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GÁL-TYPE GCD SUMS BEYOND THE CRITICAL LINE

ANDRIY BONDARENKO, TITUS HILBERDINK, AND KRISTIAN SEIP

ABSTRACT. We prove that

N∑
k,`=1

(nk ,n`)2α

(nk n`)α
¿ N 2−2α(log N )b(α)

holds for arbitrary integers 1 ≤ n1 < ·· · < nN and 0 <α< 1/2 and show by an example that this

bound is optimal, up to the precise value of the exponent b(α). This estimate complements

recent results for 1/2 ≤ α ≤ 1 and shows that there is no “trace” of the functional equation for

the Riemann zeta function in estimates for such GCD sums when 0 <α< 1/2.

1. INTRODUCTION

The study of greatest common divisor (GCD) sums of the form

(1)
N∑

k,`=1

(nk ,n`)2α

(nk n`)α

begins with Gál’s theorem [6] which asserts that when α = 1, C N (loglog N )2 is an optimal

upper bound for (1), with C an absolute constant independent of N and the distinct positive

integers n1, ...,nN (the best possible value for C is 6e2γ/π2, where γ is Euler’s constant, as

shown recently by Lewko and Radziwiłł [8]). Dyer and Harman [5], motivated by applications

in the metric theory of diophantine approximation, obtained the first estimates for the range

1/2 ≤ α < 1. Recent work of Aistleitner, Berkes, and Seip [2] for 1/2 < α < 1 and Bondarenko

and Seip [3, 4] for α= 1/2 has led to the bounds

(2)
N∑

k,`=1

(nk ,n`)2α

(nk n`)α
¿


N exp

(
c(α) (log N )1−α

(loglog N )α

)
, 1/2 <α< 1

N exp
(

A
√

log N logloglog N
loglog N

)
, α= 1/2,
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which are optimal, up to the precise values of the constants c(α) and A; the asymptotic be-

havior of c(α) has been clarified both when α↘ 1/2 and α↗ 1.

Bounds for the sum in (1) have a long history, and they have had a number of different

applications; see the recent papers [2, 3, 8] and the references found there. In recent years, an

additional interesting application has surfaced: Lower bounds for specific sums of the form

(1) or corresponding quadratic forms have turned out to be useful for detecting large values of

the Riemann zeta function ζ(s). This line of research was initiated in work of Soundararajan

[11] and Hilberdink [7] and later pursued by Aistleitner [1] who was the first to make the link

to Gál-type estimates. Recently, using Soundararajan’s resonance method [11] and a certain

large Gál-type sum for α = 1/2, Bondarenko and Seip showed that for every c, 0 < c < 1/
p

2,

there exists a β, 0 < β < 1, such that the maximum of |ζ(1/2+ i t )| on the interval T β ≤ t ≤ T

exceeds exp
(
c
√

logT logloglogT /loglogT
)

for all T large enough.

These developments have led us to look more closely at the “phase transition” at α = 1/2

by seeking estimates for (1) also in the range 0 <α< 1/2, which could possibly correspond to

large values of ζ(σ+ i t ) beyond the critical line σ = 1/2. The present paper shows, however,

that there is no symmetry in the estimates for (1) when α is replaced by 1−α, as one might

have expected from the functional equation for ζ(s).

To state our main result, we let M denote an arbitray finite set of positive integers and

introduce the quantity

Γα(N ) := max
|M |=N

1

N

∑
m,n∈M

(m,n)2α

(mn)α
.

Theorem 1. For every α, 0 <α< 1/2, there exist positive constants a(α) and b(α) such that

(3) N 1−2α(log N )a(α) ≤ Γα(N ) ≤ N 1−2α(log N )b(α)

for sufficiently large N .

Before giving the proof of this theorem, we will in the next section set the stage by consid-

ering the simpler but closely related question of finding the largest eigenvalue of the positive

definite matrix (m,n)2α/(mn)α, 1 ≤ m,n ≤ N :
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Theorem 2. For every α, 0 <α< 1/2, there exists a constant Cα such that

(4) max
|a1|2+···+|aN |2=1

∑
m,n≤N

am ān(m,n)2α

(mn)α
≤CαN 1−2α.

We refer to [7] for further information and for the precise asymptotics of the maximum in

(4) in the range 1/2 ≤α≤ 1.

We notice that there is no logarithmic power in (4). Nevertheless, we will see that the idea

for the proof of Theorem 2 (to be given in the next section) is used again as the starting point

for the proof of the bound from above in Theorem 1. Resorting to some further ideas and

estimates from [3], we will prove the latter bound in Section 3. In Section 4, we construct an

example giving the inequality from below in (3). As expected, this example involves a large

number of primes (a positive power of N ). One may notice that it would not be possible to

construct a similar example if we required the set to consist only of square-free numbers.

Hence it remains an open problem to prove the analogue of Theorem 1 in the square-free

case. More specifically, we may ask whether the logarithmic power can be discarded in this

case as well.

2. PROOF OF THEOREM 2

We begin by noticing that

S(a) :=
N∑

d=1

∑
m,n≤N

(m,n)=d

|am an |d 2α

(mn)α
≤

N∑
d=1

( ∑
m,n≤N /d

|amd |
mα

)2

.

We introduce the multiplicative function g (m) := ∑
d |m d−1/2+α. By the Cauchy–Schwarz in-

equality,

(5) S(a) ≤
N∑

d=1

( ∑
m≤N /d

|amd |
mα

)2

≤
N∑

d=1

∑
m≤N /d

|amd |2
g (m)

∑
m≤N /d

g (m)

m2α
.

To estimate the sum
∑

m≤N /d
g (m)
m2α , we notice that

∑
n≤x

g (n)

n2α
= ∑

n≤x

1

n2α

∑
d |n

1

d
1
2−α

= ∑
d≤x

1

d
1
2+α

∑
n≤x/d

1

n2α
¿ ∑

d≤x

1

d
1
2+α

( x

d

)1−2α¿ x1−2α.
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Hence by (5) we have

S(a) ¿ N 1−2α
N∑

d=1

∑
m≤N /d

|amd |2
d 1−2αg (m)

= N 1−2α
N∑

n=1
|an |2

∑
d |n

d 2α−1

g (n/d)
.

So to finish the proof of Theorem 2, it is sufficient to show that

(6) h(n) := ∑
d |n

d 2α−1

g (n/d)

is a bounded arithmetic function. We observe that h(n) is a multiplicative function, which

means that it suffices to consider

h(pm) =
m∑
`=0

p(2α−1)`

g (pm−`)
= 1

g (pm)
+p2α−1h(pm−1).

This recursive formula implies, by induction, that h(pm) ≤ 1 for pm sufficiently large. We infer

from this that h(n) is a bounded arithmetic function.

As far as the numerical value of the constant Cα in Theorem 2 is concerned, we have con-

fined ourselves to the following special case which seems to be of independent interest:

(7)
1

N

N∑
m,n=1

(m,n)2α

(mn)α
= ζ(2−2α)

ζ(2)(1−α)2
N 1−2α+O(1).

Proof of (7). Write Fα(N ) for the sum on the left and put Sα(x) :=∑
m,n≤x

(m,n)=1

1
(mn)α . Then

Fα(N ) = ∑
d≤N

∑
m,n≤N

(m,n)=d

(m,n)2α

(mn)α
= ∑

d≤N
Sα(N /d).

Also let Tα(x) =∑
n≤x

1
nα = 1

1−αx1−α+O(1). Then

Tα(x)2 = ∑
m,n≤x

1

(mn)α
= ∑

d≤x

1

d 2α

∑
m,n≤x/d
(m,n)=1

1

(mn)α
= ∑

d≤x

1

d 2α
Sα

( x

d

)
.

By Möbius inversion, Sα(x) =∑
d≤x

µ(d)
d 2α Tα( x

d )2 and so

Fα(N ) = ∑
d≤N

β(n)Tα
(N

n

)2
,

where β(n) =∑
d |n

µ(d)
d 2α . We note that 0 <β(n) ≤ 1 for all n. Thus

Fα(N ) = 1

(1−α)2

∑
n≤N

β(n)
((N

n

)2−2α+O
(N

n

)1−α)
= N 2−2α

(1−α)2

∑
n≤N

β(n)

n2−2α
+O

(
N 1−α ∑

n≤N

1

n1−α
)
.
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The final term is O(N ), while
∑

n>N
β(n)

n2−2α ≤∑
n>N

1
n2−2α ¿ N 2α−1. Finally

∞∑
n=1

β(n)

n2−2α
= ζ(2−2α)

ζ(2)
,

giving the result. ■

3. PROOF OF THE BOUND FROM ABOVE IN THEOREM 1

In what follows, ω(n) denotes the number of distinct prime factors in n and d(n) is the

divisor function.

We begin by stating the main auxiliary result used to prove the upper bound in (3).

Lemma 1. For every finite set M of positive integers there exists a divisor closed set M ′ of posi-

tive integers with |M ′| = |M | such that

∑
m,n∈M

(m,n)2α

(mn)α
≤ ∑

m,n∈M ′

(m,n)2α

(mn)α
2ω(mn/(m,n)2).

Proof. Following the proof of [2, Lemma 2], we transform M into M ′ by means of the follow-

ing algorithm. Fix a prime p such that p divides some number in M . Then there exist distinct

numbers m j , j = 1, ...,` with `≤ |M | such that we may write

M = ⋃̀
j=1

M j ,

where M j consists of those m in M such that m/m j is a power of p. We then replace the num-

bers in M j by the numbers m j ,m j p, ...,m j p |M j |−1. This transformation is then performed for

every prime dividing some number in M . A close inspection of the largest possible change in

the GCD sum in each step of this series of transformations (carried out in detail in the proof

of [2, Lemma 2]) gives the desired estimate. ■

We will also need the following two lemmas.

Lemma 2. Suppose that 0 < α < 1/2 and that β is a real number. Then for every β′ > β/(2α)

there exists a positive constant C with the following property. If K is a set of positive integers
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with |K | = K , then

(8)
∑

m∈K

d(m)β

m2α
≤C K 1−2α[logK ]2β

′−1.

Proof. We begin by observing that

∑
m∈K

d(m)β

m2α
≤

K∑
m=1

d(m)β

m2α
+

∞∑
`=0

∑
2`K<m≤2`+1K

d(m)β>22α`

d(m)β

m2α
.

Now

∑
2`K<m≤2`+1K

d(m)β>22α`

d(m)β

m2α
≤ 2−(β′/β−1)2α`

∑
2`K<m≤2`+1K

d(m)β
′

m2α

¿ 2−(β′/β−1)2α` ·2(1−2α)`K 1−2α(log2`K )2β
′−1,

where we used the classical formula

∑
n≤x

d(n)β
′ = B x(log x)2β

′−1(1+O((log x)−1)
)

which holds with B an absolute constant [12, 10]. It follows that the sum over ` is dominated

by a convergent geometric series if β′ >β/(2α). ■

We mention without proof that a more careful analysis shows that the exponent 2β
′ −1 on

the right-hand side of (8) can be replaced by 2α(2β
′ −1) with the same requirement that β′ >

β/(2α). Using results on the distribution of ‘large’ values of d(n) (see [9]), we can show that

this is optimal in the sense that the inequality fails with any exponent less than 2α(2β/(2α)−1).

Lemma 3. If M is a divisor closed set of square-free numbers, then | 1
p M | ≤ 1

2 |M | for every

prime p in M .

Proof. Suppose that | 1
p M | = ` and write 1

p M = {m1, . . . ,m`}. Then M contains pm1, . . . , pm`

and hence also m1, . . . ,mM , since it is divisor closed. As M is square-free, these numbers are

all distinct, and so it follows that |M | ≥ 2`. ■
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We are now prepared to prove the bound from above in (3). To begin with, we define

Γ̃α(N ) := max
M divisor closed,|M |=N

1

N

∑
m,n∈M

(m,n)2α

(mn)α
2ω(mn/(m,n)2).

By Lemma 1, we have Γα(N ) ≤ Γ̃α(N ), which means that it suffices to estimate Γ̃α(N ). Hence

we assume that the set M is divisor closed and estimate instead the sum

S̃ := ∑
m,n∈M

(m,n)2α

(mn)α
2ω(mn/(m,n)2).

In what follows, M∗ will denote the subset of M consisting of the square-free numbers in M .

In addition, given m in M∗, we let M (m) denote the subset of M consisting of those numbers

n in M such that p|n if and only if p|m. Hence

M = ⋃
m∈M∗

M (m) and
∑

m∈M∗
|M (m)| = N .

Now suppose that k and ` are in M∗ and that |M (k)| ≥ |M (`)|. We then find that

∑
m∈M (k),n∈M (`)

(m,n)2α

(mn)α
2ω(mn/(m,n)2) ≤ (k,`)2α

(k`)α
2ω(k`/(k,`)2)

∑
n∈M (`)

∏
p|k

(
1+4

∞∑
ν=1

p−ν)
¿ (k,`)2α

(k`)α
2ω(k`/(k,`)2)|M (`)|d(k)ε,

where the implicit constant in the latter relation only depends on α and ε. Here ε can be any

positive number, but in what follows we will require that 0 < ε < 1− 2α. We infer from the

latter relation that

S̃ ¿ ∑
m,n∈M∗

|M (m)|1/2d(m)ε|M (n)|1/2d(n)ε
(m,n)2α

(mn)α
2ω(mn/(m,n)2).

This leads to the bound

S̃ ¿ ∑
k∈M∗

 ∑
m∈ 1

k M∗

|M (mk)|1/2d(mk)εd(m)1+ε

mα

2

.

By the Cauchy–Schwarz inequality, we obtain from this that

S̃ ¿ ∑
k∈M∗

d(k)2ε
∑

n∈ 1
k M∗

|M (nk)|
d(n)β

∑
m∈ 1

k M∗

d(m)β+2+4ε

m2α
,
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where β is a positive parameter to be chosen later. Using Lemma 2 and the estimate

|1

k
M | ≤ N 2−ω(k),

which we get from Lemma 3, we therefore get

S̃ ¿ N 1−2α(log N )2β
′−1

∑
k∈M∗

d(k)2α+2ε−1
∑

n∈ 1
k M∗

|M (nk)|
d(n)β

= N 1−2α(log N )2β
′−1

∑
m∈M∗

|M (m)| ∑
k|m

1

2(1−2(α+ε))ω(k)+βω(n/k)

with β′ > (β+2+4ε)/(2α). Since

n 7→ ∑
d |n

1

2(1−2(α+ε))ω(d)+βω(n/d)

is a multiplicative function, and n is squarefree, it suffices to make sure that

1

21−2(α+ε)
+ 1

2β
≤ 1.

This means that we need

β≥
log 1

1−22(α+ε)−1

log2

to obtain the uniform bound ∑
k|m

1

2(1−2(α+ε))ω(k)+βω(n/k)
≤ 1.

We then find that

S̃ ¿ N 1−2α(log N )2β
′−1

∑
m∈M∗

|M (m)| = N 2−2α(log N )2β
′−1,

which in turn leads to the desired conclusion.

4. PROOF OF THE BOUND FROM BELOW IN THEOREM 1

This section will make extensive use of the Euler totient functionφ(n). We will also need an

additional multiplicative function, namely

f (n) := ∏
p|n

(
p2α−1

(
1− 1

p

)2α+
(
1− 1

p

))
(

1
p

(
1− 1

p

)
+

(
1− 1

p

)2−2α
) .
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We now fix a positive number M and set k :=∏
p≤M p. We will need the following lemma.

Lemma 4. For every c such that c|k, we have

(9)
1

k2

∑
d |k

(c,d)2α
(
φ

(k

c

)
φ

( k

d

))α(
φ(c)φ(d)

)1−α = ∏
p|k

(
1

p

(
1− 1

p

)
+

(
1− 1

p

)2−2α)
c

k
f
(k

c

)
.

Moreover, we have

(10)
1

k2

∑
c,d |k

(c,d)2α
(
φ

(k

c

)
φ

( k

d

))α(
φ(c)φ(d)

)1−α=∏
p|k

(
p2α−2

(
1− 1

p

)2α

+ 2

p

(
1− 1

p

)
+

(
1− 1

p

)2−2α)
.

Proof. Since every divisor d of k has a unique representation d = d1d2, where d1|c and d2|k
c

we find that the left-hand side LHS of (9) is

LHS = 1

k2
φ(k/c)αφ(c)1−α ∑

d1|c

∑
d2| k

c

d 2α
1 φ

( c

d1

)α
φ

(k/c

d2

)α
φ(d1)1−αφ(d2)1−α

= 1

k2
φ(k/c)αφ(c)1−α

(∑
d1|c

d 2α
1 φ

( c

d1

)α
φ(d1)1−α

) ∑
d2| k

c

φ
(k/c

d2

)α
φ(d2)1−α

 .(11)

Using the formula φ(d) = d
∏

p|d
(
1− 1

p

)
and the fact that the respective sums represent mul-

tiplicative functions, we find that∑
d1|c

d 2α
1 φ

( c

d1

)α
φ(d1)1−α =∏

p|c

(
pα

(
1− 1

p

)α
+p1+α

(
1− 1

p

)1−α)
,

and ∑
d2| k

c

φ
(k/c

d2

)α
φ(d2)1−α = ∏

p| k
c

(
pα

(
1− 1

p

)α
+p1−α

(
1− 1

p

)1−α)
.

Returning to (11) and using again that φ(d) = d
∏

p|d
(
1− 1

p

)
, we therefore obtain

LHS = 1

k2

∑
d |k

(c,d)2α
(
φ

(k

c

)
φ

( k

d

))α(
φ(c)φ(d)

)1−α

= c

k

∏
p|c

(
1

p

(
1− 1

p

)
+

(
1− 1

p

)2−2α) ∏
p| k

c

(
p2α−1

(
1− 1

p

)2α

+
(
1− 1

p

))

=∏
p|k

(
1

p

(
1− 1

p

)
+

(
1− 1

p

)2−2α)
c

k
f
(k

c

)
,
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where the last expression is the right-hand side of (9). Finally, we get (10) from (9) by using

that n 7→∑
d |n 1

d f (d) is a multiplicative function. ■

In addition to the identities of the preceding lemma, we need following quantitative esti-

mate.

Lemma 5. For every α, 0 <α< 1/2, there exists a positive constant cα such that

∏
p≤M

(
p2α−2

(
1− 1

p

)2α

+ 2

p

(
1− 1

p

)
+

(
1− 1

p

)2−2α)
≥ cα(log M)2α.

Proof. The result follows from the fact that

p2α−2
(
1− 1

p

)2α

+ 2

p

(
1− 1

p

)
+

(
1− 1

p

)2−2α

= 1+ 2α

p
+O(p2α−2), p →∞,

along with Mertens’s third theorem, i.e., the fact that
∏

p≤M (1−1/p) ∼ eγ/log M when M →∞.

■

The following theorem yields the bound from below in Theorem 1.

Theorem 3. For every α, 0 < α < 1/2, there exists a positive constant cα such that if N is a

positive integer, then there exists a set of integers M of cardinality N such that

∑
m,n∈M

(m,n)2α

(mn)α
≥ cαN 2−2α(log N )2α.

Proof. Fix α, 0 < α < 1/2, and let N be positive integer. Set M = Nδ, where δ, 0 < δ < 1, is a

constant depending only on α to be chosen later, k = ∏
p≤M p. Let A be the set of the first

[N 1/3] M-smooth square-free numbers and D be the set of integers of the form k/a with a in

A . For every number d in D denote by Sd the set of the first [Nφ(d)/k] integers s such that

(s,k/d) = 1, and by sd the maximal number in Sd . Also, let dSd be the set of integers of the

form d s, where s ∈ Sd and d ∈D. Finally, set M :=⋃
d∈D dSd .

It is clear that all numbers d in D are square-free and also that the sets dSd are pairwise

disjoint. Moreover, since
∑

d |k φ(d) = k we have that |M | < N . Also,

(12) |Sd | ≥
N 2/3

2log N
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for sufficiently large N and every d in D; this follows from the formula φ(d) = n
∏

p|d
(
1− 1

p

)
and an application Mertens’s third theorem. We can use this to get an upper bound for sd .

Indeed, each set Sd is just a set of numbers of the form a mod (k/d), where a is from a set of

cardinality φ(k/d). Therefore if d is in D, then

sd ≤ 2Nφ(d)

dφ(k/d)
.

Here we used that |Sd | ≥ k/d which follows from (12). Now we have, using (12) in the last step,

∑
m,n∈M

(m,n)2α

(mn)α
≥ ∑

c,d∈D

(c,d)2α

(cd)α
∑

m∈Sc

1

mα

∑
n∈Sd

1

nα
≥ ∑

c,d∈D

(c,d)2α

(cd)α
|Sc ||Sd |

sαc sαd

≥ cαN 2−2α 1

k2

∑
c,d∈D

(c,d)2α(φ(k/c)φ(k/d))α(φ(c)φ(d))1−α

for some positive constant cα depending only on α. In view of (10) of Lemma 4 and Lemma 5,

the proof will be complete if we can prove that

∑
c,d∈D

(c,d)2α(φ(k/c)φ(k/d))α(φ(c)φ(d))1−α ≥ 1

3

∑
c,d |k

(c,d)2α(φ(k/c)φ(k/d))α(φ(c)φ(d))1−α.

The latter inequality will follow from the bound

∑
c 6∈D,d |k

(c,d)2α(φ(k/c)φ(k/d))α(φ(c)φ(d))1−α ≤ 1

3

∑
c,d |k

(c,d)2α(φ(k/c)φ(k/d))α(φ(c)φ(d))1−α.

By (9), this is equivalent to

(13)
∑

n∈F

f (n)

n
≤ 1

3

∏
p≤M

(
1+ f (p)

p

)
,

where F is the set of all M-smooth square-free numbers larger than [N 1/3]. By Rankin’s trick,

we have

∑
n∈F

f (n)

n
≤ N− 1

3δ log N
∏

p≤M

(
1+ f (p)

p
p

1
δ log N

)

≤ e− 1
3δ

∏
p≤M

(
1+ f (p)

p

) ∏
p≤M

(
1+ f (p)

p

(
p

1
δ log N −1

))
.
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Now we note that the second product is bounded by a constant depending only on α (not on

δ). Indeed,

∑
p≤M

f (p)

p

(
p

1
δ log N −1

)
≤ 2

∑
p≤M

f (p)−1

p
+2

∑
p≤M

log p

p log M
.

The first sum is bounded because f (p) = 1+p2α−1 +o(p2α−1) as p →∞, and the second sum

is bounded since
∑

p≤M (log p)/p − log M ≤ 2 by Mertens’s first theorem. Therefore, choosing

δ sufficiently small (depending only on α), we get (13). Theorem 3 is proved. ■
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