Search from over 60,000 research works

Advanced Search

Sparse density estimation on multinomial manifold combining local component analysis

Full text not archived in this repository.
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Hong, X. orcid id iconORCID: https://orcid.org/0000-0002-6832-2298 and Gao, J. (2015) Sparse density estimation on multinomial manifold combining local component analysis. In: 2015 International Joint Conference on Neural Networks (IJCNN), 12-17, July, 2015, Killarney, Ireland.

Abstract/Summary

A new sparse kernel density estimator is introduced based on the minimum integrated square error criterion combining local component analysis for the finite mixture model. We start with a Parzen window estimator which has the Gaussian kernels with a common covariance matrix, the local component analysis is initially applied to find the covariance matrix using expectation maximization algorithm. Since the constraint on the mixing coefficients of a finite mixture model is on the multinomial manifold, we then use the well-known Riemannian trust-region algorithm to find the set of sparse mixing coefficients. The first and second order Riemannian geometry of the multinomial manifold are utilized in the Riemannian trust-region algorithm. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with competitive accuracy to existing kernel density estimators.

Item Type Conference or Workshop Item (Paper)
URI https://reading-clone.eprints-hosting.org/id/eprint/65638
Item Type Conference or Workshop Item
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Computer Science
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar