total genetic diversity 

of a soil microbial community and enables comparisons among many samples 

(Smalla et al., 2001, Marschner et al., 2002, Garbeva et al., 2004, O'Callaghan et 

al., 2008).  

Weed competition can threaten crop quality and quantity and ultimately the farmer's 

profitability (Bockus et al., 2010); it is usually managed by herbicide application. 

Herbicide resistance in the UK is an important and increasing problem, as in other 

parts of the world including western, central and northern Europe (Mennan & Isik, 

2004, Moss et al., 2007, Bertholdsson, 2012). P. indica has a wide range of hosts 

which might include weeds as well. If P. indica was as beneficial to weeds as to 

wheat, it could make weed control more difficult, or increase the damage done by 
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weeds; alternatively, it might increase the competitiveness of wheat against some 

species or in some settings, which would be useful in managing herbicide resistant 

weeds. Also, the spread of P. indica might have side-effects outside arable fields.  

The key herbicide-resistant weed species of arable crops in the UK are: black-grass 

(Alopecurus myosuroides), wild-oats (Avena fatua ), cleavers (Gallium aparine), 

Italian rye-grass (Lolium multiflorum), common poppy (Papaver rhoeas), common 

chickweed (Stellaria media), and scentless mayweed (Tripleurospermum 

inodorum) (Bond et al., 2007, Moss et al., 2011, Hull et al., 2014 ). These are also 

important world-wide and in other crops (Yu et al., 2013). The first three were 

selected to study the effect of P. indica in pot experiments, growing them alone and 

in competition with wheat. 

Hypothesis tested in this chapter: In this study the following hypotheses were 

tested: P. indica would survive the UK weather and soil conditions; P. indica would 

not affect the composition of the bulk soil or root-zone microflora; and P. indica 

would be as beneficial to weeds as to wheat. 

5.3. Materials and methods  

5.3.1. P. indica survival and viability experiment 

The utility of mRNA and DNA measurements as indicators of viability of P. indica 

was determined by performing RT-PCR and PCR on heat and cold treated pure 

cultures of P. indica. For this purpose, mycelia of P. indica were grown in CM 

medium at room temperature (21 ± 1 oC) for two weeks. Samples were then kept at 

80 oC in a hot water bath for 6 hours, then stored at -80 oC for 6 hours, one and four 
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weeks. After storage, separate samples of mycelia were transferred to potato 

dextrose agar to check whether they would grow and used for RNA and DNA 

extraction followed by RT-PCR and PCR respectively.  

P. indica survival in the soil under UK weather conditions was tested in different 

soil types based on either the soil series or textural classification and each soil was 

under a different crop/ management. The soils were collected from the Reading 

University Farm at Sonning (grid ref: SU76187547). These were (1) a Clay Loam 

(CL) of the Neville series, from an area under winter barley which had previously 

been under winter wheat; (2) a Sandy Clay Loam (SCL) of the Sonning series from 

an area under ryegrass at the time and for the previous two years; (3) a Loamy Sand 

(LSO) of the Rowland series, under organic management, from an area under faba 

bean cultivation; (4) a Loamy Sand (LS) of the Rowland series, under non-organic 

management, from an area under ryegrass cultivation. The experiment was carried 

out between December 2013 and March 2015 at the University of Reading, under 

outdoor weather conditions. Six pots (3 L, top diameter: 18 cm, bottom diameter: 

14 cm, depth: 15 cm) were filled with each soil. Five out of six pots received 4 g of 

liquid culture of P. indica inoculum prepared as described in Chapter 2 and mixed 

thoroughly with the soil. The sixth (control) pot only received sterilised water. The 

pots were placed in holes with the tops level with the surrounding soil level to make 

temperature fluctuations realistic. Around 50 g of each soil type was collected, with 

a small core from the middle of pots, at three and half months (mid-March 2014), 

8 months (end of July 2014) and 15 months (end of March 2015) after inoculation 
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with P. indica. When collecting the samples, they were kept in a cool box on ice 

and transferred immediately to -20 oC before DNA and RNA were extracted and 

PCR or RT-PCR performed. Maximum and minimum temperatures of soil in the 

pots were recorded every 2 days by a digital thermometer placed in the centre of 

one of the pots.  

5.3.2. Soil community composition 

To examine whether P. indica affects other soil microorganisms, wheat was grown 

in 3 L pots containing one of two soil types, SCL or LSO, as above. Winter wheat 

seeds, cv. Battalion, were surface disinfected by rinsing for 2 mins in 20 mL L-1 

sodium hypochlorite (Fisher Scientific UK Ltd, UK), followed by three rinses in 

sterilized distilled water, and germinated on damp filter paper in a Petri dish at room 

temperature (21 ± 1 °C) under natural indoor light for 48 hours. Pre-germinated 

seeds were planted into 3 L pots (one seed per pot). This experiment had a 2×2×4 

factorial combinations of ±P. indica × two soil types × four harvesting points, with 

two replications completely randomised. The pots were incubated at temperatures 

ranging between 15 and 25 °C; humidity and light were not controlled. Inoculation 

with 4 g liquid culture of P. indica mixed with soil was done at the time of sowing. 

Root and soil samples were collected at 2, 4, 6 and 8 weeks after inoculation (wai) 

for DNA extraction, PCR and DGGE analysis, as below. Samples were transferred 

and stored as described above.  
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5.3.2.1. DNA and RNA isolation 

Total genomic DNA from P. indica and root samples was isolated using a DNeasy 

plant mini kit (QIAGEN, UK), and from soil samples by using a PowerLyzer™ 

PowerSoil® DNA Isolation kit (CAMBIO Ltd, UK) following the manufacturer’s 

instructions. Total RNA from P. indica was isolated using a RNeasy Plant Mini Kit 

(QIAGEN, UK), and from soil samples by using a RNA PowerSoil® Total RNA 

Isolation kit (CAMBIO Ltd, UK). Samples were stored at -20 °C until required. 

Bulk DNA concentration was measured using a NanoDrop-lite spectrophotometer 

(Thermo Scientific, Life Technologies Ltd, UK). The extent of shearing of DNA 

and RNA was determined by electrophoresis of an aliquot of DNA in a 1 % agarose 

gel in 1x TAE buffer. 

5.3.2.2. Primer development and PCR condition for RT-PCR study 

The gene-specific primer for the RT-PCR study was designed using the PRIMER 

BLAST tool from NCBI (http://www.ncbi.nlm.nih.gov/tools/primer-blast) to 

amplify fragments of the P. indica mRNA for EF-1-alpha (TEF gene, forward: 5-

CCACCATCACTGAAGTCCCTC-3 and reverse: 5-

TCAATGCCACCGCACTTGTA-3, 148 bp, accession number AJ249912.1, 

http://www.ncbi.nlm.nih.gov). The primers were supplied by Invitrogen (Thermo 

Scientific, Life Technologies Ltd, UK). To assess specificity of the primers for the 

targeted gene, RT-PCR was done using RNA isolated from a pure culture of P. 

indica. The PCR products of the selected primer were sent to Source Bioscience 

(http://www.sourcebioscience.com/) for sequencing to verify their specificity.  

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=10637880
http://www.sourcebioscience.com/
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EF (EF-1-alpha (TEF gene)) primer amplified cDNA of 148 bp and gDNA of 227 

bp. The PCR amplicon sequence corresponded to genomic sequence from 1547 to 

1756 bp of the P. indica TEF gene, GenBank: accession number AJ249911.2, as 

expected. 

PCR was performed in 0.2 mL PCR tubes (Fisher Scientific UK Ltd, UK) with 20 

µL final reaction volume containing 2x Biomix PCR master mix, 0.25 µM forward 

and reverse primer, and template genomic DNA. Amplification was performed in a 

thermal cycler (Applied Biosystems® GeneAmp® PCR System 9700, Thermo 

Scientific, Life Technologies Ltd, UK) programmed as: 94 °C for 5 min followed 

by 35 cycles of 94 °C for 30 s, 56 °C for 45s and 72 °C for 30 s, followed by 

incubation at 72 °C for 7 min. Amplification was confirmed by electrophoresis of 

an aliquot of the PCR products in 2 % agarose gel in 1x TAE buffer.  

5.3.2.3. Reverse Transcription-PCR (RT-PCR) 

RT-PCR for P. indica was performed by using Invitrogen SuperScript® III First-

Strand Synthesis SuperMix (Life Technologies Ltd, UK) in a 20 µL final reaction 

volume using 10 µL 2× RT Reaction Mix, 2 µL RT Enzyme Mix, RNase-free water 

and 4 µL P. indica RNA. Reverse transcription was done in a thermal cycler. 

Samples were first incubated at 50 ºC for 30 minutes, then held at 85 ºC for 5 

minutes and then chilled on ice for 5 min. Thereafter, 1 µL E. coli RNase H was 

added to the tube which was then incubated at 37 ºC for 20 minutes. PCR was then 

performed using the complementary DNA (cDNA) obtained from the reverse 

transcription.   
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RT-PCR for soil samples was performed by using a One-Step RT-PCR 

Kit (QIAGEN, UK), in a 25 µL final reaction volume using 5 µL 5x QIAGEN 

OneStep RT-PCR Buffer, 1 µL dNTP Mix, 1 µL of Enzyme Mix, 0.6 µM of each 

primer, RNase-free water and 4 µL P. indica and samples RNA. Thermal cycler 

was set up at 30 min 50 °C, 15 min 95 °C, 35 cycles of 94 °C for 30 s, 56 °C for 45 

s, 72 °C for 30 s, followed by incubation at 72 °C for 7 min.  

5.3.2.4. Primer and PCR condition for DGGE study 

Bacterial 16S rRNA genes, from the extracted DNA, were amplified using the 

primer 341F-

CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGCACGGGGGGCCTACGG

GAGGCAGCAG and 534R-ATTACCGCGGCTGCTGG (Muyzer et al., 1993). 

Fungal 18S rRNA genes were amplified using the primer NS1F-

GTAGTCATATGCTTGTCTC and GCFung-R- 

CGCCCGCCGCGCCCCGCGCCCGGCCCGCCGCCCCCGCCCCATTCCCCG

TTACCCGTTG (Hoshino & Morimoto, 2008). 

The PCR was performed in a 20 µL final reaction volume using 2× Biomix PCR 

master mix, 50 pmol µL-1 (for bacterial study) and 0.3 pmol µL-1 (for fungal study) 

of forward and reverse primer, and sample DNA. Touchdown PCR for the bacterial 

study was performed in a thermal cycler set up at 94 °C for 10 min, denaturation at 

94 °C for 1 min, an annealing temperature which was set at 65 °C initially, then 

decreased by 1 °C after each 2 cycles until it reached 55 °C. Primer extension was 

performed at 72 °C for 2 min. The above reaction was performed for 20 cycles, 
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followed by 15 cycles of 94 °C for 1 min, 55 °C for 1 min and 72 °C for 2 min. A 

final extension step was performed for 10 min at 72 °C (Sasaki et al., 2009). 

For the fungal primers, amplification was set at 94°C for 2 min, 30 cycles of 94°C 

for 15 s, 50 °C for 30 s and 68 °C for 30 s with a final extension of 72 °C for 

5 minutes (Hoshino & Morimoto, 2008). 

5.3.2.5. Denaturing gradient gel electrophoresis of fungi and bacteria 

Denaturing gradient gel electrophoresis was performed according to the method 

described by Muyzer et al. (1993) (for bacterial study) and Hoshino & Morimoto 

(2008) (for fungal study) using the Bio-Rad DCode™ Universal Mutation 

Detection System. PCR samples (20 µL+loading dye) were applied directly onto 8 

% (wt/vol) polyacrylamide gels (40 % acrylamide 37.5:1) with denaturing gradients 

of 40-60 % (for bacteria) and denaturing gradients of 20-40 % (for fungi), where 60 

% denaturant compromised 24 mL 100 mL-1 Formamide and 25.2 g 100 mL-1 Urea 

(Sigma Aldrich Company Ltd, UK). Electrophoresis was performed at a constant 

voltage of 75 V and a temperature of 60 °C for 17 hours for bacteria and voltage of 

50 V and a temperature of 60 °C for 20 hours for fungi. After electrophoresis, the 

gels were fixed (0.5 % glacial acetic acid and 10 % ethanol) and silver-stained (1 g 

L-1 silver nitrate), scanned, and the images analysed.  

5.3.2.5.1. Statistical analysis of DGGE banding patterns 

The DNA bands that migrated within each gel to the same relative distance were 

each ascribed the same label. In each lane, corresponding to a sample, the presence 

of a band with that label was scored 1 and absence scored 0. The band 
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corresponding to P. indica band (which had the same position in all P. indica-

inoculated samples) was not included in the scoring. These data were then analysed 

by two methods: 

(i) Canonical variates analysis (CVA, GenStat 17th ed, VSN) was used to evaluate 

differences in community structure and allow the comparison of community 

profiles between groups of samples. CVA differentiate between groups variation, 

using a trace statistic as a summary of differentiation. CVA will produce a 

visualization of the data that shows groups as clearly separated, whether the 

differences are genuine or the result of chance sampling effects. The natural 

measure of how separate the groups found are is the trace of the matrix ratio W-1B, 

where B is the matrix of between-group sums of squares and products and W is the 

matrix of within-group sums of squares and products. This measure and a 

randomization test (10,000 replicates) were used. The significance of the observed 

separation between groups, to determine whether groups were more distinct than 

expected by chance, was assessed by randomisation tests of 10,000 replicates 

(Rajaguru & Shaw, 2010).  

(ii) Shannon-Wiener diversity index (H′, GenStat 17th ed, VSN) was used to 

quantify the diversity of species (bands) present in a group of samples. This index 

was calculated by the following equation: 

H′ = - ∑i (Ri / R) × log (Ri / R) 

where Ri is the total number of occurrences of band i in a group of observations, 

and R is total number of bands of any type observed in the group. Confidence 
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intervals for the index were obtained by randomly re-sampling band abundances 

from a multinomial with the observed probabilities of each band type, and re-

calculating the index. 

5.3.3. P. indica interaction with weeds 

Black-grass (Alopecurus myosuroides, 16 seeds per pot), wild-oat (Avena fatua, 6 

seeds per pot), cleavers (Galium aparine, 3 seeds per pot) with and without wheat 

(6 seeds per pot) were planted in 5 L pots (top diameter: 22.5 cm, bottom diameter: 

16.5 cm,  depth: 17.5 cm) at a depth of 1 cm in one part non-sterilised vermiculite 

(Medium, Sinclair, UK) and one part sand, mixed with 4 g L-1 of slow release 

fertiliser (3-4 months, Osmocote® Pro), with and without 4 g pot-1 of liquid P. 

indica inoculum mixed into the soil. Four replicates, distributed in four randomised 

blocks, were used with the following factorial combinations of treatments: ± P. 

indica, ± wheat, and three weed species.  Wheat alone with and without P. indica 

was included as a control.   

The pots were placed outside under natural conditions in the first two weeks of 

November-2014 for vernalisation, and then incubated in the glasshouse. 

Temperature was not controlled and varied between 5 °C and 18 °C; humidity and 

light were not controlled. All pots were harvested, when wheat flag leaf was fully 

emerged (Zadoks Growth Stage (GS) 39; Zadoks et al. (1974)), and roots teased 

apart, washed and separated from the above ground parts before drying and 

weighing. 
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In a separate experiment, to confirm the colonisation of weed roots with P. indica 

microscopically, seeds of black-grass, wild-oat and cleavers were planted 

separately in 1 L pots (top diameter: 13 cm, bottom diameter: 10 cm, depth: 11 cm) 

in one part non-sterilised vermiculite (Medium; Sinclair) and one part sand, and 

inoculated with P. indica at sowing. The roots were harvested at one and four weeks 

after inoculation, stained according to the method described in chapter 2, and 

viewed under a microscope with 10x and 40x objectives. 

Competitiveness of each weed species with wheat was quantified as log (wheat 

biomass/weed biomass).  

5.3.4. Statistical analysis of pot experiments 

ANOVA was used to analyse all data using Genstat 17th ed, (VSN, UK) with 

appropriate blocking.  

5.5. Results 

5.5.1. Weather conditions during 2013-15 

Winter 2013-14 was an “exceptionally” stormy season, with at least 12 major winter 

storms affecting the UK. Mean temperatures and total rainfall were 2 °C and 211 

mm respectively, above the long-term average over Reading. Soil temperature was 

1 °C above average. Soil froze on only five occasions (Fig. 5.1).  

Following this, the mean air and soil temperature of spring and summer 2014 was 

near the average; total rainfall was, 55 mm and 31 mm respectively, above the long 

term average (Fig. 5.1). 
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The weather of autumn 2014 was warm, 1.6 °C above the average with the number 

of air frosts well below average. Rainfall totals and soil temperature were above 

average, 11 mm and 1.5 °C respectively. Winter 2014-15 was sunny with mean air 

and soil temperature near average. Soil froze on 20 occasions. Rainfall totals were 

13 mm below average (Fig. 5.1. www.met.reading.ac.uk/weatherdata). 
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Fig. 5.1. Reading mean air temperature, mean 10 cm soil temperature, and total 

rainfall between winter 2013-14 and winter 2014-15, compared with 1981-2010 

average (source: www.met.reading.ac.uk/weatherdata). 
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5.5.2. P. indica viability under UK winter weather conditions 

The viability of P. indica mycelia was tested under laboratory conditions. Exposure 

of mycelia to 80 oC for 6 hours, then to -80 oC for 6 hours, one or four weeks killed 

them: plates showed no growth of fungus after one month. RT-PCR detected P. 

indica mRNA after 6 hours exposure to 80 oC then 6 hours at -80 oC, but did not 

detect P. indica mRNA after exposure to 80 oC followed by one or four weeks 

storage at -80 oC. PCR detected DNA in all treatments (Table 5.1).  

Table 5.1. Recovery of Piriformospora indica DNA and RNA after the mycelia 

were killed by exposure to heat and cold or grown in covered petri dishes of potato 

dextrose agar (n=3 for each condition). 

 Conditions P. indica DNA P. indica RNA Culture 

1 week at 21±1 oC   3 3 3 

1 month at 21±1 oC 3 3 3 

6 h at 80 oC + 6h at -80 oC 3 3 0 

6 h at 80 oC + one week at -80 oC 3 0 0 

6 h at 80 oC + four weeks at -80 oC 3 0 0 

 

RNA and DNA of P. indica were successfully isolated from all four soils after 

winter 2013 (collected mid March 2014) (Table 5.2). DNA of P. indica was 

successfully isolated from all different soil types following a UK spring and 

summer (collected end of July 2014), but RNA could be detected in only six of the 

pots. After 15 months (collected mid March 2015), neither RNA, nor DNA of P. 

indica could be detected from any of the soils (Table 5.2). P. indica could not be 

detected in the controls that was not inoculated with P. indica, which shows the 

primers could only detect P. indica mRNA. 
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Table 5.2. Recovery of Piriformospora indica DNA and RNA from four soil types, 

left in pots under prevailing weather conditions without plant roots present from 

December 2013 with sample collections at mid March 2014, end-July 2014 and 

mid-March 2015, n=5. 
 

 P. indica DNA P. indica RNA 

Soil type 

Mid 

March/2014 

End 

July/2014 

Mid 

March/2015 

Mid 

March/2014 

End 

July/2014 

Mid 

March/2015 

Neville series 5 5 0 5 0 0 

Sonning series 5 5 0 5 1 0 

Rowland series, under 

organic management 5 5 0 5 3 0 

Rowland series, non-

organic management  5 5 0 4 2 0 

 

5.5.3. P. indica effect on other soil microorganisms 

5.5.3.1. Canonical variate analysis 

Canonical variate analysis was used to differentiation between groups variation, 

using a trace statistic as a summary of differentiation. Canonical variate analysis of 

band patterns (Fig. 5.2), including both bacteria and fungi separated the four 

different harvested time points (trace: 1.9, P<0.0001), mainly because the first 

sample was distinct (Fig. 5.3 a). Root samples were clearly distinguishable from 

soil samples (trace: 3.9, P<0.0001, Fig. 5.3 b), and soil types were clearly distinct 

(trace: 1.6, P<0.0001, Fig. 5.3 c). P. indica-inoculated and non-inoculated samples 

were distinct (trace: 0.6, P=0.001, Fig. 5.3 d), P. indica-inoculated were 

distinguishable from non-inoculated samples by CVA when restricted to either 

fungal (trace: 1.1, P<0.03, Fig. 5.3 e), or bacterial primers (trace: 1.2, P<0.02, Fig. 

5.3 f) or soil samples (trace: 2.9, P<0.0001, Fig. 5.3 g) but not root samples (trace: 

0.6, P=0.6, Fig. 5.3 h).  
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To check the interaction between the effects of P. indica and soil-root zones 

combined factors were created. CVA of groups of samples classified by both P. 

indica inoculation and root-soil zone, including both bacterial and fungal bands, 

separated P. indica-inoculated from non-inoculated samples (trace: 5.5, P<0.0001, 

Fig. 5.3 i).  

5.5.3.2. Shannon-Wiener diversity index  

Samples harvested at different time points did not differ in diversity. Rowland series 

soils (LSO) had more fungal and bacterial band diversity than Sonning series 

(SCL). Both types of soil had more fungal and bacterial band diversity in the 

presence of P. indica (Fig. 5.4) and samples inoculated with P. indica had more 

bands of all types than non-inoculated samples. Root samples had more fungal 

species diversity when P. indica was present, but slightly fewer bacterial species 

diversity (Fig. 5.5).  
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Fig. 5.2. Denaturing gradient gel electrophoresis profiles of the wheat root fungal 

community in Sonning series (SCL) or Rowland series (LSO) soil inoculated with 

(+) or without (-) Piriformospora indica, harvested at 2 weeks after inoculation 

(wai) (T1), 4 wai (T2), 6 wai (T3) and 8 wai (T4), (first lane: Hyper Ladder I-100 

lanes (Bioline)). 
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Fig. 5.3. Canonical variates analysis of bands from denaturing gradient gel electrophoresis using universal fungal and bacterial primers 

for wheat root samples grown in Sonning series (SCL) or Rowland series (LSO) soils, inoculated with/without Piriformospora indica, 

(Pi).  First or first and second canonical axes are shown for data classified by (a) the four time points of harvest; (b) Root and soil 

source; (c) soil types; (d) P. indica-inoculation status; (e-h) P. indica-inoculation status using but restricted to fungal (e), or bacterial 

primers (f) or to soil samples (g) or root samples (h); (i) both P. indica inoculation and root or soil source.
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Fig. 5.4. Shannon-Weiner diversity index for Sonning (SCL) and Rowland series 

(LSO) soil samples inoculated or not with Piriformospora indica (Pi). Based on 

denaturing gel electrophoresis of DNA extracts amplified using universal fungal 

and bacterial primers. Each bar represents mean ± 95% bootstrap confidence 

interval. 
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Fig 5.5. Shannon-Weiner diversity index for wheat root and soil samples inoculated 

or not with Piriformospora indica (Pi), based on denaturing gel electrophoresis of 

DNA extracts amplified using universal fungal and bacterial primers. Both soil 

types (Sonning series (SCL) and Rowland series (LSO)) are combined. Each bar 

shows mean ± 95% bootstrap confidence interval. 
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5.5.4. P. indica interaction with weeds 

Two Avena fatua root samples out of ten were colonised by P. indica at two wai 

and three out of ten at four wai. Two Alopecurus myosuroides root samples out of 

ten were colonised at four wai. No Galium aparine root samples (of ten samples) 

were colonised.  

P. indica application at sowing time increased wheat shoot and root biomass by 33 

% (main effect P=0.05) and 100 % (main effect P=0.02) respectively, as expected 

(Table 5.3; Appendix Table 15, Chapter 8). 

P. indica increased root biomass, averaged over Avena fatua, Alopecurus 

myosuroides and G. aparine, by 35 % (P=0.04). As expected, competition reduced 

root biomass (by about 26 %, P=0.05) and there were differences between species 

(P=0.03; A. fatua was about 50 % heavier than the other two species). All 

interactions were non-significant (P>0.4). In particular, the effect of inoculation did 

not differ between weed species, and the effect of inoculation did not differ in the 

competition pots (Table 5.3). 

Shoot biomass of all plants was decreased about 24 % (P=0.005) by competition 

and differed greatly between the species (P=0.001) because G. aparine had a lower 

biomass. The effect of P. indica was slight (a 12 % increase; P=0.2) and no 

interactions were significant (P>0.2 in all cases) (Table 5.3; Appendix Table 15, 

Chapter 8). 

The average competitiveness between wheat and Avena fatua, Alopecurus 

myosuroides and G. aparine, measured by the ratio of shoot weights, was reduced 
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by 40 % (backtransformed from the log10 scale; P=0.02) when P. indica was present 

in the soil (Table 5.4; Appendix Table 16, Chapter 8). Although the competitiveness 

differed significantly between species, no interaction terms were significant 

(P>0.5). There were no significant differences in competitiveness measured by the 

ratio of root weights (P>0.13 for all main and interaction terms). 
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Table 5.3. Dry weights (g) of root and shoot of Alopecuris myosuroides, Avena 

fatua and Galium aparine alone and in competition with wheat, with and without 

inoculation with Piriformospora indica (error d.f.: 33). 
 

    Weed dry weight (g) Wheat dry weight (g) 

Weed 
P. 

indica 
Shoot Root Shoot Root 

- 
-   3.3 0.5 

+     4.4 1.1 

Alopecurus 

myosuroides 

- 
3.6 0.32   

2.9 0.26 2.2 0.3 

+ 
4.5 0.44   

3.2 0.35 3.4 0.6 

Avena fatua 

- 
2.9 0.48   

2.5 0.29 1.5 0.3 

+ 
4.2 0.72   

2.6 0.47 3.5 0.6 

Galium 

aparine 

- 
1.3 0.35   

1.2 0.26 2.3 0.4 

+ 
0.99 0.34   

0.88 0.34 2.5 0.8 

  s.e.d. 0.54 0.13 0.7 0.2 
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Table 5.4. Competitiveness of Alopecuris myosuroides, Avena fatua, and Galium 

aparine with wheat, measured as log10 (weed dry weight/wheat dry weight), in the 

presence and absence of inoculum of Piriformospora indica in the soil (d.f.: 15) 
 

  

log10 (shoot weight weed/shoot 

weight wheat) 

log10 (root weight weed/root weight 

wheat) 

P. indica 

inoculation 

A. 

myosuroides 
A. fatua 

G. 

aparine 

A. 

myosuroides 
A. fatua 

G. 

aparine 

- 0.14 0.21 -0.3 -0.09 0.01 -0.24 

+ -0.05 -0.13 -0.46 -0.26 -0.08 -0.48 

s.e.d. 0.2     0.3     
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5.6. Discussion 

This study demonstrates (1) that P. indica can survive the UK weather and soil 

conditions for a period of months, even when there is no host present (Table 5.2); 

(2) that the inoculation of P. indica to soil has a substantial effect on soil and wheat 

root-associated microflora (Fig. 5.3, 5.4, and 5.5); (3) that P. indica affects at least 

two of three tested native arable weeds, and alters their competitive relations with 

wheat, and with each other (Table 5.3 and 5.4).   

If it were used in field applications in England, P. indica would probably remain 

active in the soil and there might be no need to re-apply it within season.  However, 

in the event of adverse side-effects, it would be hard or impossible to eradicate. The 

longevity of P. indica inoculum in the soil, coupled with its strong growth 

promotional effects on some species might alter the competitive relations between 

existing native species. It also might affect other methods of disease management 

as the altered soil microflora could influence crop physiology in undetermined 

ways. The longevity of inoculum in soil might be specifically due to the mild 

weather of 2013-15 compared with the climatic average. However, the UK is 

predicted to experience milder winter conditions over the next decades (UKCIP; 

www.ukcip.org.uk/).  

Exposure of P. indica to heat (80 oC) then immediately to -80 oC, killed the mycelia 

(Table 5.1). mRNA can be used as an indicator of P. indica viability, as it could not 

be detected a few hours after mycelia of P. indica were killed, while DNA of P. 

indica could be detected even four weeks after mycelium was killed (Table 5.1). 

https://en.wikipedia.org/wiki/Native_species
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This agrees with other studies. Herdina et al. (2004) concluded that mycelium of 

Gaeumannomyces graminis var. tritici killed by heating to 55 oC for 1 hour and 

DNA could still be detected by PCR after eight days. Chimento et al. (2012) killed 

Phytophthora ramorum mycelia by rapid lyophilisation and could detect DNA three 

months later while mRNA was only detected up to one week after the treatment, 

despite its relatively mild nature. 

The DGGE analysis showed detectable changes in the microbial community 

structure and increased diversity in the fungal and bacterial community of both root 

and soil samples inoculated with P. indica, which are reflected in increases in 

Shannon diversity indices (Fig. 5.3, 5.4, and 5.5). How this might affect soil 

function is unknown. There is lots of debate about the importance of microbial 

community structure and diversity for soil function, plant productivity, resilience 

and stability. Changes in the composition of the soil microbial community can 

change ecosystem process rates, specifically decomposition, and affect plant 

productivity (positively, negatively or not at all) depending on the composition of 

the initial microbial community (McGuire & Treseder, 2010, Gera Hol et al., 

2015). The two soils tested differed in their initial diversity, but responded similarly 

to inoculation with P. indica. The increase in microbial diversity might be due to 

P. indica causing changes in root exudate (composition and quantity) patterns, or 

directly through fungal exudates, as reported for AMF (Barea, 2000, Gryndler, 

2000, Jeffries et al., 2003).  
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The primer sets 341/534 and NS1/GCFung for the bacterial and fungal community 

study were used as Muyzer et al. (1993) and Hoshino and Morimoto (2008) 

suggested these primer sets could most clearly discriminate bacterial and fungal 

communities in the soil. To obtain more specific results from DGGE, PCR primers 

must amplify only specific groups of fungi and bacteria (Jumpponen, 2007, 

Hoshino, 2012). The DGGE gave an overview of P. indica-induced changes in 

bacterial and fungal community structure but next generation sequencing 

approaches could be employed in the future for in depth study of the effects of P. 

indica on community structure and composition (Rincon-Florez et al., 2013). 

P. indica has a very wide host range, and may be able to interact with and improve 

growth of economically-damaging weeds as well as crops. The effect of P. indica 

on Alopecurus myosuroides, Avena fatua and Galium aparine, three of the most 

important weeds in UK wheat production were evaluated. As expected, the weeds 

reduced wheat's root and shoot biomass significantly. P. indica did not colonise G. 

aparine, but did colonise A. fatua and A. myosuroides, though less than wheat 

(Table 5.3,4; Appendix Table 15,16, Chapter 8). The average root biomass of the 

three species was nonetheless increased by inoculation with P. indica, but less than 

that of wheat. The ratio of wheat shoot biomass to weed shoot biomas was increased 

in pots inoculated with P. indica so the effect on wheat had outweighed the effect 

on the weeds. This suggests that wheat might be a favourable host for P. indica and 

that field application of P. indica might not make weed control more difficult. 

However, since only three species were tested, on a small scale, the main conclusion 
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is that the fungus can alter competitive relations among both host and non-host 

species. The survival time and wide host range suggests that the fungus would 

escape into natural communities and might alter their composition or functioning. 

Changes would not necessarily be detrimental but these results do imply a need for 

extensive assessments on an ecosystem scale. 

Previous studies (Rabiey et al., 2015) show that P. indica could be extremely useful 

in stabilising and increasing wheat yields and quality in the UK; other studies in 

northern Europe suggest it might benefit other crops also (Achatz et al., 2010, 

Fakhro et al., 2010, Sun et al., 2010). The present results suggest P. indica effect 

on both weeds and soil function should be studied further. A search for native 

organisms with similar characteristics might be a better direction to go in 

(Hodkinson & Murphy, 2015).   
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Chapter 6. General discussion 

Plant diseases need to be controlled to maintain the quality and abundance of food 

produced by growers around the world. Growers often rely heavily on chemical 

fertilisers and fungicides and excessive use has led to the fungicide resistance and 

environmental pollution (Anon, 2009, DEFRA, 2013). There is therefore a need to 

develop alternative inputs to control pests and diseases. Among these alternatives 

are natural microorganisms. Plants are naturally found in association with many 

beneficial microorganisms, including several types of mycorrhizal fungi. Members 

of the order Sebacinales such as P. indica appear often to form mycorrhizal 

associations. This thesis focused on biological control of diseases of wheat, a crop 

of high economic value worldwide, by the root endophytic fungus P. indica. The 

ecological interactions of P. indica under UK weather conditions were also studied. 

However, there are several questions yet to be answered before release of P. indica 

on a wide scale: do most plants have the beneficial association with Sebacinales? 

Can Sebacinaceous be found from most soil types and/or fields? Has agriculture 

disrupted them? Is P. indica application compatible with fungicide seed treatments, 

tillage practice, crop rotation and stubble management? Can P. indica be used as 

part of integrated pest management? and if a plant can show the apparently 

beneficial reactions it does when infected with P. indica, why does it not do it all 

the time?  
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6.1. Are Sebacinales everywhere? 

The order Sebacinales are known to be involved in a variety of mutualistic plant-

fungal symbioses, with the ability to enhance plant growth and to increase 

resistance of their host plants against abiotic stress and fungal pathogens (Weiss et 

al., 2011). Weiss et al. (2011) collected Sebacinales from 128 root samples from 27 

families from 4 continents in field specimens of bryophytes, pteridophytes and all 

families of herbaceous angiosperms including wheat, maize, and the non-

mycorrhizal model plant Arabidopsis thaliana. Sebacinales were present in all 

habitats on four continents from Germany, Switzerland, France, Italy, Austria, 

Slovenia, Great Britain, the United States, Ecuador, Ethiopia, Namibia, North 

Africa, South Africa, and Iceland with no geographical or host patterns. Sebacinales 

were already found from India and Australia as well (Warcup & Talbot, 1967, 

Verma et al., 1998). Weiss et al. (2011)’s study showed that Sebacinales are almost 

universally present. Considering their proven beneficial influence on plant growth, 

endophytic Sebacinales may be a previously unrecognized universal hidden force 

in plant ecosystems.  

Weiss et al. (2011) revealed that P. indica belongs to a group of closely related 

endophytic species from Western European (Germany and France) and Namibian 

Fabaceae, Poaceae, or Araceae. So it is possible that P. indica might be present in 

Eurepean soils or even UK. 
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Soil studies must be carried on to determine how common and widespread 

Sebacinales are in the UK; what their range of hosts is; and what effects they have 

on their hosts? 

6.2. How does P. indica improve plant growth and yield? 

The ability of P. indica to improve the growth and final yield of various host plants 

is well studied (see Chapter 1). But how does P. indica do this? Increases in nutrient 

uptake? Increases in photosynthesis? Phytohormone production by itself or the 

host? Or regulation of plant defence systems and antioxidant enzymes? Why do P. 

indica modes of action differ in different hosts? Are P. indica modes of action 

similar in different cultivars of a host? What is the plant cost in return for all the 

beneficial effects? 

In the nutrient analysis experiment, P. indica did not have any effects on soil and 

plant tissue nutrients, but neither did Fun. mosseae, so these might be because of 

either the experimental conditions or the experimental factors as nutritional levels 

were too high (Table 3.4 and 3.5). More experiments are needed to confirm this.  

The beneficial effects of P. indica have been observed on different barley cultivars 

including: Ingrid (Waller et al., 2005; Baltruschat et al., 2008), Annabell (Waller et 

al., 2005), California Mariout (Baltruschat et al., 2008), Golden Promise and Maresi 

(Deshmukh et al., 2006, 2007), Bowman and Optic (Gravouil, 2012). Gravouil 

(2012) showed that different barley cultivars had different rates of colonisation by 

P. indica. Some barley cultivars had the highest rate of P. indica colonisation and 

the best increase in shoot biomass and protection against pathogens such as 
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Rhynchosporium commune. Deshmuck et al. (2006 and 2007) inoculated different 

barley cultivar seedlings with P. indica and different isolates of S. vermifera. 

Despite considerable variation in the fungal activity of the different isolates, they 

found increases in shoot and root biomass with consistent resistance-inducing 

activity of all strains of the S. vermifera against powdery mildew (caused by B. 

graminis f.sp. hordei) as with P. indica.  

In this thesis, P. indica colonised and increased shoot and final yield of the winter 

wheat (cv. Battalion, Table 3.1) and six cultivars of spring wheat (cv. Paragon, 

Mulika, Zircon, Granary, KWS Willow and KWS Kilburn, Table 3.2 and 3.3). P. 

indica reduced disease severity and incidence of FCR (Fig. 2.4-.7), FHB (Fig. 3.1-

.3), and other foliar diseases including Septoria leaf blotch (Fig. 4.1-.4), yellow rust 

(Fig. 4.6 and 4.7) and powdery mildew (Fig. 4.8) of all cultivars.  

However, more experiments need to be done to confirm if P. indica has continued 

effects on Fusarium and other air-borne diseases of different cultivars of wheat 

under field conditions. 

6.3. Piriformospora indica survival under UK weather conditions 

Although P. indica was found in the hot desert of India, with daytime temperature 

ranging between +40 to +50 oC, it promoted seed germination under extreme low 

temperatures, at temperatures ranging between –30 and 4 oC (Varma et al. 2014). 

The seed germination of 12 leafy vegetable plants inoculated with P. indica was 

observed to be 100 % in case of cabbage, endive, radish and onion within 25 days, 

carrot and cauliflower within 21 days, beetroot within 20 days, and pea within 15 
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days of sowing. Although germination, of P. indica-inoculated seeds, at the extreme 

low temperature was slow, no seed germination was noticed in the untreated 

controls. Significant increases in growth rate of cabbage, cauliflower heads and 

beetroot bulbs was recorded in the fungus treated plants (Varma et al., 2014). This 

shows that P. indica is not climatically limited and it is universal. As shown here, 

P. indica also delivered its beneficial effects under UK weather conditions.  

Soil results show that P. indica survived in the soil, in the absence of any host, 

under winter and summer weather conditions in UK (Table 5.2), suggesting that P. 

indica might be suitable to use in the field under UK climatic weather conditions. 

However, more experiments need to be done under field conditions, in the absence 

and presence of hosts, to examine for how long P. indica can stay alive in the soil 

and how, in the event of adverse side-effects and widespread release, it can be 

eradicated. 

6.4. Piriformospora indica effect on other soil microorganisms 

Most plants form symbioses with fungi and bacteria, many of which function as 

mutualists (Bacon & White, 2000, Smith & Read, 2008). In plant communities, 

mutualists could change the structure of community composition, by either 

enhancing (Wagg et al., 2011, Murphy et al., 2015b) or reducing plant species 

coexistence (Clay et al., 1993). Endophytic fungal symbionts can have profound 

effects on plant ecology, fitness, and evolution (Brundrett, 2006), shaping plant 

communities (Clay & Holah, 1999), increasing plant tolerance to abiotic stresses 

(Murphy et al., 2015c), increasing plant resistance to pathogens (Rodriguez et al., 
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2009, Murphy et al., 2014a) and manifesting strong effects on the community 

structure and diversity of associated organisms (e.g. bacteria, nematodes and 

insects; Omacini et al. (2001)). Endophyte presence may affect other community 

members such as herbivores (Rudgers & Clay, 2008) or mycorrhizal fungi (Mack 

& Rudgers, 2008), and have the potential to affect communities in both positive and 

negative ways (Stachowicz, 2001, Afkhami et al., 2014). The presence of a 

mutualist endophyte may cause net increases in community diversity. For example, 

losses of mutualists caused cascading declines in diversity in a plant–animal 

interaction web (Rodriguez-Cabal et al., 2013). In contrast Rudgers et al. (2015) 

drew attention to circumstances where mutualisms reduce species diversity. This 

can occur when a mutualist preferentially increases the competitive ability of its 

partner, thereby promoting competitive exclusion. For example, in tall grass 

prairies, nutritional mutualisms with AMF increased the competitive supremacy of 

the dominant grass species (Hartnett & Wilson, 2002).  

Gravouil (2012) examined the overall structure of the phyllosphere of P. indica-

inoculated and non-inoculated barley plants, but no significant difference was 

detected in richness, diversities and evenness of epiphytic populations or 

endophytic communities. The results presented here are in contrast with Gravoil, 

2012, indicating that P. indica increased fungal and bacterial diversity in the soil 

and root microflora of wheat (Fig. 5.3-5). This might be because P. indica is a root 

endophytic fungus which does not colonise the shoot. Where P. indica is present in 

the soil and root, it interacts directly with other microorganisms.  
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However, more development work is necessary to confirm the effect of P. indica 

on other soil microorganisms including mycorrhizal fungi, plant growth promoting 

rhizobacteria, nematodes, and biotrophic fungi. 

6.5. Piriformospora indica effect on weeds 

P. indica has a wide range of hosts including monocots and dicots. Experiments 

were conducted to establish if common arable weeds can also benefit from P. indica 

interaction. When both wheat and weed species were present, the effect of P. indica 

on wheat was stronger, so competiveness was improved (Table 5.3 and 5.4; 

Appendix Table 15,16, Chapter 8). This suggests that wheat might be a favoured 

host for P. indica. However, the term ‘weed’ is not a biological category and has 

no botanical significance, because a plant that is a weed in one context is not a weed 

when growing in a situation where it is in fact wanted, and where one species of 

plant is a valuable crop plant, another species in the same genus might be a serious 

weed. Although P. indica might increase weed root biomass, its desirable beneficial 

effects on its host, such as increases in above ground biomass, final yield, and plant 

resistance against pathogens, and also its wide range hosts are much more attractive 

and useful. Growers have been using herbicide to control weeds for many years, 

even when they used other plant growth promoters and fertilisers in the fields. So 

if P. indica is going to be applied in the field, herbicide could still be used to control 

the weed problem.  
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However, the results presented here are based on a small scale experiment. More 

experiments need to be carried out to determine P. indica interaction with weeds, 

its host range and preferance.  

6.6. Piriformospora indica application in agricultural industry 

P. indica can be easily mass multiplied, its production is easy and application is 

cheap (Chadha et al., 2014, Varma et al., 2014). Based on data from other countries, 

it is likely to be useful in many crops, if it can be shown to be safe. The model of 

action is not via antibiotic or other toxin production and the fungus appears not to 

pose a health hazard that would need management. Potential sales are large and 

would intensify production of wheat and maybe other crops in a sustainable way. 

So concern is over irreversible ecological effects and the build-up of other 

microorganisms that decline P. indica population if it is widely used. Different soil 

types have different microorganism communities, as also shown in the experiments 

presented here that both Rowland series and Sonning series were clearly distinct in 

their fungal and bacterial diversity (Fig. 5.4). It suggests that the build-up of 

microorganisms would differ in different P. indica-inoculated soils, which might 

cause a decline in P. indica or alter its behaviour throughout time. For an example 

of the type of phenomenon which might occur, take-all decline in wheat 

monoculture is associated with build-up of root colonising antagonists in the soil 

that suppress the take-all pathogen in the soil in later years of monoculture.   
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6.6.1. Who might benefit from Piriformospora indica application? 

Biological/crop protection science: In searching for biocontrol agents, biological 

control suppliers are looking for an agent which is adaptable to different 

environmental conditions, can be synchronised with its host and protect its host 

against biotic and abiotic stresses and at the same time improves host growth and 

productivity. With concerns over environmental side-effects and increasing 

fungicide resistance, the use of natural microorganisms to control crop diseases and 

enhance plant nutrient uptake is attractive, in product development for commercial 

biological control. P. indica application might be a bicontrol agent for the integrated 

pest management industry or those who sell microbial growth promoters such as 

plant growth promoting rhizobacteria. 

Farmers and growers: When trying to control crop diseases, farmers and growers 

are looking for something that is economically affordable, easy to apply, with other 

aspects of the growing system, and controls multiple diseases. P. indica might be 

an attractive biocontrol agent because its production and application is cheap and 

easy, it is compatible with other foliar fungicide and it controls many diseases. 

Farmers would benefit by more stable production, reduced agrochemical costs and 

reduced disease pressure.  

General public: Fungicide application to control diseases can lead to fungicide 

resistance (leading to increases doses) and environmental pollution. Misuse of 

agrochemicals and their entry in to the food chain can pose a risk to animal and 

human health. P. indica can protect its host against diseases and would minimise 
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the use of fungicide application, as a result minimising the risk of fungicide 

resistance and environmental pollution. Indirectly everyone benefits through more 

stable staple food prices and cleaner environment. 

The fungus is out of patent in Europe, so the remaining research and development 

needed to establish efficacy and safety may be initially unattractive commercially 

and public or farmer-cooperative funding will be needed to establish a market. 

6.7. Future research 

Fungi of the order Sebacinales occur worldwide and encompass a great multitude 

of mycorrhizal associations, which are associated with the roots of a huge variety 

of plant species. There is no information available on Sebacinaceous fungi in the 

UK. More research needs to be done to understand the role of generalist 

sebacinaceous endophytes forming mycorrhizal associations, including the possible 

presence of P. indica, in the UK. Understanding the role of Sebacinaceous 

mycorrhizal fungi will help to gain more knowledge about their beneficial effects 

in the soil ecosystem and root-host symbiosis: 

1- Develop an understanding of Sebacinales fungi, to determine how common and 

widespread they are; what is their range of hosts, and what effects they have on 

their hosts;  

2- Determine whether Sebacinales fungi are actually ubiquitous, their range of 

environmental conditions, soil types, and their correlation with other soil 

microorganisms; 
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3- Test the effect of P. indica on the build-up of antagonists in soils where the fungi 

are permanently present; and also P. indica’s effect on other biotrophic fungi, 

insects, viruses, nematodes and wild plants. 

4- Test if P. indica controls the root, foliar and head diseases consistently;  

5- Check P. indica compatibility with foliar and ear fungicides, cultivar differences, 

and soil types, while trying to find other examples of Sebacinales and determine if 

all members have the same characteristics. 
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6.8. Conclusions 

-P. indica protected wheat from Fusarium crown rot damage at seedling growth 

stages, by reducing the pathogen growth in the root system; 

-P. indica reduced Fusarium head blight disease severity and incidence and 

mycotoxin DON contamination of grains contaminated wheat at flowering stage; 

-P. indica reduced Septoria leaf blotch, yellow rust, and powdery mildew disease 

severity and incidence of wheat; 

-P. indica did not have any effect on soil and leaf nutrient concentrations, but 

neither did Fun. mosseae, so this might be because of the experimental conditions; 

-P. indica in soil survived the UK weather conditions; 

-P. indica increased soil and root fungal and bacterial diversity; 

-P. indica might be used to control crop diseases, but extensive data would be 

needed before release on a wide scale in areas where it is not native. 
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Chapter 8. Annex 

8.1. Complementary Statistical Data 

8.1.1. Chapter 3- ANOVA P-value for figures and tables 

Table 1. For Fig. 3.1. & Table 3.1. ANOVA P-value for Fusarium head blight disease severity and incidence and final harvest results 

measured in pots of winter wheat cv. Battalion, treated in a full factorial design with the factors shown. The experiment carried out in 

the 2013-14 growing season. 
 P value 

 

FHB 

severity 

FHB 

incidence 

Total above 

ground 

weight 

Root 

weight 

Total 

grain 

weight 

1000 grain 

weight 

Harvest 

index 

No of 

ears 

Main effect               

P. indica <.001 <.001 0.06 <.001 0.2 0.02 0.6 0.2 

Fun. mosseae 0.001 0.006 0.01 <.001 0.3 0.05 0.9 0.02 

Fertiliser <.001 <.001 <.001 <.001 <.001 0.6 0.3 <.001 

F. graminearum <.001 <.001 0.2 0.9 0.09 0.06 0.2 0.8 

F. culmorum 0.09 0.1 0.09 0.05 0.2 0.8 0.6 0.9 

2nd order interaction        

P. indica.Fun. mosseae 0.008 0.03 0.06 <.001 0.7 0.2 0.6 0.3 

P. indica.Fertiliser 0.7 0.2 0.9 0.3 0.8 0.5 0.9 0.7 

Fun. mosseae.Fertiliser 0.6 0.9 0.004 0.4 0.03 0.8 0.2 0.7 

P. indica.F. graminearum 0.004 0.005 0.4 0.03 0.9 0.04 0.8 0.1 
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Fun. mosseae.F. graminearum 0.1 0.3 0.4 0.2 0.6 0.7 0.4 0.7 

Fertiliser.F. graminearum 0.7 0.5 0.9 0.8 0.6 0.5 0.7 0.3 

P. indica.F. culmorum 0.2 0.1 0.6 0.01 0.9 0.8 0.5 0.7 

Fun. mosseae.F. culmorum 0.03 0.01 <.001 0.01 0.07 0.6 0.7 0.5 

Fertiliser.F. culmorum 0.7 0.9 0.8 <.001 0.7 0.7 0.6 0.3 

F. graminearum.F. culmorum 0.4 0.5 0.9 0.6 0.9 0.02 0.8 0.9 

3rd order interaction        

P. indica.Fun. mosseae.Fertiliser 0.6 0.7 0.9 0.05 0.5 0.008 0.4 0.02 

P. indica.Fun. mosseae.F. graminearum 0.08 0.05 0.008 0.7 0.09 0.7 0.5 0.9 

P. indica.Fertiliser.F. graminearum 0.9 0.5 0.9 0.04 0.2 0.8 0.1 0.6 

Fun. mosseae.Fertiliser.F. graminearum 0.6 0.9 0.001 0.1 0.4 0.09 0.5 0.7 

P. indica.Fun. mosseae.F. culmorum 0.4 0.7 0.07 0.008 0.05 0.4 0.2 0.3 

P. indica.Fertiliser.F. culmorum 0.6 0.7 0.3 0.2 0.4 0.3 0.5 0.8 

Fun. mosseae.Fertiliser.F. culmorum 0.6 0.4 0.06 0.4 0.3 0.7 0.9 0.4 

P. indica.F. graminearum.F. culmorum 0.8 0.2 0.6 0.3 0.7 0.9 0.9 0.3 

Fun. mosseae.F. graminearum.F. 

culmorum 0.6 0.3 0.4 0.9 0.1 0.04 0.2 0.7 

Fertiliser.F. graminearum.F. culmorum 0.07 0.04 0.1 0.5 0.9 0.8 0.4 0.5 

4th order interaction        

P. indica.Fun. mosseae.Fertiliser.F. 

graminearum 0.5 0.7 0.1 0.2 0.2 0.7 0.6 0.9 

P. indica.Fun. mosseae.Fertiliser.F. 

culmorum 0.2 0.03 0.9 0.008 0.4 0.7 0.6 0.8 
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P. indica.Fun. mosseae.F. 

graminearum.F. culmorum 0.05 0.01 0.8 0.8 0.8 0.4 0.7 0.09 

P. indica.Fertiliser. F. graminearum.F. 

culmorum 0.06 0.04 0.4 0.4 0.7 0.1 0.8 0.9 

Fun. mosseae.Fertiliser.F. 

graminearum.F. culmorum 0.4 0.3 0.4 0.5 0.6 0.3 0.9 0.6 

5th order interaction        

P. indica.Fun. mosseae.Fertiliser.F. 

graminearum.F. culmorum 0.7 0.9 0.4 0.8 0.6 0.8 0.8 0.5 
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Table 2. For Fig. 3.2. & Table 3.2. ANOVA P-value for Fusarium head blight disease severity and incidence and final harvest results 

measured in pots of spring wheat cv. Paragon, treated in a full factorial design with the factors shown. The experiment carried out in 

the 2014 growing season. 

 P value 

Main effect 
FHB 

severity 

FHB 

inciden

ce 

Total 

above 

ground 

weight 

Root 

weigh

t 

Total 

grain 

weight 

1000 

grain 

weight 

Harvest 

index 

No 

of 

ears 

P. indica 0.07 0.2 0.05 0.02 0.02 0.08 0.07 0.003 

Fun. mosseae 0.8 0.6 0.1 0.2 0.1 0.5 0.5 0.1 

F. graminearum <.001 <.001 0.8 0.8 0.8 0.4 0.7 0.03 

Fungicide 0.005 0.02 0.6 0.7 0.05 0.7 0.03 0.12 

2nd order interaction       

P. indica.Fun. mosseae 0.4 0.5 0.8 0.03 0.7 0.1 0.3 0.4 

P. indica.F. graminearum 0.2 0.4 0.4 0.6 0.08 0.1 0.07 0.9 

Fun. mosseae.F. graminearum 0.7 0.6 0.09 0.05 0.2 0.1 0.7 0.06 

P. indica.Fungicide 0.1 0.3 0.3 0.2 0.8 0.1 0.4 0.6 

Fun. mosseae.Fungicide 0.4 0.3 0.8 0.3 0.3 0.2 0.1 0.8 

Fungicide.F. graminearum 0.04 0.1 0.5 0.4 0.9 0.8 0.4 0.9 

3rd order interaction       

P. indica.Fun. mosseae. F. 

graminearum 
0.8 0.9 0.7 0.01 0.6 0.6 0.7 0.7 

P. indica.Fun. mosseae.Fungicide 0.9 0.9 0.03 0.9 0.003 0.01 0.009 0.003 

P. indica.F. graminearum . 

Fungicide 
0.1 0.3 0.7 0.8 0.4 0.9 0.3 0.7 

Fun. mosseae.F. 

graminearum.Fungicide 
0.5 0.6 0.8 0.6 0.4 0.8 0.1 0.4 
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4th order interaction       

P. indica.Fun. mosseae.F. 

graminearum.Fungicide 
0.7 0.6 0.2 0.3 0.3 0.5 0.9 0.5 
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Table 3. For Fig. 3.3. & Table 3.3. ANOVA P-value for Fusarium head blight disease severity and incidence and harvest results 

measured in pots of six cultivars of spring wheat cv. Paragon, Mulika, Zircon, Granary, KWS Willow and KWS Kilburn, treated in a 

full factorial design with the factors shown. The experiment carried out in the 2015 growing season. 

 P value 

 
 FHB 

severity 

FHB 

incidence 

Total above 

ground 

weight  (g) 

Root 

weight 

(g) 

Total grain 

weight per 

pot (g) 

1000 

grain 

weight 

(g) 

Harvest 

index 

No of  

ears Main effect 

P. indica <.001 <.001 0.002 <.001 <.001 <.001 <.001 0.002 

F. graminearum <.001 <.001 0.06 0.6 <.001 0.201 0.034 0.604 

Wheat cultivars <.001 <.001 0.02 0.09 0.001 0.102 0.119 <.001 

2nd order interaction            

P. indica. F. graminearum <.001 0.02 0.04 0.8 0.2 0.03 0.6 0.6 

P. indica.Wheat cultivars 0.68 0.87 0.9 0.9 0.3 0.4 0.6 0.8 

FHB.wheat cultivars 0.93 0.9 0.5 0.1 0.7 0.8 0.9 0.7 

3rd order interaction        

P. indica. F. 

graminearum.Wheat cultivars 
0.21 0.16 0.3 0.5 0.3 0.5 0.2 0.6 
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Table 4. For Fig. 3.4.a. ANOVA P-value for mycotoxin DON measured in pots of 

winter wheat cv. Battalion, treated in a full factorial design with the factors shown. 

The experiment carried out in the 2013-14 growing season. 

 
 P value 

main effect mycotoxin DON 

P. indica <.001 

F. culmorum <.001 

Fertiliser 0.005 

Fun. mosseae 0.5 

2rd order interaction  

P. indica.F. culmorum <.001 

P. indica.Fertiliser 0.1 

Fertiliser.F. culmorum 0.09 

P. indica.Fun. mosseae 0.003 

Fun. mosseae.F. culmorum 0.3 

Fun. mosseae.Fertiliser 0.4 

3rd order interaction  

P. indica.Fertiliser. F. culmorum 0.05 

P. indica.Fun. mosseae. F. culmorum 0.6 

P. indica. Fun. mosseae.Fertiliser 0.4 

Fun. mosseae.Fertiliser.F. culmorum 0.2 

4th order interaction  

P. indica.Fun. mosseae.Fertiliser. F. 

culmorum 0.1 
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Table 5. For Fig. 3.4.b. ANOVA P-value for mycotoxin DON measured in pots of 

spring wheat cv. Paragon, treated in a full factorial design with the factors shown. 

The experiment carried out in the 2014 growing season. 

 
 P value 

main effect Mycotoxin DON 

P. indica 0.01 

Fun. mosseae 0.5 

Fungicide 0.001 

2nd way interaction  

P. indica.Fun. mosseae 0.009 

P. indica.Fungicide 0.03 

Fun. mosseae.Fungicide 0.9 

3rd way interaction  

P. indica.Fun. 

mosseae.Fungicide 0.06 

 

Table 6. For Fig. 3.4.c. ANOVA P-value for mycotoxin DON measured in pots of 

six cultivars of spring wheat cv. Paragon, Mulika, Zircon, Granary, KWS Willow 

and KWS Kilburn, treated in a full factorial design with the factors shown. The 

experiment carried out in the 2015 growing season. 

 

 P value 

 
Mycotoxin DON 

Main effect 

P. indica <.001 

Wheat cultivars <.001 

2nd order interaction  

P. indica.Wheat cultivars 0.002 
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Table 7. For Table 3.4. ANOVA P-value for soil nutrients measured in pots of winter wheat cv. Battalion, treated in a full factorial 

design with the factors shown. The experiment carried out in the 2014-15 growing season. 

 

 P value 

 Soil 

pH 
P K Mg NO3  NH4  Available N  Dry Matter   

Main effect 

P. indica 0.8 0.6 0.3 0.8 0.4 0.9 0.7 <.001 

Fun. mosseae 0.08 0.09 0.8 0.9 0.9 0.6 0.8 0.8 

Fertliser <.001 <.001 0.6 <.001 <.001 <.001 <.001 <.001 

2nd order interaction         

P. indica.Fun. mosseae 0.9 0.2 0.8 0.6 0.05 0.03 0.04 0.5 

P. indica.Fertliser 0.9 0.7 0.2 0.4 0.09 0.4 0.2 0.06 

Fun. mosseae.Fertliser 0.5 0.4 0.2 0.3 0.2 0.4 0.3 0.1 

3rd order interaction         

P. indica.Fun. 

mosseae.Fertliser 
0.04 0.4 0.07 0.7 0.02 0.02 0.02 0.8 
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Table 8. For Table 3.5. ANOVA P-value for leaf tissue nutrients measured in pots of winter wheat cv. Battalion, treated in a full 

factorial design with the factors shown. The experiment carried out in the 2014-15 growing season. 

 

 P value 

 Total 

N 

Total 

P 

Total 

K 

Ttal 

Ca 

Total 

Mg 

Total 

S 

Total 

Mn 

Total 

Cu 

Total 

Fe 

Total 

Zn 
Total B 

Main effect 

P. indica 0.6 0.9 0.6 0.8 0.6 0.6 0.7 0.7 0.03 0.9 0.01 

Fun. mosseae 0.7 0.6 0.9 0.8 0.8 0.4 0.4 0.3 0.02 0.5 0.2 

Fertliser <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 0.002 <.001 <.001 

2nd order interaction            

P. indica.Fun. mosseae 0.4 0.3 0.5 0.4 0.5 0.5 0.1 0.7 0.06 0.9 1 

P. indica.Fertliser 0.6 0.7 0.9 0.8 0.8 0.3 0.03 0.5 0.06 0.6 0.02 

Fun. mosseae.Fertliser 0.8 0.2 0.5 0.9 0.7 0.1 0.2 0.3 0.05 0.3 0.7 

3rd order interaction            

P. indica.Fun. 

mosseae.Fertliser 
0.04 0.9 0.3 0.3 0.1 0.3 0.9 0.2 0.1 0.4 0.3 
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8.1.2. Chapter 4- ANOVA P-value for figures and tables 

Table 9. For Fig. 4.1 & Table 4.1. ANOVA P-value for final harvest results measured in pots of winter wheat cv. Battalion, grown 

for assessing P. indica effect on air-borne diseases, treated in a full factorial design with the factors shown. The experiment carried out 

in the 2014-15 growing season. 

 

 

Septoria 

severity 

Septoria 

incidence 

Total 

above 

ground 

weight 

(g) 

Root 

weight 

(g) 

Total grain 

weight per 

pot (g) 

1000 

grain 

weight 

(g) 

Harvest 

index 

No of 

ears Main effect 

P.inidca <.001 0.01 0.007 0.001 <.001 0.003 0.2 0.05 

Fertliser <.001 <.001 <.001 0.002 0.002 0.2 0.6 <.001 

2nd order interaction       

P. inidca.Fertliser 0.002 0.1 0.3 0.04 0.5 0.3 0.4 0.7 
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Table 10. For Fig. 4.2. ANOVA P-value for Septoria leaf blotch disease severity 

and incidence measured in pots of winter wheat cv. Battalion, grown for soil and 

plant tissue nutrient analysis, treated in a full factorial design with the factors 

shown. The experiment carried out in the 2014-15 growing season. 

 

 P value 

 
Severity Incidence 

Main effect 

P. indica 0.05 0.003 

Fun. mosseae 0.1 0.08 

Fertliser <.001 <.001 

2nd order interaction   

P. indica.Fun. mosseae 0.8 0.8 

P. indica.Fertliser 0.2 0.3 

Fun. mosseae.Fertliser 0.3 0.9 

3rd order interaction   

P. indica.Fun. 

mosseae.Fertliser 
0.7 0.2 
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Table 11. For Fig. 4.3. ANOVA P-value for Septoria leaf blotch disease severity 

and incidence measured in pots of winter wheat cv. Battalion, grown for Fusarium 

experiment, treated in a full factorial design with the factors shown. The experiment 

carried out in the 2013-14 growing season. 

 

 P value 

 
Severity Incidence 

Main effect 

P. indica <.001 <.001 

Fun. mosseae <.001 0.1 

Fertiliser <.001 <.001 

F. culmorum 0.094 0.1 

2nd order interaction   

P. indica.Fun. mosseae <.001 0.003 

P. indica.Fertiliser 0.002 <.001 

Fun. mosseae.Fertiliser 0.2 0.6 

P. indica.F. culmorum 0.7 0.8 

Fun. mosseae.F. culmorum 0.9 0.9 

Fertiliser.F. culmorum 0.6 0.5 

3rd order interaction    

P. indica.Fun. mosseae.Fertiliser 0.7 0.4 

P. indica.Fun. mosseae.F. culmorum 0.6 0.05 

P. indica.Fertiliser.F. culmorum 0.8 0.6 

Fun. mosseae.Fertiliser.F. culmorum 0.2 0.5 

4th order interaction    

P. indica.Fun. mosseae.Fertiliser.F. 

culmorum 
0.1 

0.3 
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Table 12. For Fig. 4.6. ANOVA P-value for yellow rust disease severity and 

incidence measured in pots of winter wheat cv. Battalion, grown for Fusarium 

experiment, treated in a full factorial design with the factors shown. The experiment 

carried out in the 2013-14 growing season. 

 

 P value 

 
Severity Incidence 

Main effect 

P. indica 0.005 <.001 

Fun. mosseae 0.9 0.4 

Fertiliser <.001 <.001 

F. culmorum 0.2 0.08 

2nd order interaction   

P. indica.Fun. mosseae 0.5 0.7 

P. indica.Fertiliser 0.3 0.5 

Fun. mosseae.Fertiliser 0.3 0.4 

P. indica.F. culmorum 0.8 0.4 

Fun. mosseae.F. culmorum 0.8 0.9 

Fertiliser.F. culmorum 0.7 0.2 

3rd order interaction   

P. indica.Fun. mosseae.Fertiliser 0.2 0.3 

P. indica.Fun. mosseae.F. 

culmorum 
0.7 0.6 

P. indica.Fertiliser.F. culmorum 0.1 0.2 

Fun. mosseae.Fertiliser.F. 

culmorum 
0.9 0.6 

4th order interaction   

P. indica.Fun. mosseae.Fertiliser. 

F. culmorum 
0.8 0.9 
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Table 13. For Fig. 4.7. ANOVA P-value for yellow rust disease severity and 

incidence measured in pots of six cultivars of spring wheat cv. Paragon, Mulika, 

Zircon, Granary, KWS Willow and KWS Kilburn, treated in a full factorial design 

with the factors shown. The experiment carried out in the 2015 growing season. 

 

 P value 

main effect Severity Incidence 

P. indica <.001 <.001 

Spring wheat cultivars <.001 <.001 

2nd order interaction 

P. indica.Spring wheat 

cultivars 
0.7 0.5 
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Table 14. For Fig. 4.8. ANOVA P-value for powdery mildew disease severity and 

incidence measured in pots of six cultivars of spring wheat cv. Paragon, Mulika, 

Zircon, Granary, KWS Willow and KWS Kilburn, treated in a full factorial design 

with the factors shown. The experiment carried out in the 2015 growing season. 

 P value 

main effect Severity Incidence 

P. indica 0.01 0.01 

Spring wheat 

cultivars 
<.001 <.001 

2nd order interaction  

P. indica.Spring 

wheat cultivars 
0.7 0.9 
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8.1.3. Chapter 5- ANOVA P-value for tables 

Table 15. For Table 5.3. ANOVA P-value for dry weights (g) of root and shoot of 

weed species (Alopecuris myosuroides, Avena fatua and Galium aparine) alone and 

in competition with wheat, with and without inoculation with Piriformospora 

indica. 

 P value 

Main effect weed shoot weed root 

Mix with wheat or solo (Mix-

solo) 
0.005 0.05 

P. indica  0.2 0.05 

Species (weeds and wheat) <.001 0.03 

2nd order interaction     

Mix-solo.P. indica 0.2 0.1 

Mix-solo.Species 0.2 0.4 

P. indica.Species 0.2 0.5 

3rd order interaction    

Mix-solo.P. indica.Species 0.6 0.9 
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Table 16. For Table 5.4. ANOVA P-value for competitiveness of weed species 

(Alopecuris myosuroides, Avena fatua, and Galium aparine) with wheat, in the 

presence and absence of inoculum of Piriformospora indica in the soil. 
 

 P value 

Main effect 
Shoot competition 

(log10(weedshoot/wheatshoot) 

Root competition 

(log10(weedroot/wheat root) 

P. indica  0.02 0.3 

Species (weeds and 

wheat) 
0.002 0.2 

2nd order intrecation   

P. indica.Species (weeds 

and wheat) 
0.7 0.9 

 

 

 

 

 

 

 

 


