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The present research explores the degree of morphological structure of compound 

words in the native and nonnative lexicons, and provides additional data on the 

access to these representations. Native and nonnative speakers (L1 Spanish) of 

English were tested using a lexical decision task with masked priming of the 

compound’s constituents in isolation, including two orthographic conditions to 

control for a potential orthographic locus of effects. Both groups displayed reliable 

priming effects, unmediated by semantics, for the morphological but not the 

orthographic conditions as compared to an unrelated baseline. Results contribute 

further evidence of morphological structure in the lexicon of native speakers, and 

suggest that lexical representation and access in a second language are qualitatively 

comparable at relatively advanced levels of proficiency. 

Keywords: lexical representation; non-native speakers; compounds; morphological 

processing; masked priming. 

Introduction 

Among the considerable issues in visual word recognition research, the role of 

morphology is hotly debated. While many agree that, at least in some cases, native 

visual word processing involves morphological decomposition for complex words (e.g., 

Marslen-Wilson, 2007), there is no consensus as to exactly how, when, and under what 

conditions this happens. As with any other aspect of language processing, access is 

crucially interesting for psycholinguists in that it is inextricably bound to representation. 

In fact, the existence of—or even the need for—a morphologically structured lexicon 

has been the subject of much discussion (see, e.g., Feldman, O’Connor, & Moscoso del 

Prado Martín, 2009). Focused on the visual processing of English compound words in 



isolation, the data reported in this article provide supporting evidence for models 

assuming some degree of morphological structure in the lexicon of native speakers, and 

suggests that lexical representations in relatively proficient second language users are 

equally complex. 

The role constituent morphemes play in the access to, and representation of, 

complex words has been explored systematically for the last 40 years, from the seminal 

studies of Taft and Forster (Taft & Forster, 1975, 1976) to the proliferation of research 

contrasting behavioural, electrophysiological, neuroimaging and clinical data (e.g., 

Bozic, Marslen-Wilson, Stamatakis, Davis, & Tyler, 2007; Fiorentino, Naito-billen, 

Bost, & Fund-Reznicek, 2014; MacGregor & Shtyrov, 2013; Marelli, Zonca, Contardi, 

& Luzzatti, 2014; Marslen-Wilson & Tyler, 2007, among others). Current positions 

range from models advocating exclusively morpheme mediated access (Stockall & 

Marantz, 2006; Taft & Nillsen, 2013), to dual/multiple-route accounts highlighting the 

competition (and/or cooperation) between whole-form and morpheme-based access 

(Hyönä, 2012), to proposals questioning the role of morphology in favour of a 

distributed-connectionist implementation of unmediated access to constituent and 

whole-word meanings through orthographic and/or phonological cues (e.g., Devlin, 

Jamison, Matthews, & Gonnerman, 2004; Kuperman, 2013; Seidenberg & Gonnerman, 

2000). 

The masked priming experimental paradigm (Forster & Davis, 1984), often 

combined with a lexical decision task, has been widely used by researchers ascribing to 

most, if not all, of the above accounts (e.g., Feldman, Kostić, Basnight-Brown, 

Durđević, & Pastizzo, 2010; Rastle & Davis, 2008). In this technique, the target word is 

preceded by two items: the first is a forward mask, consisting of a string of symbols 

(e.g., ‘#’) matching the prime in length, and displayed for approximately 500 



milliseconds; immediately afterwards, the prime is presented for a very short lapse, 

which varies widely (typically 34-60 ms; Rastle & Davis, 2008) but rarely exceeds 80 

ms (Neubauer & Clahsen, 2009), in order to prevent conscious processing. Through an 

appropriate manipulation of the prime-target SOA, the paradigm can provide insight 

into the time course of access to different types of linguistic information—i.e., 

orthographic, morphological, semantic, etc. Data from masked priming experiments has 

thus been used to weigh in on the debate as to whether morphological effects originate 

in lexical structure or are the reflex of a systematic relationship between formal 

(orthographic/phonological) and semantic overlap. Results in this paradigm often 

contrast with what is observed with overt priming. In a series of cross-modal priming 

experiments, Marslen-Wilson, Tyler, Waksler and Older (1994) found that 

morphological effects obtained even with little formal overlap (e.g., elusive – ELUDE), 

but never in the absence of a semantic relationship (e.g., casualty – CASUAL). When 

the overlap dimension was purely formal, no priming effects were observed (e.g., tinsel 

– TIN). In contrast, some studies have reported orthographic priming effects at short 

stimulus onset asynchronies (SOAs) under masked priming conditions (e.g., Chateau, 

Knudsen, & Jared, 2002; Forster & Azuma, 2000; Grainger, Granier, Farioli, Van 

Assche, & van Heuven, 2006). In three masked priming experiments manipulating 

prime duration, Forster and Azuma (2000) compared priming effects between a) 

prefixed words sharing a bound stem (submit – PERMIT), b) a prefixed word and its 

free stem (fold – UNFOLD), and c) unrelated words sharing their (non-morphological) 

final graphemes (shallow – FOLLOW). Priming effects were comparable for conditions 

(a) and (b) with a prime duration of 50 ms. Crucially, with this SOA a priming effect 

emerged for condition (c) as well. In order to determine whether the priming effect in 

(a) was orthographic or morphological in nature, the authors increased the difficulty of 



the task (by making non-words more word-like, and thus harder to discriminate) and 

raised prime duration to 68 ms. With these modifications, priming effects disappeared 

for the orthographic condition (c), but remained for the bound and free morphological 

conditions, (a) and (b). Other studies employing the same paradigm have reported 

inhibitory effects of orthographically related primes (e.g., Bijeljac-Babic, Biardeau, & 

Grainger, 1997; Frisson, Bélanger, & Rayner, 2014). Considered together, these results 

suggest that, at an early stage and at least under certain conditions, both morphological 

and orthographic priming effects may obtain, and thus be confounded, between words. 

Overall, however, the emergence of orthographic priming effects—and whether these 

are inhibitory or facilitatory—seems to be conditioned by a large number of factors, 

which include prime duration and visibility, lexicality and neighbourhood density of the 

prime, nature and relative position of the coincidental letters within the string, and 

nature of the experimental task, among others (see, e.g., Carreiras, Armstrong, Perea, & 

Frost, 2014; Frisson, Bélanger, & Rayner, 2014; Frost, Kugler, Deutsch, & Forster, 

2005; Grainger, Kiyonaga, & Holcomb, 2006; Ktori, Midgley, Holcomb, & Grainger, 

2015; Lee, Rayner, & Pollatsek, 1999; Robert & Mathey, 2012; van Heuven, Dijkstra, 

Grainger, & Schriefers, 2001). Despite this seeming dissociation of morphological and 

orthographic effects in the literature, an orthographic prime condition was included in 

the present study—together with constituent to compound transparency ratings—to help 

determine if any potential morphological effects actually emerge from a combination of 

formal and semantic overlap.  

Among the three word-formation processes traditionally considered in the literature, 

namely, inflection, derivation and compounding, the latter has received increased 

attention in recent years (see, e.g., Semenza & Luzzatti, 2014, for review). 

Compounding differs from the other two processes in nontrivial ways. First, unlike 



inflection (and similar to derivation), compounding is assumed to create new lexical 

entries, which may acquire idiosyncratic meanings with a variable distance from their 

predicted, compositional meaning. Second, unlike both derivation and inflection, 

compounding entails the combination of two or more free morphemes. These 

characteristics make compounding particularly useful to address perennial questions in 

the visual word processing literature, for at least two reasons. The first is that more than 

one lexical meaning is activated, which means that potentially very different semantic 

features will be activated independently. This provides insight into the time-course of 

semantic effects in morphological processing. The second reason is that, being a 

(mostly unmediated) combination of free morphemes, most languages lack functional 

markers associated to compounding. This makes data from compounding studies 

showing rapid morphological decomposition particularly compelling, since parsing 

mechanisms cannot  resort to affix detection on the basis of frequency and regularity 

(Fiorentino et al., 2014).         

Constituent priming effects have been reliably found in both overt (e.g., Libben, 

Gibson, Yoon, & Sandra, 2003; Sandra, 1990; Zwitserlood, 1994) and masked priming 

experiments (e.g., Duñabeitia, Laka, Perea, & Carreiras, 2009; Fiorentino & Fund-

Reznicek, 2009; Shoolman & Andrews, 2003). Libben et al. (2003) conducted a series 

of experiments employing both overt constituent priming and standard (i.e., unprimed) 

lexical decision tasks, in order to explore the processing of transparent (e.g., snowball), 

partially transparent (e.g., strawberry) and opaque (e.g., bellhop) compounds in English. 

They found that priming effects obtained from both constituents for all compound types, 

and that response times (RTs) were strongly affected by the semantic transparency of 

the head constituent, with opaque heads yielding longer latencies. Focusing on early 

effects, Duñabeitia et al. (2009) conducted a series of lexical decision experiments with 



masked priming using Basque compounds. In their study, target compounds could be 

preceded by other compounds sharing the first or second constituent, in either the same 

(Experiment 1) or the opposite (Experiment 2) position (e.g., snowman – SNOWBALL 

or snowman – POSTMAN, Experiment 1; football – BALLPOINT or football – 

BAREFOOT, Experiment 2). Both tasks showed reliable constituent priming effects for 

both constituents, irrespective of position, head directionality or transparency
1
. 

Non-compositional views of the lexicon have been significantly challenged by 

studies on compound processing focusing on representation. Shoolman and Andrews 

(2003) utilised the masked priming paradigm to investigate constituent priming effects 

on both transparent (e.g., snowball) and opaque (e.g., jailbird) compound words as 

compared to monomorphemic, yet seemingly complex words (e.g., hammock), and 

various kinds of pseudocompounds—with an orthogonal manipulation of lexicality in 

the first and second constituents—to examine nonword context effects. Results showed 

reliable masked priming effects for both constituents in compound words, irrespective 

of context and transparency, as well as in pseudo-complex monomorphemic words (i.e., 

both ham and mock significantly enhanced the classification of hammock). Shoolman 

and Andrews’s (2003) results mirror some of the findings in the masked priming 

literature on derivational word-formation (i.e., transparent, opaque and pseudo-complex 

items all show constituency effects, with the latter displaying smaller priming effects; 

see also Diependaele, Duñabeitia, Morris, & Keuleers, 2011), and speak to both 

decomposition and representation. The advantage of compounds over monomorphemes 

was constant irrespective of semantic transparency and in spite of the higher overall 

frequency of the latter category (see Fiorentino & Poeppel, 2007; Ji, Gagné, & 

Spalding, 2011, for similar results), which indicates that activation of constituents is 

associated with the activation of whole-word forms without mediation from semantics.  



Research on nonnative language learners has not yet reached an agreement as to how 

much morphological information is present in the non-native lexicon, and particularly 

how/whether this information might be accessed in real time. Evidence has been 

provided in support of two opposing views, namely, that native and nonnative 

processing of morphology may differ quantitatively (in processing speed and capacity) 

but not qualitatively (e.g., Diependaele et al., 2011; Duñabeitia, Dimitropoulou, Morris, 

& Diependaele, 2013), and that native and nonnative speakers do employ substantially 

different mechanisms (e.g., Clahsen, Balkhair, Schutter, & Cunnings, 2013). 

Feldman, Kostić, Basnight-Brown, Durđević and Pastizzo (2010) compared the 

performance of native speakers and two groups of nonnative speakers (high and low 

proficiency) in masked and cross-modal priming experiments with regularly and 

irregularly inflected verb forms as primes, and their infinitives as targets. Both native 

and nonnative speakers showed priming effects in all conditions. This pattern seemed to 

be driven by their high proficiency subjects, whose results were much more consistent 

than those of the low proficiency sub-group. The findings were interpreted as evidence 

for a non-decompositional, single-mechanism theory of morphological processing for 

natives and nonnatives, irrespective of proficiency. Differences between L1 and low-

proficiency L2 participants are attributed to deficits in the nonnative speakers’ 

associations of shared form and meaning between different inflections due to 

insufficient or inappropriate input, rather than to a fundamental difference in the way 

native and nonnative speakers process these words.  

Similarly, the results of the nonnative participants in the Diependaele et al. (2011) 

study support models postulating native and nonnative speakers’ use of the same 

underlying mechanisms, irrespective of what these mechanisms are assumed to be. An 

inspection of response latencies in a lexical decision task with masked priming of root 



forms by derivations revealed that two groups of nonnative speakers which differed in 

their L1 but had similar proficiency in English (Spanish and Dutch natives, lower-

advanced) showed the same patterns of priming as native speakers. In particular, both 

groups had larger priming effects for transparent (walker – WALK) than opaque (corner 

– CORN) derivations as compared to an unrelated baseline. Notably, though, nonnative 

speakers showed also a small but significant effect of non-morphological form priming 

(freeze – FREE), which was absent for native speakers (as is typically the case, see, e.g., 

Rastle & Davis, 2008). Diependaele et al. (2011) propose that the effect may stem from 

a delay in the orthographic level due to slower processing abilities in the L2 more 

generally, which would in turn delay the activation of the lexical and morpho-semantic 

features that block the orthographic effect in native speakers.  

Duñabeitia et al. (2013) further investigated the role of proficiency in bilingual 

processing by means of a masked cross-language morphological priming task, in which 

a given stem (e.g., pain) could be primed by a derived word in the target language (e.g., 

painful) or a word derived from the stem’s translation in the non-target language (e.g., 

doloroso, lit. painful, whose morphemic structure is {dolor}, lit. pain, + {-oso}, an 

adjectival suffix). Two groups were examined: balanced Basque-Spanish bilinguals 

(early acquirers of both languages) and unbalanced Spanish-English bilinguals (lower-

advanced L2 learners), performing the task in Spanish and English, respectively. Two 

findings stand out as particularly relevant: 1) both groups showed reliable priming from 

affixed words to stems in within-language trials (e.g., doloroso – DOLOR; painful – 

PAIN), and 2) none of the two groups showed effects of translation priming before or 

after decomposition, suggesting that early and automatic morpho-orthographic analysis 

happens for native speakers, balanced and unbalanced bilinguals alike. While these 

results, like the ones Diependaele et al. (2011), do not rule out the possibility of a 



qualitatively different behaviour in low-proficiency levels, they could be interpreted as 

evidence that, beyond a given stage in L2 development, native-like processing (in 

qualitative terms) is not a function of proficiency or age of acquisition (AoA).  

Conversely, differences between native and nonnative populations have been often 

reported (see Clahsen et al., 2013, for review). Silva and Clahsen (2008) conducted four 

masked priming experiments on regular inflection and {-ness} and {-ity} adjectival 

derivations, with (lower-) advanced L2 learners of three different mother tongues 

(Chinese, Japanese and German) and native English controls as participants. Results 

show that nonnative speakers fail to reveal priming effects with inflectional forms 

(experiments 1 and 2), although Silva and Clahsen do report reduced priming of stems 

by derived forms in the L2 groups (experiments 3 and 4). In a later experiment, Clahsen 

et al. (2013, experiment 1) employed an alternative design to determine if the lack of 

stem priming shown by L2 speakers may be due to slower processing. The new 

experiment included an inter-stimulus interval of 500 ms post-prime display, thus 

allowing a longer time for the prime to be processed. The new group of nonnative 

speakers, who had Arabic as their L1 and were equally lower-advanced in English, 

failed to show stem priming effects with regular inflections in either version of the 

experiment. Similarly, Neubauer and Clahsen (2009) found comparable masked priming 

effects for L1 and L2 speakers of German (L1 Polish) with irregular inflections only. 

Moreover, the authors found surface frequency effects of regularly inflected participles 

for the nonnative speaker group only. Taken together, Clahsen and colleagues interpret 

these findings as evidence that inflection and derivation are essentially different 

processes (cf. discussion in Clahsen, Sonnenstuhl, & Blevins, 2003), and that nonnative 

speakers, who are unable to use morphological information in real time in the same way 

as native speakers, store regularly inflected words in whole form yet have 



morphologically structured representations for derived words—which they employ less 

efficiently than natives. 

In an eye-tracking study, Cunnings and Clahsen (2008) demonstrated that native 

speakers displayed earlier sensitivity to a constraint that selects singular over plural 

forms to appear inside compounds (the so-called Category Constraint), with the effects 

of a morphological constraint (a Structural Constraint) that further allows the 

incorporation of only irregular plurals showing up in later eye-movement measures. 

Clahsen et al. (2013) replicate the experiments in Cunnings and Clahsen (2008) with 

second language learners. In an offline (grammaticality judgement) and an online (eye-

tracking) task, 25 nonnative speakers of English (L1 Dutch) were presented with 

sentences containing derived words (adjectival {-less} and adverbial {-wise} 

derivations) with base nouns that were either singulars (e.g., flealess), regular plurals 

(e.g., fleasless) or irregular plurals (e.g., liceless). Despite showing native-like 

preferences in the off-line task (i.e., banning regular plurals and preferring singular over 

irregular plural forms), there were some differences between the eye-movements of the 

nonnative speakers in Clahsen et al. (2013) and those of the native speakers in Cunnings 

and Clahsen (2008). L2ers showed effects of the Category Constraint later in reading, 

and no online evidence of sensitivity to the Structure (i.e., morphological) Constraint. 

Clahsen et al. (2013) argue that these results are most consistent with the Shallow 

Structure Hypothesis (SSH; e.g., Clahsen, Felser, Neubauer, & Silva, 2010), which 

predicts a superficial analysis of morphologically complex forms by nonnative speakers, 

and in particular for inflections vs. derivations (Neubauer & Clahsen, 2009; Silva & 

Clahsen, 2008). Clahsen and colleagues argue for this split on the basis of theoretical 

distinctions, such as whether the output of the process is a word form within the same 

lexical entry as the base (inflection), or a new lexical entry (derivation; e.g., Anderson, 



1992). Thus, since derivation is assumed to draw from both lexical and grammatical 

mechanisms (Clahsen et al., 2003), nonnative speakers’ failure to resort to the latter 

would explain why regular inflections do not produce priming effects in this population, 

while derivations only half-prime their stems. Crucially, Clahsen and colleagues only 

make this claim for productive, semantically transparent derivations. Following the 

discussion in Clahsen et al. (2003), where productive derivation is said to share features 

with both regular and irregular inflection, differences should be expected for nonnative 

speakers between transparent and opaque derivations and/or compounds, since only the 

former would entail the online recruitment of grammatical processing mechanisms. 

While some of the most relevant data on native morphological processing comes 

from studies on compounding, this word-formation process is underrepresented in the 

nonnative literature. To our knowledge, only one other published study (De Cat, 

Klepousniotou, & Baayen, 2015) has focused on compound representation and 

processing in nonnative speakers. In two (overtly) primed lexical decision experiments 

testing noun-noun or root compounds in English, De Cat and colleagues analysed the 

performance of native speakers as compared to that of two different groups of 

intermediate to advanced L2 learners which differed in their first language: Spanish and 

German. (A)symmetries in the head directionality patterns of these items—German and 

English root compounds are head-final, while Spanish presents head-initial 

compounds—were exploited to evaluate representation vs. processing accounts of L2 

morphological performance. The first experiment found that all groups displayed the 

same accuracy rates for compounds with a licit constituent order (i.e., right-headed), 

while differences emerged for the reversed order condition: the accuracy of Spanish 

native speakers dropped as a consequence of their over-acceptance of these items. De 

Cat and colleagues take these two results as indicative that no representational deficits 



seem to be in place for these speakers, but L1 influence in processing of the L2 is 

apparent on the behaviour of the Spanish learners. ERP recordings in the second 

experiment, a delayed lexical decision task, further support this explanation: the L1 

Spanish group showed comparable compound frequency and crossover constituent 

frequency effects only for items with illicit order in English, which would nevertheless 

be canonical in their L1. German native speakers, on the other hand, displayed an 

extreme sensitivity to violations of word order, which coincides in their native and 

nonnative languages. 

The study presented here differs in scope, aims and methods with De Cat et al. 

(2015). Their main research question had to do with the influence of the L1 on the 

processing of a second language, for which they exploited differences in compound 

formation between the three languages. Their methodology was tailored to address this 

issue, and is not, in our opinion, optimal to test constituency effects. At a SOA of 100 

ms, prime processing has time to activate semantic features that might act as a confound 

of purely morphological (i.e., structural) effects. Our study seeks to probe for the 

existence of morphological structure in the nonnative lexicon, employing a masked 

constituent priming paradigm with native (n = 71) and lower-advanced nonnative 

speakers of English (n = 78; L1 Spanish). The experiment was designed to assess 

whether the lexical entries of synthetic NV-er compounds (e.g., cheerleader) are 

specified for constituent structure. Predictions were as follows: natives were expected to 

show reliable priming effects for both constituents (e.g., cheer – CHEERLEADER; 

leader – CHEERLEADER), replicating a consistent finding in the literature (e.g., 

Duñabeitia et al., 2009; Libben et al., 2003; Shoolman & Andrews, 2003; Zwitserlood, 

1994, among others). Nonnative speakers could go either way: if Diependaele, 

Duñabeitia and colleagues are right, we would see constituent priming effects 



comparable to those of native speakers, albeit with longer response times overall. If 

Clahsen and colleagues are on the right track, then we would see reduced priming 

effects for nonnative speakers as compared to native speakers beyond and above their 

longer response times. Note that, although the SSH does not make explicit predictions 

about compounding, the argument in Clahsen et. al (2013) and Silva and Clahsen (2008) 

that derivation (unlike inflection) creates new lexical entries also applies to compounds, 

which would extend their prediction of a reduction of structurally motivated effects in 

nonnative speakers (as found in Silva & Clahsen, 2008). Importantly, this should be true 

especially of compounds that are semantically transparent and/or generated productively 

(as in the case of NV-er compounds in English), where the SSH predicts grammatical 

processing to play a larger role. 

Method 

Participants                       

A total of 149 undergraduate students (86 females), aged 19-30 (mean = 20.5; median = 

20), took part in the experiment. Of these, 71 were native speakers of English (54 

females; mean age = 20.6; median = 20; range: 19-30), students of various majors at an 

American university, who took part in the experiment in exchange for course credit or 

economic compensation. Due to the controlled presence of a number of Spanish-English 

cognates in the materials (see the following section), we ensured that none of them had 

significant knowledge of Spanish by controlling their linguistic background and other 

potential factors of exposure (e.g., TV) through an interview and a standard 

questionnaire as described below. 

(INSERT TABLE 1 AROUND HERE) 



The L2 group was recruited at a Colombian university, and consisted of 78 

undergraduates (32 females; mean age = 20.3; median = 20; range = 19-26) then at the 

5
th

 to 8
th

 semesters of the degree in English Studies, taught exclusively in English. As 

part of course requirements, they had taken standardised tests (Oxford Placement Test) 

around one month prior to the experiment to ensure that they had an upper-intermediate 

to advanced knowledge of English. They were all native speakers of Spanish, born and 

raised in Colombia, and had received formal instruction in English since age 10. All 

participants had normal or corrected-to-normal vision, no history of brain impairment or 

learning disabilities, and were naïve with regard to the purpose of the experiment. 

Materials 

Forty (40) English synthetic NV-er compounds (e.g., cheerleader) were used as targets. 

These were matched for total length (mean = 10.19 characters, standard deviation (SD) 

= 0.93, range: 8–12), constituent length (first constituent mean length = 4.15, SD = 0.70, 

range: 3–5; second constituent mean length = 6.03, SD = 0.62, range: 5–7), and 

frequency
2
 (mean = 1.99 occurrences per million (o.p.m.); SD = 2.26, range: 0.5–10.58). 

All compounds had their highest number of o.p.m. in solid (i.e., un-split) form. An 

original list of 43 compounds was used to conduct a norming study among 62 Spanish-

speaking participants—a different group of students from the same university as the L2 

participants—who were also upper-intermediate to advanced in English. Participants 

provided a definition for each word and a confidence level in their answer ranging from 

1 (minimum) to 5 (maximum). Only compounds which had more than 50% overall 

score and an average confidence level of 3 points or higher were used in the study. 

Eleven (11) out of the 40 target compounds had one or two constituents that were 

cognates with Spanish words. In order to keep this aspect controlled, the five 



counterbalancing lists were arranged so that each contained an equal number (7) of 

cognates across conditions. 

For every trial, the target compounds could be preceded by a prime from either 

one of five conditions: 

(1) 1
st
 morphological condition or first constituent; M1 (e.g. fund – FUNDRAISER). 

(2) 2
nd

 morphological condition or second constituent; M2 (e.g., raiser – 

FUNDRAISER). 

(3) 1
st
 orthographic condition; O1 (e.g., funk – FUNDRAISER). 

(4) 2
nd

 orthographic condition; O2 (e.g., raisin – FUNDRAISER). 

(5) Unrelated condition; UN (e.g., cool – FUNDRAISER). 

The unrelated condition, in which the compound was preceded by a monomorphemic 

word that had no semantic, morphological or orthographic relationship with it, served as 

the baseline to which we compared all other prime types. The function of the two 

orthographic conditions was to control for possible form effects that were orthographic 

rather than morphological in nature.
3
 We used word primes that overlapped 

orthographically, but not morphologically, with either the first or the second constituent 

of the compound, matching them in length to the corresponding morphological 

condition (O1 mean length = 4.45, SD = 0.81; O2 mean length = 6.03, SD = 0.66). 

Overlap percentages between the morphological and orthographic conditions (M1 – O1: 

mean = 67.25%, SD = 5.90%; M2 – O2: mean = 54.05%, SD = 7.93%) were calculated 

according to the SOLAR model of visual word recognition (Davis, 1999, 2006), using 

N-Watch (Davis, 2005). 

To make lexical decision possible, a list of 40 pseudowords was generated from 

the original list of targets by means of letter substitution, using the Wuggy software 



(Keuleers & Brysbaert, 2010). All items in this category respected the phonotactics of 

English
4
. The mean overlap percentage was 61.05% (SD = 11.27%). A separate list of 

40 monomorphemic words, matched in length with the rest of the primes, were used as 

primes for the non-word targets (e.g., brand – FUREPAISER) to avoid repetition 

effects. Each participant saw the 40 target compounds only once, preceded by a 

different set of 8 primes from each of the five conditions. A total of 5 counterbalanced 

lists were created, which were then administered at random to a roughly equal number 

of participants—around 16 per list in the non-native group, 13 in the case of native 

speakers. Each list was filled with an extra 80 targets, made up of N-N compound words 

(e.g., snowball) and derived pseudowords of approximately the same length (mean = 

8.45, range: 7–10) and frequency (mean = 13.21 o.p.m., SD = 11.37) as the original 

compounds. These pseudowords were also preceded by a new list of 40 

monomorphemic words, matched in length with the rest of the primes in the set. The 

relevant NV-er synthetic compound targets thus amounted to 25% of the total 

consciously processed words. 

Procedure 

The task was administered on computers running DMDX software (Forster & Forster, 

2003), and displayed using CRT monitors with a refresh rate of 80 Hz. Participants sat 

in a well-lit booth at approximately 50-60 cm from the computer screen. Response 

buttons were labelled (‘YES’ and ‘NO’) on the keyboard, and participants were asked to 

keep one finger on top of each at all times. The software presented the stimuli of the 

corresponding list in five blocks of 32 items. Conditions were balanced, but the order of 

presentation of both the blocks and the items within was randomised for each 

participant. The task started with a brief set of instructions and a practice session of 10 

trials. All visual stimuli were presented in the centre of the screen, in dark red (RGB 



#187001001) 40-point size Courier New (a mono-spaced font) over a light grey 

background (RGB #211211211) to provide a balanced contrast. Each trial began with a 

500 ms presentation of a forward mask made up of a row of hash signs (e.g., ‘#####’), 

matching the maximum length of the corresponding prime category. Immediately 

afterwards, the prime—in lowercase letters—was displayed for 62 ms (5 refresh cycles 

of a 80 Hz monitor), followed by the target –in uppercase. Response latencies were 

measured from the onset of the target word. Participants were instructed to press the 

corresponding button (labelled according to handedness) as quickly and accurately as 

possible, indicating whether the target was an existing word in English or not. Upon 

response, or after a timeout period of 2500 ms, the target disappeared followed by the 

forward mask of the upcoming trial. After 32 trials, the software paused and asked the 

participant to continue on to the next block when ready to do so by pressing the 

spacebar. 

(INSERT FIGURE 1 ABOUT HERE) 

Participants were debriefed about the procedure, in order to assess perception of the 

primes. No participants in the L2 group (n = 78) reported having noticed the masked 

primes. As for the native speaker group, 3 out of 66 participants reported having noticed 

‘an occasional flash’ or ‘some letter shuffling’, but were unable to tell whether it was a 

word or a random sequence of letters. Participants were asked to provide some 

demographics and linguistic background information by completing an English or 

Spanish version of the LEAP-Q (Marian, Blumenfeld, & Kaushanskaya, 2007). In the 

case of the nonnative speakers, a post-hoc test was administered to further control for 

knowledge of both primes and targets. Participants were given all primes and targets 

appearing in their list of the experiment, providing either a translation into Spanish or a 



definition in English, along with an indication of their level of confidence in their 

response (1 to 5). No results from these measures compromise the results of the 

experiment. 

Analyses 

The data were prepared by rejecting all potential involuntary inputs and identifying RT 

outliers within the observations pertaining to correct responses. The criterion to exclude 

involuntary inputs was set to 200 ms, finding no cases. Following an inverse 

transformation of the response times to reduce the typical long-tailed positive skewness 

in the distribution (-1000/RT; Kliegl, Masson, & Richter, 2010; see Diependaele et al., 

2011, for a similar approach), outliers were defined as any values lower than Q1 – 3 × 

IQR or higher than Q3 + 3 × IQR, where Q1 and Q3 are the first and third quartiles, 

respectively, and IQR is the inter-quartile range. 11 cases were identified within the full 

sample of 5346 correct-response observations (which themselves constitute the 89.7% 

of the total 5960 observations for the word stimuli). These potentially influential data 

points were monitored, and all statistical analyses were performed with and without the 

observations. No significant differences emerged; therefore, all results reported belong 

to the full sample. 

All processing, plotting and analysis of the raw data was performed in R (R Core 

Team, 2013). Non-word information was discarded, and both accuracy rates and 

response times (RTs) to correct responses of word targets were analysed using linear 

mixed models, with Item and Subject as crossed random factors (e.g., Baayen, 

Davidson, & Bates, 2008) and Group and Condition as fixed factors, using the lme4 

package in R (Bates, Maechler, Bolker, & Walker, 2013). Random slopes were then 

allowed for select random factors, to obtain the maximal random structure justified by 

the design (Barr, Levy, Scheepers, & Tily, 2013). Accuracy data were analysed using a 



generalised linear mixed effects (GLME) model with a binomial family, whereas a 

Gaussian family was used for response times. Logarithmic transformations of whole-

word, constituent and prime frequency, as well as position-specific morphological 

family size (e.g., Dijkstra, Moscoso del Prado Martín, Schulpen, Schreuder, & Baayen, 

2005; Moscoso del Prado Martín et al., 2005) were included in the process of iterative 

model building. A separate norming study with a sample of 40 native speakers, different 

from our experimental population, provided non-discrete transparency ratings for the 

target compounds ranging from 1 to 4. This information was also incorporated into the 

models. 

Results 

Table 2 contains a summary of the accuracy scores and response latencies for each 

condition and group in the experiment. 

(INSERT TABLE 2 ABOUT HERE) 

Visual inspection of the models’ residuals revealed no obvious signs of 

heteroscedasticity. Collinearity among predictors was not an issue (highest correlation 

between fixed effects: whole-word–first constituent frequency = 0.135 [RTs], 0.091 

[Accuracy]). The final random structure of the accuracy model presented random 

intercepts for Subjects and Items, while that of the RT model included, besides these 

intercepts, random slopes for Subjects and Items within Condition  as well as for Items 

within Group—because the stimuli could have affected each group differently—and 

Subject within whole-word frequency—because different amount of exposure to a 

particular word can result in different frequency effects. Table 3 presents the 

coefficients and associated statistics of the accuracy and RT models.    



(INSERT TABLE 3 ABOUT HERE) 

In the accuracy analysis, Group, χ
2
(1) = 7.21, p < .001, displayed a highly significant 

effect, while Condition did not, χ
2
(4) = 4.34, p = .36. There was also no interaction 

between the two, χ
2
(4) = 4.37, p = .36. The RT analysis found significant effects of both 

Group, χ
2
(1) = 97.83, p < .0001, and Condition, χ

2
(4) = 97.55, p < .0001, with no 

interaction, χ
2
(4) = 9.46, p = .051. Post-hoc comparisons of means per Condition using 

Tukey HSD tests confirmed that significant facilitation was shown only by the 

morphological, M1 – UN: z = –5.92, p < .0001; M2 – UN: z = –6.72, p < .0001, but not 

the orthographic conditions, O1 – UN: z = –1.48, p = .58; O2 – UN: z =  –0.95, p = .82 

(cf. p values in Table 3). The first and second constituents, which barely differed in their 

effects, M1 – M2: z = 1.08, p = .81, enhanced responses as compared not only to the 

baseline unrelated condition, but also to both orthographic prime types, O1 – M1: z = 

4.37, p < .0005; O2 – M1: z = 4.97, p < .0001; O1 – M2: z = 5.66, p < .0001; O2 – M2: 

z = 6.25, p < .0001, which themselves had comparable non-significant effects, O1 – O2: 

z = –0.66, p = .96. 

Additionally, we found that an increase in semantic transparency interacted 

positively with the effect of Group, which indicates that the gap between native and 

nonnative speakers widened as a function of transparency. This factor enhanced 

responses in the native speaker group while not significantly affecting the nonnative 

speakers.
5
 Crucially, however, this factor did not interact with Condition in accuracy, 

χ
2
(5) = 3.34, p = .65, or RTs, χ

2
(4) = 1.49, p = .83, nor did it enter into a three-way 

interaction with Condition and Group, χ
2
(8) = 2.82, p = .95, which has important 

implications for the role of meaning in the processing of these compounds.  

As for frequency measures, whole-word, Accuracy: χ
2
(1) = 4.75, p < .05; RTs: 

χ
2
(1) = 8.61, p < .01, and first constituent frequency, Accuracy: χ

2
(1) = 16.25, p < 



.0001; RTs: χ
2
(1) = 13.61, p < .001, had an overall facilitating effect on both dependent 

variables; in general terms, higher frequencies meant faster and more accurate responses 

(see also Shoolman & Andrews, 2003). In the error data, an interaction with the Group 

factor showed that, for nonnative speakers, the facilitation produced by higher first 

constituent frequencies was more important than for native speakers, χ
2
(1) = 12.59, p < 

.001. Overall prime frequency was only a significant predictor of Accuracy, χ
2
(1) = 

5.42, p < .05, but not of RTs, χ
2
(1) = 0.0016, p = .97. This effect on accuracy, which did 

not differ between the groups, χ
2
(1) = 0.04, p = .85, or interact with Condition, χ

2
(4) = 

8.99, p = .06, had a negative direction (i.e., accuracy decreased at higher prime 

frequencies), as did the non-significant numerical trend on the RTs, most likely 

reflecting some form of prime-target interference. Finally, the accuracy scores of 

nonnative speakers were affected by the compound’s right morphological family size, 

Group by RMFS interaction: χ
2
(2) = 7.80, p < .05. This suggests that the existence of a 

higher number of compounds with the same right constituent improved the L2 speakers’ 

recognition of the targets.  

Furthermore, a complex interaction involving whole-word and first constituent 

frequencies as well as Group and left morphological family size emerged in the 

response time analysis. However, this kind of interactions entail extremely difficult 

interpretations that we will not venture for two main reasons. The first is that some of 

these factors (particularly whole-word frequency but also, to the extent possible, 

constituent frequency) were controlled in the design of materials, and so are not likely 

to present a distribution that is as wide as expected in multiple regression studies. The 

second is that response times are an end-point measure, and as such are difficult to 

interpret in the same way as it is usually done with methods of high temporal 



resolution—where, for example, considerations of left-to-right processing have specific 

correlates in the data. 

Discussion 

 Constituent priming 

The results presented in this study provide strong evidence of constituent priming in 

English compound processing, both for native and nonnative speakers. Responses to 

target compounds were enhanced by previous presentation of their constituents in 

isolation, irrespective of position (first or second). Notably, all significant effects were 

found in response latencies, whereas accuracy scores seemed not to be affected by 

experimental manipulations. This is not a surprising finding,  nor is it unprecedented in 

the literature, where responses to unrelated primes have typically been found to be 

numerically less accurate, but not always significantly so (Frost et al., 2005; Rastle et 

al., 2004; but see also Diependaele et al., 2011; Forster & Azuma, 2000 for significant 

differences). The error data of our nonnative speakers is the most prototypical, with 3-

4% less accuracy in the unrelated condition. However, unlike some of the previous 

studies, we do not have a Relatedness variable nested within Condition, but rather an 

unrelated condition that serves as the baseline for all conditions in every target. This is a 

design advantage that allows us to control for between-items variability, but  makes the 

(non-central) relatedness effect, broken down into different prime types, less directly 

observable.  

Morphological vs. orthographic effects  

The orthographic conditions (e.g., funk – FUNDRAISER; raisin – FUNDRAISER), in 

contrast, did not enhance response times, which we attribute to the fact that their 

recognition does not entail activation of the morphemic structure of the target 



compounds. It should be noted, however, that our orthographic control condition is not 

strictly comparable to the one used in studies of derivational morphology (e.g., brothel 

– BROTH, where decomposition of the prime is non-felicitous, vs. the opaque 

morphological condition brother – BROTH, where the process returns two valid 

morphemes), since ours did not include a 100% non-morphological form overlap. 

Nonetheless, it would still be very difficult to provide a purely orthographic account of 

the effects observed. As reported in the methods subsection above, the mean overlap 

between the morphological and the orthographic conditions was 67.25% for the first 

constituent and 54.05% for the second. When considered with respect to the target 

compounds, these percentages would be 27.34% and 32.07% respectively. This means 

that the possible orthographic effect would have to plummet from z = –5.92, p < .0001, 

to z = –1.48, p = .58, and from z = –6.72, p < .0001, to z = –0.95, p = .82, a rather steep 

decrease for a difference in overlap of 13 and 27 perceptual points, respectively. Recall 

that, besides being significantly faster with respect to the unrelated baseline, both 

morphological conditions were also significantly faster than each of the orthographic 

conditions. In order to test directly whether differences in degree of orthographic 

overlap can explain the effects at hand, we conducted new analyses in which the overlap 

percentage between each prime and its target is included as a factor in the model. 

Results reveal that this was not a significant factor affecting response times, neither in 

isolation, χ
2
(1) = 0.078, p = .79, nor in interaction with Condition, χ

2
(5) = 6.95, p = .22, 

or Group, χ
2
(2) = 1.44, p = .49. These statistical analyses demonstrate that the priming 

effect is not significantly determined by prime-target orthographic overlap. Given these 

results, we believe that the weight of the evidence still points to a morphological (as 

opposed to merely orthographic and/or semantic) locus of effects as the most likely 

account. 



Access and representation 

Our results, especially those in the native speaker group, are compatible with some of 

the current models of lexical access in visual word processing, as long as these include 

morphologically structured representations even for non-transparent and/or highly 

lexicalised compounds. The finding that semantic transparency did not interact with the 

Condition factor in our response time analyses is particularly illuminating. The 

morphological effect obtains irrespective of constituent-to-compound transparency, for 

both speaker populations—recall that there was no triple interaction with the Group 

factor either. This does not mean that semantic transparency affects both populations 

equally (see discussion below), but it speaks to the robustness of the morphological 

effect in the face of variable semantic contexts. As for processing mechanisms, our 

results favour the view of some stage of pre- or post-lexical decomposition. While this 

last aspect is not directly tested by the original design, further analyses revealed 

significant effects and interactions of first constituent frequency and family size over 

and above those produced by the type of prime-target relationship in each condition. 

The interaction of these measures with whole-word frequency may be an indication that 

the first constituent acts as a dominant index of access to compound lexical 

representations, either early in decomposition or in a later compositional stage (cf. 

Inhoff, Starr, Solomon, & Placke, 2008; Juhasz et al., 2003).  

In terms of representation, at least some version of most full-parsing (Stockall & 

Marantz, 2006; Taft & Nillsen, 2013) and dual/multiple-route models (Kuperman, 

Schreuder, Bertram, & Baayen, 2009; MacGregor & Shtyrov, 2013) can accommodate 

our results. The first group would expect access to the full form only after the 

constituents have been activated through segmentation. Since the left constituent is 

recognised first in serial order (cf. Andrews, Miller, & Rayner, 2004; Kuperman et al., 



2009), its properties come into play early—hence the main effect displayed by its 

frequency. Once the lemma has been activated, a large family size (or a high family 

frequency; see Taft, 2004) may delay composition, since it will take longer to find the 

current combination among the many stored or possible competitors. Whole-word 

frequency becomes particularly relevant, with more frequent compounds having more 

salient full form lemmas. 

Dual-route models predict the (de)compositional route to dominate when 

processing long or low-frequency complex words—e.g., most of our targets—since the 

full form would take longer to retrieve. High-frequency left constituents would be 

recognised and activated faster, further speeding the decompositional route. With a 

large family size the initial advantage would be counteracted to some extent, slowing 

down the composition process and shortening the distance with the whole-word route. A 

simultaneous, multiple-route explanation is also possible: if, as Kuperman et al. (2009) 

propose, whole-word frequency effects may already obtain before both constituents 

have been fixated, then a high-frequency first constituent should contribute to speeding 

up the processing of low-frequency compounds by pre-activating their full forms, any 

enhancement being attenuated if the number of compounds to activate is large. The 

absence of observable effects—either in frequency or family size—for the second 

constituent could then be taken as evidence that this is a matter of activation through 

partial recognition of whole-word forms, rather than composition per se (but see 

Fiorentino et al., 2014; Ji et al., 2011, for electrophysiological and behavioural evidence 

suggesting a vital role of the composition stage). To adjudicate between these theories, 

future work should gain temporal insight into the whole-word by first constituent 

frequency interaction. In validation of full-parsing models, first constituent frequency 

should have an earlier detectable effect on a high temporal resolution measure (e.g., 



ERP, MEG), followed by some sort of signature for the whole-word frequency effect. 

Under a multiple-route account, alternatively, whole-word and first constituent 

frequency correlates should be simultaneous and therefore virtually indistinguishable. 

One might argue that the absence of a significant interaction effect between 

Condition and the two morphological family size measures goes against the predictions 

of theories involving morphological decomposition: if the first or second constituent is 

activated (as a prime) in the morphological conditions, we would expect to see the 

observed priming effect vary as a function of that constituent’s morphological family 

size, since a large MFS should either delay—by spreading activation among a larger 

number of combinatorial alternatives—or enhance—by making the constituent more 

readily available itself—response times to target compounds. However, we did not 

compute morphological family sizes independently of position. While the effects of 

morphological family size in monomorphemes are cumulative with respect to different 

positions of the morpheme within complex words (e.g., both {fund + ing} and {re + 

fund} count towards the total morphological family size of fund), when processing a 

compound word serial-order considerations come into play. All morphological 

neighbours of the compound in which the left constituent appears as the second or third 

constituent (and vice versa) will most likely not be considered for predictive processing. 

For that reason, we identified the number of entries corresponding to complex lexical 

items that contained the first and second constituents of each target compound in initial 

or final position, respectively, in SUBTLEXUS, and called these variables Left and Right 

morphological family size (hence LMFS and RMFS). Therefore, our count can only be 

considered a fraction (in various proportions) of the total family frequency of the 

constituent, as it included only those entries in which this word occupied the same 

position as it did in the compound—e.g., for babysitter, it would include babyface, but 



not crybaby. This aspect, which would most strongly affect the count for the first 

constituent—deverbal nouns like maker are rarely if ever in initial position—should be 

taken into account when considering our data in light of such predictions.   

Native vs. nonnative morphological processing 

Crucially, native and nonnative speakers barely differed in anything other than total 

accuracy and average response time, with longer latencies in the nonnative group most 

likely attributable to their lower proficiency as compared to native speakers. Likewise, a 

larger reliance on form processing (see, e.g., Diependaele et al., 2011) was not found in 

nonnative speakers: they were just as insensitive to purely orthographic priming as their 

native peers. There were, however, some subtle differences when we looked at the item 

characteristics of our stimuli.  

First, semantic transparency seemed to affect exclusively the native group—and 

this only mildly, p < .047. Note that the effect is found across all levels of the Condition 

factor, with which it did not interact. This finding can thus not be explained by models 

assuming that the lexical representations of semantically opaque complex words must 

be accessed through their whole-word forms (e.g., Marslen-Wilson et al., 1994), but fits 

nicely into compositional accounts (e.g., Ji et al., 2011), wherein the mismatch between 

the constituent-based and stored idiosyncratic meanings leads to a conflict that slows 

down the recognition process. The size or intensity of this conflict becomes a direct 

function of semantic opacity. This relative prominence of the composition stage in the 

native group as compared to the L2ers seems to indicate a larger role of morphological 

structure in the first group. While this could be interpreted in line of Clahsen and 

colleagues’ SSH, a direct validation of the theory would involve semantic transparency 

acting as negative predictor of morphological priming in the L2 group. Our data show a 

difference between the groups, but this is grounded on a positive effect of semantic 



transparency on native speakers rather than a hampering effect on non-natives. 

Moreover, the non-significant effect of transparency in the L2 group points in the 

opposite direction: if anything, more transparent compounds received faster responses. 

Another way to look at this result is to consider that the difference may simply be 

quantitative, not qualitative: if constituent and whole-word meanings are activated more 

rapidly by native speakers, a conflict between stored and computed meanings will take 

place for opaque compounds (see, e.g., Ji et al., 2011). This effect would be attenuated, 

or even absent, in the case of nonnative speakers, if semantic features take longer to be 

activated. Nevertheless, note that nonnative speakers gave more accurate responses to 

compounds with larger RMFSs, an effect that could be equally attributable to 

composition, and which was not found in the L1 group.
6
  

The second difference between the two groups was found in the size, but not the 

direction, of an interaction effect: the accuracy and speed of responses significantly 

increased with higher first constituent frequencies in both groups, but in accuracy this 

effect was significantly larger for the nonnative group. As with the higher accuracy rates 

with larger RMFSs or the lower accuracy for higher-frequency primes, it is always 

difficult to offer an absolute explanation on the error data of a lexical decision task, 

since knowledge of the target word is by far the most stable predictor. It could be the 

case that, due to time pressure (i.e., the 2500 ms timeout) nonnative speakers are relying 

on a salient and well known constituent to provide an answer before the compound has 

been fully processed, which would suggest slower, quantitatively different processing 

(McDonald, 2006). Similar biases have previously been reported in lexical decision 

even for native speakers, such that activation of multiple valid words after segmentation 

might bias participants towards a positive response before assessing the legitimacy of 

the combination—or, in some cases, its order (Shoolman & Andrews, 2003). While this 



is certainly a possibility, it is almost unfalsifiable in our data: our non-word stimuli were 

not pseudocompounds formed by two existing words, and therefore we do not have 

insight into the hit/false-alarm ratio of interest here. We cannot compute subject 

response bias in relation to first constituent frequency, because there were no trials in 

the experiment in which the correct response to a compound word was a negative one. 

In any case, it should be noted that some of our non-word stimuli did contain word-like 

sequences in initial position: feartwheeker (created from heartbreaker), plearkinner 

(from breadwinner), shampstrower (from flamethrower), etc. These sequences do not 

correspond, in number of characters, to the first constituent of the corresponding 

compound (e.g., the “first constituent” of feartwheeker, if we take heartbreaker as 

reference, would be “feart”, not “fear”), but morphological decomposition mechanisms 

have no a priori way of detecting this. These items are not a majority among our non-

word stimuli, but we believe they are numerous enough to prevent the appearance of 

such strategic effects. If these had taken place, however, their bearing on the overall 

results would be to inflate accuracy rates and speed up the response times of nonnative 

speakers, at least for word targets. Yet, Group was a significant factor in both analyses, 

suggesting that any potential strategic effects have not obscured the differences between 

native and nonnative speakers. Crucially, such effects would have impacted word 

targets across the board, with no differential influence on one condition over the other. 

In this sense, observations in terms of how morphological and orthographic effects may 

have arisen in the two populations remain unconfounded.  

Conclusions 

The present study investigated the processing of English compounds by native and 

nonnative speakers, using a lexical decision task with masked constituent priming. In 

order to control for a purely orthographic locus of effects, we introduced two conditions 



in which prime-target overlap was orthographic but not morphological in nature (e.g., 

funk – FUNDRAISER vs. fund – FUNDRAISER). Both experimental groups responded 

faster to compounds preceded by their first or second constituents as compared to an 

unrelated baseline (e.g., coal – FUNDRAISER), while showing no facilitation from 

orthographic conditions. These effects were unconditioned by the semantic transparency 

of the compound, which is problematic for models that conceive of morphological 

effects as a virtual by-product of the orthography-semantics interface. Main differences 

in accuracy and response times between the groups do not seem to be attributable to any 

factors beyond their native language. A further look at the data considering frequency 

and family size characteristics of the target compounds reveals subtle differences 

between native and nonnative speakers, compatible with an account in terms of overall 

slower processing on the part of L2ers. 

Our results provide strong evidence of morphologically structured lexical 

representations in nonnative speakers, and suggest that they use this information in 

ways virtually identical to native speakers, at least at intermediate to advanced levels of 

proficiency. These data are difficult to account for by theories postulating inevitable 

representational differences (see Meisel, 2011, for review), as well as those that propose 

fundamental differences in processing, whether or not these are linked to representation 

(Clahsen et al., 2010). Further research should be conducted to determine whether the 

level of specification of these representations extends beyond morphemic structure. 

Future cross-sectional studies, in taking up the (methodological) challenge of evaluating 

the role of proficiency and AoA of the L2 in the development of morphological 

structure within the lexicon, might help integrate seemingly disparate results and 

enhance our understanding of the dynamic patterns of morpho-lexical acquisition and 

processing. Further research should also be conducted to assess the strength and level of 



specification of these morphological representations, and more specifically to test the 

hypothesis that the purported slower processing capacity of nonnative users of a 

language may itself be sufficient to account for most of the differences observed in 

morphological processing with respect to native speakers. More widespread use of 

experimental methodologies with high timescale resolution, such as eye-tracking, ERP 

and MEG measures (cf. Clahsen et al., 2013; Kuperman, 2013; Fiorentino et al., 2014; 

De Cat et al., 2015), may provide invaluable insight into the time course of access to 

morphological information in nonnative language processing, and allow us to further 

inspect whether any qualitative differences exist between native and nonnative speakers 

in their use and representation of morphology. We believe that most currently available 

evidence, including the data from the present experiment, points to the contrary. 
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Footnotes 

 

1
 Although this last aspect was not directly controlled by the authors, an inspection of the 

materials in the appendix reveals that their experiment contained transparent (e.g. lanpostu, lit. 

‘job post’), partially opaque (e.g. hitzaldi, ‘conference talk’, lit. ‘word time’) and fully opaque 

(e.g. eskubide, ‘right’ –as in ‘human rights’–, lit. ‘hand way’) compounds alike, warranting a 

certain degree of speculation. However, studies addressing the transparency factor more 

specifically (e.g. Fiorentino & Fund-Reznicek, 2009) are perhaps better suited to make claims 

about the morpho-lexical (as opposed to lexico-semantic) nature of constituent priming in 

compounds. 

2
 Lemma frequencies taken from the SUBTLEXUS corpus (Brysbaert & New, 2009), containing 

a total of 51 million words. Only solid (i.e., non-hyphenated, non-fractured) occurrences of the 

compounds were included in the count. 

3
 A direct assessment of the claim by proponents of distributed-connectionist models that what 

seem like morphological effects are, in fact, combined effects of form and meaning overlap 

would have required a semantic control condition as well, outside our primary concern 

(morpho-lexical effects).  

4
 Even though they were constructed from synthetic NV-er compounds and even retained the 

(pseudo-) morphological ending –er, the non-words in our experiment were not pseudo-

compounds in the traditional sense (a nonsensical combination of two otherwise existing words, 

e.g., climbsmoke). They were, however, pseudowords being phonotactically plausible, non-

existing letter strings. Please refer to the discussion section for some speculation on how this 

could have affected nonnative performance. We thank two anonymous reviewers for their 

comments on this issue. 

5
 The interpretation of main effects in the presence of interactions in which they are involved is 

not always straightforward. In order to assess the independent influence of Group on the 

dependent variable, we fitted an unconditional model without the interaction terms in which 

Group appeared. The estimates of that model confirmed the direction and significance of the 

effect. This is equally applicable to the main effects of whole-word and first constituent 

frequency. 

6
 We thank an anonymous reviewer for suggesting the differential speed of access account. Note 

that nonnative speakers’ higher accuracy on compounds with a large RMFS can be explained in 

ways not necessarily involving a compositional stage (although still assuming segmentation). 

Perhaps nonnative speakers take MFS as a measure of lexicality for the whole compound: the 

more compounds exist with the same second constituent, the more likely it is a valid word. The 



                                                                                                                                                                          
fact that we did not find this effect for LMFS may suggest that nonnative speakers are aware of 

the relative importance of the head constituent, but no claims of a directionality effect can be 

made without explicitly showing significant differences between both lateral MFSs (instead of 

between one of them and a baseline or reference level). 


