
A generalised background correction 
algorithm for a Halo Doppler lidar and its 
application to data from Finland 
Article 

Published Version 

Creative Commons: Attribution 3.0 (CC-BY) 

Open access 

Manninen, A. J., O'Connor, E. J., Vakkari, V. and Petäjä, T. 
(2016) A generalised background correction algorithm for a 
Halo Doppler lidar and its application to data from Finland. 
Atmospheric Measurement Techniques, 9 (2). pp. 817-827. 
ISSN 1867-8548 doi: https://doi.org/10.5194/amt-9-817-2016 
Available at https://centaur.reading.ac.uk/65657/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.5194/amt-9-817-2016 

Publisher: Copernicus Publications 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Central Archive at the University of Reading 
Reading’s research outputs online



Atmos. Meas. Tech., 9, 817–827, 2016

www.atmos-meas-tech.net/9/817/2016/

doi:10.5194/amt-9-817-2016

© Author(s) 2016. CC Attribution 3.0 License.

A generalised background correction algorithm for a Halo Doppler

lidar and its application to data from Finland

Antti J. Manninen1, Ewan J. O’Connor2,3, Ville Vakkari2, and Tuukka Petäjä1

1Department of Physics, University of Helsinki, Helsinki, Finland
2Finnish Meteorological Institute, Helsinki, Finland
3Department of Meteorology, University of Reading, Reading, UK

Correspondence to: Antti J. Manninen (antti.j.manninen@helsinki.fi)

Received: 3 September 2015 – Published in Atmos. Meas. Tech. Discuss.: 28 October 2015

Revised: 10 February 2016 – Accepted: 15 February 2016 – Published: 3 March 2016

Abstract. Current commercially available Doppler lidars

provide an economical and robust solution for measuring ver-

tical and horizontal wind velocities, together with the ability

to provide co- and cross-polarised backscatter profiles. The

high temporal resolution of these instruments allows turbu-

lent properties to be obtained from studying the variation

in radial velocities. However, the instrument specifications

mean that certain characteristics, especially the background

noise behaviour, become a limiting factor for the instrument

sensitivity in regions where the aerosol load is low. Turbu-

lent calculations require an accurate estimate of the contribu-

tion from velocity uncertainty estimates, which are directly

related to the signal-to-noise ratio. Any bias in the signal-

to-noise ratio will propagate through as a bias in turbulent

properties. In this paper we present a method to correct for

artefacts in the background noise behaviour of commercially

available Doppler lidars and reduce the signal-to-noise ra-

tio threshold used to discriminate between noise, and cloud

or aerosol signals. We show that, for Doppler lidars oper-

ating continuously at a number of locations in Finland, the

data availability can be increased by as much as 50 % after

performing this background correction and subsequent re-

duction in the threshold. The reduction in bias also greatly

improves subsequent calculations of turbulent properties in

weak signal regimes.

1 Introduction

The greatest uncertainties in understanding the radiative bal-

ance of Earth are related to the effects of atmospheric aerosol

particles (Boucher et al., 2013). In the atmosphere, aerosols

can affect the radiative balance directly by absorbing and

scattering solar radiation, and indirectly by changing cloud

properties (e.g. Allen and Sherwood, 2010; Bony et al., 2013;

Lohmann and Feichter, 2001; Lohmann and Hoose, 2009). In

order to reduce the uncertainty in the impact of aerosol par-

ticles on Earth’s climate, temporally and spatially represen-

tative measurements of their physical and chemical proper-

ties are vital. Although such measurements have been carried

out at a number of ground-based measurement stations (Col-

laud Coen et al., 2013; Asmi et al., 2013), challenges remain

in understanding the transport mechanisms that allow us to

relate surface measurements to properties above the surface.

Doppler light detection and ranging (lidar) instruments

provide a way of tackling this challenge through contin-

uous measurements of the air motion simultaneously with

scattering from aerosol. Turbulent profiles can be derived

from these high-resolution measurements of vertical velocity

(O’Connor et al., 2010), which can then be used to identify

the mixing height, i.e. the height of the layer that is constantly

in contact with the ground (e.g. Emeis et al., 2008; Pearson

et al., 2010), and thus infer the aerosol transport.

At present, commercially available Doppler lidars, such as

the Halo Photonics Stream Line Doppler lidar (Pearson et al.,

2009), represent a solution for routinely measuring profiles

of radial Doppler velocity and co- and cross-polarised signal-

to-noise ratio, from which profiles of horizontal and vertical
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winds are derived. These systems are based on fibre-optic

technology utilising solid-state lasers in the infrared spectral

band, and are capable of continuous operation for months

or more (e.g. Harvey et al., 2013). However, the high-pulse

repetition, low-pulse energy mode that these systems oper-

ate in, which means that they conform to eye-safety require-

ments, requires a certain amount of aerosol loading in the at-

mosphere for sufficient sensitivity (e.g. Pearson et al., 2009).

In regions where the aerosol load is low, such as in remote

continental regions, the resulting lack of suitable scatterers

in the atmosphere becomes the limiting factor for their per-

formance.

In this study, we present a novel post-processing algo-

rithm to improve the background noise performance of Halo

Doppler lidars. This algorithm is provided in the accompany-

ing Supplement as a MATLAB programme together with a

short atmospheric measurement and a ready-to-run example

script. We demonstrate that the algorithm can significantly

increase the data availability in low-aerosol conditions with-

out decreasing the time or height resolution of the data set.

The increase in data availability will enhance the capability

for connecting surface aerosol measurements with aerosols

that take part in cloud formation. This will, in turn, contribute

towards reducing the uncertainties in the effects of aerosols

on Earth’s climate.

2 Measurements and instrument description

The Halo Photonics Stream Line Scanning Doppler lidar is a

1.5 µm pulsed Doppler lidar with a heterodyne detector that

can switch between co- and cross-polar channels (Pearson

et al., 2009). Here, we have configured the instrument to

cover a range from 90 to 9600 m with 30 m resolution. The

accumulation time per ray is also user-configurable and may

vary from 1 to 30 s depending on environment and applica-

tion. The instrument also has a full hemispheric scanning ca-

pability, but here we concentrate on the vertically pointing

data. The technical specifications of the instrument as con-

figured for standard operation are summarised in Table 1.

The instrument outputs a profile of back-scattered light

intensity, in terms of signal-to-noise ratio (SNR), together

with a profile of the radial Doppler velocity determined from

the Doppler shift of the back-scattered light (Pearson et al.,

2009). The attenuated backscatter profile can then be calcu-

lated from the SNR profile if the telescope function is known

(Hirsikko et al., 2014). The uncertainty for each Doppler ve-

locity measurement, σv, is then calculated from the corre-

sponding SNR value. According to Rye and Hardesty (1993)

and O’Connor et al. (2010), for a direct detection system the

SNR is proportional to σv:

σ 2
v ∼

1
√

SNR
, (1)

Table 1. Summary of the technical specifications of the Halo lidar.

Wavelength 1.5 µm

Detector heterodyne

Pulse repetition frequency 15 kHz

Nyquist velocity 20 m s−1

Sampling frequency 50 MHz

Velocity resolution 0.038 m s−1

Points per range bin 10

Range resolution 30 m

Pulse duration 0.2 µs

Lens diameter 8 cm

Lens divergence 33 µrad

Minimum range 90 m

Maximum range 9600 m

Telescope monostatic optic-fibre coupled

whereas for a heterodyne system the relation is more com-

plex:

σ 2
v ∼

1

SNR2
(1+SNR)2. (2)

Thus, any bias or other error in SNR will directly bias the

expected uncertainty σv. For low SNR conditions, especially,

accurate knowledge of σv is crucial for calculating the dis-

sipation rate of turbulent kinetic energy (O’Connor et al.,

2010) and discriminating between turbulent mixing and in-

strumental noise (e.g. Vakkari et al., 2015).

The instrument performs a periodical background noise

determination, typically once an hour for about 10 s when op-

erating continuously. Since software version 10, the raw sig-

nals accumulated during the background determination are

stored as text files on the lidar internal PC. However, in spite

of this check, a small offset often remains in the instrument

background. The manufacturer recommends post-processing

the Halo Doppler lidar signal to identify and remove mea-

surements that have an SNR of less than 0.015 (−18.2 dB).

In most cases, this threshold is stringent enough to remove all

issues arising from any background imperfections. However,

this threshold places a severe restriction on data availability

in very clean atmospheric environments as it reduces the like-

lihood of obtaining any useful signals; thus the strong moti-

vation to reduce the threshold and improve the data availabil-

ity.

In this study we utilise continuous measurements from a

number of Halo Photonics Stream Line scanning Doppler

lidars with similar configurations (Hirsikko et al., 2014)

to illustrate the background correction method described in

Sect. 3. The sites and the time periods included in testing the

method are described in Table 2.

Atmos. Meas. Tech., 9, 817–827, 2016 www.atmos-meas-tech.net/9/817/2016/
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Figure 1. Time series of uncorrected Halo Doppler lidar SNR as a function of elevation above ground level (a.g.l.) measured at Hyytiälä,

Finland, on 21 June 2014.
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Figure 2. Two examples of background profiles with fitted polynomials emphasising the shape of the background. (a) Linear background pro-

file measured on 21 June 2014, 13:00:21 UTC. (b) Second-order polynomial background profile measured on 21 June 2014, 12:00:20 UTC.

Table 2. Measurement site locations and data set time periods in-

cluded in this study.

Site Data set time period

Helsinki 1 Jan to 31 Mar 2014

Hyytiälä 1 Jan 2013 to 20 Apr 2014

Hyytiälä 21 May to 31 Dec 2014

Kuopio 1 Sep to 30 Nov 2014

Sodankylä 1 Sep to 30 Nov 2014

Uto 1 Sep to 30 Nov 2014

3 Background correction method

3.1 Description of the background artefact in Halo

Doppler lidar

The existence of a background offset in the instrument can be

seen in the time–height plot of SNR, where the hourly back-

ground determination introduces step changes in the SNR

profile (Fig. 1). In older software versions (pre-10) the ampli-

tude of these steps can be larger if the background determi-

nation is conducted when the instrument is receiving in the

opposite polarisation to the previous determination. In addi-

tion, the shape of the instrument background can be either

a linear function of range (Fig. 2a), or the background can

follow a second-order polynomial (Fig. 2b).

3.2 Method for correcting the Halo Doppler lidar

background artefact

There are two critical phases in correcting the background

artefact in the Halo Doppler lidar SNR. The first one is the

detection of any steps in the background, which occur due to

periodic background determinations carried out by the instru-

ment. The second one is to determine the shape of the back-

ground. The first phase is much more simple with software

versions 10 and above, since the timing of each background

determination can be retrieved directly from the background

determination timestamp. However, there is a large amount

of data collected with previous software versions, where

background files are not available. In addition, there may be

step changes in the background SNR that do not occur after a

background determination, but have the same characteristics.

Thus, the step detection algorithm may be useful even when

the background files are available.

The workflow of the background SNR correction algo-

rithm that has been developed is illustrated in Fig. 3. The

algorithm applies the correction to the lidar SNR, and only

SNR values are processed during the algorithm steps until

the recalculation of the attenuated backscatter coefficients.

www.atmos-meas-tech.net/9/817/2016/ Atmos. Meas. Tech., 9, 817–827, 2016
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Figure 3. Chart showing the workflow of the Halo lidar background

correction algorithm.

The correction algorithm is performed separately for each

polarisation.

3.2.1 Cloud screening

In order to isolate any atmospheric measurements from the

noise that will be used to characterise the shape and the mag-

nitude of the background, returns originating from clouds

and aerosols must first be identified so that they can be re-

moved from subsequent processing. The cloud screening is

performed in two consecutive steps: the initial coarse step

identifies the regions of high variance in SNR, indicating

the presence of cloud and aerosol; the second step identifies

and removes additional atmospheric (cloud or aerosol) data

points missed by the first step by calculating Cook’s distance

(Cook, 1977) values from robust bi-square weighted linear

regression fits to each profile.

The initial component of the cloud-screening scheme (step

1.1 in Fig. 3) assumes that the variance in the SNR from

clouds and aerosols is significantly larger than the variance

of pure background noise. The variance is calculated by slid-

ing an m by n (where m is the range bin and n is time) win-

dow over each profile, range bin by range bin. The size of

the window affects how accurately the clouds and aerosols

are detected and also the processing time. In this study, the

window was selected to be 33 by 1. A dynamic threshold for

the variance is then used to differentiate clouds and aerosols

from pure background noise (Fig. 4). Besides assuming that

the SNR from clouds and aerosols has higher variance, it

is also assumed that the furthest range bins contain mainly

background SNR and thus have lower variance. To find the

dynamic threshold, the variance calculated from the SNR,

which is contained in the upper 20 % of the range bins, is

divided into n subsections. A larger number of subsections

increases the probability of finding subsections containing

mainly background SNR. In the results shown in this study,

the value of nwas chosen to be 64. The algorithm selects half

of the subsections with the lowest median values as reference

areas (Fig. 4). Then, an initial low threshold is chosen, which

masks areas of SNR with high variance, but also areas of low

variance. In this study we used the 50th percentile of the SNR

variance contained in all range bins as the initial threshold.

The threshold is then increased iteratively until the amount

of masked pure background SNR is less than 1 % of the se-

lected reference area. Thus, the dynamic threshold depends

on the background noise statistics of the particular instrument

in question.

The next step (step 1.2 in Fig. 3) is the fine-resolution

cloud screening, which aims to remove any cloud or aerosol

signals that were not removed by the variance-based method,

and is based on the method discussed in Hoaglin and

Welsch (1978). In short, each profile of the SNR is mod-

elled with a robust bi-square weighted linear regression af-

ter the variance-based screening. Then, leverage points are

calculated in each profile by constructing a hat matrix. To-

gether with residuals of the modelled fits, the leverage points

are used to calculate a Cook’s distance, which describes an

individual data point’s influence on the least squares regres-

sion analysis. In literature, general threshold values based on

the Cook’s distance, DCook, have been suggested: DCook > 1

(Cook, 1982), orDCook > 4/n, where n is the number of ob-

servations (Bollen and Jackman, 1990). If DCook for a data

point is larger than the threshold value, the point is con-

sidered as an outlier, and will be removed. We used the

DCook < 4/n as a rule to separate the wanted background

noise from the remaining data outliers due to aerosols or

clouds (Fig. 5).

The combination of the SNR variance and Cook’s distance

schemes forms a robust mask for separating atmospheric sig-

nals (arising from clouds and aerosols) from noise-only sig-

nals. This mask is then used in later stages of the workflow.

Note that for this particular application the mask may not be

a reliable cloud detection mask as it may also contain non-

atmospheric signals; it is designed so that the inverse of the

mask contains random noise only.

SNR regions removed by the cloud screening have to be

infilled for the wavelet decomposition used in the step de-

tection phase (step 1.3 in Fig. 3 and Sect. 3.2.2). This is

done by calculating first- and second-degree polynomials to

each masked profile to characterise the shape of the cloud-

screened. The best fit for each profile is chosen according to

the goodness-of-fit indicator root-mean-square error (RMSE)

Atmos. Meas. Tech., 9, 817–827, 2016 www.atmos-meas-tech.net/9/817/2016/
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Figure 4. Time–height series of 2-D variance of SNR calculated from a Halo Doppler lidar at Hyytiälä, Finland, on 21 May 2014. The

high variance areas (red) are masked using a dynamic threshold, which is found iteratively using the automatically selected reference areas

(rectangles).
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Figure 5. Two example vertical profiles of SNR with different background shapes measured by a Halo Doppler lidar on 21 May 2014 at

(a) 07:24:24 UTC and (b) 08:33:35 UTC in Hyytiälä, Finland, illustrating the results of the two-cloud-screening scheme.

and then used to infill the cloud-screened regions. A robust

2-D interpolation is used for profiles where fitting is not pos-

sible due to insufficient data points.

3.2.2 Step detection from the background

The step detection routine finds both the times that back-

ground determinations were performed and minor step

changes, which can occur between each background determi-

nation. A matrix (time by range) of SNR values for 1 day are

processed in the time dimension using the multilevel 1-D sta-

tionary wavelet decomposition method (Nason and Silwer-

man, 1995) using the orthogonal Haar wavelet (Daubechies,

1992). The chosen wavelet decomposition level, i.e. the num-

ber of iterations, affects the robustness of the step detection.

For the data set used in this study, level 5 is the lowest level,

which enables robust step detection.

The multilevel wavelet decomposition provides two out-

puts per level: the approximation coefficients, and the detail

coefficients for each range bin. The wavelet decomposition

is performed for SNR values over the furthest 75 % of the

range. The detail coefficients from the highest selected level,

here level 5, are summed together over all selected range

bins. All of the peaks in the detail coefficients occur at the

same time for all range bins, because for an individual pro-

file, all range bins share the same timestamp. The summation

of the detail coefficients over the whole range makes the step

changes in the background more pronounced so that, for the

range-summed detail coefficients (RSDCs), any step changes

are represented as peaks (Fig. 6). Thus, the time of any step

changes in the background is obvious and is determined us-

ing peak detection.

The peak detection uses a peak threshold, for which we

selected the 75th percentile of the absolute RSDC. Then, the

absolute RSDC time series are processed iteratively. A peak

is defined as a local maximum whose difference to a preced-

ing local minimum is higher than the chosen peak threshold.

For higher levels of wavelet decomposition, the step ap-

pears smoother and smoother in the approximation coeffi-

cients of the previous level. This shifts the RSDC peak po-

sitions towards the beginning of the time series. The shift is

constant and directly proportional to the half-lengths of a par-

ticular wavelet level’s high- and low-pass filters, and at level

5 the shift is 15 units on the time axis.

3.2.3 Correction for the step changes and the shape of

the background

Within two consecutive step changes, a small temporal drift

may occur in the background. To correct for this drift, the me-

www.atmos-meas-tech.net/9/817/2016/ Atmos. Meas. Tech., 9, 817–827, 2016
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Figure 6. Time–height plot of uncorrected SNR from a Halo Doppler lidar operating at Hyytiälä, Finland, on 21 May 2014, together with

the calculated absolute RSDC at wavelet decomposition level 5 (line), and the detected local maxima i.e. step changes (triangles).

Figure 7. An example illustrating the performance of the cloud-aerosol masking scheme: (a) uncorrected SNR from a Halo Doppler lidar at

Hyytiälä, Finland, on 21 May 2014, and (b) same data after cloud and aerosol have been identified and removed (masked regions in white).

dian cloud-screened SNR is calculated from each profile be-

tween two consecutive step changes. Then, the median drift

is estimated with robust bi-square weighted linear fits, which

are calculated from the medians. The temporal drift is then

subtracted from the cloud-screened SNR, and stored for the

final correction step.

The shape of the background noise-only SNR is deter-

mined by modelling the median profile of cloud-screened,

and drift-corrected SNR between two consecutive step

changes by robust bi-square weighted first- and second-order

polynomials. The fit with the smallest RMSE is chosen to

model the median profile. If the RMSE of the best fit is sig-

nificantly larger than the expected noise level of the instru-

ment, then the background correction between two consecu-

tive step changes in question is rejected.

If the number of SNR pixels in the nearest half of the

range for any particular step is very low, e.g. less than 5 %,

the shape of the background is modelled with robust bi-

square weighted first-order polynomial fit constrained to pass

through SNR= 0 at the nearest range bin. Finally, if an

acceptable background shape can be determined, the fitted

background and temporal drifts are subtracted from the orig-

inal measured SNR profiles between the respective steps in

the background (step 3.2 in Fig. 3).

Atmos. Meas. Tech., 9, 817–827, 2016 www.atmos-meas-tech.net/9/817/2016/
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Figure 8. Corrected SNR from a Halo Doppler lidar operating at Hyytiälä on 21 May 2014.
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for the upper 20 % of range bins (a, b) and the lowest 20 % of the range bins (c, d). All data were measured with a Halo Doppler lidar

(instrument ID: 33) between 21 May 2014 and 31 December 2014 at Hyytiälä, Finland.
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Figure 10. Histograms showing the (a) uncorrected and the (b) cor-

rected background SNR for the upper 20 % range bins of the Halo

Doppler lidar units in different locations. The specific measurement

periods for the different locations are given in Table 2.

3.2.4 Removal of the remnant outlier profiles

For instruments that are not operating optimally, the back-

ground noise for some profiles may not be very well rep-

resented by the averaged approach in Sect. 3.2.3. To iden-

tify these profiles, the median background noise SNR of

each profile after correction is calculated after reapplying the

cloud mask from Sect. 3.2.1. Outlier profiles can then be de-

tected as they exhibit peaks in the time series of the median

background through using the same method as in Sect. 3.2.2.

The outlier profiles can then be flagged and rejected, or the

user may choose to apply the background noise profile shape

detection and correction on a profile-by-profile basis, if the

cloud-screened data availability permits.

4 Algorithm performance at several locations in

Finland

In this section, the performance of the algorithm on this data

set is evaluated. The cloud and aerosol screening is evalu-

ated in Sect. 4.1; Sect. 4.2 addresses the accuracy of the step

detection; the background step change and shape correction

are discussed in Sect. 4.3; and finally, in Sect. 4.4, the effect

of the algorithm on Halo Doppler lidar noise statistics and

subsequently on the data coverage is presented.

4.1 Evaluating cloud and aerosol screening

Evaluation of cloud-screening methods is difficult for a sin-

gle instrument if there is no ground truth to compare it with.

Here, we were able to compare the Doppler lidar cloud and

aerosol mask with observations from a co-located cloud radar

and High Spectral Resolution Lidar at Hyytiälä over an 8-

www.atmos-meas-tech.net/9/817/2016/ Atmos. Meas. Tech., 9, 817–827, 2016
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Figure 11. Time–height plots of attenuated backscatter at Hyytiälä, Finland, on 21 May 2014: (a) uncorrected attenuated backscatter (denoted

β) with SNR limit of 0.0015, (b) SNR limit of 0.0075; (c) corrected attenuated backscatter with SNR limit of 0.0075, (d) SNR limit of 0.0055;

(e) attenuated backscatter from a co-located High Spectral Resolution Lidar.

month period, with good agreement found. We illustrate the

mask performance for an example day, where the background

noise varies considerably as a function of range, with marked

step changes over time (Fig. 7a). The characteristics of this

example day form very challenging conditions for the mask-

ing algorithm, but the algorithm is able to identify the cloud

and aerosol signals even when the noise-only signals may

sometimes appear to have a higher SNR (Fig. 7b). The good

performance of the masking algorithm enables the robust

performance of the subsequent phases of the algorithm.

4.2 Step change detection accuracy

The accuracy of the step change detection was evaluated

by comparing the available background determination times-

tamps with those detected from the data alone. There is a

slight offset by default since the background determination

cannot occur at the same time as a measurement. It is also

possible for the background determination to occur before or

in between either a co- or cross-polarised measurement. This

slight time lag was compensated for by selecting a times-

tamp of the nearest backscatter profile measurement from a

co- or cross-polarised channel nearest to the background de-

termination timestamp. We can then compare the detected

step times with the selected measurement timestamps.

More than 90 % of the detected steps match the times-

tamps for the background determinations in the data sets used

in this study. The remaining 10 % can be explained by the

fact that occasionally a step change is not present after a new

background determination and that the step detection algo-

rithm also picks up minor changes in the background that are

not due to a new background determination, but some other

change.

4.3 Evaluation of the background step change and

profile shape correction

The background step change and shape correction is first

evaluated visually with the chosen example day, 21 May

2014, then comprehensively by calculating histograms at two

different ranges, and finally by calculating histograms from

the background for all of the locations given in Table 2. Fig-

ure 8 shows SNR from a Halo Doppler lidar after perform-

ing the background correction. The white vertical lines note

some remnant outlier profiles that have been removed (step 4

in Fig. 3). Figure 9 shows the SNR (unmasked) and the back-

ground SNR (masked) for the farthest 20 % (upper row pan-
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Figure 12. Data availability below 1000 m, where most signals originate from aerosol, for different SNR thresholds: (a and b, dashed red

line) before, and (a and b, dot dashed gray and black lines) after processing with the background correction algorithm. Instrument ID 33

measured from 21 May to 31 December 2014 at Hyytiälä, Finland; instrument ID 46 between 1 January 2013 and 20 April 2014 at Hyytiälä,

Finland; instrument ID 54 between 1 September and 30 November 2014 at Sodankylä, Finland; instrument ID 34 between 1 January and 31

March 2014 at Kumpula in Helsinki, Finland.
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Figure 13. The velocity uncertainty estimate σv before and after

applying the background correction for Halo Doppler lidar mea-

surements during 1 September–30 November 2014 at Sodankylä,

Finland. Each marker represents the calculated σv for the range bin

in question, and the solid and the dashed lines represent the running

medians with a window length of three range bins.

els) and the nearest 20 % (lower row panels) of the range bins

from the instrument measured at Hyytiälä, Finland, during 21

May–31 December 2014, and Fig. 10 shows the background

SNR for the farthest 20 % of the range bins at different loca-

tions measured during the time periods described in Table 2.

The results show that the full background correction algo-

rithm successfully corrects for both the step changes and the

shape of the background profile, producing a field of SNR

with a homogeneous background. The histograms show that

the median of the background SNR after the correction is

closer to 1 (Figs. 9b, d, and 10b). The background spread is

also reduced and, after the correction, the background SNR

has nearly the same median and spread at both near and far

ranges (Fig. 9b and d) as well as in the different locations

(Fig. 10b).

4.4 Impact of the background correction algorithm on

noise statistics and data coverage

Applying the background correction algorithm will signif-

icantly reduce the noise threshold level necessary to apply

to data from a Halo Doppler lidar, especially for instru-

ments that exhibit a strong background artefact (cf. Fig. 1).

The background artefact correction (step correction) allows

a substantial reduction in the threshold for automatic accep-

tance of data and, therefore, significantly increases the data

availability in low-signal conditions. This is clearly shown in

Fig. 11, where the amount of accepted data is increased dra-

matically in the lower altitudes after SNR has been processed

with the background correction algorithm.

The corrected homogeneous background, as shown in

Fig. 8, allows the SNR threshold to be set much lower

than what has been suggested in earlier studies. For exam-

ple, Pearson et al. (2010) suggested a threshold of −17 dB

(0.020), the instrument manufacturer, Stream Line Photon-

ics, has suggested a threshold of −18.2 dB (0.015), and

Päschke et al. (2015) discussed decreasing the threshold to

−20 dB (0.010). After the background correction, the SNR

threshold can be set to −21.2 dB (0.0075; Fig. 11c) and ten-

tatively even to −22.6 dB (0.0055; Fig. 11d). After applying

this background correction, a SNR threshold of −22.2 dB
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(0.006) is suggested as a robust value for processing larger

data sets.

The impact of applying this background correction on data

availability depends on the location, and more precisely the

aerosol loading and number of weak SNR measurements that

can be recovered by decreasing the SNR threshold. The SNR

threshold can then be lowered after the background correc-

tion. In predominantly weak-signal environments, such as

Hyytiälä, Finland, the background correction algorithm can

lead to as much as a 50 % increase in the data availability, as

shown in Fig. 12. The general differences in data availability

between the four lidars in Fig. 12 are due to differences in at-

mospheric aerosol loads rather than instrument performance

during the campaigns.

In addition to increasing data availability, the correction

also improves the overall bias seen in SNR. For all instru-

ments, the median bias is reduced to about 0.0002, with im-

provements of a factor of 5 or 10. Since the velocity uncer-

tainty estimate, σv, is obtained directly from the SNR value

(e.g. Rye and Hardesty, 1993), the reduction in SNR bias

immediately impacts σv at low SNR, as shown in Fig. 13

where the σv is reduced more in the range bins where the

SNR is low. Using typical velocity uncertainty estimates de-

rived using the standard instrument specifications (O’Connor

et al., 2010), σv for an SNR of 0.02 (−20 dB) is about

0.50 m s−1; a bias of 0.002 (as found for one instrument)

for a similar uncorrected SNR value would lead to corrected

σv of 0.54 m s−1 (SNR= 0.022) or σv = 0.45 m s−1 (SNR=

0.018) after correction depending on the sign of the bias.

Since turbulent calculations require an accurate estimate of

the contribution from velocity uncertainty estimates, a bias of

about 10 % in the velocity uncertainty estimate can dominate

any measurable turbulent contribution at low SNR in quies-

cent atmospheres and severely skew turbulent retrievals.

5 Conclusions

Halo Doppler lidars have been operating continuously at

Hyytiälä and other locations in Finland since January 2013.

Commercially available Doppler lidars offer a solution for

obtaining high-resolution profiles of wind, turbulence, and

the presence of cloud and aerosol layers.

However, the low-pulse energy and high-pulse repetition

operation can result in sensitivity limitations for these instru-

ments, and thus reduced data availability, when operated in

regions with low-aerosol loads such as in boreal forests. Any

attempts to average data to obtain signals below the standard

operating thresholds can suffer if there are artefacts present

in the background noise output by the instrument, since it

can be difficult to discriminate between noise, and cloud or

aerosol.

We have described a background correction algorithm

which successfully corrects a number of artefacts present in

the standard data output and enables the use of lower SNR

thresholds, which can significantly increase the data avail-

ability by as much as 50 % at low altitudes in low-aerosol

regimes. In addition, the reduction of any biases in the SNR

propagates directly to the velocity uncertainty estimate and

hence to reducing biases in turbulent calculations.

The background correction method can potentially be ap-

plied to any instrument types that display similar artefacts

and can therefore improve data availability by reducing the

SNR threshold required to discriminate between good signals

and noise.

Additionally, the proposed cloud-screening scheme can be

used in combination with other instrumentation to improve

cloud detection in general. The main goal of the proposed

cloud mask is to screen all of the atmospheric signal so that

only the background signal remains. However, it is possible

to adapt it to only mask clouds, and thus use it in cloud de-

tection.

The Supplement related to this article is available online

at doi:10.5194/amt-9-817-2016-supplement.
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